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THE EXACT SOLUTIONS TO THE DYNAMIC RESPONSE
OF TANKS CONTAINING TWO LIQUIDS

by

Y. Tang and Y. W. Chang

ABSTRACT

The exact solution to the dynamic response of circular cylindrical tanks containing two

liquids, considering the gravitational (g) effect at the interface of the two liquids, is presented.

Only rigid tanks were studied. The solution is expressed as the superposition of the so-called

impulsive and convective solutions. The results are compared with those obtained by neglecting

the gravitational effect at the interface to elucidate the g effect and with those of the tanks

containing only one liquid to elucidate the effect of the interaction between two liquids. The

response functions examined include the hydrodynamic pressure, base shear, base moments,

sloshing motions at surface and at the interface of two liquids and the associated sloshing

frequencies. It is found that there are two natural fi'equencies associated with each sloshing mode

in contrast to only one frequency associated with each sloshing mode if the g effect at the

interface is neglected; also, the convective pressure has a jump at the interface of two liquids,

whereas the impulsive pressure is continuous at tb_einterface. Further, it is shown that in a tank

containing two liquids the maximum sloshing wave height may increase significantly, and the

fundamental frequency of the sloshing motion is lower than that of an identical tank filled with

only one liquid. Additionally, the well-known mechanical model for tanks containing one liquid

is generalized for tanks containing two liquids.
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I. INTRODUCTION

The sloshing motion in a liquid containing tank has been the subject of numerous studies

in the past 30 years. An excellent review of this topic can be found in Ref. 1. Most of the

previous studies were focused on the tank containing only one liquid. However, due to the

application of electrorefining for recovery and purification of materials, there is a need to study

the dynamic response of tanks containing liquids with different densities. An exploratory study

on the dynamic response of tanks containing two liquids was investigated by Tang and Chang

[2] and Tang [3]. Those studies show that the dynamic response of a tank containing two liquids

is quite different from that of an identical tank containing only one liquid and that the solutions

obtained based on the assumption that the tank is filled with only one liquid can be far off from

the true solutions. Especially, the sloshing wave height may increase significantly in a tank that

contains two liquids. However, the solutions presented in Refs. 2 and 3 were based on the

assumption that the hydrodynamic pressure is continuous at the interface of two liquids. In other

words, the gravitational (g) effect at the interface of two liquids is neglected; as a result, the

solutions are considered to be approximate, and there is still a need to reanalyze the problem and

to assess the importance of the g effects. This report is intended to be responsive to this need.

The objectives of this report are: (1) to present the exact solutions for the dynamic

response of rigid tanks that contain two liquids, which consider the g effect at the interface; and

(2) to present numerical results with which the importance of the g effect can be evaluated and

(3) to assess the accuracy and identify the range of applicability of the approximate solutions

given in Refs. 2 and 3. In addition to the sloshing motions at the surface and at the interface and

the associated sloshing frequencies, the response functions examined include the hydrodynamic

pressure on the tank wall, the base shear and moments at sections immediately above and below

the tank base plate. Each of these response functions is expressed as the sum of two

components, the impulsive and convective components. The impulsive component of solution

is defined to be the part of the solution that is proportional to the base excitation, i.e., the

impulsive component has the base excitation as its time function. The convective component of

the solution is the remaining part of the solution. Specifically, this component is associated with

the liquid sloshing motion, and has the pseudoacceleration functions corresponding to the sloshing

wave motion as its time function. The division of the response into impulsive and convective
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components is necessary because it is essential to the approach used by Tang [4], Veletsos and

Tang [5] and Veletsos and Yang [6] in the analysis of the flexible tanks.

In the presentation, the solutions obtained by the equations presented in this report

including the g effect will be referred as the "exact" solutions, whereas the solutions obtained by

the equations presented in Refs. 2 and 3 excluding the g effect will be referred as the

"approximate" solutions, lt will be shown in this report that for the impulsive component the

exact solution is identical to that of the approximate solution, so the emphasis of this report will

be placed on the convective component of the solution. Note that in this report, only the linear

response is considered.

II. SYSTEM DESCRIPTION

The tank-liquids system investigated is shown in Fig. 1. lt is a ground-supported upright

circular cylindrical tank of radius R v '_ :ch is filled with two liquids to a total height of H. The

lower portion liquid, identified as Liquid I, has heavier mass density, Pr, and the upper portion

liquid, identified as Liquid II, has lighter mass density, Pv The heights of Liquid I and II are

H_ and H2, respectively. The tank wall is assumed to be of uniform thickness and clamped to

a rigid base. Both liquids are considered to be incompressible and inviscid. The response of the

liquids is assumed to be linear.

Let r, 0, zt denote the radial, circumferential, and vertical axial coordinates of a point in

the Liquid I, and let r, 0, and z2 be the corresponding coordinates for a point in Liquid II as

shown in Fig. 1. The origins of the two coordinate systems are at the central axis of the

cylindrical tank.

The base motion experienced by the tank is a horizontal acceleration, denoted by _(t),

acting in the direction along the 0=0 coordinate axis. The temporal variation of :_(t) can be

arbitrary.
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III. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

Given the conditions that the liquids are incompressible and inviscid, the hydrodynamic

pressures induced at Liquid I and Liquid II, denoted by p, and P2 respectively, must satisfy the

Laplace equations

V2pl = 0 (la)

in the region 0<r<R, 0<0<2n, and 0<ztsHl, and

V2p2 " 0 (lb)

in the region 0<r<R, 0<0<2n, and 0<z2<H2.

The liquid acceleration at an arbitrary point along n-direction is given by

1 aPi
a = - (2)

p_ On

for points in Liquid I, and

1 OP2
a -" - (3)

92 On

for points in Liquid II.

The boundary conditions for Liquid I are:

(a) The vertical acceleration of Liquid I at the tank base must equal zero, i.e.,

I
_ = 0 (4a)

OZl z_=O

(b) The radial acceleration of Liquid I adjacent to the tank wall must equal the acceleration

of the tank wall, i.e.,

_ 1 0p_] = _(t)cos0 , and (4b)
91 Or [,__g

(c) The value of p_ at r=0 is finite.

