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IMPLEMENTATION OF THE TURN FUNCTION METHOD
IN KIVA-F90

by
Peter J. O’Rourke and Margaret S. Fairfield

ABSTRACT

We document the implementation of the Turn Function Method
(TFM) in KIVA-F90, a version of the KIVA computer program written
in the FORTRAN 90 programming language that is used on some
massively parallel computers. TFM solves both linear momentum and
vorticity equations in numerical calculations of compressible fluid flow.
Solving a vorticity equation allows vorticity to be both conserved and
trans- rted more accurately than is possible in traditional methods
for computing compressible flow. To calculate the convective transport
of vorticity more accurately, we have also implemented an improved
method for the rezone phase of the KIVA computational cycle.

This first implementation of TFM in a three-dimensional hydro-
dynamics code involved some modification of the original method and
some novel numerical difference approximations. In particular, we used
a penalty method to keep the divergence of the computed vorticity field
close to zero. Also, difference operators are defined in such a way that
the finite difference analog of V - (V¥ x u) = 0 is exactly satisfied.

Three example problems presented in this report show the greater
accuracy that can be gained when TFM is used for calculations of
flows with rotational motion, as well as the added computational costs
incurred. Use of the method can increase by 60% the computational
times of the Euler equation solver in KIVA-F90. Although TFM
sometimes does degrade accuracy in calculations that have large
vorticity gradients, generally the calculations show beneficial effects of
TFM on accuracy. We will continue to evaluate the costs and benefits
of TFM in future KIVA-F90 calculations.

I. INTRODUCTION

We were motivated to conduct this study because of the need to calculate rotational
motion more accurately in numerical computations of flui-t flow. In computer simulations of
fluid flow, numerical errors usually cause significant nonconservation of angular momentum
and vorticity and numerical dissipation of the kinetic energy of rotational motion. For this
reason, most currently used numerical methods do a poor job of calculating rotational
motion. This can affect the solution’s accuracy in many ways. For example, inaccuracies
in the calculation of angular momentum give rise to inaccurate predictions of convective

transport by the mean flow field. In addition, since numerically dissipated mean flow
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energy is no longer available for augmenting turbulent kinetic energy, the prediction of the
effects of turbulence on the mean flow is inaccurate.

There are many applications that could benefit from more accurate prediction of
rotational motion. For example. in direct simulations or large-eddy simulations of turbulent
flows mean flow kinetic energy first breaks down into small-scale vortices before it is
dissipated into heat. Our specific interest is in internal combustion engine flows, in which
rotational motion is often intentionally introduced to enhance the combustion process.
Two types of rotational motion are used: swirl, which has its axis of rotation aligned
with the engine cylinder axis, and tumble, which has its axis of rotation orthogonal to the
cylinder axis. Combustion efficiency is improved because the kinetic energy of rotational
motion breaks down into fluid turbulent energy when the piston approaches the cylinder
head. This turbulent energy, in turn, enhances the mixing of the fuel, the intake air,
and the hot combustion products in the cylinder, speeding up the combustion process.
Other applications involving significant fluid rotation include gas turbine engines, liquid
propellant rocket engines, and geophysical fluid flows.

Because of the importance of rotational motion in improving combustion efficiency, it
has been observed! that it is probably more important to conserve angular momentum
than linear momentum in numerical calculations of internal combustion engine flows.
Very early in the development of the KIVA codes?3 for the numerical calculation of
internal combustion engine flows, we recognized the problem of numerical decay of angular
momentum and incorporated special logic that conserved angular momentum of the flow
about the axis of the engine cylinder. KIVA is based on the ALE (Arbitrary Lagrangian-
Eulerian) method,? in which the updating of the transient solution through one timestep is
accomplished in a two-stage calculation. In the first stage, the fluid properties are updated
in a Lagrangian calculation in which the computational mesh moves with the fluid. In the
second stage, the flow field obtained by the Lagrangian calculation is mapped onto an
adjusted computational mesh with the same logical structure as the original mesh but
with regularized coordinates that remove Lagrangian mesh distortion. The second-stage
calculation involves the convection of flow properties across cell boundaries and conserves
mass, linear momentum, and energy. Test calculations showed that almost all angular
momentum nonconservation occurred in this convection stage. Accordingly, we devised
special logic for the conservative calculation of convection of the component of angular
momentum about the engine cylinder axis.? After the convection calculation a simple
explicit adjustment of the velocities made them consistent with the computed angular
momentum field. The advantages of this angular momentum conservation logic are its

simplicity and its computational efficiency. Its disadvantages are that it only conserves one

2



component of angular momentum, the swirl component, and that the velocity adjustment

destroys linear momentum conservation.

An alternative to this angular momentum conservation logic is the Turn Function
Method (TFM).5 This is a numerical method that conserves both linear momentum and
vorticity and that treats all coordinate directions in the same manner. TFM has previously
been used very little because of its large computational cost: in three space dimensions,
four implicit equations must be solved for each timestep. Because of the greater computer
power available on the new massively parallel computers, however, we were encouraged to
implement TFM in our version of KIVA, which runs on the Connection Machine CM-2, in
order to assess whether the increased accuracy obtainable with the method was worth its

computational cost.

This report documents our implementation of TFM in KIVA-F90. We first give the
equations solved by TFM and the modifications that must be used when the fluid equations
are being solved in three dimensions. Then, we describe the numerical implementation of
the method in KIVA-F90. Finally, we compare the results of three test problems run both
with and without TFM. Although use of the method can increase by 60% the computational
times of the Euler equation solver in KIVA-F90, we believe the increased cost is warranted

by the increased computational accuracy that we obtained in the test calculations.

II. THE TURN FUNCTION METHOD

A. The Equations

In TFM one numerically solves transport equations for both linear momentum and
vorticity in compressible flow calculations. The numerical solutions are consistent in the
sense that the numerical curl of the computed velocity field is approximately equal to the
computed vorticity field. Use of TFM is not associated with a particular spatial or temporal
difference scheme. The method has been implemented in a two-dimensional Eulerian code
with cell-face velocities,® and it is currently used in the three-dimensional ALE-method
code KIVA-F90, which has velocities located at the vertices of hexahedrons.

