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THE EXACT SOLUTIONS TO THE DYNAMIC RESPONSE
OF TANKS CONTAINING TWO LIQUIDS

by

Y. Tang and Y. W. Chang

ABSTRACT

The exact solution to the dynamic response of circular cylindrical tanks containing two
liquids, considering the gravitational (g) effect at the interface of the two liquids, is presented.
Only rigid tanks were studied. The solution is expressed as the superposition of the so-called
impulsive and convective solutions. The results are compared with those obtained by neglecting
the gravitational effect at the interface to elucidate the g effect and with those of the tanks
containing only one liquid to elucidate the effect of the intcraction between two liquids. The
response functions examined include the hydrodynamic pressure, base shear, base moments,
sloshing motions at surface and at the interface of two liquids and the associated sloshing
frequencies. It is found that there are two natural frequencies associated with each sloshing mode
in contrast to only one frequency associated with each sloshing mode if the g effect at the
interface is neglected; also, the convective pressure has a jump at the interface of two liquids,
whereas the impulsive pressure is continuous at the interface. Further, it is shown that in a tank
containing two liquids the maximum sloshing wave height may increase significantly, and the
fundamental frequency of the sloshing motion is lower than that of an identical tank filled with
only one liquid. Additionally, the well-known mechanical model for tanks containing one liquid

is generalized for tanks containing two liquids.
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L INTRODUCTION

The sloshing motion in a liquid containing tank has been the subject of numerous studies
in the past 30 years. An excellent review of this topic can be found in Ref. 1. Most of the
previous studies were focused on the tank containing only one liquid. However, due to the
application of electrorefining for recovery and purification of materials, there is a need to study
the dynamic response of tanks containing liquids with different densities. An exploratory study
on the dynamic response of tanks containing two liquids was investigated by Tang and Chang
[2] and Tang [3]. Those studies show that the dynamic response of a tank containing two liquids
is quite different from that of an identical tank containing only one liquid and that the solutions
obtained based on the assumption that the tank is filled with only one liquid can be far off from
the true solutions. Especially, the sloshing wave height may increase significantly in a tank that
contains two liquids. However, the solutions presented in Refs. 2 and 3 were based on the
assumption that the hydrodynamic pressure is continuous at the interface of two liquids. In other
words, the gravitational (g) effect at the interface of two liquids is neglected; as a result, the
solutions are considered to be approximate, and there is still a need to reanalyze the problem and
to assess the importance of the g effects. This report is intended to be responsive to this need.

The objectives of this report are: (1) to present the exact solutions for the dynamic
response of rigid tanks that contain two liquids, which consider the g effect at the interface; and
(2) to present numerical results with which the importance of the g effect can be evaluated and
(3) to assess the accuracy and identify the range of applicability of the approximate solutions
given in Refs. 2 and 3. In addition to the sloshing motions at the surface and at the interface and
the associated sloshing frequencies, the response functions examined include the hydrodynamic
pressure on the tank wall, the base shear and moments at sections immediately above and below
the tank base plate. [Each of these response functions is expressed as the sum of two
components, the impulsive and convective components. The impulsive component of solution
is defined to be the part of the solution that is proportional to the base excitation, i.e., the
impulsive component has the base excitation as its time function. The convective component of
the solution is the remaining part of the solution. Specifically, this component is associated with
the liquid sloshing motion, and has the pseudoacceleration functions corresponding to the sloshing

wave motion as its time function. The division of the response into impulsive and convective
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components is necessary because it is essential to the approach used by Tang [4], Veletsos and
Tang [S] and Veletsos and Yang [6] in the analysis of the flexible tanks.

In the presentation, the solutions obtained by the equations presented in this report
including the g effect will be referred as the "exact" solutions, whereas the solutions obtained by
the equations presented in Refs. 2 and 3 excluding the g effect will be referred as the
"approximate" solutions. It will be shown in this report that for the impulsive component the
exact solution is identical to that of the approximate solution, so the emphasis of this report will
be placed on the convective component of the solution. Note that in this report, only the linear

response is considered.

11. SYSTEM DESCRIPTION

The tank-liquids system investigated is shown in Fig. 1. It is a ground-supported upright
circular cylindrical tank of radius R v*ch is filled with two liquids to a total height of H. The
lower portion liquid, identified as Liquid I, has heavier mass density, p,, and the upper portion
liquid, identified as Liquid II, has lighter mass density, p,. The heights of Liquid I and II are
H, and H,, respectively. The tank wall is assumed to be of uniform thickness and clamped to
a rigid base. Both liquids are considered to be incompressible and inviscid. The response of the
liquids is assumed to be linear.

Let r, 6, z, denote the radial, circumferential, and vertical axial coordinates of a point in
the Liquid I, and let r, 6, and z, be the corresponding coordinates for a point in Liquid 1I as
shown in Fig. 1. The origins of the two coordinate systems are at the central axis of the

cylindrical tank.
The base motion experienced by the tank is a horizontal acceleration, denoted by i(t),

acting in the direction along the 6=0 coordinate axis. The temporal variation of ¥(t) can be

arbitrary.
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III.  GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

Given the conditions that the liquids are incompressible and inviscid, the hydrodynamic
pressures induced at Liquid I and Liquid II, denoted by p, and p, respectively, must satisfy the

Laplace equations

Vip, =0 (1a)
in the region OsrsR, 0<0s2x, and 0sz,<H,, and

Vip, =0 (1b)
in the region OsrsR, 0s0s2n, and 0sz,sH,.