The boundary conditions for Liquid II are:
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(a) The radial acceleration along the tank wall is given by

_ 1 OP2[ = _(t)cos0 , (4c)
P2 Or Ir.a

(b) At free surface, the linearized boundary condition is

= 0 (4d)

where g is the gravitational acceleration, and

(c) The value of P2 at r=0 is finite.

The boundary conditions at the interface of two liquids are as follows.

(a) Continuity of vertical accelerations, i.e.,

_ 1 aPi ! 1 0P2[ (4e)p_ Oz_ 92 Oz2
z_=HI za=0

and

(b) Kinematic and pressure conditions:

b.1 Kinematic condition. If q(r,0,t) represents the height of the small disturbance

at the interface above the still interface level, the rl(r,0,t) is related to Pl by

021'1=- 1 OPt[ (5)

b.2 Pressure condition. If the g effect is considered for the interface motion, there

is a discontinuity of the hydrodynamic pressure with the amount of (Pi - P2)g_] at the interface.

Therefore,

PlIz.H, - P2[za:o = (Pl - P2)g11 (6)

Eliminating rl between Eqs. (5) and (6) and making use of th_;Eq. (4e), one obtains the following

equation for the interface boundary conditions in addition to Eq. (4e).

' ' _ f _ rl II



( +p)l:r+2p202P' + g .._. + g _ (4f)a-O" -r 7 ,.:.. ,,oo

Also,

p,and P2 are finite at r=0 (4g)

The solutions for Pt and P2 are expressed as the sum of the impulsive component and

convective component, i.e.,

P, _ pi + p2C (7)

and

°

P2 = P2' + P2c (8)

where the superscript i = impulsive component; and the superscript c = convective component.

The impulsive component of the hydrodynamic pressure pt _ and p2+are taken to be the

solutions that satisfy

V2pl i = 0 (9a)

and

V2p2 i = 0 (9b)

and the following boundary conditions:

0pi{-- = 0 (1Oa)

0zt[,,.o

0 pti[ - -ptX(t)cosO (lOb)
-'gFl,:_

0 p2i{ = -p2X(t)cos 0 (10c)
"_r I,+_



P2_l' = 0 (lOd)I

'l 1"1_ 1 OPl' =- OP2' (lOe)
p_ Oz_ p_ Oz2

zt*Hl z2,'O

p_' and P2' are finite at r=O (lOg)

and the convective component of the hydrodynamic pressure ptc and p2c are taken to be the

solutions that satisfy

V2pl= = 0 (11a)

and

V2p2_ = 0 (llb)

and the following boundary conditions:

a.._l
-"'l = 0 (12a)
0z_ I,_.o

I
1 OP: I = 0 (12b)

Pt Or ]r.R

I

1 0p:I = o (12c)m

92 0r [,.R

°P2'I
03p2c 0 p2¢ -- - g _____ (12d)

Ot'''i" + g _ _'_ Oz21__-._

_n_ ....... ,_, ' , , , up, , , ,ll ', ', ' m, II II '



_ 10PlC[ _ _ 10P2C[ (12e)Pl 0z 1 _,*H, P2 Oz2 _*o

plc and p2c are finite at r-0 (12g)

It can be shown easily that the sum of the above division of the hydrodynamic pressure

satisfies the Eqs. (la) and (lb) and the boundary conditions, Eqs. (4a) to (4g). One also notices

that the above division of hydrodynamic pressure effectively assumes that the impulsive pressure

is continuous at the interface, see Eq. (10f), and the gravitational force causes only the convective

pressure to have a jump at the interface, see Eq. (12f). The above division is correct or.ly ifpt_

and p2_ have the time function of _(t), and pl¢ and p2_ have the time functions of the

pseudoaccelerations associated with the sloshing motion.

The impulsive components of the hydrodynamic pressure defined by Eqs. (9a) and (9b)

with the boundary conditions, Eqs. (10a) to (10g) are the same as those presented in Refs. 2 and

3, in which pi and p2i are given by

r G. zl Jl " R

pli(r,0,za,t) = - -_. + _ An cosh , _ Jx(_'.) p_R_(t)cos0 (13a)

and
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P2'lr'O'z2't/_ I = - r + -7- B.cosh + C.sinh ,, P2R_(t)cos0
. ° j,(.) J

(13b)

where Jt is the Bessel function of the first kind and order 1, k. = the nth zero of J't (x), the first

derivative of Jt, and

A. = ct + (1-o,)cosh132n (14a)

B = coshlSt. + (a - l) sinh [St sinh[52, (14b)

C. = [a + (1-a)cosh[32.]sinh13t. (14c)

G, "- 2 (14d)
Z._ - 1

A. = coshlSt, cosh[32. + a sinhfSt, sinh132. (14e)

Ht H2
in which 13t, = Z..-rf-, [32. = Z. --'R and a = P2/Pt.

The extensive numerical data for the impulsive components have been reported in Tang

and Chang [2] and Tang [3]. Therefore, no more attention will be given to the impulsive

components hereinafter. However, it is worthwhile to point out that the solutions given by Eqs.

(13a) and (13b), are obtained by the eigenfunction expansion to the variable r. There is another

approach to solve the same problem by the eigenfunction expansion to the variables zt and z2 as

that presented in Ref. 7. The latter approach is also used in Ref. 4 in a study for flexible tanks.

The report now turns its attention to the convective components of the solution. The

derivation for plc and p2c are given in Appendix A. The solutions for these functions can be cast

into the forms given as follows.



pt*(r,O,z,,t)- _ C._(r,z_)AjK(t ) p,Rcos0 (15)
,, k,,1

and

p_(r, e, z2,t) _ " (16)= C.k(r, z2)A.jk(t) p2Rcos0
k=l

where superscripts I and II denote Liquids I and II, respectively, and the expressions for functions

C._(r, zl) and tlCnk(r,z2) are given in Appendix A; the functions A_k(t), k=1,2, are the

pseudoacceleration functions for the nth sloshing mode of vibration, J_(_.nr/R), zqd are defined

by

A.k(t) -- _.k fot _(t) sin(oJ k(t-'t))dx, (17)

in which (°ni, = the natural frequency associated with the nth sloshing mode of vibration.