Using TFM improves the calculation of rotational motion in two ways. First, the
vorticity transport equation can be formulated and differenced in a conservative fashion.
Second, because the transport terms explicitly appear in the TFM equations, more accurate

calculation of vorticity transport is possible using higher-order difference schemes.

wW



The linear momentum and vorticity equations solved by TFM each contain an

additional conservative transport term that is not normally found in the fluid flow

equations:

Jdpu

5 TV (pu)+Vp=V.o+Vxr (1)
and

%—%—V-(uw)ﬁ-\?x(}1,—,Vp)=V-(wu)+V><(%V'0)+V¢ (2)

where p is the mass density, u is the velocity, p is the thermodynamic pressure, o is the
fluid stress tensor, and w is the vorticity. Standard forms of the mass and energy equations
are solved.

The vector field 7 in Eq. (1) is called the Turn Vector and is given by
7-=“T(w—V><u). (3)

Thus 7 is proportional to the difference between the computed vorticity field and the curl
of the computed velocity field. The proportionality factor p,, which has dimensions of
a viscosity, will be specified later. The exact solution to Egs. (1) and (2)is w = V x u
and 7 = 0, but the curl of the computed velocity field and the computed vorticity field
can diverge from each other due to numerical errors in the approximations to Eqgs. (1)
and (2). The role of the Turn Vector in Eq. (1) is to apply a local torque to the fluid
to keep the computed velocity and vorticity fields consistent. The boundary condition on
walls is 7 = 0, so that linear momentum is not lost at walls as a result of the addition of
the Turn Vector term. In two space dimensions, T has one component, which is normal to
the plane of the flow and is called the Turn Function.

The gradient of scalar ¢ is added to the vorticity equation, Eq. (2), to keep the
divergence of the computed vorticity field close to zero. This term was not in the equations
of the original Turn Function paper® but is necessary in three-dimensional implementations.

The function ¢ is given by

¢='U1-V'QJ, (4)

where v, = pu,/p. By Eq. (4), ¢ is proportional to the divergence of the computed vorticity.
The exact solution to E. (2) has V - w equal to 0, but because of numerical errors the

computed divergence of w can drift from zero, and the gradient of ¢ in Eq. (2) provides a

4



restoring force that cancels this effect. The boundary condition on walls is ¢ = 0, so that
vorticity is not lost at walls. Use of ¢ here is clusely analogous to the use of an artificial
bulk viscosity in penalty methods for incompressible flow to keep the divergence of the
velocity field close to zero® and for MHD flows to keep the divergence of the magnetic field

close to zero.”

B. The Discrepancy Diffusivity vr

We now discuss our choice of the parameter v, = u,/p, which we believe is better
than that used in earlier work.> Parameter v, serves as a diffusion coefficient for the
discrepancies d; = w — V x u and d; = V - w, as can be seen when transport equations

for d, and d; are derived. The d; equation is given in Ref. 5. The equation for d; is

%‘%:V~T+V2(vrd2), (5)

where T represents the truncation errors of the discretized vorticity equation. In their
transport equations, dyand d, are produced by numerical truncation errors and diffused
with diffusion coefficient v,.. The discrepancies are destroyed at computational boundaries
because of the boundary conditions on T and ¢. If we take v = 400 (or some very large
number) in our calculations, the computed approximations to d; and d, would be equal to
zero since T and ¢ remain finite. While this is an appealing reason for choosing v, = 400,
there are two reasons for taking a finite value of v,. First, we must choose v, finite in
order to limit the upstream propagation of TFM-generated disturbances in the computed
velocity and vorticity fields.> These disturbances propagate with speed v, /L, where L is
the disturbance wavelength—typically a gradient length of the flow field. We wish to limit
this disturbance speed to being less than a characteristic flow speed. If this is not done,
disturbances can propagate upstream of a region of discrepancy production. Thus, we
must choose v, so that

ve S UL, (6)

where Uy 1s a characteristic flow velocity.

Second, we want to choose v, finite because computational efficiency improves with
smaller values of v, . This is because we are, in effect, solving discrepancy transport
equations with diffusion terms whose diffusion coefficient is v,. The values that we use
for v, are large enough that it is necessary to use implicit differencing of the diffusion
terms, and an iterative solution procedure will be required. In KIVA-F90 we use a
conjugate residual method.® In solving implicitly discretized diffusion equations, the
convergence rates of most iterative methods are improved when smaller values of the

diffusion coefficients are used.?



Balancing these two reasons for taking v, small is the requirement that we take v, large
enough that the discrepancies remain tolerably small. We can estimate the magnitudes
of the discrepancies by examining their transport equations. We now do this for the ds-
equation, Eq. (5). Examination of the d;-equation gives a similar result. In Eq. (5),
the diffusion terms approximately balance the truncation error terms that produce the

discrepancy. The discrepancy diffusion terms have order of magnitude

v.D
I (

~1
~—

where D is a characteristic value of the discrepancy d, . As we will see later, the truncation
errors that concern us are associated with difference approximations to the convection
terms of the linear momentum and vorticity equations. The spatial truncation errors of
the vorticity convection scheme in KIVA-F90 (see Appendix A) give rise to production

terms in the dj-equation that have order of magnitude

Ug (é6x\" (8)
L3\ L ’
where éx is the computational cell size and n is the order of accuracy. On a uniform mesh,
n = 2 when gradients in the computed quantities are well resolved. However, because a
gradient-limiting procedure is used,> n can be unity in regions of steep gradients. The

lowest order temporal truncation errors of the vorticity convection terms are second order.

These errors give rise to discrepancy production terms with approximate magnitude

U (Uobt\* _ U (6x\* (Upbt)? o)
3\'L ) " 3\L 5z (

where 6t, the timestep associated with the subcycled convection calculation,® is such that

U,0t < 6. Equating the magnitudes of the diffusion terms (7) and of the largest of the

truncation errors (8) and (9) gives the magnitude of the discrepancy d; :

Dz-u—"l‘fz. (10)

We want the magnitude of dz to be less than some small number € times Uy/L?. From

Eq. (10), this is equivalent to requiring that

ve 2 1[706.1' . (11)
€



Requirements (6) and (11) on v, are satisfied if

ér

T Se (12)
and if
1 .
Ve = —6-(705’1‘ . (13)

Inequality (12) is a requirement that gradients in the flow be well resolved. In our
calculations, we have used v, given by Eq. (13) and taken ¢ = 0.1.