The liquid acceleration at an arbitrary point along n-direction is given by

d
a =- 1P )
P, on

for points in Liquid I, and

9
a =- L2 3)
p, dn
for points in Liquid II.
The boundary conditions for Liquid I are:

(a) The vertical acceleration of Liquid I at the tank base must equal zero, i.e.,

ap1

— =0 (4a)
az1

z,=)

(b)  The radial acceleration of Liquid I adjacent to the tank wall must equal the acceleration

of the tank wall, i.e.,

1 9p,

- = X(t)cos0 , and (40)
p, or

r=R

(c) The value of p, at r=0 is finite.

The boundary conditions for Liquid II are:
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(a) The radial acceleration along the tank wall is given by

1 9p,

———— v—

2 = &(@)cosd (40)
p, or

r=R

(b) At free surface, the linearized boundary condition is

2
R B (4d)
ot ? 92, ), w.

where g is the gravitational acceleration, and
(¢)  The value of p, at r=0 is finite.
The boundary conditions at the interface of two liquids are as follows.

(a) Continuity of vertical accelerations, i.e.,

_ 1 9p __ 1 9py (de)
p, 9z, .. p, 9z, .

and
(b)  Kinematic and pressure conditions:

b.1 Kinematic condition. If n(r,6,t) represents the height of the small disturbance
at the interface above the still interface level, the n(r,6,t) is related to p, by

azn - _ 1 ap1 (5)

at? P9z,

b.2 Pressure condition. If the g effect is considered for the interface motion, there

is a discontinuity of the hydrodynamic pressure with the amount of (p, - p,)gn at the interface.

Therefore,

Pil, ., " Pal,.o = (P~ P2)Em (©)

z,=H,
Eliminating n) between Egs. (5) and (6) and making use of the Eq. (4¢), one obtains the following

equation for the interface boundary conditions in addition to Eq. (4¢).
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apl+gﬁ = 3p2+g8p2 4f)
at? 02, | |, at? 92 ) |0
Also,
p, and p, are finite at r=0 (42)

The solutions for p, and p, are expressed as the sum of the impulsive component and

convective component, i.e.,

P, = P+ Py ()
and

P, =P *+p @®)
where the superscript i = impulsive component; and the superscript ¢ = convective component.

The impulsive component of the hydrodynamic pressure p, and p2‘ are taken to be the
solutions that satisfy

vip,' =0 (9a)
and

Vip, =0 (9b)

and the following boundary conditions:

L. (10a)
9z, 20

9 i

Rl -p,%(t)cos 6 | (10b)
ar | x

R g &()cosd (10c)
ar | .x
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i =
P, L,H‘ =0 (10d)
_ 1 9pm .. 1 9 (10e)
p, 92 _— p, 9z, a0
P L’Hl = P2 |z,=0 (10f)
p, and p, are finite at r=0 (10g)

and the convective component of the hydrodynamic pressure p° and p° are taken to be the

solutions that satisfy

and

Vzplc =0 (118)

Vip,S =0 (11b)

and the following boundary conditions:

aplc

—] =0 (12a)
0z,

z,=0

19 (12b)

0, ar

r=R

1 apy

—— ——

p, or

=0 (12¢)

r=R

‘3pzc apzc
—_—t g
at? 9z,

ap,
0z

(12d)

ZH, 7-H,



1 9p _ 1 9p (12e)
P, az1 _— P, az2 re0
2. € [ i 2. ¢ c i
d Pi ‘g apl +g apl ' - 0 P2 v g ap2 +g apZ (121)
at? 9z, a4z, ‘ at? az, 0z, -
p,” and p,° are finite at r=0 (12g)

It can be shown easily that the sum of the above division of the hydrodynamic pressure
satisfies the Egs. (1a) and (1b) and the boundary conditions, Eqs. (4a) to (4g). One also notices
that the above division of hydrodynamic pressure effectively assumes that the impulsive pressure

is continuous at the interface, see Eq. (10f), and the gravitational force causes only the convective

pressure to have a jump at the interface, see Eq. (12f). The above division is correct ozly ifp |

and pzi have the time function of % (1) and P’ and Py have the time functions of the

pseudoaccelerations associated with the sloshing motion.
The impulsive components of the hydrodynamic pressure defined by Egs. (9a) and (9b)

with the boundary conditions, Eqs. (10a) to (10g) are the same as those presented in Refs. 2 and

3, in which p‘ and p are given by

® G Z Jl }\'n l;
i r 1 .
1,0,z,t) = [- — + —~ A cosh|A R%(t)cosB (13a)
pl( 1 ) R § An n n R ] ()\' p1 ()

and



r
AP AR R oS 1

B,cosh|A | + C sinh|A —= p,RX(t)cosH
R R 3 (M)

pZi (r)e,229t) =1-

| -
+
™

(13b)

where J, is the Bessel function of the first kind and order 1, A, = the nth zero of J',(x)» the first

derivative of J,, and

A =a + (1-a)coshB,, (14a)

B, = coshB,, + (a-1)sinhp, sinhp, (14b)

C, = [a + (1 -a)cosh an]sinhﬁln (14c)

G =2 (14d)
S G|

A, = coshf, coshP, + o sinhf, sinhf,, (14e)

in which ﬁln = )\,n %, B,, = A, %, and o = p,/p;.