Introducing the notations, A_k, for nondimensional coefficients that are related to _nk by the

equation

_2.kR
A.k = (18)

k g

lt is shown in Appendix A that A,k, k=l,2, are the roots of the characteristic equation given by

aA_ - bA. + c -- 0 (19)

where

a - 1 + ct tanh131, tanh132. (20a)

b = tanh [31. + tanh [32. (2Ob)

and

c = (1-a)tanh[3x. tanh[32. (20c)
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It can be shown that the discriminant D = b2 -4ac > 0 for ct > 0; therefore, Eq. (19) has two real

and unequal roots. Explicitly, these roots are given by

b .Anl -
2a

and

b - _ (22)An2 = 2a

Obviously, A_ > A.2; hence, co,_> C0n2.The reasons for this reverse order numbering are:

1. For the case of ct = 1 (two liquids have the same densities),

A,,_- tanh(_,, H), the identical expression for the case of one liquid presented in Ref. 1, and

A._"-0.

2. Generally speaking, co_ is always the dominant frequency of the surface

sloshing motion, whereas for some cases, identified later, eor2is the dominant frequency for the

interface sloshing motion. Since the surface motion has more engineering implication, the

dominant frequency of the surface motion is numbered first.

3. It will be seen later that for the convective pressure exerted on tank wall the

one associated with _n does not change sign, whereas the one associated with to_2changes its

sign when it cross the interface of two liquids.

The results presented above show that there are two natural frequencies associated with

each sloshing mode of vibration. This finding is in sharp contrast to that presented in Refs. 2

and 3 in which only one frequency is found associated with each sloshing mode of vibration.

This is the direct consequence of the g effect considered at the interface of two liquids.

IV. PRESENTATION OF RESULTS

Similar to the approximate solutions presented in Refs. 2 and 3, the exact solutions are

controlled by three parameters, i.e., H/R, H2/H_ and ct. In the numerical results presented below,
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those obtained by the equations presented herein are identified as "Exact', whereas those obtained

from the equations presented in Refs. 2 and 3 are identified as "Approx.".

A. Sloshing Frequencies

lt is convenient for the purpose of presentation to express the natural frequency as

_nk = A.k (23)

where

.Ank = Ank _. (24)

The values of A_kfor n=l,2 and k=1,2 for different values of control parameters, H/R and

. a, and for two values of I-tJH1 = 0.5 and 2.0 are listed in Tables I and II, respectively. They are

_ identified under "Exact". Examining these two tables, one can see that for the same values of

H/R and HJH1, the values of A_Rdecreases with decreasing value of ct. One also notices that

the values listed in Table I are identical to their counterparts in Table II. This is due to the fact

that the characteristic Eq. (19) is symmetric with respect to H1 and Hs; i.e., for Hl = cl and Hs

- c2, Eq. (19) has the same roots as those for H1 = c2 and Hs = cl. The values of HJH_ - 0.5

and 2 are chosen purposely herein to emphasize the fact that though for such cases the natural

frequencies of the sloshing motion are the same, other response quantities are not. Also, listed

in these tables are the approximate solutions for Als and As_, identified under "Approx.".

Comparing the "Exact" with the "Approx." one can see that the approximate solutions yield

accurate results for larger values of H/R, HJH_ and ct considered, but the accuracy deteriorates

for low values of H/R, Hs/H_ and a.

B. Surface and Interface Sloshing Displacements

The surface sloshing wave height, d(r,0,t), of an arbitrary point at the liquid surface is

determined from

P2¢1_ = p2g d (r, 0, t) (25)
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The expression for computing the maximum value of the surface sloshing wave height is obtained

by evaluating Eq. (25) for d(r,0,t) at r=R and 0=0, and this result is expressed as

® 2 A k(t)
d(R,0,t) = _ _ d, R (26)

n=l k.,l g

The sloshing wave height at the interface of two liquids, rl(r,0,t), can be determined from

1

rl (r, 0, t) -. (91__2)g (plClz.H,- p2Clh.0) (27)

which is obtained from Eq. (6) by eliminating the impulsive pressure. Note that for the case of

ct-1, rl(r,0,t) cannot be determined from Eq. (27). The expression for computing the maximum

value of the interface wave height is obtained by evaluating Eq. (27) at r=R and 0=0. The result

is expressed as

® 2 A k(t) R (28)rl(R,0,t) = Z E rink
n--1 k=l g

d,k and rinkare dimensionless coefficients that depend on the control parameters. The

values of d.,k for n=1,2 and k=1,2 and rink for n =1 and k = 1,2 for the same values of control

parameters considered in Tables I and II are listed in Tables III and IV. They are identified

under "Exact". From Tables III and IV, one can see that for the same values of H/R and H2/Ht,

the values of dll and d21increase as the value of ct decreases. Also the results show that d_l and

rll_ have the same sign, whereas d12and rl, 2 have the opposite sign which indicates that for n=l

and k=l mode the surface and interface are in phase, whereas for n-1 and k-2 mode they are

out of phase. Also, one notices that for H2/H, =2 for ali values of H/R and ct considered, the

value for rl_2 is greater than that for rl_l. For these cases, the interface sloshing motion has the

dominant frequency of (o,2 which is smaller than co,_, the dominant frequency for the surface

sloshing motion. This means that the interface sloshing motion vibrates in a different frequency

as that of the surface sloshing motion. A numerical example shows this phenomenon can be

found in Ref. 8.