It can now be seen why it is necessary to finite difference the Turn Vector terms
implicitly if we use a timestep that is equal to or larger than the convective timestep of
IKKIVA-F90, which satisfies Uyt = 0.5 éz. In order to use explicit differencing with timestep
6t, it would be necessary to satisfy the diffusional stability condition for a three-dimensional

mesh:

vebt < %6z2 . (14)

By substituting the value of vr of Eq. (13) with € = 0.1, we see that ét would be required
to satisfy

Upbt < 0.017 b . (15)

This constrains ét to be more than an order of magnitude smaller than the convective

timestep we currently use.

III. NUMERICAL IMPLEMENTATION IN KIVA-F90

We now describe the numerical implementation of TFM in KIVA-F90. First we give
the locations of the new cell variables 7, w, and ¢ and the spatial difference approximations
to the derivatives V x 7, Vo, V x u, and V - w. We show that the finite difference
analog of the differential identity V - (V x u) = 0 is satisfied. Then we give the finite
difference approximation to the vorticity transport equation and our method of solving for
the function ¢ in the vorticity equation and the Turn Vector term in the linear momentum
equation. Finally, we compare TFM with a related method developed by Dukowicz and
Meltz.1°

In KIVA velocities are located at the vertices of computational cells and thermody-

namic variables are located at cell centers.?'3 The control volumes surrounding vertices are
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called momentum cells, and those surrounding cell-centered quantities are called regular
cells. In general, spatial derivatives of cell-centered quantities are located at vertices, and
spatial derivatives of vertex guantities are cell-centered. Thus, for example, the ordinary
fluid stress tensor, which depends on the rate of strain, is located at cell centers. It seems
natural, therefore, to locate the vorticity w and Turn Vector 7 at cell centers. Since the
vorticity is located at cell centers, its divergence is located at vertices, as is the function

¢. The locations of these new cell variables are indicated in Fig. 1.

®
¢

Fig. 1. Locations of new cell variables w, T, and ¢.

Finite difference approximations are needed for the curl of the cell-centered quantity T
and the divergence of the cell-centered quantity w. For these approximations, given below,
we use the same discretized form of the gradient operator D that is used to approximate

the derivatives of the fluid stress terms in the linear momentum equation in KIVA:

DIV x T) = D,.xr—‘—;Z 3 X T3) (16)

and

(Ai,-wp) , (17)

where 1, i1s the volume of momentum cell v, /3 is an index that runs over the faces of the

momentum cell, A', is the outward area projection vector of face 3 , and 73 (resp. wy) 1s
3 &) ;
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the value of 7 (resp. w) in the regular cell in which face A is located. The momentum cell
voluines and their faces are defined in the KIVA documentation.?

The approximation to the gradient of vertex quantity ¢ is given by
1
FD(V$) =D ¢ = V;;Ama, (18)

where V. is the volume of the regular control cell, a is an index that runs over all faces of
the regular cell, A, is the outward area projection vector of face a, and ¢, is the average
of the values of ¢ at the four vertices that define face a. Note that Eqs. (16) and (18),
which approximate terms in the linear rhomentum and vorticity equations, respectively,
conserve both momentum and vorticity since the cell-face area projection vectors change
sign when “viewed” from neighboring cells.

The above difference approximations to spatial derivatives are obtained by integrating
the derivatives over their appropriate control volumes, converting volume integrals to
surface integrals using the divergence theorem, and approximating the surface integrals
assuming that integrands are uniform within the cells in which the faces are located. In
defining the approximation to the curl of the velocity field, however, we depart from this
procedure. This is because we want to define FD(V x u) = G x u in such a way that
the difference analog to the differential identity V- (V x u) = 0 is satisfied. In the limit of
pr = +oo this is certainly necessary, because we are constraining dz = w — (G, x u) =0

and d; = D, - w = 0, and hence
D, (G, xu)=0. (19)

It seems like a good idea to devise G, so that Eq. (19) is generally satisfied.

To define G, we first need to define cell-face circulations Cy,. As are area projection
vectors, C, is defined relative to both a cell face and a cell on either side of that face.
Consider the cell face shown in Fig. 2, with area projection vector A, pointing outward
from the regular cell relative to which C, is defined. We number the vertices bounding
face a in ascending order counterclockwise when the face is viewed from the side of its

area projection vector. Then we have

1
Co = 5 [(w +uz) - (x2 —X1) 4+ (uz + ug) - (X3 — X2)+

2 (20)
(Us + ug) - (x4 — X3) + (Ug + 1) - (Xq —xl)] .

Obviously, for the same cell face, C, changes sign when defined relative to the cell on the

opposite side of that face.



Ac

4

Fig. 2. Vertex numbering used in defining cell-face circulations.

The curl of the velocity in a regular cell is defined by requiring that G, x u satisfy
the following difference approximation to Stokes’ Theorem for each vertex v of the regular

cell:

(G x u) Z A, = Z Cq (21)

touchmg touchmg
v

In Eq. (21) the sum is over the three cell faces of the regular cell that touch vertex v. At

first glance it appears that Eq. (21) gives eight constraints for the three components of

G X u, one for each vertex. One can show, however, using the identities
> Aa=0 (22)
o

and

> Co=0, (23)
[ 4
where each sum is over all faces of the cell in which G, x u is defined, that Eq. (21) gives
only three independent constraints.

We now show that D, - (G. x u) = 0. Using the definition of the vertex operator D,,
Eq. (17), we see that

10



ViD.(Ge xu) = A (Ge xu)gs. (24)
B

Now the sumn over momentum cell faces /3 in Eq. (24) can be split into two sums: one over
the eight regular cells v touching vertex v and the other over the three momentum cell

faces inside each regular cell 7 :

VoDe  (Ge x u) = A | (Ge x u),. (25)
B 3
¥ [

Using the same trick that is used to difference the stress terms in KIVA,2'3 we now express
the sum over momentum cell faces in cell 4 in terms of the sum of the regular cell faces of

cell v that touch vertex v:

VD (Gexw=Y -7 ¥ Adl|-(Gexuw,. (26)
R c'v?w
touching v

Using the definition of G, x u, Eq. (21), we see that

WD, (Gexw=-33| ¥ cl. (27)
K toui';:i.;a; v

Since each C, occurs twice in Eq. (27), once for each cell with face a, and these occurrences
have opposite signs, the sum in Eq. (27) is zero. Hence we have proven Eq. (19).

We now give the finite difference approximation to the vorticity transport equation.
For the present we assume, as we did for the angular momentum conservation logic,?*
that most errors in vorticity transport arise in the rezone or convection phase of KIVA.

