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IMPLEMENTATION OF THE TURN FUNCTION METHOD

IN KIVA-Fg0

by

Peter J. O'Rourke and Margaret S. Fairfield

ABSTRACT

We document the implementation of the Turn Function Method
(TFM) in KIVA-Fg0, a version of the KIVA computer program written
in the FORTRAN 90 programming language that is used on some
massively parallel computers. TFM solves both linear momentum and
vorticity equations in numerical calculations of compressible fluid flow.
Solving a vorticity equation allows vorticity to be both conserved and
tran._ _ _rted more accurately than is possible in traditional methods
for _omputing compressible flow. To calculate the convective transport
of vorticity more accurately, we have also implemented an improved
method for the rezone phase of the KIVA computational cycle.

This first implementation of TFM in a three-dimensional hydro-
dynamics code involved some modification of the original method and
some novel numerical difference approximations. In particular, we used
a penalty method to keep the divergence of the computed vorticity field
close to zero. Also, difference operators are defined in such a way that
the finite difference analog of V (V × u)= 0 is exactly satisfied.

Three example problems presented in this report show the greater
accuracy that can be gained when TFM is used for calculations of
flows with rotational motion, as well as the added computational costs
incurred. Use of the method can increase by 60% the computational
times of the Euler equation solver in KIVA-Fg0. Although TFM
sometimes does degrade accuracy in calculations that have large
vorticity gradients, generally the calculations show beneficial effects of
TFM on accuracy. We will continue to evaluate the costs and benefits
of TFM in future KIVA-Fg0 calculations.

I. INTRODUCTION

We were motivated to conduct this study because of the need to calculate rotational

motion more accurately in numerical computations of flu'", flow. In computer simulations of

fluid flow, numerical errors usually cause significant nonconservation of angular momentum

and vorticity and nmnerical dissipation of the kinetic energy of rotational motion. For this

reason, most currently used numerical methods do a poor job of calculating rotational

motion. This can affect the solution's accuracy in many ways. For example, inaccuracies

in the calculation of angular molnentunl give rise to inaccurate predictions of convective

transport by the mean flow field. In addition, since numerically dissipated nlea.n flow
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energy is ilo longer available %r augmenting turbulent kinetic energy, the prediction of the

effects of turbulence on the mean flow is inaccurate.

There are many applications that could benefit from more accurate prediction of

rotational motion. For example, in direct simulations or large-eddy simulations of turbulent

flows mean flow kinetic energy first breaks down into small-scale vortices before it is

dissipated into heat. Our specific interest is in internal combustion engine flows, in which

rotational motion is often intentionally introduced to enhance the combustion process.

Two types of rotational motion are used: swirl, which has its axis of rotation aligned

with the engine cylinder axis, and tumble, which has its axis of rotation orthogonal to the

cylinder axis. Combustion efficiency is improved because the kinetic energy of rotational

motion breaks down into fluid turbulent energy when the piston approaches the cylinder

head. This turbulent energy, in turn, enhances the mixing of the fuel, the intake air,

and the hot combustion products in the cylinder, speeding up the combustion process.

Other applications involving significant fluid rotation include gas turbine engines, liquid

propellant rocket engines, and geophysical fluid flows.

Because of the importance of rotational motion in improving combustion efficiency, it

has been observed 1 that it is probably more important to conserve angular momentum

than linear momentum in numerical calculations of internal combustion engine flows.

Very early in the development of the KIVA codes 2'3 for the numerical calculation of

internal combustion engine flows, we recognized the problem of numerical decay of angular

momentum and incorporated special logic that conserved angular momentum of the flow

about the axis of the engine cylinder. KIVA is based on the ALE (Arbitrary Lagrangian-

Eulerian) method, 4 in which the updating of the transient solution through one timestep is

accomplished in a two-stage calculation. In the first stage, the fluid properties are updated

in a Lagrangian calculation in which the computational mesh moves with the fluid. In the

second stage, the flow field obtained by the Lagrangian calculation is mapped onto an

adjusted computational mesh with the same logical structure as the original mesh but

with regularized coordinates that remove Lagrangian mesh distortion. The second-stage

calculation involves the convection of flow properties across cell boundaries and conserves

mass, linear momentum, and energy. Test calculations showed that almost all angular

momentum nonconservation occurred in this convection stage. Accordingly, we devised

special logic for the conservative calculation of convection of the component of angular

momentum about the engine cylinder axis. 2 After the convection calculation a simple

explicit adjustment of the velocities made them consistent with the computed angular

momentum field. The advantages of this angular momentun_ conservation logic are its

simplicity and its computational efficiency. Its disadvantages are that it only conserves one



component of angular monlentuna, the swirl component, and that the velocity adjustment

destroys linear momentum conservation.

An alternative to this angular momentum conservation logic is the Turn Function

Method (TFM). 5 This is a numerical method that conserves both linear momentum and

vorticity and that treats all coordinate directions in the same manner. TFM has previously

been used very little because of its large computational cost: in three space dimensions,

four implicit equations must be solved for each timestep. Because of the greater computer

power available on the new massively parallel computers, however, we were encouraged to

implement TFM irl our version of KIVA, which runs on the Connection Machine CM-2, in

order to assess whether the increased accuracy obtainable with tile method was worth its

computational cost.

This report documents our implementation of TFM in KIVA-F90. We first give the

equations solved by TFM and the modifications that must be used when the fluid equations

are being solved in three dimensions. Then, we describe the numerical implementation of

the method in KIVA-F90. Finally, we compare the resu!,ts of three test problems run both

with and without TFM. Although use of the method can increase by 60% the computational

times of the Euler equation solver in KIVA-F90, we believe the increased cost is warranted

by the increased computational accuracy that we obtained in the test calculations.

II. THE TURN FUNCTION METHOD

A. The Equations

In TFM one numerically solves transport equations for both linear momentum and

vorticity in compressible flow calculations. The numerical solutions ea'e consistent in the

sense that the numerical curl of the computed velocity field is approximately equal to the

computed vorticity field. Use of TFM is not associated with a particular spatial or temporal

difference scheme. The method has been implemented in a two-dimensional Eulerian code

with cell-face velocities, 5 and it is currently used in the three-dimensional ALE-method

code KIVA-F90, which has velocities located at the vertices of hexahedrons.

Using TFM improves the calculation of rotational motion in two ways. First, the

vorticity transport equation can be formulated and differenced in a conservative fashion.

Second, because the transport terms explicitly appear in the TFM equations, more accurate

calculation of vorticity transport is possible using higher-order difference schemes.