Examining the data in Tables III and IV more critically, one can find that d,_ + d,2 =

0.837, d2_ + d22 ---0.073 and til _ + r112" 0.837 irrespective of the values of H/R, H2/H_ and ct

Illlllnlilll!ilWlti'llllllHIll!llllllilllIIlIInllllllll11111mlll!ll!lilllilllm!lllfllA!i#lllll|l!!Illllll!!lllllillllll_ll!ilIlllllllllUlllliillllI!!lllMIHllllflllilllliillllllllllIIIIlllillllllllliIIIillll-
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considered. This is not a coincidence. In effect, it can be shown that for each sloshing mode,

the following equations hold.

2

d°k = 2 (29)
k-1 _ - 1

and

2

k:_ _ - 1

For a limiting case, if ali natural frequencies of the sloshing motion are very high in comparison

with the dominant frequency of _(t), ali the pseudoacceleration functions Aak(t) will reduce to

_(t). Then, by making use of Eqs. (29) and (30), Eqs. (26) and (28) can be rewritten as

k 2 _(t)R
d(R,0,t) = _ dnk

n=l k=l g

= (_-_. 2 R(t)R (31)
.--I _- 1 g

and

_I(R,0,t)= _ _1ok
: k--_ g

"- /__ 2 x(t)R (32)

= L_- 1 g

By making use the following identity

___ 2 : 1 (33)
n--1 _,,2n- 1
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Eqs. (31) and (32) can be further reduce to

d (R, 0, t) -- _ (t) R (34)
g

and

rl(R,0,t)- _t(t)R (35)
g

If _t(t) -- A, a uniform acceleration, Eq. (34) gives the exact same expression as that in Ref. 9

for computing the maximum rise of the liquid surface in a tank containing one liquid. Since Eqs.

(34) and (35) hold irrespective of the ct, a tank containing two liquids accelerated by a uniform

acceleration will have the same rise for the liquid surface and interface which is physically sound.

Also listed in Tables III and IV are the approximate solutions for dll and d21. Comparing

with the exact solutions, one can see that in Table III the approximate solutions are larger than

those of the exact for H/R < 1 and ct < 0.75, and in Table IV the approximate solutions are in

general fairly accurate. However, one should be reminded that the sloshing wave height depends

not only on these coefficients but also on the pseudoacceleration functions. A numerical example

given in Ref. 8 shows that the sloshing wave height in a typical tank used in reprocess of spent

fuels [10] obtained by both solutions are in good agreement.

C. Convective Pressure

The convective pressure exerted on the tank wall is conveniently expressed in the form

p C(0,z,t) -- _ C.k(z)ank(t) p_Rcos0 (36)
,, k,,l

where C.k(z) is given by

)[ for 0-:z-:H 1 (37a)C.k(z)- C° (r,z1 ,--g

= )1 for III,z":HC.k(z ) a Cd_(r,z_ ,.R (37b)
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The coordinate z used in Eq. (36) is related to zt and zz by the equations

z -- zl for 0 _ z < H1 (38a)

and

z = z2 + Ht for H1 < z < H (38b)

The distributions of C,k, n--l, k--1,2 for ct -- 0.25 and 0.75 are shown in Fig. 2 for a broad

tank, HfR -- 0.5 for H2/H1= 0.5, and in Fig. 3 for a tall tank, H/R =3, for H2/I-tz= 0.5. For H2/H_

- 2, the curves are shown in Figs. 4 and 5 which are the counterparts of the curves in Figs. 2

and 3, respectively. The dashed curves in these figures are the corresponding approximate

solutions. Note that there is no counterpart of C_2(z) in the approximate solutions. From these

figures, one can see that the exact solution of convective pressure has a jump at the interface

while the approximate one does not, and, as one would have expected, this jump is larger for

smaller value of ct. As a result, the approximate solution always underestimates the convective

pressure in Liquid I. One also notices that in these figures, C_(z) changes its sign when it cross

the interface, and, surprisingly, the magnitude of C_2(z) at top of Liquid I may be severel times

larger than that of Cii(z) for the tall tank, H/R=3 and HJH_ =2. Since the approximate solution

is not able to predict the sharp increase of the convective pressure at the interface; hence, it

should not be used in the computation of the convective pressure.

D. Convective Base Shear

The convective component of base shear, QC(t), is given by

QC(t) = f2'_fH_ iplt R cos 0 d zId 0
JO JO r=R

p2_ Rcos0dz2d0 (39)
jo jo r=R

Substituting Eqs. (15) and (16) into Eq. (39) and performing the integration, one obtains the

expression for Q¢(t) which is given by
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2 2Q c(t) = _ SnlkA.k(t ) M,t + _ S t_ A.i(t ) M,2 (40)
= k=l = k=l

in which M,_ = p_tH_R2 = total liquid mass of Liquid I; Ma = P2_R2 H2 = total liquid mass of

Liquid II; and Sn_ and S_ = dimensionless coefficients depend on the values of H/R, H2/Ht and

ct. Since Eq. (39) involves only simple integrations of the hyperbolic functions, the expressions

for S,_ and Sd_ are not given herein.

To study the effect of two liquids on the total base shear, it is also desirous to have an

expression that can be used for comparison with an identical tank that contains one liquid.

Therefore, QC(t) is also expressed as

Q¢(t) = _ r._ a k(t) M,_ (41)
n=l k=l

in which Mt_ -- 7tp_HR2 = total liquid mass if the tank is filled with Liquid I; and rR =

dimensionless coefficient related to S,Ikand S I_ by the equation

I II

s Snk H1 + c_S.kH2
r.k = (42)

H

The values of S lk, SdS, and r' k for n=l and k =1,2 for the same values of control

parameters considered for Tables I and II are listed in Tables V and VI, from which one notes

i and rl_decrease as the value of H/R increases. The values of St:that the values of Sri1,S_I and r_

increase as the value of H/R increases for HJH_ = 0.5, but for the case of HJH_ = 2 they have

_ are negative for ali the cases considered; this is due to thethe opposite trend. The values of S_2

fact that the function C_2(z) has negative value in Liquid II. Also, presented in Tables V and VI

are the approximate solutions for S_, S_l and r_'_. One can see from these tables that the
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accuracy of the approximate solutions is poor for low values of H/R and a, and the accuracy

improves for larger values of H/R and a.