The extensive numerical data for the impulsive components have been reported in Tang
and Chang [2] and Tang [3]. Therefore, no more attention will be given to the impulsive
components hereinafter. However, it is worthwhile to point out that the solutions given by Eqgs.
(13a) and (13b), are obtained by the eigenfunction expansion to the variable r. There is another
approach to solve the same problem by the eigenfunction expansion to the variables z, and z, as
that presented in Ref. 7. The latter approach is also used in Ref. 4 in a study for flexible tanks.

The report now turns its attention to the convective components of the solution. The
derivation for p© and p,° are given in Appendix A. The solutions for these functions can be cast

into the forms given as follows.




® 2
pi(r.8,2,t) = [E Y Cu(nz)Ax®|p,Reosd (15)
n=l k=1
and
L) 2
Py (1,8,2,t) = [E Y Ca(n2,)A, (1) | p,Rcos6 (16)
n=l k=1

where superscripts I and II denote Liquids I and II, respectively, and the expressions for functions

Cn‘k(r,zl) and Cnll:(r’zz) are given in Appendix A; the functions A_(t), k=1,2, are the

pseudoacceleration functions for the nth sloshing mode of vibration, J;(A, r/R), and are dafined
by

A =0, [ %@ sin(w,, (t -7))dr, (17)

in which w,, = the natural frequency associated with the nth sloshing mode of vibration.
Introducing the notations, A,,, for nondimensional coefficients that are related to w,, by the

equation

A, = — (18)

It is shown in Appendix A that A, k=1,2, are the roots of the characteristic equation given by

aAl -bA +c=0 (19)
where

a =1+ a tanhf, tanhf, (20a)

b = tanhf, + tanhf, (20b)
and

¢ = (1-a)tanhp,, tanhp,, (20c)
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It can be shown that the discriminant D = b* -4ac > 0 for a > 0; therefore, Eq. (19) has two real

and unequal roots. Explicitly, these roots are given by

A, =22VD 1)
2a
and
A.=0-VD 22)
n2 28

Obviously, A,, > A,,; hence, w,, > w,,. The reasons for this reverse order numbering are:

1. For the case of a = 1 (two liquids have the same densities),

A, = tanh(}\. E ), the identical expression for the case of one liquid presented in Ref. 1, and
n n R

A = 0.

2. Generally speaking, w,, is always the dominant frequency of the surface
sloshing motion, whereas for some cases, identified later, w,, is the dominant frequency for the
interface sloshing motion. Since the surface motion has more engineering implication, the
dominant frequency of the surface motion is numbered first.

3. It will be seen later that for the convective pressure exerted on tank wall the
one associated with w,; does not change sign, whereas the one associated with w,, changes its
sign when it cross the interface of two liquids.

The results presented above show that there are two natural frequencies associated with
each sloshing mode of vibration. This finding is in sharp contrast to that presented in Refs. 2
and 3 in which only one frequency is found associated with each sloshing mode of vibration.

This is the direct consequence of the g effect considered at the interface of two liquids.

IV.  PRESENTATION OF RESULTS
Similar to the approximate solutions presented in Refs. 2 and 3, the exact solutions are

controlled by three parameters, i.e., H/R, H,/H, and a. In the numerical results presented below,
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those obtained by the equations presented herein are identified as "Exact’, whereas those obtained

from the equations presented in Refs. 2 and 3 are identified as "Approx.".

A. Sloshing Frequencies

It is convenient for the purpose of presentation to express the natural frequency as

0y = Ane |-§- (23)

A = AL A, (24)

The values of A, for n=1,2 and k=1,2 for different values of control parameters, H/R and

where

. o, and for two values of Hy/H, = 0.5 and 2.0 are listed in Tables I and 1I, respectively. They are
g identified under "Exact". Examining these two tables, one can see that for the same values of
| H/R and H,/H,, the values of A, decreases with decreasing value of a. One also notices that
the values listed in Table I are identical to their counterparts in Table II. This is due to the fact
that the characteristic Eq. (19) is symmetric with respect to H, and H,; i.e., for H, = c1 and H,
= ¢2, Eq. (19) has the same roots as those for H, = ¢2 and H, = c1. The values of H,/H, = 0.5
and 2 are chosen purposely herein to emphasize the fact that though for such cases the natural
frequencies of the sloshing motion are the same, other response quantities are not. Also, listed
in these tables are the approximate solutions for A,, and A,,, identified under "Approx.".
Comparing the "Exact" with the "Approx." one can see that the approximate solutions yield
accurate results for larger values of H/R, Hy/H, and a considered, but the accuracy deteriorates

for low values of H/R, H,/H, and a.