Therefore, for the change in vorticity in the Lagrangian phase, we take
wB —w" = (GE xuf) - (G xu") . (28)

where superscript 1 (resp. B) denotes values at the beginning of the computational cycle
(resp. end of the Lagrangian phase). In the example calculations we have performed to

date this has been a very good approximation.
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During the rezone phase of the calculation, the three components of w are convected
just like any other cell-centered extrinsic quantity. Details of this convection calculation
are given in Appendix A.

The advanced-time values of w are obtained by solving the following equations for
w™1 and ¢"t!:

Vcn+l (wn+] _ GJ) — Athn-H (Dg+l¢n+l) (29)

and

"+l = %D:}“ Lot (30)

The quantity @ is the value of the vorticity that results from the convection calculation,
and At is the main computational timestep. These equations are solved by eliminating
W™t in Eq. (30) using Eq. (29), and solving the resulting equation implicitly for ¢"*!.
The conjugate residual procedure used to solve for ¢"*! is described in Appendix B.
After the advanced-time value of the vorticity has been obtained, the advanced-time

values of the velocity and Turn Vector are obtained by solving
M:,'-H (un+l _ ﬁ) — Atvvn+l (D::+] x 1_n+l) (31)

and

1‘"+1 =, [w"'“ _ (Gg-}-l % un+l)] (32)

for u™*! and 7"*!. Once again 0 represents the value of the velocity after the convection
calculation. These equations are solved by eliminating u"*! from Eq. (32) using Eq. (31),
and then solving the resulting equation implicitly for #"*!. Appendix B describes the
implicit solution for 771,

Note that we are applying the Turn Vector and ¢ corrections to the velocity and
vorticity fields once each computational cycle. An alternative procedure that we have
not tried is to apply the corrections after each convective subcycle. This would be more
accurate, but much more costly in calculations with many convective subcycles. Another
possibility that we have not explored and that would save computational time is to apply
the corrections only once every n computational cycles, where n > 1.

We can now compare TFM with a method recently published by Dukowicz and Meltz!"
that bears a close resemblance, but is inferior in two respects, to TFM. Dukowicz and

Meltz are concerned with reducing numerical errors that arise because of mesh distortion
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in Lagrangian hydrodynamics calculations. Spurious mesh distortion is attributed to
inaccuracies in the calculation of vorticity. To correct these errors the authors propose
solving a vorticity transport equation and correcting the computed vertex velocity field so
that its curl agrees with the computed vorticity. The close resemblance of this method
to TFM can be seen if we compare the large p, formulation of Egs. (31) and (32) with
Dukowicz and Meltz's Eq. (4.12) of Ref. 10. To show the resemblance, we express the
difference approximations to the Turn Function equations in the notation of Dukowicz and
Meltz. When p., is large Eq. (32) becomes the constraint that the curl of the computed

velocity field equals the computed vorticity field:
wn-H — GL)+] % un+1 ] (33)

If we define Av = i —u"*!, Aw = (G"*! x 1) — w"!, and A = —Atr"*!| Eq. (31)

becomes
V. n+1

Av = M1.+1D"+' x A, 134)
and Eq. (33) can be combined with Eq. (34) to give

fn+l
Aw = G x ]\I""" (D2t x A)| . (35)

Neglecting the factor V"+!/M!*1  the right-hand side of Eq. (35) is a difference
approximation to

Vx(VxA)=-V?A+V(V-A). (36)

When i, 1s constant, Eqgs. (32), (19), and (30) show that
D, "t = pp"t! (37)
or, in the notation of Dukowicz and Meltz,
D, A =—pAte"t! . (38)
The boundary condition on 7 can be written as
A=0. (39)

With the exception of the right-hand side of Eq. (38). which is zero in the Dukowicz and
Meltz method, and the factor V,"+! /A1 appearing in Egs. (34) and (35), Eqgs. (34).
(35). (38), and (39) are exactly the same as Eq. (4.12) of Ref. 10.

13



There are two important differences between the method of Dukowicz and Meltz and
TFM. One of these differences is related to the appearance of the factor V;"*!/M"*! in
Eqgs. (34) and (35). This factor arises because TFM corrects the velocity field in a way
that conserves linear momentum. In the method of Dukowicz and Meltz, velocities are
fundamentally located at cell centers, and vertex velocities are interpolated from these.
The method does not attempt to correct the cell-centered velocity field to bring about
agreement with the computed vorticity field. Only the vertex velocities are corrected,
and conservation of momentum is not a concern in performing this correction because
momentum is carried by the cell-centered velocities. In the absence of a correction to the
cell-centered velocity field, however, its curl can drift away from the computed vorticity
field. Therefore the vertex velocity field can differ considerably from the cell-centered
velocity field. This undesirable state of affairs could be remedied by using TFM; the

vorticity correction would then appear in both the cell-centered and vertex velocities.

The second difference between the Dukowicz and Meltz method and TFM arises in
problems with shocks. We are not concerned with the calculation of shocks in KIVA-F90,
but this was an issue in the original Turn Function paper,” and we proposed “turning
off” TFM in the vicinity of shocks, and not solving a vorticity transport equation, to
avoid calculation of incorrect jump conditions of velocity and vorticity across computed
shocks. In contrast, Dukowicz and Meltz propose solving the vorticity transport equation
everywhere in the flow field. Because of errors in the computed vorticity jump across
shocks, the method of Dukowicz and Meltz can again have vertex velocities that differ

considerably from the cell-centered velocities.

IV. EXAMPLE CALCULATIONS

In this section we compare calculations performed both with and without TFM.
Three problems were calculated: The first is two-dimensional with an initially uniform
vorticity field and a nonuniform mesh, the second is two-dimensional with a uniform mesh
and nonuniform vorticity field, and the third is a three-dimensional calculation of the
interaction of two vortices. All of the calculations, except one noted below, use an extension
of QSOU (Quasi-Second-Order Upwind) differencing,® called QSOU2, for the convection
terms. This extension, which is documented in Appendix A, has heen developed to improve
the accuracy of the convection calculation of vorticity, as well as other quantities. We
compare the results and run times of the calculations with and without TFM. The two-

dimensional problems we also compare with known analytic solutions.
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A. Calculations of Solid-Body Rotation on a Nonuniform Mesh

In this problem an incompressible fluid is initially in solid-body rotation about the
axis of a cylinder. Thus, the initial vorticity field is uniform with one nonzero component
aligned with the axis of the cylinder, the z-coordinate direction. Because there is no wall
friction, the exact solution is a steady flow varying only in the radial direction. The
calculated solutions exhibit unsteadiness and two-dimensionality, however, because of the
computational mesh and numerical truncation errors.