E. Convective Base Moments

The convective component of base moment at a section immediately above the tank base

is given by

M¢(t' f:_fo" [ f:'_f? [ R(z2 H,)cos0dz2d0= pt¢ Rzlcos0dzld0 + p2c + (43)
r=R r=R

and the result is expressed as

MC(t) = _ C.M' A k(t) M,, H,
n--I k=l

+ "-'nkcMliA k(t MI2 H2 (44)
n=l k=l

Again, since Eq. (43) involves only the simple integration of the hyperbolic functions, the

expressions for C_ and r HMare not given herein. Equation (44) is also rewritten as

M'(t) = _ r,kM Ank(t) M/H (45)
n=l k=l

in which rnM = a dimensionless coefficient defined by

M MI ¢-.MXl (46)rnk = Cnk + C/. "'nk

The convective component of the base moment induced by the pressure exerted on the

tank base is denoted by AMt(t) which is computed by the following equation

= plc r2cosOdrdO (47)
IZ_=0
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and may be expressed in the form as

AM '(t) = _ AC._ A.,(t) M,, H, (48)
= k=l

in which AC,_ = a dimensionless coefficient depends on the values of H/R, HJH_ and a. Eq.

(48) is also expressed as

AM _(t) -" _ Ar._ A k(t) M,' H (4_)
= k=l

tocomparetheresultwiththatcorrespondingtoa = I.The coefficientAr,,kM isrel_tedtoAc°M

by theequation

- (5o)

The values of CI_, "-'.kr"M'r.kM,AC°_ and Ar._ for n=l and k=l,2 for the same values

of the control parameters considered in Tables V and VI are presented in Tables VII and VIII.

M are listed in Tables VI and VIII forAlso, the approximate solutions for C:_, C:_M, rll

comparison. The same trend found in Tables V and VI for base shear are found in Tables VII

and VIII for the base moments.

V. EQUIVALENT MECHANICAL MODEL

The well-known equivalent mechanical model presented by Housner [11] for tanks

containing one liquid can be generalized herein to represent tanks containing two liquids. This

model is shown in Fig. 6. The rigidly attached mass, mo, is located at a height, ho, from the tank

bottom representing the impulsive component of the response, and the nkth elastically supported

mass, m._, is located at a height, h._, from the base representing the convective component of the

response The heights, ho a.'._dh.k, are used to evaluate the base moment at a section immediately
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above the tank base. By changing ho to h'° and h,k to h'nk, the model may also be used to

evaluate the base moment at a section immediately belc,w the tank base. The parameters of the

t l

model, mo, ma, ho, hnk, h o' h nk' and knkare given as follows.

The impulsive component of base shear, denoted by Q_(t), may be computed from Eq. (39)

by replacing plc and p2c by pti and p2i given by Eqs. (13a) and (13b) and perform the

integrations. The result may be expressed as

i
Q _(t) = ro, M,l_(t) (51)

---dimensionless coefficient depending on H/R, H2/Ht and ct. The numerical resultswhere ro'

are available in Refs. 2 and 3. The impulsive component of base moments, denoted byfor ro,

M_(t) for the moment at a section immediately above the tank base and by AM_(t)for the moment

induced by the pressure exerted on the tank base, may be computed from Eqs. (43) and (47) by

replacing the convective pressure by the corresponding impulsive pressure and pe_form the

integration. The results are then expressed as

M i(t) = ro_M,_H_t(t) (52)

and

AM _(t) = Aro_M,1HR(t) (53)

The numerical results for the dimensionless coefficients, roM and AtoM, are available in Refs. 2

and 3.

The parameters for the model are then defined as follows.

i

m o = ro, Mt1 (54)
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(', roM +
h o - , H (56)

ros

, (57)m.k = rnk Ml 1

' (58)knk --"03nk m.k

h.k = . H (59)

rnk)

and

hPnk rnk + _rnk-- H (60)
S

rnk

It is easy to show that the mechanical model yields the same base shear and moments as

those of the original tank-liquid system. The numerical results for ho, h'o, h_t, h'_, h_2,andh'_2

are given in Tables IX and X for the same values of control parameters considered in Tables I

and II. Note that for some cases the values of h_2and h'2 are negative.

VI. CONCLUSIONS

A comprehensive study on the dynamic response of tanks containing two liquids is

presented. The effect of gravitation at the interface is considered. Extensive numerical results

are presented from which the gravitation and two-liquid interaction effects at the interface are

identified. These two effects are summarized as follows.

A. Effect of Gravitation at the Interface

This effect is drawn from the comparison of the exact solutions with the approximate

solutions.

mmIqtMMIIIUlIBIIIMIIIIMMIIItlI'IqlIIIIIIIIIMMNIIIIIIMIMIIIIItllllllnlImlll!II IMllll lilt MIIIIInIIIIIHIIIIni!IIMIMIIIIIIIIImlIIIIIIIIIIIUIIMIIIIIIIMIlmMII#111
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1. There are two natural frequencies, tOnk,k--l, 2, associated with the nth sloshing

mode of vibration. The surface and interface sloshing motions are in phase for k -1 and out

phase for k --2. For some cases, the toll is the dominant frequency of the surface sloshing motion

while ¢ot2is the dominant frequency of the interface sloshing motion.

2. lt changes the distribution of the convective component of hydrodynamic pressure

causing a discontinuity at the interface. General speaking, it increases the convective pressure

at Liquid I so is the base shear and moments. The convective pressure corresponding to the k

"-2 mode changes its sign when it crosses the interface, and, surprisingly, at the top of Liquid I

it maybe several times larger than that of the k=l mode for tall tanks with high values of HJH_.

3. The approximate solutions may yield accurate results for the sloshing wave height,

base shear and moments for ct > 0.5 and H/R > 1, but it should not be used to compute the

convective pressure distribution.