B. Surface and Interface Sloshing Displacements

The surface sloshing wave height, d(r,8,t), of an arbitrary point at the liquid surface is

determined from

[

Pz z,=H, = ngd(r’e’t) (25)
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The expression for computing the maximum value of the surface sloshing wave height is obtained

by evaluating Eq. (25) for d(r,6,t) at r=R and 6=0, and this result is expressed as

4RO = Y k}z:j d, ﬁ%(_tl (26)

The sloshing wave height at the interface of two liquids, n(r,8,t), can be determined from

-prl, ) @7

z,=H,

1 c
n(r’e’t) T — (pl

(P -P,)8
which is obtained from Eq. (6) by eliminating the impulsive pressure. Note that for the case of
a=1, n(r,6,t) cannot be determined from Eq. (27). The expression for computing the maximum
value of the interface wave height is obtained by evaluating Eq. (27) at r=R and 6=0. The result

is expressed as

o 2
nNROY =3 3 n, 2l p (28)

a=1 k=1 g

d,, and m,, are dimensionless coefficients that depend on the control parameters. The
values of d,, for n=1,2 and k=1,2 and 1, for n =1 and k = 1,2 for the same values of control
parameters considered in Tables I and II are listed in Tables III and IV. They are identified
under "Exact". From Tables III and IV, one can see that for the same values of H/R and Hy/H,,
the values of d,; and d,, increase as the value of a decreases. Also the results show that d,; and
M,, have the same sign, whereas d,, and 1, have the opposite sign which indicates that for n=1
and k=1 mode the surface and interface are in phase, whereas for n=1 and k=2 mode they are
out of phase. Also, one notices that for Hy/H, =2 for all values of H/R and « considered, the
value for n,, is greater than that for n,,. For these cases, the interface sloshing motion has the
dominant frequency of w,, which is smaller than w,;, the dominant frequency for the surface
sloshing motion. This means that the interface sloshing motion vibrates in a different frequency
as that of the surface sloshing motion. A numerical example shows this phenomenon can be
found in Ref. 8.

Examining the data in Tables III and IV more critically, one can find that d;; + d}; =

0.837, d,; + dy; = 0.073 and 1, + n,, = 0.837 irrespective of the values of H/R, Hy/H, and a

P00 00 0 P 00O 00O A0 000 MR 0 A R



13

considered. This is not a coincidence. In effect, it can be shown that for each sloshing mode,

the following equations hold.

2 2
E dnk = (29)
k=1 }‘.3, -1
and
2 2 ‘
N, = (30)
fg R G

For a limiting case, if all natural frequencies of the sloshing motion are very high in comparison
with the dominant frequency of x(t), all the pseudoacceleration functions A, (t) will reduce to

%(t)- Then, by making use of Eqs. (29) and (30), Egs. (26) and (28) can be rewritten as

dR,0,1) = (E 5 dnk] e
n=1 k=1
(= 2 ) %XO®R 31)
(El x§—1) g
and
nR,0,0) = [} Z nnk] x(tg)R

_[w 2 | %x®R (32)
fV:; x:-l) g

By making use the following identity

Y A= (33)

n=1 }\.:—1
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Egs. (31) and (32) can be further reduce to
X(HR

d(R,0,t) = (34)
8
and
n®R,0,1) = XOR (35)
8

If x(t) = A, a uniform acceleration, Eq. (34) gives the exact same expression as that in Ref. 9
for computing the maximum rise of the liquid surface in a tank containing one liquid. Since Eqgs.
(34) and (35) hold irrespective of the a, a tank containing two liquids accelerated by a uniform
acceleration will have the same rise for the liquid surface and interface which is physically sound.

Also listed in Tables III and IV are the approximate solutions for d,, and d,,. Comparing
with the exact solutions, one can see that in Table III the approximate solutions are larger than
those of the exact for H/R < 1 and a < 0.75, and in Table IV the approximate solutions are in
general fairly accurate. However, one should be reminded that the sloshing wave height depends
not only on these coefficients but also on the pseudoacceleration functions. A numerical example
given in Ref. 8 shows that the sloshing wave height in a typical tank used in reprocess of spent

fuels [10] obtained by both solutions are in good agreement.

C. Convective Pressure

The convective pressure exerted on the tank wall is conveniently expressed in the form

® 2
p ¢(8,z,t) = {E Y C.@A, 1) |p,Rcosb (36)
n=l k=1
where C,(2) is given by
C, (@ = C,,Ik(r,zl)|r=R for 0szsH, (37a)
C.(@ = @ Cli(rz,)| ~ for Il szsH (37b)
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The coordinate z used in Eq. (36) is related to z, and z, by the equations
z=1z for O0szsH, (38a)
and

z=2z,+ H, for H szsH (38b)

The distributions of C,, n=1, k=1,2 for a = 0.25 and 0.75 are shown in Fig. 2 for a broad
tank, H/R = 0.5 for Hy/H, = 0.5, and in Fig. 3 for a tall tank, H/R =3, for H,/H, = 0.5. For Hy/H,
= 2, the curves are shown in Figs. 4 and 5 which are the counterparts of the curves in Figs. 2
and 3, respectively. The dashed curves in these figures are the corresponding approximate
solutions. Note that there is no counterpart of C,,(z) in the approximate solutions. From these
figures, one can see that the exact solution of convective pressure has a jump at the interface
while the approximate one does not, and, as one would have expected, this jump is larger for
smaller value of a. As a result, the approximate solution always underestimates the convective
pressure in Liquid I. One also notices that in these figures, C,,(z) changes its sign when it cross
the interface, and, surprisingly, the magnitude of C,,(z) at top of Liquid I may be several times
larger than that of C,,(z) for the tall tank, H/R=3 and H,/H, =2. Since the approximate solution
is not able to predict the sharp increase of the convective pressure at the interface; hence, it

should not be used in the computation of the convective pressure.