O
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The linear momentum and vorticity equations solved by TFM each contain an

additional conservative transport term that is not norma,lly found in the fluid flow

equations:

Opu
0--T + V. (/)uu) + Vp = V. tr + V x r (1)

and

: v. v× . v, (2)0--{+ V" (u_o)+ V x (;,

where p is the mass density, u is tile velocity, p is the thermodynamic pressure, tr is tile

fluid stress tensor, and w is the vorticity. Standard forms of the mass and energy equations
are solved.

The vector field v in Eq. (1) is called tile Turn Vector and is given by

v=#_(w-Vx u) . (3)

Thus r is proportional to the difference between the computed vorticity field and the curl

of the computed velocity field. The proportionality factor pr, which has dimensions of

a viscosity, will be specified later. The exact solution to Eqs. (1) and (2) is w = V x u

and v = O, but the curl of the computed velocity field and the computed vorticity field

can diverge from each other due to numerical errors in the approximations to Eqs. (1)

and (2). The role of the Turn Vector in Eq. (1) is to apply a local torque to the fluid

to keep the computed velocity and vorticity fields consistent. The boundary condition on

walls is r = O, so that linear momentum is not lost at walls as a result of the addition of

the Turn Vector term. In two space dimensions, 7" has one component, which is normal to

the plane of the flow and is called the Turn Function.

The gradient of scalar ¢ is added to the vorticity equation, Eq. (2), to keep the

divergence of the computed vorticity field close to zero. This term was not in the equations

of the original Turn Function paper 5 but is necessary in three-dimensional implementations.

The function ¢ is given by

¢ = v,.V.w , (4)

where v_ = p,./p. By Eq. (4), ¢ is proportional to the divergence of the computed vorticity.

The exact solution to E 4. (2) has V. w equal to O, but because of numerical errors the

computed divergence of w can drift from zero, and the gradient of ¢ in Eq. (2) provides a
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restoring force that cancels this effect. The boundary condition on walls is ¢ = 0, so that

vorticity is not lost at walls. Use of ¢ here is closely analogous to the use of an artificial

bulk viscosity in penalty methods for incompressible flow to keep the divergence of the

velocity field close to zero 6 and for MHD flows to keep the divergence of the magnetic field
7close to zero.

B. The Discrepancy Diffusivity vr

We now discuss our choice of the parameter _ = tl,./p, which we believe is better

than that used in earlier work. _ Parameter u_ serves as a diffusion coefficient for the

discrepancies di = w - V x u and d2 = V.w, as can be seen when transport equations

for di and d2 are derived. The di equation is given in Ref. 5. The equation for d2 is

Od2 V T + V 2 (v,.d2 ) (5)O_

where T represents the truncation errors of the discretized vorticity equation. In their

transport equations, dland d2 are produced by numerical truncation errors and diffused

with diffusion coefficient u_. The discrepancies are destroyed at computational boundaries

because of the boundary conditions on r and ¢. If we take u_ = +e_ (or some very large

number) in our calculations, the computed approximations to di and d2 would be equal to

zero since 7"and ¢ remain finite. While this is an appealing reason for choosing u_ = +c_,

there are two reasons for taking a finite value of u_. First, we must choose u,- finite in

order to limit the upstream propagation of TFM-generated disturbances in the computed

velocity and vorticity fields. _ These disturbances propagate with speed u,./L, where L is

the disturbance wavelength--typically a gradient length of the flow field. We wish to limit

this disturbance speed to being less than a characteristic flow speed. If this is not done,

disturbances can propagate upstream of a region of discrepancy production. Thus, we

must choose u,. so that

u_ < UoL, (6)

where [To is a characteristic flow velocity.

Second, we want to choose u_ finite because computational efficiency improves with

smaller values of u_ . This is because we are, in effect, solving discrepancy transport

equations with diffusion terms whose diffusion coefficient is u_.. The values that we use

for u_ are large enough that it is necessary to use implicit differencing of the diffusion

terms, and an iterative solution procedure will be required. In KIVA-F90 we use a

conjugate residual method, s In solving implicitly discretized diffusion equations, the

convergence rates of most iterative methods are improved when smaller values of the

diffusion coefficients are used. 9
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Balancing these two reasons for taking Ur small is the requirement that we take _,- large

enough that the discrepancies remain tolerably small. We can estimate the magnitudes

of the discrepancies by examining their transport equations. We now do this for the d2-

equation, Eq. (5). Examination of the di-equation gives a similar result. In Eq. (5),

the diffusion terms approximately balance the truncation error terms that produce the

discrepancy. The discrepancy diffusion terms have order of magnitude

u_D
L2 , (7)

where D is a characteristic value of the discrepancy d2 • As we will see later, the truncation

errors that concern us are associated with difference approximations to the convection

terms of the linear momentum and vorticity equations. The spatial truncation errors of

the vorticity convection scheme in KIVA-F90 (see Appendix A) give rise to production

terms in the d2-equation that have order of magnitude

-g ' (S)

where 6x is the computational cell size and n is the order of accuracy. On a uniform mesh,

7_= 2 when gradients in the computed quantities are well resolved. However, because a

gradient-limiting procedure is used, 3 n can be unity in regions of steep gradients. The

lowest order temporal truncation errors of the vorticity convection terms are second order.

These errors give rise to discrepancy production terms with approximate magnitude

L- = L-

where St, the timestep associated with the subcycled convection calculation, a is such that

UoSt < 5x. Equating the magnitudes of the diffusion terms (7) and of the largest of the

truncatiou errors (8) and (9) gives the magnitude of the discrepancy d2 "

D = [rg 5x
u_- L2" (10)

We want the magnitude of d2 to be less than some small number e times Uo/L '_. From

Eq. (10), this is equivalent to requiring that

,,_ > 1 [ ;0bx . ( 11 )
(:



Requirements (6) and (11) o11v_ are satisfied if

-- < e (19)

and if

1
v, = :u0&T.. (13)

Inequality (12) is a requirelnent that gradients in the flow be well resolved. In our

calculations, we have used v_ given by Eq. (13) and taken e = 0.1.

It can now be seen wily it is necessary to finite difference the Turn Vector terms

implicitly if we use a timestep that is equal to or larger than the convective timestep of

KIVA-F90, which satisfies U06t _ 0.5 6x. In order to use explicit differencing with timestep

6t, it would be necessary to satisfy the diffusional stability condition for a three-dimensional

mesh:

1

vr6t <_-_6x2 (14)

By substituting the value of u_ of Eq. (13) with e = 0.1, we see that 6t would be required

to satisfy

U06t _<0.017,x. (15)

This constrains 6t to be more than an order of magnitude smaller than the convective

timestep we currently use.