4. lt has no effect on the impulsive component of the hydrodynamic pressure. This

component is continuous at the interface of two liquids. The exact and approximate solutions

for the impulsive component of response are identical.

5. Even though, the approximate solution may not give accurate results for the pressure

and base shear and moments, it may still be used to produce accurate results for the sloshing

wave height.

B. Effect of Two Liquids Interaction

This effect is drawn based on the comparison of the results for two liquids with those for

one liquid.

1. lt increases the number of control parameters. For tanks containing one liquid the

response is controlled by one parameter, H/R, whereas for tanks containing two liquids the

response is controlled by three parameters, H/R, HJH 1 and P2/Pl.

2. lt increases the sloshing wave height and decreases the sloshing frequency. For

certain combination of the control parameters, the sloshing wave height may increase

significantly; therefore, it ma;/leads to an unconservative result to compute the response of a tank

containing two liquids based on the assumption of one liquid.

....lq,,
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Table I. Sloshing Frequency Coefficient for HJH_ = 0.5

H

"ff Exact Approx. Exact Exact Approx. Exact

ct = 0.25

0.3 0.138 0.111 0.073 0.340 0.290 0.204
0.5 0.170 0.140 0.094 0.363 0.331 0.244
1.0 0.205 0.178 0.127 0.367 0.361 0.278
1.5 0.214 0.196 0.145 0.367 0.366 0.284
2.0 0.216 0.205 0.155 0.367 0.367 0.284
2.5 0.216 0.210 0.161 0.367 0.367 0.285
3.0 0.216 0.213 0.164 0.367 0.367 0.285

ot =0.5

0.3 0.145 0.127 0.057 0.346 0.316 0.157
0.5 0.177 0.157 0.072 0.365 0.346 0.186
1.0 0.208 0.192 0.097 0.367 0.364 0.208
1.5 0.214 0.204 0.110 0.367 0.367 0.211
2.0 0.216 0.210 0.117 0.367 0.367 0.212
2.5 0.216 0.213 0.121 0.367 0.367 0.212
3.0 0.216 0.214 0.123 0.367 0.367 0.212

a = 0.75

0.3 0.149 0.141 0.039 0.350 0.336 0.105
0.5 0.181 0.172 0.049 0.365 0.357 0.124
1.0 0.210 0.202 0.065 0.367 0.366 0.137
1.5 0.215 0.210 0.073 0.367 0.367 0.139
2.0 0.216 0.213 0.077 0.367 0.367 0.139
2.5 0.216 0.215 0.079 0.367 0.367 0.139
3.0 0.216 0.215 0.080 0.367 0.367 0.139

a=l.O

0.3 0.153 0.153 0 0.353 0.353 0
0.5 0.184 0.184 0 0.366 0.366 0
1.0 0.211 0.211 0 0.367 0.367 0
1.5 0.215 0.215 0 0.367 0.367 0
2.0 0.216 0.216 0 0.367 0.367 0
2.5 0.216 0.216 0 0.367 0.367 0
3.0 0.216 0.216 0 0.367 0.367 0
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Table II. Sloshing Frequency Coefficient for H2/H 1 = 2.0

a_, h;__ A;, A22
, _,

H

"-ff Exact Approx. Exact Exact Approx. Exact

a = 0.25

0.3 0.138 0.135 0.073 0.340 0.335 0.204
0.5 0.170 0.167 0.094 0.363 0.360 0.244
1.0 0.205 0.202 0.127 0.367 0.367 0.278
1.5 0.214 0.212 0.145 0.367 0.367 0.284
2.0 0.216 0.215 0.155 0.367 0.367 0.284
2.5 0.216 0.216 0.161 0.367 0.367 0.285
3.0 0.216 0.216 0.164 0.367 0.367 0.285

ct = 0.5
, ,,, ......

0.3 0.145 0.142 0.057 0.346 0.342 0.157
0.5 O.177 O.173 0.072 0.365 0.363 O.186
1.0 0.208 0.206 0.097 0.367 0.367 0.208
1.5 0.214 0.213 0.110 0.367 0.367 0.211
2.0 0.216 0.215 0.117 0.367 0.367 0.212
2.5 0.216 0.216 O.121 0.367 0.367 0.212
3.0 0.216 0.216 0.123 0.367 0.367 0.212

Ct = 0.75

0.3 0.149 0.148 0.039 0.350 0.348 0.105
0.5 0.181 0.179 0.049 0.365 0.364 0.124
1.0 0.210 0.208 0.065 0.367 0.367 O.137
1.5 0.215 0.214 0.073 0.367 0.367 0.139
2.0 0.216 0.216 0.077 0.367 0.367 0.139
2.5 0.216 0.216 0.079 0.367 0.367 0.139
3.0 0.216 0.216 0.080 0.367 0.367 0.139

a=l.O

0.3 0.153 0.153 0 0.353 0.353 0
0.5 0.184 0.184 0 0.366 0.366 0
1.0 0.211 0.211 0 0.367 0.367 0
1.5 0.215 0.215 0 0.367 0.367 0
2.0 0.216 0.216 0 0.367 0.367 0
2.5 0.216 0.216 0 0.367 0.367 0
3.0 0.216 0.216 0 0.367 0.367 0
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Table VII. Coefficients of Convective Component of Base Moments for H2/Ht - 0.5 (Cont'd)