D. Convective Base Shear

The convective component of base shear, Q°(t), is given by

Q) = L’" J’D"' pe| Rcosbdz,do

r=R

+ f" L"’ pr| RcosBdz,do (39)

r=R

Substituting Eqgs. (15) and (16) into Eq. (39) and performing the integration, one obtains the

expression for Q°(t) which is given by
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® 2 ® 2
Q) = [E E Snlk Ank(t) Mu M E E Snl: Ank(t) Mtz (40)
n=] k=l n=l k=1

in which M,, = p,nH,R? = total liquid mass of Liquid I; M, = p,nR,H? = total liquid mass of
Liquid I[; and § | and S| = dimensionless coefficients depend on the values of H/R, Hy/H, and
a. Since Eq. (39) involves only simple integrations of the hyperbolic functions, the expressions
for g | and S are not given herein.

To study the effect of two liquids on the total base shear, it is also desirous to have an
expression that can be used for comparison with an identical tank that contains one liquid.

Therefore, Q°(t) is also expressed as

@ 2

Qe = lz Y. I Au()

n=l k=1

M, (41)

in which M,! = np,HR? = total liquid mass if the tank is filled with Liquid I; and S, =
dimensionless coefficient related to § | and § ! by the equation

I 11
S R (42)

The values of s, S'l, and r,; for n=1 and k =1,2 for the same values of control
parameters considered for Tables I and II are listed in Tables V and VI, from which one notes
that the valuesof S|, S, and r} decrease as the value of H/R increases. The values of S5 and Iy
increase as the value of H/R increases for Hy/H, = 0.5, but for the case of H,/H, = 2 they have
the opposite trend. The values of S} are negative for all the cases considered; this is due to the

fact that the function C,,(z) has negative value in Liquid II. Also, presented in Tables V and VI

are the approximate solutions for S!, S and 3. One can see from these tables that the
pp 11 11 11
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accuracy of the approximate solutions is poor for low values of H/R and «, and the accuracy

improves for larger values of H/R and a.

E. Convective Base Moments

The convective component of base moment at a section immediately above the tank base

is given by

M = [

Rz, cosfdz,do + fzn'[“‘ .| R(z,+H))cosBdz,d6  (43)
r=R ¢ Jo

r=R

and the result is expressed as

-en 2
M) = |3 Y ci AL

M, H, (44)

Again, since Eq. (43) involves only the simple integration of the hyperbolic functions, the

expressions for C|M and C![M are not given herein. Equation (44) is also rewritten as

® 2

Y ¥ oy AL

n=1 k=1

Me(t) = M/'H (45)

in which ¢ ¥ = a dimensionless coefficient defined by

2 2

H u | H
Tk = Cac (?) o G (-g} (46)
The convective component of the base moment induced by the pressure exerted on the

tank base is denoted by AMS(t) which is computed by the following equation

r2cos0drd® (47)

z,=0

amew = [ e
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and may be expressed in the form as

AME(t) = [i i AC A, ()| M, H, (48)

n=1 k=1

in which AC )} = a dimensionless coefficient depends on the values of H/R, H,/H, and a. Eq.

(48) is also expressed as

Y Any A, ()|M'H (49)

2
n=1 k=1

AME(t) = [

to compare the result with that corresponding to a = 1. The coefficient Arn';‘ is related tOACn'f

by the equation

2
I_Il

ArM = AC) (50)

The values of C!M, c!™, .Y, AC,) and Ar} for n=1 and k=1,2 for the same values
of the control parameters considered in Tables V and VI are presented in Tables VII and VIIIL

Also, the approximate solutions for Cl‘l"‘, c"l”", r,?‘ are listed in Tables VI and VIII for

comparison. The same trend found in Tables V and VI for base shear are found in Tables VII

and VIII for the base moments.