III. NUMERICAL IMPLEMENTATION IN KIVA-Fg0

We now describe the nmnerical implementation of TFM in h:IVA-Fg0. First we give

the locations of the new cell variables r, w, and ¢ and the spatial difference approximations

to the derivatives V × r, We, V × u, and V.w. We show that the finite difference

analog of the differential identity XT. (V × u) = 0 is satisfied. Then we give the finite

difference approximation to the vorticity transport equation and our method of solving for

the function ¢ in the vortieity equation and the Turn Vector term in the linear momentum

equation. Finally, we compare TFM with a related method developed by Dukowicz and
Meltz. TM

In KIVA velocities are located at the vertices of computational cells and thermody-

namic variables are located at cell centers. 2'3 The control volumes surrounding vertices are
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called momentum cells, and those surrounding cell-centered quantities are called regular

cells. In general, spatial derivatives of cell-centered quantities are located at vertices, and

spatial derivatives of vertex quantities are cell-centered. Thus, for example, the ordinary

fluid stress tensor, which depends on the rate of strain, is located at cell centers. It seems

natural, therefore, to locate the vorticity oa and Turn Vector v at cell centers. Since the

vorticity is located a.t cell centers, its divergence is located a.t vertices, as is the flmction

¢. The locations of these new cell variables are indicated in Fig. 1.

O 0.}.1:

',tw

Fig. 1. Locations of new cell variables w, _', and ¢.

Finite difference approximations are needed for the curl of the cell-centered quantity r

and the divergence of the cell-centered quantity oa. For these approximations, given below,

we use the same discretized form of the gradient operator D that is used to approximate

the derivatives of the fluid stress terms in the linear momentum equation in KIVA:

1 _--[_(A'FD(V x r)= D,, x _" = I';---_ _ x r_) (16)

and

1

FD(V.oa) - D,,.w = _ _ (A_ .oaZ), (17)

where I'_, is the vohune of momentuni cell v,/3 is an index that runs over the faces of the

nmmentum cell. A _ is the (mtward area projection vector of face/3 and ra (resp oal_) is• I_ ' "
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the value of _- (resp. w) in the regular cell in which face/3 is located. The momentum cell

volmnes and their faces are defined in the KIVA documentation. 2'a

The approximation to the gradient of vertex quantity 4)is given by

1

FD(V¢) = D(.¢ = _ EA_¢o' (18)

where l_c is the volume of the regular control cell, c_ is an index that runs over all faces of

the regular cell, Ac_ is the outward area. projection vector of face c_,and ¢c_ is the average

of the values of ¢ at the four vertices that define face _. Note that Eqs. (16) and (18),

which approximate terms in the linear momentum and vorticity equations, respectively,

conserve both momentum and vorticity since the cell-face area projection vectors change

sign when "viewed" from neighboring cells.

The above difference approximations to spatial derivatives are obtained by integrating

the derivatives over their appropriate control volumes, converting volume integrals to

surface integrals using the divergence theorem, and approximating the surface integrals

assuming that integrands are uniform within the cells in which the faces are located. In

defining the approximation to the curl of the velocity field, however, we depart from this

procedure. This is because we want to define FD(_' x u) = G_ x u in such a way that

the difference analog to the differential identity _'. (_7 x u) = 0 is satisfied. In the limit of

#_ = -t-oo this is certainly necessary, because we are constraining d2 ---w - (Ge x u) = 0

and di = Dr" w = 0, and hence

D,,. ((]_ x u) = 0. (19)

It seems like a good idea to devise G_ so that Eq. (19) is generally satisfied.

To define G_ we first need to define cell-face circulations Ca. As are area projection

vectors, C_ is defined relative to both a cell face and a cell on either side of that face.

Consider the cell face shown in Fig. 2, with area projection vector A_ pointing outward

from the regular cell relative to which C_ is defined. We number the vert_.ces bounding

face a in ascending order counterclockwise when the face is viewed from the side of its

area projection vector. Then we have

Co -- _ (al -_ u2).(x2-x1)-Jr-(u2 -Jr u3).(x3 -x2)Av (20)"1

(U3 -_- U4) " (X4 -- X3)-t'-(U4 -t- Ul)' (X4 --X1)] •

Obviously, for the same cell face, Co changes sign when defined relative to the cell on the

opposite side of that face.

9
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Fig. 2. Vertex numbering used in defining cell-face circulations.

The curl of the velocity in a regular cell is defined by requiring that Gc x u satisfy

the following difference approximation to Stokes' Theorem for each vertex t, of the regular
cell:

(Gc xu)' Z Ao,= E C,_. (21)
touching touching

u Iu

In Eq. (21) the sum is over the three cell faces of the regular cell that touch vertex v. At

first glance it appears that Eq. (21) gives eight constraints for the three components of

Gc x u, one for each vertex. One can show, however, using the identities

A_ = 0 (22)
Ot

and

= o, (23)
O

whereeachsum isoverallfacesofthecellinwhich (_ × u isdefined,thatEq. (21)gives

onlythreeindependentconstraints.

We now show that.D,,.(Ge × u)- 0.UsingthedefinitionofthevertexoperatorD,,,

Eq. (17), we see that,

10



V,,D,,. (Ge × u)= E A_. (Gc × u)_. (24)

Now the sum over momentum cell faces/3 in Eq. (24) can be split into two sums: one over

the eight regular cells 3' touching vertex v and the other over the three momentum cell

faces inside each regular cell 3' :

I,_,D,,.(Gcxu)=E(EA_).(Gc×u)_.,_ (25)

Using the same trick that is used to difference the stress terms in KIVA, 2'3 we now express

the sum over momentum cell faces in cell 3' in terms of the sum of the regular cell faces of

cell 3' that touch vertex v:

touching ,,

Using the definition of G_ × u, Eq. (21), we see that

V,,D,,. (G_ x u)=-_
_/ in°_

touching t,

Since each Co occurs twice in Eq. (27), once for each cell with hce c_, and these occurrences

have opposite signs, the sum in Eq. (27) is zero. Hence we have proven Eq. (19).

We now give the finite difference approximation to the vorticity transport equation.

For the present we assume, as we did for the angular momentum conservation logic, 2'3

that most errors in vorticity transport arise in the rezone or convection phase of KIVA.

Therefore, for the change in vorticity in the Lagrangian phase, we take

w B -w"= (G_ x u B) -(G'_' x u") , (28)

where superscript 1_(resp. B) denotes values at the beginning of the computational cycle

(resp. end of the Lagrangian phase). In the example calculations we have performed to

date this has been a very good al)l)roximation.