M M
ACI_ ACt_ Artt Art2

,,,, ,,,,,

H
"ff Exact Approx. Exact Exact Approx. Exact

ct = 0.25

0.3 5.243 2.742 0.418 2.330 1.218 0.186
0.5 1.615 0.811 0.153 0.718 0.361 0.068
1.0 0.219 0.096 0.039 0.097 0.042 0.017
1.5 0.044 0.017 0.016 0.020 0.008 0.007
2.0 0.010 0.004 0.007 0.005 0.002 0.003
2.5 0.003 0.001 0.003 0.001 0.000 0.001
3.0 0.001 0.000 0.001 0.000 0.000 0.001

ct = 0.5

0.3 5.220 4.082 0.329 2.320 1.814 0.146
0.5 1.561 1.197 0.120 0.694 0.532 0.053
1.0 0.194 0.139 0.030 0.086 0.062 0.013
1.5 0.037 0.025 0.011 0.016 0.011 0.005
2.0 0.008 0.005 0.005 0.004 0.002 0.002
2.5 0.002 0.001 0.002 0.001 0.001 0.001
3.0 0.001 0.000 0.001 0.000 0.000 0.000

ct = 0.75

0.3 5.270 4.852 0.172 2.342 2.157 0.076
0.5 1.539 1.406 0.062 0.684 0.625 0.028
1.0 0.181 0.161 0.015 0.080 0.072 0.007
1.5 0.033 0.029 0.005 0.015 0.013 0.002
2.0 0.007 0.006 0.002 0.003 0.003 0.001
2.5 0.002 0.002 0.001 0.001 0.001 0.000
3.0 0.001 0.000 0.000 0.000 0.000 0.000

....

ct= 1.0

0.3 5.337 5.337 0 2.372 2.37.2 0
0.5 1.527 1.527 0 0.679 0.679 0
1.0 0.172 0.172 0 0.076 0.076 0
1.5 0.031 0.031 0 0.014 0.014 0
2.0 0.007 0.007 0 0.003 0.003 0
2.5 0.002 0.002 0 0.001 0.001 0
3.0 0.000 0.000 0 0.000 0.000 0



31

i_1|_lFIlll_lwnM_li_1_I_g_i_MM_l_i_1_n_1_11Ill_|_Q|_lj_I_Il_Mu_iii_l_i_iI_M_jq_lm_1_l_i_WiiM_Bm_M_mmlimimi_m_Rmmnimimumimnunu



32

Table VIII. Coefficients of Convective Component of Base Moments for H2/H l = 2.0
(Cont'd)

,,,

MAc,," AC, Ar,," Ar,
, ,,,,

I4

Exact Approx. Exact Exact Approx. Exact

ct -'- 0.25

0.3 11.307 7.384 12.200 1.256 0.820 1.356
0.5 3.519 2.220 4.302 0.391 0.247 0.478
1.0 0.498 0.276 0.978 0.055 0.031 0.109
1.5 0.106 0.052 0.373 0.012 0.006 0.041
2.0 0.026 0.012 0.171 0.003 0.001 0.019
2.5 0.007 0.003 0.085 0.001 0.000 0.009
3.0 0.002 0.001 0.045 0.000 0.000 0.005

ct = 0.5

0.3 15.996 13.119 6.768 1.777 1.458 0.752
0.5 4.808 3.873 2.400 0.534 0.430 0.267
1.0 0.610 0.462 0.554 0.068 0.051 0.062
1.5 0.118 0.085 0.212 0.013 0.009 0.024
2.0 0.027 0.019 0.097 0.003 0.002 0.011
2.5 0.007 0.005 0.048 0.001 0.001 0.005
3.0 0.002 0.001 0.025 0.000 0.000 0.003

ct =0.75
,,

0.3 19.051 17.670 2.993 2.117 1.963 0.333
0.5 5.576 5.133 1.063 0.620 0.570 0.118
1.0 0.660 0.593 0.245 0.073 0.066 0.027
1.5 0.122 0.108 0.093 0.014 0.012 0.010
2.0 0.028 0.024 0.042 0.003 0.003 0.005
2.5 0.007 0.006 0.021 0.001 0.001 0.002
3.0 0.002 0.002 0.011 0.000 0.000 0.001

ct = 1.0

0.3 21.346 21.346 0 2.372 2.372 0
0.5 6.110 6.110 0 0.679 0.679 0
1.0 0.688 0.688 0 0.076 0.076 0
1.5 0.124 0.124 0 0.014 0.014 0
2.0 0.028 0,028 0 0.003 0.003 0
2.5 0.007 0.007 0 0.001 0.001 0
3.0 0.002 0.002 0 0.000 0.000 0

,,
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Table IX. Quantities in Mechanical Model for Tank-Liquid System, H2/Ht = 0.5

H ho h' htr h' hl2o II h'12

R H H H H H H

ct = 0.25
m ,,,,

0.3 0.333 2.646 0.417 4.452 -0.692 14.084
0.5 0.332 1.497 0.428 1.807 -0.610 4.289
1.0 0.334 0.713 0.475 0.746 -0.335 0.541
1.5 0.338 0.516 0.537 0.620 -0.085 0.167
2.0 0.343 0.443 0.602 0.631 0.096 0.183
2.5 0.348 0.411 0.663 0.673 0.219 0.253
3.0 0.352 0.395 0.716 0.719 0.304 0.318

ct = 0.50
=, ,,, , ,.,,,

0.3 0.366 2.618 0.460 4.081 -1.674 22.619
0.5 0.365 1.476 0.475 1.697 -1.504 6.436
1.0 0.368 0.717 0.533 0.762 -0.979 0.386
1.5 0.374 0.534 0.606 0.671 -0.550 -0.168
2.0 0.381 0.470 0.674 0.695 -0.261 -0.129
2.5 0.387 0.443 0.731 0.738 -0.069 -0.017
3.0 0.392 0.430 0.776 0.778 0.063 0.085

Ct-- 0.75

0.3 0.386 2.622 0.490 3.825 -4.523 47.388
0.5 0.386 1.467 0.507 1.620 -4.091 12.656
1.0 0.389 0.719 0.575 0.774 -2.855 -0.066
1.5 0.397 0.546 0.650 0.704 -1.926 -1.157
2.0 0.405 0.487 0.715 0.732 -1.326 -1.061
2.5 0.412 0.464 0.766 0.771 -0.931 -0.828
3.0 0.419 0.454 0.804 0.806 -0.658 -0.615