V. EQUIVALENT MECHANICAL MODEL

The well-known equivalent mechanical model presented by Housner [11] for tanks
containing one liquid can be generalized herein to represent tanks containing two liquids. This
model is shown in Fig. 6. The rigidly attached mass, my, is located at a height, hy, from the tank
bottom representing the impulsive component of the response, and the nkth elastically supported
mass, m,,, is located at a height, h,,, from the base representing the convective component of the

response The heights, h, and h,,, are used to evaluate the base moment at a section immediately
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above the tank base. By changing h, to h', and h,, to b, the model may also be used to
evaluate the base moment at a section immediately below the tank base. The parameters of the
model, mg, m,,, hy, h,,, Wy b o and k,, are given as follows.
The impulsive component of base shear, denoted by Q(t), may be computed from Eq. (39)
by replacing p° and p° by p' and p, given by Egs. (13a) and (13b) and perform the
integrations. The result may be expressed as

Qi(t) = roy M%) (51)

where r! = dimensionless coefficient depending on H/R, HyH, and a. The numerical results

for fois are available in Refs. 2 and 3. The impulsive component of base moments, denoted by

M((t) for the moment at a section immediately above the tank base and by AMi(t) for the moment
induced by the pressure exerted on the tank base, may be computed from Egs. (43) and (47) by
replacing the convective pressure by the corresponding impulsive pressure and peitorm the

integration. The results are then expressed as

M i(t) = rgyMHx(1) (52)

and
AMi(t) = Arg M, 'Hi(t) (53)

The numerical results for the dimensionless coefficients and Afoiw are available in Refs. 2

) Tom
and 3.

The parameters for the model are then defined as follows.

m_ =1y M, (54)

0

i
h = ||y (55)

o i
rOs
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(roiM + Al'oiM)
h =2e—ooo«H (56)
Tos
m, =1y M/ (57)
Ky = @5 My, (58)
r M
h, =|-=|H (59)
Toi
and
(rif + ArY)
h, =———_H (60)
ok

It is easy to show that the mechanical model yields the same base shear and moments as

those of the original tank-liquid system. The numerical results for hy, h'ys h,,, h'.., hyy, and h',,

1n’

are given in Tables IX and X for the same values of control parameters considered in Tables I

and II. Note that for some cases the values of hy, and h',, are negative.

VI.  CONCLUSIONS

A comprehensive study on the dynamic response of tanks containing two liquids is
presented. The effect of gravitation at the interface is considered. Extensive numerical results
are presented from which the gravitation and two-liquid interaction effects at the interface are

identified. These two effects are summarized as follows.

A. Effect of Gravitation at the Interface

This effect is drawn from the comparison of the exact solutions with the approximate

solutions.

T A0 00001 0 00000 00100 P00 T 0
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1.  There are two natural frequencies, w,,, k=1, 2, associated with the nth sloshing
mode of vibration. The surface and interface sloshing motions are in phase for k =1 and out
phase for k =2. For some cases, the w,, is the dominant frequency of the surface sloshing motion
while w,, is the dominant frequency of the interface sloshing motion.

2. It changes the distribution of the convective component of hydrodynamic pressure
causing a discontinuity at the interface. General speaking, it increases the convective pressure
at Liquid I so is the base shear and moments. The convective pressure corresponding to the k
=2 mode changes its sign when it crosses the interface, and, surprisingly, at the top of Liquid I
it maybe several times larger than that of the k=1 mode for tall tanks with high values of Hy/H,.

3. The approximate solutions may yield accurate results for the sloshing wave height,
base shear and moments for a > 0.5 and H/R > 1, but it should not be used to compute the
convective pressure distribution.

4. It has no effect on the impulsive component of the hydrodynamic pressure. This
component is continuous at the interface of two liquids. The exact and approximate solutions
for the impulsive component of response are identical.

5. Even though, the approximate solution may not give accurate results for the pressure
and base shear and moments, it may still be used to produce accurate results for the sloshing

wave height.

B. Effect of Two Liquids Interaction

This effect is drawn based on the comparison of the results for two liquids with those for
one liquid.

1. It increases the number of control parameters. For tanks containing one liquid the
response is controlled by one parameter, H/R, whereas for tanks containing two liquids the
response is controlled by three parameters, H/R, H,/H, and p,/p,.

2. It increases the sloshing wave height and decreases the sloshing frequency. For
certain combination of the control parameters, the sloshing wave height may increase
significantly; therefore, it may leads to an unconservative result to compute the response of a tank

containing two liquids based on the assumption of one liquid.
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Table I. Sloshing Frequency Coefficient for H,/H, = 0.5

Ay Ap Ay Az
H
T Exact Approx. Exact Exact Approx. Exact
a = 0.25
03 0.138 0.111 0.073 0.340 0.290 0.204
0.5 0.170 0.140 0.094 0.363 0331 0.244
1.0 0.205 0.178 0.127 0.367 0.361 0.278
1.5 0.214 0.196 0.145 0.367 0.366 0.284
2.0 0.216 0.205 0.155 0.367 0367 0.284
25 0.216 0.210 0.161 0.367 0.367 0.285
3.0 0.216 0.213 0.164 0.367 0.367 0.285
a=05
03 0.145 0.127 0.057 0.346 0.316 0.157
0.5 0.177 0.157 0.072 0.365 0.346 0.186
1.0 0.208 0.192 0.097 0.367 0.364 0.208
1.5 0.214 0.204 0.110 0.367 0.367 0.211
2.0 0.216 0.210 0.117 0.367 0.367 0.212
25 0.216 0.213 0.121 0.367 0.367 0.212
3.0 0.216 0.214 0.123 0.367 0.367 0.212
a =075
0.3 0.149 0.141 0.039 0.350 0.336 0.105
0.5 0.181 0.172 0.049 0.365 0.357 0.124
1.0 0.210 0.202 0.065 0.367 0.366 0.137
1.5 0.215 0.210 0.073 0.367 0.367 0.139
2.0 0.216 0.213 0.077 0.367 0.367 0.139
25 0.216 0.215 0.079 0.367 0.367 0.139
3.0 0.216 0.215 0.080 0.367 0.367 0.139
a=10
03 0.153 0.153 0 0.353 0.353 0
0.5 0.184 0.184 0 0.366 0.366 0
1.0 0.211 0.211 0 0.367 0.367 0
15 0.215 0.215 0 0.367 0.367 0
2.0 0.216 0.216 0 0.367 0.367 0
2.5 0.216 0.216 0 0.367 0.367 0
3.0 0.216 0.216 0 0.367 0.367 0
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Table 1I. Sloshing Frequency Coefficient for Hy/H, = 2.0