During the rezone phase of the calculation, the three components of w are convected

just like any other cell-centered extrinsic quantity. Details of this convection calculation

are given in Appendix A.

The advanced-time values of w are obtained by solving the following equations for

¢o"+1 and ¢,+1.

Vc"+1 (w "+a -da) = AtV[ '+1 (D_'+1¢ ''+1) (29)

and

¢.+1 = /___D.+I . w.+l (30)
P

The quantity & is the value of the vorticity that results from the convection calculation,

and At is the main computational timestep. These equations are solved by eliminating

w,+l in Eq. (30) using Eq. (29), and solving the resulting equation implicitly for ¢,+1

The conjugate residual procedure used to solve for ¢,+1 is described in Appendix B.

After the advanced-time value of the vorticity has been obtained, the advanced-time

values of the velocity and Turn Vector are obtained by solving

M,',+' (u"+'- ft)= AtI_,3+' (D,',+' × r "+') (31)

and

r "+' = #, [w"+' - (G_"+' × u'+')] (32)

for u "+J and r "+1 Once again ft represents the value of the velocity after the convection

calculation. These equations are solved by eliminating u "+l from Eq. (32) using Eq. (31),

and then solving the resulting equation implicitly for r "+'. Appendix B describes the

implicit solution for v "+1.

Note that we are applying the Turn Vector and ¢ corrections to the velocity and

vorticity fields once each computational cycle. An alternative procedure that we have

not tried is to apply the corrections after each convective subcycle. This would be more

accurate, but much more costly in calculations with many convective subcycles. Another

possibility that we have not explored and that would sa,ve computational time is to a.pply

the corrections only once every 7_computational cycles, where n > 1.

We can now compare TFM with a method recently published by Dukowicz and Meltz 1°

that bears a close resemblance, but is inferior in two respects, to TFM. Dukowicz and

Meltz are concerned with reducing numerical errors that a.rise because of mesh distortion

12
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in Lagrangian hydrodynamics calculations. Spurious mesh distortion is a.ttributed to

inaccuracies in the calculation of vorticity. To correct these errors the authors propose

solving a vorticity transport equation and correcting the computed vertex velocity field so

that its curl agrees with the computed vorticity. The close resemblance of this method

to TFM can be seen if we compare the large p_ formulation of Eqs. (31) and (32) with

Dukowicz and Meltz's Eq. (4.12) of Ref. 10. To show the resembla.nce, we express the

difference approximations to the Turn Function equations in the notation of Dukowicz and

Meltz. When Pr is large Eq. (32) becomes the constraint that the curl of the computed

velocity field equals the computed vorticity field:

w ''+1 = C-''+1 × u ''+1 (33)

If we define Av = fl - u ''+l, Aco = (G'_'+1 x ft) - w "+1, and A = -At7 "''+l, Eq. (31)
beconles

Av = I'_"+'
M_,+ 1DI',+l × A , /,34)

and Eq. (33) can be combined with Eq. (34) to give

]Aw=G_'+' x _i (D, ",+1 × A) . (35)

Neglecting the factor I,,_'+l/M:, '+1, the right-hand side of Eq. (35) is a difference

approximation to

V × (V × A) = -V2A + V(V. A). (36)

When p._ is constant, Eqs. (32), (19), and (30) show that

D,,. r ''+1 = p¢,+l (37)

or, in the notation of Dukowicz and Meltz,

O,, •A = -pAte ''+ _ (38)

The boundary condition on 7" can be written a.s

A = 0. (39)

With the exception of the right-hand side of Eq. (38). which is zero in the Dukowicz and

Meltz method, and the factor I_''+1/M', '+l al)pearing in Eqs. (34) and (35), Eqs. (34),

(35), (38), and (39) are exactly the same as Eq. (4.12),,f Ilef. 10.

13



There are two important differences between the method of Dukowicz and Meltz and

TFM. One of these differences is related to the appearance of the factor 1/,; +1/Mt','+1 in

Eqs. (34) and (35). This factor arises because TFM corrects the velocity field in a way

that conserves linear momentum. In the method of Dukowicz and Meltz, velocities are

fimdamentally located at cell centers, and vertex velocities are interpolated from these.

The method does not attempt to correct the cell-centered velocity field to bring about

agreement with the computed vorticity field. Only the vertex veloc;ties are corrected,

and conservation of momentum is not a concern in performing this correction because

momentum is carried by the cell-centered velocities. In the absence of a correction to the

cell-centered velocity field, however, its curl can drift away from the computed vorticity

field. Therefore the vertex velocity field can differ considerably from the cell-centered

velocity field. This undesirable state of affairs could be remedied by using TFM; the

vorticity correction would then appear in both the cell-centered and vertex velocities.

The second difference between the Dukowicz and Meltz method and TFM arises in

problems with shocks. We are not concerned with the calculation of shocks in KIVA-F90,

but this was an issue in the original Turn Function paper, 5 and we proposed "turning

off" TFM in the vicinity of shocks, and not solving a vorticity transport equation, to

avoid calculation of incorrect jump conditions of velocity and vorticity across computed

shocks. 5 In contrast, Dukowicz a.nd Meltz propose solving the vorticity transport equation

everywhere in the flow field. Because of errors in the computed vorticity jump across

shocks, the method of Dukowicz and Meltz can again have vertex velocities that differ

considerably from the cell-centered velocities.

IV. EXAMPLE CALCULATIONS

In this section we compare calculations performed both with and without TFM.

Three problems were calculated: The first is two-dimensional with an initially uniform

vorticity field and a nonuniform mesh, the second is two-dimensional with a uniform mesh

and nonuniform vorticity field, and the third is a three-dimensional calculation of the

interaction of two vortices. All of the calculations, except one noted below, use an extension

of QSOU (Quasi-Second-Order U1)wind) differencing, 3 called QSOU2, for the convection

terms. This extension, which is documented in Appendix A, has been develoI)ed to improve

the accuracy of the convection calculation of w_rticity, as well as other quantities. We

compare the results and run times of the calculations with and without TFM. The two-

dimensional 1)roblems we also compare with known analytic solutions.

14



A. Calculations of Solid-Body Rotation on a Nonuniform Mesh

In this problem an incompressible fluid is initially in solid-body rotation about the

axis of a cylinder. Thus, the initial vorticity field is uniform with one nonzero component

aligned with the axis of the cylinder, the z-coordinate direction. Because there is no wall

friction, the exact solution is a. steady flow varying only in the radial direction. The

calculated solutions exhibit unsteadiness and two-dimensionality, however, because of the

computational mesh and numerical truncation errors.