Figure 3 shows the initial velocity field superimposed on the computational mesh in a
plane that is perpendicular to the z-axis. The mesh was generated by deforming a square
mesh of cells into a circular cross section. This was accomplished by placing neighboring
boundary points equidistant from each other and then requiring that interior mesh points
lie at the average location of their four nearest neighbors. This type of mesh is now
popular in calculations of in-cylinder flows in internal combustion engines.!! There is no
singularity at the axis as in a mesh based on cylindrical coordinates, but this is replaced
by four singularities at the four mesh locations of the corners of the square. Three mesh
resolutions were used, with 10, 20, and 40 cells in each mesh direction. Although a three-
dimensional mesh was used, neither the mesh nor the computed solution varied in the
z-direction.

The initial timestep was such that w.At = 0.01675, where w. was the initial axial
component of vorticity. On subsequent computational cycles, the timestep was allowed to
grow by two percent per cycle until KIVA’s acceleration timestep limit® was reached. Each
problem was run for one rotation time based on the initial vorticity value.

Figure 4 shows plots of the integrated z-component of vorticity as a function of
time for calculations 1) with TFM, 2) without TFM, and 3) without TFM but with
donor-cell or upwind differencing for convection. The last is presented to show the large
vorticity conservation errors that are present in codes that use donor-cell differencing. As
Fig. 4 shows, the calculation with TFM nearly perfectly conserves vorticity, whereas the
calculations without TFM lose 9% and 35% of their initial vorticity. These results support
our assumption that most vorticity transport errors in KIVA result from the calculation
of convection.

Figure 5 shows the effect of varying mesh resolution on the total vorticity versus time.
In the calculation using TFM on the 10* mesh, vorticity is nearly perfectly conserved.
Calculations without TFM show that vorticity is conserved better as mesh resolution is
improved, but the 40% mesh still loses 5% of its initial vorticity.

The major reason for the loss of vorticity in the calculations performed without TFM

can be seen in Fig. 6. which gives a contour plot of the z-component of vorticity in the
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Fig. 3. Velocity vectors and computational mesh for solid-body rotation problems.

9203 mesh at the end of the calculation. The initial vorticity value is maintained to within
5% in a large, centrally-located region, but the vorticity has dropped to 16% of its initial
value at the locations of the corners of the logical mesh. Apparently, this is due to large
numerical errors associated with the mesh distortion at these corners. Correcting these
errors by using a higher-order method rather than TFM would be extremely difficult on
this mesh and on the distorted meshes that must be used to model complex geometries.

The computational times with and without TFM are given in Table 1. Using TFM
increases times by 60% to 70%.

TABLE 1. Computational times (s) for solid-body rotation problem.

Mesh size with TFM without TFM
108 38 23
203 108 : 63
403 696 434
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Fig. 6. Contour plot of z-vorticity without TFM, showing locations of largest errors.

B. Calculations of a Standing Vortex on a Uniform Mesh
This problem was originally suggested by Gresho!? and has recently been used as a
test calculation for a finite element method by Tezuyar et al.!3 The initial condition is an

axisymmetric, incompressible vortex contained in a 1 x 1 box. The circumferential velocity

or 0<r<.2
Ug=482-5r 2<r<.4.
0 4<r
As in the first test problem, the initial condition is the steady-state solution, but the

is given by

calculations exhibit unsteadiness because of numerical errors. The box is resolved with
20 uniform cells in each mesh direction and the computational timestep is equal to 0.05,
resulting in a maximum Courant number of 1.0. The problem is run to a time of 3.0.

which is about 4.8 rotation times of the initial vortex core. Following Tezuyar et al..!® we
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use the time history of the total kinetic energy in the mesh as a measure of the accuracy
of a numerical method, although the L?-norm of the difference between the exact and
computed solutions would be a better measure.

Surprisingly, the calculation without TFM preserved total kinetic energy better than
the calculation with TFM. In the former, 83% of the initial kinetic energy was still present
at time 3.0, while only 73% was present with TFM. Tezuyar et al. reported preserving
between 80% and 91% of the total kinetic energy for the finite element methods they
tested. Figure 7 gives plots of the velocity and vorticity fields of the KIVA-F90 calculations
at time 3.0. The calculation without TFM preserved slightly better the maximum value
1.0 of the velocity; but the calculation with TFM preserved the maximum vorticity value
much better, keeping within 1% of the initial maximum value of 10.0. Both calculations

conserved total vorticity and angular momentum within 0.5%.
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Fig. 7. Velocity vectors and contours of z-vorticity for standing vortex problems, with
and without TFM.
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GRESEO PROBLEM
Initial Profiles

1.0

U
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-5.0
Fig. 8. Initial velocity (top) and vorticity (bottom) profiles in the Gresho problem.

The reason. TFM is more dissipative in this problem is clear when we consider the
initial velocity and vorticity profiles in Fig. 8. The velocity field is continuous, increasing
linearly to one in the core of the vortex and decreasing linearly to zero outside of the core.
In contrast, the vorticity field has two discontinuities, one at the outer edge of the core and
another at r = 0.4, where the velocity again becomes zero. In the calculation without TFM,
the continuous velocity field is numerically convected through the mesh. In the calculation
with TFM, the vorticity field is convected through the mesh, and a velocity field that is
consistent with this computed vorticity field is found. The reason the TFM calculation
dissipates more kinetic energy is that it is more difficult for the QSOU2 convection scheme
to convect accurately the discontinuous vorticity field than it is to convect the continuous
velocity field. This is because the QSOU2 convection scheme reverts to upwind differencing

in regions where the derivative of a convected quantity is discontinuous (see Appendix A).
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This supplies numerical smoothing to the variation of that quantity so that its computed
}?ﬁpﬁle can be resolved by the computational mesh. The more discontinuous a quantity is,

Ed . . .
the more smoothing is supplied.

Calculational results that used the original QSOU method of KIVA-II® were worse,
showing more numerical dissipation of kinetic energy and more diffusion of vorticity. This
is what motivated us to develop the improved QSOU2 convection algorithm discussed in

Appendix A.