A A Ay Ay
H
T Exact Approx. Exact Exact Approx. Exact
a =025
0.3 0.138 0.135 0.073 0.340 0.335 0.204
0.5 0.170 0.167 0.094 0.363 0.360 0.244
1.0 0.205 0.202 0.127 0.367 0.367 0.278
1.5 0.214 0.212 0.145 0.367 0.367 0.284
20 0.216 0.215 0.155 0.367 0.367 0.284
2.5 0.216 0.216 0.161 0.367 0.367 0.285
3.0 0.216 0.216 0.164 0.367 0.367 0.285
a=05
0.3 0.145 0.142 0.057 0.346 0.342 0.157
0.5 0.177 0.173 0.072 0.365 0.363 0.186
1.0 0.208 0.206 0.097 0.367 0.367 0.208
1.5 0.214 0.213 0.110 0.367 0.367 0.211
2.0 0.216 0.215 0.117 0.367 0.367 0.212
2.5 0.216 0.216 0.121 0.367 0.367 0.212
3.0 0.216 0.216 0.123 0.367 0.367 0.212
a =0.75
03 0.149 0.148 0.039 0.350 0.348 0.105
0.5 0.181 0.179 0.049 0.365 0.364 0.124
1.0 0.210 0.208 0.065 0.367 0.367 0.137
15 0.215 0.214 0.073 0.367 0.367 0.139
20 0.216 0.216 0.077 0.367 0.367 0.139
25 0.216 0.216 0.079 0.367 0.367 0.139
3.0 0.216 0.216 0.080 0.367 0.367 0.139
a=1.0
03 0.153 0.153 0 0.353 0.353 0
05 0.184 0.184 0 0.366 0.366 0
1.0 0.211 0.211 0 0.367 0.367 0
1.5 0.215 0.215 0 0.367 0.367 0
20 0.216 0.216 0 0.367 0.367 0
2.5 0.216 0.216 0 0.367 0.367 0
30 0.216 0.216 0 0.367 0.367 0
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Table VII. Coefficients of Convective Component of Base Moments for H,/H, = 0.5 (Cont’d)

ACY ACY A Ary
H
R Exact Approx. Exact Exact Approx. Exact
a=0.25
0.3 5.243 2.742 0.418 2.330 1.218 0.186
0.5 1.615 0.811 0.153 0.718 0.361 0.068
1.0 0.219 0.096 0.039 0.097 0.042 0.017
1.5 0.044 0.017 0.016 0.020 0.008 0.007
2.0 0.010 0.004 0.007 0.005 0.002 0.003
2.5 0.003 0.001 0.003 0.001 0.000 0.001
3.0 0.001 0.000 0.001 0.000 0.000 0.001
a=0.5
0.3 5.220 4.082 0.329 2.320 1.814 0.146
0.5 1.561 1.197 0.120 0.694 0.532 0.053
1.0 0.194 0.139 0.030 0.086 0.062 0.013
1.5 0.037 0.025 0.011 0.016 0.011 0.005
2.0 0.008 0.005 0.005 0.004 0.002 0.002
2.5 0.002 0.001 0.002 0.001 0.001 0.001
3.0 0.001 0.000 0.001 0.000 0.000 0.000
a =075
0.3 5.270 4.852 0.172 2.342 2.157 0.076
0.5 1.539 1.406 0.062 0.684 0.625 0.028
1.0 0.181 0.161 0.015 0.080 0.072 0.007
1.5 0.033 0.029 0.005 0.015 0.013 0.002
2.0 0.007 0.006 0.002 0.003 0.003 0.001
2.5 0.002 0.002 0.001 0.001 0.001 0.000
3.0 0.001 0.000 0.000 0.000 0.000 0.000
a=10
0.3 5.337 5.337 0 2.372 2.372 0
0.5 1.527 1.527 0 0.679 0.679 0
1.0 0.172 0.172 0 0.076 0.076 0
1.5 0.031 0.031 0 0.014 0.014 0
2.0 0.007 0.007 0 0.003 0.003 0
25 0.002 0.002 0 0.001 0.001 0
3.0 0.000 0.000 0 0.000 0.000 0
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Coefficients of Convective Component of Base Moments for Hy/H, = 2.0