Figure 3 shows the initial velocity field superimposed on the computational mesh in a

plane that is perpendicular to the z-axis. The mesh was generated by deforming a square

mesh of cells into a circular cross section. This was accomplished by placing neighboring

boundary points equidistant from each other and then requiring that interior mesh points

lie at the average location of their four nearest neighbors. This type of mesh is now

popular in calculations of in-cylinder flows in internal combustion engines. 11 There is no

singularity at the axis as in a mesh based on cylindrical coordinates, but this is replaced

by four singularities at the four mesh locations of tile corners of the square. Three mesh

resolutions were used, with 10, 20, and 40 cells in each mesh direction. Although a three-

dimensional mesh was used, neither the mesh nor the computed solution varied in the

z-direction.

The initial timestep was such that co:At = 0.01675, where co, was the initial axial

component of vorticity. On subsequent computational cycles, the timestep was allowed to

grow by two percent per cycle until KIVA's acceleration timestep limit 3 was reached. Each

problem was run for one rotation time based on the initial vorticity value.

Figure 4 shows plots of the integrated z-component of vorticity as a function of

time for calculations 1) with TFM, 2) without TFM, and 3) without TFM but with

donor-cell or upwind differencing for convection. The last is presented to show the large

vorticity conservation errors that are present in codes that use donor-cell differencing. As

Fig. 4 shows, the calculation with TFM nearly perfectly conserves vorticity, whereas the

calculations without TFM lose 9% and 35% of their initial vorticity. These results support

our assunlption that most vorticity transport errors in KIVA result from the calculation
of convection.

Figure 5 shows the effect of varying mesh resolution on the total vorticity versus time.

In the calculation using TFM on the 103 mesh, vorticity is nearly perfectly conserved.

Calculations without TFM show that w)rticity is conserved better as mesh resolution is

improved, but the 40:3mesh still loses 5% of its initial w)rticity.

The major reason fi_r the loss of vorticity in the calculations performed without TFM

can be seen in Fig. 6. which gives a contour plot of the z-component of vorticity in the
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Fig. 3. Velocity vectors and computational mesh for solid-body rotation problems.

203 mesh at the end of the calculation. The initial vorticity value is maintained to within

5% in a large, centrally-located region, but the vorticity has dropped to 16% of its initial

value at the locations of the corners of the logical mesh. Apparently, this is due to large

numerical errors associated with the mesh distortion at these corners. Correcting these

errors by using a higher-order method rather than TFM would be extremely difficult on

this mesh and on the distorted meshes that must be used to model complex geometries.

The computational times with and without TFM are given in Table 1. Using TFM

increases times by 60% to 70%.

TABLE 1. Computational times (s) for solid-body rotation problem.

Mesh size with TFM without TFM

103 38 23

203 108 63

403 696 434
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Fig. 6. Contour plot of z-vorticity without TFM, showing locations of largest errors.

B. Calculations of a Standing Vortex on a Uniform Mesh

This problem was originally suggested by Gresho 12 and has recently been used as a

test calculation for a finite element method by Tezuyar et al. 13 The initial condition is an

axisymmetric, incompressible vortex contained in a 1 x 1 box. The circumferential velocity

is given by

5r 0 < r < .2
lr0= 2-5r .2<r<.4 •

0 .4<r

As in the first test problem, the initial condition is the steady-state solution, but the

calculations exhibit unsteadiness because of numerical errors. The box is resolved with

20 uniform cells in each mesh direction and the computational timestep is equal to 0.05,

resulting in a maximum Courant number of 1.0. The problem is run to a time of 3.0,

which is about 4.8 rotation times of the initial vortex core. Following Tezuyar et al., 13 we
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use the time history of the total kinetic energy in the mesh as a measure of the accuracy

of a numerical method, although the L2-norm of the difference between the exact and

computed solutions would be a better measure.

Surprisingly, the calculation without TFM preserved total kinetic energy better than

the calculation with TFM. In the former, 83% of the initial kinetic energy was still present

at time 3.0, while only 73% was present with TFM. Tezuyar et al. reported preserving

between 80% and 91% of the total kinetic energy for the finite element methods they

tested. Figure 7 gives plots of the velocity and vorticity fields of the KIVA-F90 calculations

at time 3.0. The calculation without TFM preserved slightly better the maximum value

1.0 of the velocity; but the calculation with TFM preserved the maximum vorticity value

much better, keeping within 1% of the initial maximum value of 10.0. Both calculations

conserved total vorticity and angular momentum within 0.5%.
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Fig. 7. Velocity vectors and contours of z-vorticity for standing vortex problems, with
and without TFM.
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Fig. 8. Initial velocity (top) and vorticity (bottom) profiles in the Gresho problem.

The reasor_ TFM is more dissipative in this problem is clear when we consider the

initial velocity and vorticity profiles in Fig. 8. The velocity field is continuous, increasing

linearly to one in the core of the vortex and decreasing linearly to zero outside of the core.

In contrast, the vorticity field has two discontinuities, one at the outer edge of the core and

another at r = 0.4, where the velocity again becomes zero. In the calculation without TFM,

the continuous velocity field is numerically convected through the mesh. In the calculation

with TFM, the vorticity field is convected through the mesh, and a velocity field that is

consistent with this computed vorticity field is found. The reason the TFM calculation

dissipates more kinetic energy is that it is more difficult for the QSOU2 convection scheme

to convect accurately the discontinuous vorticity field than it is to convect the continuous

velocity field. This is because the QSOU2 convection scheme reverts to upwind differencing

in regions where the derivative of a convected quantity is discontinuous (see Appendix A).
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This supplies numerical smoothing to the variation of that quantity so that its computed

pfip_qle can be resolved by the comt)utational mesh. The more discontinuous a quantity is,
_he more smoothing is supplied.

Calculational results that llsed the original QSOU method of KIVA-II 3 were worse,

showing more munerical dissipation of kinetic energy and more diffusion of vorticity. This

is what motivated us to develop the improved QSOU2 convection algorithm discussed in

Appendix A.

One l)ossible explanation for the lackluster performance of KIVA-F90 relative to that

of the finite element nmthods is the KIVA-F90 gradient-limiter (see Appendix A), which

introduces numerical dissil)ation in order to maintain monotonicity and positivity. The

finite element methods do not use a.gradient-limiter. To test this hypothesis we performed

two calculations with and without TFM, both using the convection scheme of Appendix A

without the gradient limiter. These calculations preserved 86% (no TFM) and 81% (TFM)

of the initial kinetic energy. Despite the increased kinetic energy error caused by the

gradient-limiter in this problem, maintaining monotonicity is an over-riding consideration

for us; and therefore use of the gradient-limiter is retained in KIVA-F90.