One possible explanation for the lackluster performance of KIVA-F90 relative to that
of the finite element methods is the KIVA-F90 gradient-limiter (see Appendix A), which
introduces numerical dissipation in order to maintain monotonicity and positivity. The
finite element methods do not use a gradient-limiter. To test this hypothesis we performed
two calculations with and without TFM, both using the convection scheme of Appendix A
without the gradient limiter. These calculations preserved 86% (no TFM) and 81% (TFM)
of the initial kinetic energy. Despite the increased kinetic energy error caused by the
gradient-limiter in this problem, maintaining monotonicity is an over-riding consideration

for us; and therefore use of the gradient-limiter is retained in KIVA-F90.
C. Calculations of a Rotating Ring Vortex

The purpose of these calculations was to determine whether rotation affects the
evolution of a vortex ring placed in a cylindrical vessel. The initial conditions are shown
in Fig. 9. The azimuthal component of the vorticity is specified to he a constant value
inside a doughnut-shaped region whose axis coincides with the axis of the vessel. Qutside
this doughnut-shaped region, the azimuthal component of the vorticity is zero. The radial
component of vorticity is identically zero. The resulting velocity field in the -z plane is
also shown in Fig. 9. Note that the direction of rotation in the ring vortex is such that
the flow is upward along the axis of the vessel. Two calculations were performed. In the
first, there was no axial component of vorticity. In the second, a solid-body rotation was
superimposed on the initial velocity field of Fig. 9. The Rossby number, the ratio of the
ring-vortex velocity at the edge of the doughnut to the swirl velocity at the center of the

vortex ring, was one. Both calculations were performed with and without TFM.

All calculations were performed with 95 cells in each of the mesh coordinate directions,
resulting in a total of nearly a million computational cells. As in the first set of example
calculations, the mesh was formed by deforming a logically-rectangular block of cells into
a cylindrical shape and was not derived from a cylindrical coordinate transformation.
Thus. although the initial and boundary conditions for this problem are axisymmetric, the

numerical solution could develop asymmetries about the cylinder axis because of numerical
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time: 0.000000E+00
cycle # 0
on plane j= 48
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Fig. 9. Initial conditions for ring vortex problems, superimposed velocity vectors and

omega-theta vorticity contours.

errors or possible hydrodynamic instabilities. Another purpose of the calculations was to
see if the solutions developed asymmetries about the axis.

The calculations using TFM remained axisymmetric. Shown in Fig. 10 are contours
of the azimuthal component of vorticity in the TFM calculation without rotation. The
time between each plot is approximately one-half a rotation time, based on the initial
rotation rate in the vortex ring. In this solution, the ring drifts upward in the direction
of the fluid flow along the cylinder axis, in agreement with the solution for the direction
of motion of an isolated vortex ring.'* As it approaches the top of the cylinder, the ring
spreads out radially but retains its doughnut shape. In contrast, in the TFM calculation
with rotation the ring spawns counter-rotating vortex rings, as shown in Fig. 11. An
explanation for these counter-rotating rings, given by Von Karman,!® is that they result
from the interaction of pressure and angular momentum gradients.

The calculations without TFM quickly developed large velocity shears and asymme-
tries about the cylinder axis. Because of this, the computational timesteps in the calcula-
tions without TFM were smaller, and the computational times of approximately 6.3 hours
were actually longer than those in the calculations with TFM, which were approximately
6.0 hours.
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Fig. 10. Contour plots of omega-theta vorticity in nonrotating ring vortex, showing
evolution through time.

V. CONCLUSIONS

We have implemented the Turn Function Method (TFM) for conserving both
linear momentum and vorticity in the compressible-fluid hydrodynamics code KIVA-
F90. This first implementation in a three-dimensional hydrodynamics code involved some
modification of the original method and some novel difference approximations. In addition,
we have derived and used a better value for the discrepancy diffusivity than was reported
in the original method. The discrepancy diffusivity controls the difference between the

computed vorticity and the curl of the computed velocity.

Test problems show that TFM corrects vorticity conservation errors that can occur
when using highly distorted meshes in KIVA-F90 calculations. TFM can also degrade the
accuracy of calculations with large vorticity gradients by introducing numerical diffusion

of vorticity. Generally. TFM has a smoothing effect on computed velocity fields.
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Fig. 11. Contour plots of omega-theta vorticity in rotating ring vortex, showing evolution
through time.

Use of TFM can increase by 60% the computational times of the Euler equation solver
in KIVA-F90, although run times have decreased in some calculations. It is expected that
when additional physics submodels are installed in KIVA-F90, the fraction of time spent
solving the TFM equations will be reduced. We will continue to evaluate the costs and
benefits of using TFM, but we are highly encouraged by the accuracy improvements of the

initial calculations reported here.
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APPENDIX A
QSOU2 CONVECTION ALGORITHM

In this appendix we document the QSOU2 convection algorithm, which replaces the
QSOU scheme of KIVA-II. Q50U2 improves upon QSOU in two respects. First, to find
the values of fluxed quantities on cell faces, interpolation is performed along material paths
instead of along grid coordinate directions. Second, a less diffusive gradient-limiter is used.
Before describing QSOU2, we briefly review the QSOU convection algorithm. For a more
detailed description of QSOU, the reader is referred to Appendix M of the KIVA-II report.?

In KIVA’s convection phase, the flux of a cell-cer.iered quantity across a cell boundary
is the product of a volume flux across that boundary and an interpolated density p, where
p represents a mass or energy density per unit volume or a component of the vorticity.
Momentum fluxes, which will be described later, are the products of interpolated velocities
and the mass fluxes across each momentum cell face. QSOU is a method for calculating
the iuterpolated values in such a way that the convection scheme is strongly monotone.?
The interpolated density for fluxing a cell-centered quantity is obtained in two steps. First,
we calculate the derivative of p with respect to distance in the logical coordinate direction
in which fluxing is occurring. For example, if fluxing is in the i-coordinate direction, we

calculate %gii, the derivative of p with respect to distance in the i-direction, according to

, . /
9p sign (;,%%) + sign FBSPZ) ap 9 |
—_— = m' -1, ‘ . A']
2 . 5 (033 a«,,l) (A-1)
The quantities d—i‘:—' and 3’;’-’[ are right- and left-face gradients that are obtained as follows:
9 _ PR—Pc
BSR |XR - xc|
anc (A-2)
9p _ pc— )L
6.81‘ IXC - XL| |