,,,,,

ct= 1.0

0.3 0.400 2.637 0.512 3.629 ....
0.5 0.400 1.464 0.533 1.561 ....
1.0 0.404 0:721 0.606 0.782 ....
1.5 0.413 0.555 0.681 0.727 ....
2.0 0.423 0.500 0.742 0.755 ....
2.5 0.431 0.480 0.787 0.791 ....
3.0 0.439 0.472 0.820 0.822 ....
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Tabh X. Quantities in Mechanical Model for Tank-Liquid System, H2/H 1 - 2

h' h nH ho h'o hll tt h'12
R _ H n "-H- H H

ct = 0.25

0.3 0.337 2.563 0.461 4.539 -0.118 15.250
0.5 0.337 1.479 0.472 1.890 -0.110 5.334
1.0 0.336 0.731 0.518 0.818 -0.078 1.188
1.5 0.332 0.531 J.584 0.684 -0.034 0.470
2.0 0.328 0.448 0.658 0.695 0.011 0.259
2.5 0.324 0.405 0.727 0.740 0.051 0.187
3.0 0.322 0.380 0.781 0.786 0.084 0.164

ct " 0.50
r

0.3 0.373 2.569 0.484 4.128 -0.625 24.739
0.5 0.373 1.462 0.499 1.742 -0.597 8.306
1.0 0.373 0.725 0.559 0.801 -0.490 1.515
1.5 0.375 0.542 0.635 0.707 -0.370 0.406
2.0 0.377 0.474 0.706 0.730 -0.267 0.108
2.5 0.379 0.442 0.764 0.772 -0.187 0.018
3.0 0.381 0.425 0.806 0.809 -0.125 -0.004

ct "- 0.75

0.3 0.389 2.602 0.500 3.845 -2.097 52.268
0.5 0.389 1.462 0.518 1.639 -2.001 16.901
1.0 0.392 0.722 0.586 0.790 -1.669 2.469
1.5 0.397 0.549 0.663 0.719 -1.344 0.227
2.0 0.404 0.489 0.729 0.746 -1.089 -0.334
2.5 0.410 0.464 0.779 0.784 -0.895 -0.484
3.0 0.415 0.452 0.815 0.817 -0.747 -0.506

ct= 1.0
.,,

0.3 0.400 2.637 0.512 3.629 ....
0.5 0.400 1.464 0.533 1.561 ....
1.0 0..404 0.721 0.606 0.782 ....
1.5 0.413 0.555 0.681 0.727 ....
2.0 0.423 0.500 0.742 0.755 ....
2.5 0.431 0.480 0.787 0.791 ....
3.0 0.439 0.472 0.820 0.822 ....
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APPENDIX A

Solutions for Convective Component

The method of separation of variables is employed to solve Eqs. (11a) and (11b), and the

integration constants are determined from the boundary conditions. Satisfying Eqs. (12a), (12b),

(12c), (12e) and (12g), the function pl¢ takes the form

plCC.r,0,z,,t) = _ D,(t> cosh k

and p2c takes the form

[ ( (zp2C(r,0,z2,t) = _ E(t)cosh X --rf.n=l

J1(_'a R_) 92Rcos0 (61b)

in which D,(t) and E.(t) = integration functions that can be determined by satisfying Eqs. (12d)

and (120. Substituting Eqs. (13a), (13b), (61a) and (61b) into Eq. (12d), one obtains a

differential equation

sinh131,,sinh[32,' I5 + _g)"" sinhl31,, cosh_2 n D. + cosh[32,,R "

+ _g_'" sinh132,, E, = - g;k G,, (B. sinhf32,, + C cosh[32. ) _(t) (62)R R A
n

and Substituting Eqs. (13b) and (61b) into Eq. (120, one obtains another differential equation
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coshl3x. 15. + (1-ct) _g_" sinhl3,. D - at. = - g_" G. (A. sinh[3, - aC.) _(t) (63)R R A "
n

then, Eqs. (62) and (63) can be solved for D,(t) and E.(t).

Taking the Laplace transformation on both sides of Eqs. (62) and (63) and assuming the

homogeneous initial conditions for D.(t) and E.(t), one obtains two algebraic equations for

determination of the Laplace transforms of D,(t) and E.(t). The required solutions for D,(t) and

E.(t) are then obtained by finding the inverse Laplace transforms; then replacing D.(t) and E.(t)

in Eqs. (61a) and (61b) with the results obtained, one can cast the final expressions into the form

presented in Eqs. (15) and (16).

The expressions for C,_(r, zl) and C l_(r,zz) for k=l and 2 are given as follows.

C Il(r,zl) =_ G. 1 xi cosh k zl l (64a)

(rl
I Jt k.

-G 1 z_ "ff (64b)
C"_(r'zx) " _ " "_.2 Yl cosh Z...ff J,(Z.)

("xl G.. 1 x2cosh k. + xi sinh[3_ sin _.C"'(r'z2) =- "_, A.""_

(r/J1 Z., ..ff (65a)

("tl G.. 1 Y2cOsh _'. + Yl sinhl31, sin _.
C"2(r'z2) = - A"-_ A."'_ "ff

(65b)
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where

A.1 ql - q2 (66a)X1 -
A.1 - An2

q2 - An2 ql (66b)Yl "
Anl - An2

A.1 q3 - q4 (66c)X2 --
A.1 - A.2

and

q, - An2 q3 (66d)Y2 =
A1 - A.2

in which

A tanh132" (67b)
1 tanhl3,, tanh_2. - CtCn

q2 = An c°sh 131.

= 1 [B tanh[32. - A sinh[31, tanh[3,, tanh[32.] + C (67c)q,

and

and

A_ = 1 + a tanh131, tanh_2 . (68)
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The characteristic _quation for the natural frequencies can be obtained from the associated

eigenvalue problem of Eqs. (62) and (63). Letting _t(t) = 0 and Dh(t) -'- D,e i_, En(t) -- E,e i_ in

Eqs. (62) and (63), one obtains two homogeneous equations which are expressed by

'sinhl$1 sinh132, cosh132n]{Dn }

_ (0 2 n

cosh_t n -a E n

lt is easy to show that the determinant of Eq. (69) is Eq. (19), the characteristic equation.
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