C. Calculations of a Rotating Ring Vortex

The purpose of these calculations was to determine whether rotation affects the

evolution of a. vortex ring placed in a cylindrical vessel. The initial conditions are shown

in Fig. 9. The azimuthal component of the vorticity is specified to be a constant value

inside a douglmut-shaped region whose axis coincides with the axis of the vessel. Outside

this doughnut-shaped region, the azimuthal component of the vorticity is zero. The radial

component of vorticity is identically zero. The resulting velocity field in the r-z plane is

also shown in Fig. 9. Note that the direction of rotation in the ring vortex is such that

the flow is upward along the axis of the vessel. Two calculations were performed. In the

first, there was no axial component of vorticity. In the second, a solid-body rotation was

superimposed on the initial velocity field of Fig. 9. The Rossby number, the ratio of the

ring-vortex velocity at the edge of the doughnut to the swirl velocity at the center of the

vortex ring, was one. Both calculations were performed with and without TFM.

All calculations were performed with 95 cells in each of the mesh coordinate directions,

resulting in a total of nearly a million computational cells. As in the first set of exa.mple

calculations, the mesh was formed by deforming a logically-rectangular block of ('ells into

a cylindrical shape and was not derived from a cylindrical coordinate transformation.

Thus, although the initial and 1)oundary conditions for this problenl are a.xisymmetric, the

numerical soluti_n could (levelo 1)asymmetries about the cylinder axis because of numerical
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Fig. 9. Initial conditions for ring vortex problems, superimposed velocity vectors and

omega-theta vorticity contours.

errors or possible hydrodynamic instabilities. Another purpose of the calculations was to

see if the solutions developed asymmetries about the axis.

The calculations using TFM remained axisymmetric. Shown in Fig. 10 are contours

of the azimuthal component of vorticity in the TFM calculation without rotation. The

time between each plot is approximately one-half a rotation time, based on the initial

rotation rate in the vortex ring. In this solution, the ring drifts upward in the direction

of the fluid flow along the cylinder axis, in agreement with the solution for the direction

of motion of an isolated vortex ring. TM As it approaches the top of the cylinder, the ring

spreads out radially but retains its doughnut shape. In contrast, in the TFM calculation

with rotation the ring spawns counter-rotating vortex rings, as shown in Fig. 11. An

explanation for these counter-rotating rings, given by Von Karman, 15 is that they result

from the interaction of pressure and angular momentum gradients.

The calculations without TFM quickly developed large velocity shears and asymme-

tries about the cylinder axis. Because of this, the computational timesteps in the ca.lcula-

tions without TFM were smaller, and the computational times of approximately 6.3 hours

were actually longer than those in the calculations with TFM, which were approximately

6.0 hours.

22



mmgi-theto contour plot oSWSle-theto contour plot
timml 4.6987cJI(=82 t :no: 9.311aS25[-02
cuclo • 1841 cuclo g 2102
on pIIIAO j = 41B on piono J • 4
lsi4lWum ISIllJal 1.8_40aE440_ miNllsum volull I. _I_qB.S[_B'_
islalnuls ueluOl -S. IBO44a£-Ol nlninuo¢ uiluei -I.2"JIS?O[_

]
aemtle-theto contour plot onelli-tketo contour plot
t lm: I. IIr_27X-O! t lne: 1. 421_1iI[001
CVClo • 231i cho iu • Z_:J
on plono J z 48 on plono J : 48
mim uqmluel 1.6_J803[_12 maxim velum: 1.89742_#02
nllsimm uoiul8 -Z. 112MI21EI4NI 0slnlmm velum: -I.91152_3[#00

Fig. 10. Contour plots of omega-theta vorticity in nonrotating ring vortex, showing

evolution through time.

V. CONCLUSIONS

We have implemented the Turn Function Method (TFM) for conserving both

linear momentum and vorticity in the compressible-fluid hydrodynamics code KIVA-

1790. This first implementation in a three-dimensional hydrodynamics code involved some

modification of the original method and some novel difference approximations. In addition,

we have derived and used a better value for the discrepancy diffusivity than was reported

in the original method. The discrepancy diffusivity controls the difference between the

computed vorticity and the curl of the computed velocity.

Test problems show that TFM corrects vorticity conservation errors that can occur

when using highly distorted meshes in KIVA-F90 calculations. TFM can also degrade the

accuracy of calculations with large vorticity gradients by introducing numerical diffusion

of vorticity. Generally, TFM has a smoothing effect on computed velocity fields.
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Fig. 11. Contour plots of omega-theta vorticity in rotating ring vortex, showing evolution

through time.

Use of TFM can increase by 60% the computational times of the Euler equation solver

in KIVA-F90, although run times have decreased in some calculations. It is expected that

when additional physics submodels are installed in KIVA-F90, the fraction of time spent

solving the TFM equations will be reduced. We will continue to evaluate the costs and

benefits of using TFM, but we are highly encouraged by the accuracy improvements of the

initial calculations reported here.
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APPENDIX A

QSOU2 CONVECTION ALGORITHM

In this appendix we document the QSOU2 convection algorithm, which replaces the

QSOU scheme of KIVA-II. QSOU2 improves upon QSOU in two respects. First, to find

the values of fluxed quantities on cell faces, interpolation is performed along material paths

instead of along grid coordinate directions. Second, a less diffusive gradient-limiter is used.

Before describing QSOU2, we briefly review the QSOU convection algorithm. For a more

detailed description of QSOU, the reader is referred to Appendix M of the KIVA-II report, a

In KIVA's convection phase, the flux of a cell-cei,cered quantity across a cell boundary

is the product of a volume flux across that boundary and an interpolated density p, where

p represents a mass or energy density per unit volume or a component of the vorticity.

Momentum fluxes, which will be described later, are the products of interpolated velocities

and the mass fluxes across each momentum cell face. QSOU is a method for calculating

the it-terpolated values in such a way that the convection scheme is strongly monotone. 3

The intorpolated density for fluxing a cell-centered quantity is obtained in two steps. First,

we calculate the derivative of p with respect to distance in the logical coordinate direction

ix) which fluxing is occurring. For example, if fluxing is in the i-cooidinate direction, we

calculate "_sIi, the derivative of p with respect to distance in the/-direction, according to

0_e_

_ ,Op sign(o._n)+sign(_)min( Op ] _ i)0-'_si = 2 _ , _ (A-l)

The quantities _ and 0t, are right- and left-face gradients that are obtained as follows:k)sR OSL

Op PR - P_

q Ix.-
an(', (A-2)

Op Pe -- ,)L

O.L -- XLI"

In the,_e formulas, p_ =value of p in cell (i,j, l,,),

p n = value ()f p in cell (i + 1, j, i_'),

PL = value of p in cell (i - 1, j, ti_),

x_ = location of center of cell (i.j, 1,,),

xR = location _)f center of cell (i + 1, j, k), and

XL = location of center of cell (i - 1, j. _').