In these formulas. p. =value of p in cell /¢, j, k),
pr = value of p in cell (7 + 1,5, %),
pr = value of p in cell (7 — 1,7, k),
X. = location of center of cell (7., k),
xr = location of center of cell (¢ + 1,7, k), and
x; = location of center of cell (i — 1, ). k).
Thus QSOU selects the gradient of minimum magnitude from the two gradients on either

side of cell (/. j, k), if these gradients have the same sign. Otherwise 22| . is set to zero.
: asli

o
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In the second step of the QSOU calculation, the boundary density is obtained by

interpolation in the cell that is donating material. For example, for the left face of cell
(2,7, k),

3 |f_ I( _EXL) ¢ FY
VD Ko Y 1- EXL) i FXL>0 "
pe— 2| |xf -x|(1-EL) i FXL<0. )

p{ and x{ are the interpolated density and location of the center of the left face of cell

(i,7,k). Vi and V. are the volumes of cells (i — 1,j,k) and (¢,7,k). FXL is the flux
volume through the left face and is positive if cell (¢ — 1,5, k) is donating material. FXL
is calculated as it is in KIVA-II.> From Egs. (A-1), (A-2), and (A-3), it is seen that the
interpolated density depends only on gradients in the grid coordinate direction in which
fluxing is being calculated and is independent of gradients in other coordinate directions.
In regions where the solution is smooth, QSOU approaches second-order accuracy in space,
but because the interpolation of Eq. (A-3) is only in the fluxing coordinate direction, the

QSOU scheme is first-order accurate in time.!®

In the QSOU2 scheme the interpolated density depends, in general, on the gradients
in all coordinate directions, and the interpolation is in the direction of the relative velocity
vector, which is the difference between the fluid and grid velocities. Because of this, QSOU2
is second-order accurate in time. A second difference between QSOU2 and QSOU is that
QSOU2 uses VanLeer gradient limiting,?'* which is weakly monotone rather than strongly

monotone and introduces less numerical diffusion than does QSOU differencing.

The QSOU2 calculation has three steps. First, in each cell we calculate the density
gradients in all logical coordinate directions. Similar formulas are used for each direction,

so we just give those for the i-coordinate :

sign (;‘9;%) + sign (;?—s%)

Op
(')s '-— 2
(A-4)
1 - —
min{3 :ﬂp +§/’ ’ |/’;2 Pc|’ |P1; pel .
| 2 SR S lxn--xC le—Xc

t t



The right- and left-face gradients of Eq. (A-4) differ slightly from those of the QSOU
scheme:

0/) 7 PR — Pc
dsp

‘xn — x{zl + Ix{z — X,

and (A-5)
I _ Pe — PL :
00 ™ Txe— x|+ [xf —xu]

where x{2 equals the location of the center of the right face of cell (¢, j, %), and x{ equals

the location of the center of the left face of cell (7, j, k). From (A-1) and (A-4), it can be
verified that, unlike with QSOU, the quantity %ﬂi can exceed either the right- or the left-
face gradient in magnitude, but, in compliance with VanLeer limiting, the right-face density
pe + 2|, |X{; — X,
lies between p. and py,.

lies between p. and pgr and the left-face density p. — %EL

o -x,

In the second step of the QSOU2 convection calculation, the gradient of p is found by

solving the three simultaneous equations:

- (s x0) = | ek
Vo (xh—xt) = 32| [ —xt] (A0
J
Vo (x%—x{,):% ‘x%—-xé‘
Sk

The subscripts F', D, B, and T denote the front, back, bottom, and top faces of cell (z, j, k).

The interpolated densities are obtained in the third step of the QSOU2 calculation
by using the density gradients of Eq. (A-6), the relative velocities between the fluid and
grid, and the signs of the flux volumes. The relative velocities, which are defined at cell
vertices, are given by

n+1 n
B_X ~-X -
u=u" - —— A-T
r A7 (A-7)
where u? is the fluid velocity after Phase B of the computational cycle, x" and x"*! are

the vertex locations at the heginning and end of the computational cycle, and At is the
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main computational timestep. The interpolated density on the left face of cell (7, j, k) is

calculated according to
pL+ (Vo) (xf —x, — 2#) if FXL>0

f
L= :
) pe +(Vp)e - (x{—xc-arz-‘i) if FXL <0,

(A-8)
where 6t is the convection timestep and i, is the average value of the relative velocity
at the four vertices bounding the left face. The density gradients (Vp), and (Vp). are
located at the centers of cells (i — 1,7, %) and (¢, j, k), respectively.

QSOU2 momentum fluxing is a three-step calculation that closely parallels the new
fluxing for cell-centered quantities. Letting g denote any of the three velocity components
u, v, or w, in the first step, we calculate the derivatives of ¢ with respect to distance in

each of the logical coordinate directions. For the :-direction these are given by
. . .l

dq sign (5633;) + sign (5;9;) . { 1

—=| = min { 5

0q 0q
Os osn | Bs,

Osgp  Osg,

9q
Osgr

g
Osp,

l)

g -

l)

y &

- 2

-

} . (A9)

i
where a—iq[ and ;9%9; are left and right gradients given by

9q _ ditrgk — dijk

Osp  |Xig1,5k — Xijkl|
and (A-10)

dq _ Qijk — qi-1,5,k
Osp  |Xijk — Xie1,j,4

In the second step, we calculate the gradient of ¢ at each vertex by solving the three

simultaneous equations

15]
(Va)ish - (Xidr ik = Xizt k) = 50| i1k = Xio1kl

0s |,
v ‘ - %
(V@)ijk - (Xijj41.6 — Xijo1,k) = Bs ,‘ |Xij+1.6 = Xij—1k] (A-11)
and

dq
(V@)ijk - (Xijk+1 — Xijk—1) = 7 |Xi jk+1 = Xij k1] -

k

The interpolated velocities for each momentum cell face are obtained in the third step.
As an example, the interpolated velocity on the face between momentum cells (¢, j, k) and

(i — 1,7,k) is calculated from

Gi—1,k +(Vg)iz1 k- (x""—x";""“—&'m) if FXAM >0
¢/ = | (A-12)
Gije + (V)i - (Hrtud=pipucht) if FXM <0,




where F.X M, the mass flux across this cell face, is positive if cell (i—1, j, k) is donating mass
to cell (7, j,k). FXM is obtained in the cell-centered fluxing portion of the calculation, as
is described in the KIVA-II documentation.? In Eq. (A-12), the quantity 0, is the average
value of the relative velocities at vertices (7, j, k) and (7 — 1, j, k).