Thus QSOU selects the gradient of minimum magnitude ft'ore the two gradients on either

___ side ()f cell (i. j, I_'), if these _:radients have the same sign. Otherwise _]i,,., is set to zero.
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In the second step of the QSOU calculation, the boundary density is obtained by

interpolation in the cell that is donating material. For example, for the left face of cell

Pl= {PL+_ XfL--XL 1 F.\'L ifFXL>Oix, _x l(1 <0Pr- as i _ "

PfL and XIL are the interpolated density and location of the center of the left face of cell

(i,j,k). VL and _ are the volumes of cells (i- 1,j,k) and (i,j,k). FXL is the flux

volume through the left face and is positive if cell (i - l, j, k) is donating material. FXL

is calculated as it is in KIVA-II. 3 From Eqs. (A-l), (A-2), and (A-3), it is seen that the

interpolated density depends only on gradients in the grid coordinate direction in which

fluxing is being calculated and is independent of gradients in other coordinate directions.

In regions where the solution is smooth, QSOU approaches second-order accuracy in space,

but because the interpolation of Eq. (A-3) is only in the fluxing coordinate direction, the

QSOU scheme is first-order accurate in time. 1_

In the QSOU2 scheme the interpolated density depends, in general, on the gradients

in all coordinate directions, and the interpolation is in the direction of the relative velocity

vector, which is the difference between the fluid and grid velocities. Because of this, QSOU2

is second-order accurate in time. A second difference between QSOU2 and QSOU is that

QSOU2 uses VanLeer gradient limiting, TM which is weakly monotone rather than strongly

monotone and introduces less numerical diffusion than does QSOU differencing.

The QSOU2 calculation has three steps. First, in each cell we calculate the density

gradients in all logical coor4inate directions. Similar formulas are used for each direction,

so we just give those for the/-coordinate :

. Op i) s LOp sigll (_)sz)"f sigll (a-O-P-)
0

(A-4)

min ._ _+O--_L ' Ix/R_X¢I ' [xYL_xc
I I I
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The right- and left-face gradients of Eq. (A-4) differ slightly from those of the QSOU

scheme:

Op PR - P_
.-.-.

and (A-5)

Of) Pc -- PL

where x/n equals the location of the center of the right face of cell (i, j, k), and xi equals

the location of the center of the left face of cell (i,j,k). From (A-l) and (A-4), it can be

verified that, unlike with QSOU, the quantity "_li can exceed either the right- or the left-

face gradient in magnitude, but, in compliance with Va.nLeer limiting, the right-face density

Pc + _[i x_- xc lies between pc and PR and the left-face density pc- 0a xi- x,.
lies between Pc and PL.

In the second step of the QSOU2 convection calculation, the gradient of p is found by

solving the three simultaneous equations:

The subscripts F, D, B, and T (lenote the front, back, bottom, and top faces of cell (i, j, k).

The interpolated densities are obtained in the third step of the QSOU2 calculation

by using the density gradients of Eq. (A-6), the relative velocities between the fluid mid

grid, and the signs of the flux vohunes. The relative veh)cities, which are defined at cell

vertices, are given by

Ur = U B -- xn+l -- xn
At ' (A-T)

where u n is the fluid vel()city after Phase B of the coml)utational cycle, x" an(l x ''+l are

the vertex locations a.t the ]_egimfing and en(l of the COml)utational cycle, an(1 At is the

27



main computational timestep. The interpolated density on the left face of cell (i, j, k) is

calculated according to

Pf -" PL "4-(Vp)L XfL XL _ if FXL > 0
pc + (Vp)c. (x_- xc- a_) if FXL < 0,

where //t is the convection timestep and ft, is the average value of the relative velocity

_t the four vertices bounding the left face. The density gradients (Vp)L and (Vp)c are

located at the centers of cells (i - 1, j, k) and (i, j, k), respectively.

QSOU2 momentum fluxing is a three-step calculation that closely parallels the new

fluxing for cell-centered quantities. Letting q denote any of the three velocity components

u, v, or w, in the first step, we calculate the derivatives of q with respect to distance in

each of the logical coordinate directions. For the/-direction these are given by

I {11°'°'1 °al °'1}Oq = sign(°_R) +sign(osL)min + 2 2 (A-9)

where 0q and _ are left and right gradients given byOsr. c3sR

Oq qi+l,j,k -- qijk

Osn Ixi+_,i,k -- xiik[

and (A-10)

Oq qijk -- qi-lj,k

OSL }xi1, - xi-_,_,,[

In the second step, we calculate the gradient of q at each vertex by solving the three

simultaneous equations

Oq
] [Xi+lj,k -- xi-l,j,k[ ,(Vq)ijk • (Xi+l,j,k -- Xi-l,.i,k) = _.i

Oq I' Ixi,j+l,k - xi,j-l,kl , (A-11)(Vq)ijk • (Xi,j+l,k -- Xi,j-l,k) = _ J
and

Oq [Xi,j,k-kl -- Xi,j,k-l[ .
(Vq)ijk • (xij,k+l -- Xi,j,k-,) = _SS k

The interpolated velocities for each momentum cell face are obtained in the third step.

As an example, the interpolated velocity on the face between momentum cells (i, j, k) and

(i - 1, j, k) is calculated from

{ qi-l,j,k + (Vq),-1j,k" (,,,:,,-,,,__.j,k-a,_,) if F.¥M > 0

q$ . 2= (A-12)

qijt; + (Vq)ijk" _xi-,j_,,,-xo,,-u,,St) if FXM" <

\

0
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where FXM, the mass flux across this cell face, is positive if cell (i- 1, j, k) is donating mass

to cell (i, j, k). FXM is obtained in tile cell-centered fluxing portion of the calculation, as

is described in the KIVA-II documentation, s In Eq. (A-12), the quantity fir is the average

value of the relative velocities at vertices (i, j, k) and (i - 1, j, k).

To illustrate the increased accuracy of the QSOU2 convection calculation, we repeated

the example calculation of the KIVA-II report s in which a scalar field is convected with a

uniform velocity directed at a 45° angle to the mesh directions of a two-dimensional mesh

of square cells. The scalar field is initially unity on a square that has five cells to a side

and is zero otherwise. This initial field, along with the results of two calculations using

QSOU2 with u _t/_x = 0.2 and u 6t/6x = 0.5, is shown in the contour plots of Fig. A-1.

The calculations were run to a time T such that u T/6x = 5.0, at which time the exact

solution was a uniform translation of the square five cells in each direction. Also given

in Fig. A-1 are the maximum and minimum computed values of the scalar at time T and

the root-mean-square error between the computed and exact solutions, averaged over the

twenty-five cells for which the scalar field is unity in the exact solution. Because of poor

resolution, this example problem is a severe test of convection schemes and exaggerates

many of their shortcomings.

The square shape of the initial profile is more nearly preserved in the calculation with

u6t/6x = 0.2, but the maximum scalar value is closer to the initial value, and the error is

smaller, in the calculation with u 6t/6x = 0.5. In both calculations, the computed minima

are 0.0, evidence of the monotonicity of the QSOU2 scheme. As reported in the I{IVA-

II documentation, 3 when we use QSOU with u 6t/6x = 0.2 in the same calculation, the

computed maximum scalar value and error are 0.87 and 0.36, respectively. Both of these

values are worse than those obtained in the QSOU2 calculations.

Because of the increased temporal accuracy of the QSOU2 scheme, we are able to use

larger convective subcycle timesteps in Phase C of KIVA-Fg0. Currently, the convective

timestep in KIVA-Fg0 is limited by the Courant condition _,6t/6.r < 0.5, whereas in KIVA-

II this timestep is limited by tl _St/6x <_0.2. Thus the number of convective subcycles in

KIVA-F90 calculations will be reduced by ai)proximately 40%. which saves computational

time in calculations with large numbers of convective subcycles.
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Fig. A-1. Velocity field (upper left) and initial scalar profile (upper right) used in

convection problem with u_t/6z = 0.2 (lower left) and u 6t/6z = 0.5 (lower right).
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APPENDIX B

THE CONJUGATE RESIDUAL METHOD

In this appendix we give some details of how tile conjugate residual (CR) method

is used to solve Eqs. (29) through (32) of this report. For details of the CR method,

the reader should consult Ref. 8, which provides a proof of convergence. Here we give

just an overview of the method and derive the preconditioning matrices that are used in

conjunction with solution of the TFM equations.

It is convenient to think of the CII method as a special type of Gram-Schmidt

orth(wmalization proce(lure. 16 A sequence of basis vectors is constructed l)y making use

of the sequence of residuals r,, = y - Ax,, in the solution of linear equation y = Ax.

The basis vectors are q,, = Pr,,, where P is an approxima.tion to A -I and is called

the preconditioning matrix. As in the Gram-Schmidt procedure, an orthonormal basis is

constructed by subtracting from q,, all the components of ql, for IL < v. Unlike the Gram-

Schmidt procedure, however, one need only subtract from q,, its comp(ment in the direction

of the previously constructed t)asis vector; orthogonality with respect to the other basis

vectors is ensured because a special inner product is used in the CR method. This inner

product is defined by [xi, x2] = (PAx1, Ax2), where (,) denotes the standard Euclidean

inner product. The conllmtational economy of the Cit method results ft'ore this need to

orthogonalize only with respect to the previously constructed basis vector. Once the new

1)a.sis vector is obtained, the coml)onent of the solution x in its direction is found and is

added t.()x,, to obtain the new al)proximation x,,+l.

For the prccoxiditioning matrix, we use what we call Jacobi preconditioning. P is taken

to be the matrix whose main diagonal elements are the reciprocals of the main diagonal

elements of A and wllose off-diagonal elements are zero.

For solution of Eqs. (29) and (30), the residual equation is

,.,. = ¢,, /'_ D_',+' [da+ AtD7 +'¢] , (B-l)
P

where _, is the vertex where ¢,, is located Since Or A the diagonal elements of A can

1)e fimn(l l)v. taking the (lerivative of (B-l) with resl)ect to ¢,.; an(! since _° c()mmutes
,,+l and D ''+l we (_l)tainwith the Ol)('rat()rs D,. _ ,

FV
- 1 P_ AtD ''+' D'_'+!- --- ,, .( _,.) , (B-2)

0d,, p
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where _v is a mesh function that is unity at vertex v and zero at other vertices. Using the

definitions (17) and (18) of Dv and Dc and expressing momentum cell-face areas in terms

of regular cell-face areas, it can be seen that

Or----L= 1 4 Ac, b_, (B-3)
0ev 16 p V v _inr

touching v

where _ is the sum over regular cells touching vertex v, and _ is the sum over faces,',inr
r touching v

of regular cell r that touch vertex v. Equation (B-3) is used to calculate the diagonal

elements of the preconditioning matrix when solving for ¢n+1.

The components of the Turn Vector r are solved for simultaneously by CR iteration.

We now derive the preconditioning matrix used in this iteration. The residual equation is

obtained by combining Eqs. (31) and (32):

_= ,"- ._ ,o".1 - ac"+1× a + _-_+i (D_.1 ×" • (8-4/

Taking the derivative of the ith component of this equation with respect to the ith

component of r gives

Ori 0 /G_+I [ AtV_+I (D_+I ×v)l / (B-5)_-_ri=l+pr_ri x d+ M,?+ ,

From the definition, Eq. (21), of the operator Ge, we see that the derivative of the

expression in braces in Eq. (B-5) is determined by the constraints

_r-_ri{ × • Ao O
touching to ng

where

AtF;;+_ (D_+' × r) , (B-7)
u,, = li,, + M,,.+1

v is any vertex of the cell in which Gc is being evaluated, and C_ are the cell-face

circulations induced by the velocity field u. From the definition of C,_, it is easily seen

that 0
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that is, tile derivative of the cell-face circulation based ola u is the cell-face circulation

based on the derivative of u. Taking the derivative of (B-7) with respect to ri gives

°u I 1Ori -- 42"_,1,, ei x Act , (B-9)
Ct

tou,i_,ing

where ei is tile unit vector in the ith coordinate direction.

Iii summary, the diagonal elements of the preconditioning matrix for the v-iteration
are obtained from

0,'i_ 0 [G,,+ , u] (B-10)0_---7,-i+ t,,b-_' x ,
where the derivative with respect to r/is determined by the constraints

0 ,,] Ao Z co0_ [G_'+'x • = ,N tiL'

t ouch i n K touch i n K
tP tj

where C'ct are the cell-face circulations based on use of the vertex vector field Eq. (B-9).

As with Eq. (21), Eq. (B-11) gives three independent constraints that determine the

components of _° [G_,+, x u].
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