To illustrate the increased accuracy of the QSOU2 convection calculation, we repeated
the example calculation of the KIVA-II report?® in which a scalar field is convected with a
uniform velocity directed at a 45° angle to the mesh directions of a two-dimensional mesh
of square cells. The scalar field is initially unity on a square that has five cells to a side
and is zero otherwise. This initial field, along with the results of two calculations using
QSOU2 with uét/éxr = 0.2 and uét/éx = 0.5, is shown in the contour plots of Fig. A-1.
The calculations were run to a time T such that «T/éx = 5.0, at which time the exact
solution was a uniform translation of the square five cells in each direction. Also given
in Fig. A-1 are the maximum and minimum computed values of the scalar at time T and
the root-mean-square error between the computed and exact solutions, averaged over the
twenty-five cells for which the scalar field is unity in the exact solution. Because of poor
resolution, this example problem is a severe test of convection schemes and exaggerates
many of their shortcomings.

The square shape of the initial profile is more nearly preserved in the calculation with
uét/édx = 0.2, but the maximum scalar value is closer to the initial value, and the error is
smaller, in the calculation with wét/éx = 0.5. In both calculations, the computed minima
are 0.0, evidence of the monotonicity of the QSOU2 scheme. As reported in the KIVA-
IT documentation,® when we use QSOU with u ét/6xr = 0.2 in the same calculation, the
computed maximum scalar value and error are 0.87 and 0.36, respectively. Both of these
values are worse than those obtained in the QSOU2 calculations.

Because of the increased temporal accuracy of the QSOU2 scheme, we are able to use
larger convective subcycle timesteps in Phase C of KIVA-F90. Currently, the convective
timestep in KIVA-F90 is limited by the Courant condition u ét/éxr < 0.5, whereas in KIVA-
IT this timestep is limited by v ét/éx < 0.2. Thus the number of convective subcycles in
KIVA-F90 calculations will be reduced by approximately 40%. which saves computational

time in calculations with large numbers of convective subcycles.
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APPENDIX B
THE CONJUGATE RESIDUAL METHOD

In this appendix we give some details of how the conjugate residual (CR) method
is used to solve Eqs. (29) through (32) of this report. For details of the CR method,
the reader should consult Ref. 8, which provides a proof of convergence. Here we give
just an overview of the method and derive the preconditioning matrices that are used in

conjunction with solution of the TFM equations.

It is convenient to think of the CR method as a special type of Gram-Schmidt
orthogonalization procedure.!® A sequence of basis vectors is constructed by making use
of the sequence of residuals r, = y — Ax, in the solution of linear equation y = Ax.
The basis vectors are q, = Pr,, where P is an approximation to A~! and is called
the preconditioning matrix. As in the Gram-Schmidt procedure, an orthonormal basis is
coustructed by subtracting from q, all the components of q, for 1 < v. Unlike the Gram-
Schmidt procedure, however, one need only subtract from q, its commponent in the direction
of the previously constructed basis vector; orthogonality with respect to the other basis
vectors is ensured because a special inner product is used in the CR method. This inner
product is defined by [x;, x2] = (PAX,, Ax,), where (,) denotes the standard Euclidean
mner product. The computational economy of the CR method results from this need to
orthogonalize only with respect to the previously constructed basis vector. Once the new
basis vector is obtained, the component of the solution x in its direction is found and is

added to x, to obtain the new approximation x,.4,.

For the preconditioning matrix, we use what we call Jacobi preconditioning. P is taken
to be the matrix whose main diagonal elements are the reciprocals of the main diagonal

elements of A and whose off-diagonal elements are zero.

For solution of Eqs. (29) and (30), the residual equation is

L -~
Fo = b — ’—/)lD;Z“ @+ AtDI 9] (B-1)
where v is the vertex where ¢, is located. Since ,‘;—; = —A, the diagonal elements of A can
be found by taking the derivative of (B-1) with respect to ¢,; and since % commutes

with the operators D;f“ and D"*! we obtain

ar, T
— =1-"ZAtD"! . (D!, B-2
OC‘J)" /) t ( c ) ( )



where 6, is a mesh function that is unity at vertex v and zero at other vertices. Using the
definitions (17) and (18) of D, and D, and expressing momentum cell-face areas in terms

of regular cell-face areas, it can be seen that
2

or, 1 pr At )
8¢1,_1+1677v2 Y A /»,, (B-3)

ainr
touching v

where 3 is the sum over regular cells touching vertex v, and Z is the sum over faces
T ainr
« of regular cell r that touch vertex v. Equation (B-3) is us:::fh;: ‘calculate the diagonal
elements of the preconditioning matrix when solving for omt1.
The components of the Turn Vector 7 are solved for simultaneously by CR iteration.
We now derive the preconditioning matrix used in this iteration. The residual equation is
obtained by combining Egs. (31) and (32):

n+1
r=r1-— 4, {w"’“ -Gptl x [ﬁ + -A—t-‘%]— (D3t x r)]} : (B-4)

Taking the derivative of the ‘! component of this equation with respect to the 7t

component of T gives

01',' _ 0 n+1 ~ At.VtJn-+.l n+1

From the definition, Eq. (21), of the operator G., we see that the derivative of the

expression in braces in Eq. (B-5) is determined by the constraints

0 0
E_:{Gz'“xu}- > Ao= 5 > Cayp s (B-6)
toucahing ' toug\ing
where
. AtV
u, = U, + W (Dv+] X 1') . (B-7)

v is any vertex of the cell in which G is being evaluated, and Cq are the cell-face

circulations induced by the velocity field u. From the definition of C,, it is easily seen

that 9 5
u
B—TZCG(U) = Ca (E:) ; (B-8)



that is, the derivative of the cell-face circulation based on u is the cell-face circulation

based on the derivative of u. Taking the derivative of (B-7) with respect to r; gives

Ou, At
o T @ | 2 Al (B-9)

touc hmg
v

b coordinate direction.

where e; i1s the unit vector in the ¢
In summary, the diagonal elements of the preconditioning matrix for the r-iteration

are obtained from

07, d
=1 Gt xu B-10
o = 1turg-| ] (B-10)
where the derivative with respect to 7; is determined by the constraints
—a_ [G"+1 X u] . Z A“ —_ Z C‘a , (B"ll)
07’,’ ¢ P
touchmg touching

v

where C,, are the cell-face circulations based on use of the vertex vector field Eq. (B-9).
As with Eq. (21), Eq. (B-11) gives three independent constraints that determine the
components of - d [G"'“ X u]
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