(Cont’d)
ACy' ACy Ary' Ary
H
X Exact Approx. Exact Exact Approx. Exact
o =025
0.3 11.307 7.384 12.200 1.256 0.820 1.356
0.5 3.519 2.220 4.302 0.391 0.247 0.478
1.0 0.498 0.276 0.978 0.055 0.031 0.109
1.5 0.106 0.052 0.373 0.012 0.006 0.041
2.0 0.026 0.012 0.171 0.003 0.001 0.019
2.5 0.007 0.003 0.085 0.001 0.000 0.009
3.0 0.002 0.001 0.045 0.000 0.000 0.005
a =035
0.3 15.996 13.119 6.768 1.777 1.458 0.752
0.5 4.808 3.873 2.400 0.534 0.430 0.267
1.0 0.610 0.462 0.554 0.068 0.051 0.062
1.5 0.118 0.085 0.212 0.013 0.009 0.024
2.0 0.027 0.019 0.097 0.003 0.002 0.011
2.5 0.007 0.005 0.048 0.001 0.001 0.005
3.0 0.002 0.001 0.025 0.000 0.000 0.003
o =0.75
0.3 19.051 17.670 2.993 2.117 1.963 0.333
0.5 5.576 5.133 1.063 0.620 0.570 0.118
1.0 0.660 0.593 0.245 0.073 0.066 0.027
1.5 0.122 0.108 0.093 0.014 0.012 0.010
2.0 0.028 0.024 0.042 0.003 0.003 0.005
2.5 0.007 0.006 0.021 0.001 0.001 0.002
3.0 0.002 0.002 0.011 0.000 0.000 0.001
a=10
0.3 21.346 21.346 0 2372 2.372 0
0.5 6.110 6.110 0 0.679 0.679 0
1.0 0.688 0.688 0 0.076 0.076 0
1.5 0.124 0.124 0 0.014 0.014 0
2.0 0.028 0.028 0 0.003 0.003 0
2.5 0.007 0.007 0 0.001 0.001 0
3.0 0.002 0.002 0 0.000 0.000 0
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Table IX. Quantities in Mechanical Model for Tank-Liquid System, H,/H, = 0.5

_l-_I_ ho h’o hll _l:’i _lki h'12
R H H H H H H_
a =025
0.3 0.333 2.646 0.417 4.452 -0.692 14.084
0.5 0.332 1.497 0.428 1.807 -0.610 4,289
1.0 0.334 0.713 0.475 0.746 -0.335 0.541
1.5 0.338 0.516 0.537 0.620 -0.085 0.167
2.0 0.343 0.443 0.602 0.631 0.096 0.183
2.5 0.348 0411 0.663 0.673 0.219 0.253
3.0 0.352 0.395 0.716 0.719 0.304 0.318
a = 0.50
0.3 0.366 2.618 0.460 4.081 -1.674 22.619
0.5 0.365 1.476 0.475 1.697 -1.504 6.436
1.6 0.368 0.717 0.533 0.762 -0.979 0.386
1.5 0.374 0.534 0.606 0.671 -0.550 -0.168
2.0 0.381 0.470 0.674 0.695 -0.261 -0.129
2.5 0.387 0.443 0.731 0.738 -0.069 -0.017
3.0 0.392 0.430 0.776 0.778 0.063 0.085
a=0.75
0.3 0.386 2.622 0.490 3.825 -4.523 47.388
0.5 0.386 1.467 0.507 1.620 -4.091 12.656
1.0 0.389 0.719 0.575 0.774 -2.855 -0.066
1.5 0.397 0.546 0.650 0.704 -1.926 -1.157
2.0 0.405 0.487 0.715 0.732 -1.326 -1.061
2.5 0.412 0.464 0.766 0.771 -0.931 -0.828
3.0 0419 0.454 0.804 0.806 -0.658 -0.615
a=10
0.3 0.400 2.637 0.512 3.629 -- --
0.5 0.400 1.464 0.533 1.561 -- --
1.0 0.404 0.721 0.606 0.782 -- --
1.5 0.413 0.555 0.681 0.727 -- --
2.0 0.423 0.500 0.742 0.755 -- --
2.5 0.431 0.480 0.787 0.791 -- --
3.0 0.439 0.472 0.820 0.822 -- --
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Table X. Quantities in Mechanical Model for Tank-Liquid System, H,/H, = 2

_};I_ ho h_’o h h'u h12 h’lz
R H H H H H “H_
a=0.25
0.3 0.337 2.563 0.461 4.539 -0.118 15.250
0.5 0.337 1.479 0.472 1.890 -0.110 5.334
1.0 0.336 0.731 0.518 0.818 -0.078 1.188
1.5 0.332 0.531 v.584 0.684 -0.034 0.470
2.0 0.328 0.448 0.658 0.695 0.011 0.259
2.5 0.324 0.405 0.727 0.740 0.051 0.187
3.0 0.322 0.380 0.781 0.786 0.084 0.164
a=0.50
0.3 0.373 2.569 0.484 4.128 -0.625 24.739
0.5 0.373 1.462 0.499 1.742 -0.597 8.306
1.0 0.373 0.725 0.559 0.801 -0.490 1.515
1.5 0.375 0.542 0.635 0.707 -0.370 0.406
2.0 0.377 0.474 0.706 0.730 -0.267 0.108
2.5 0.379 0.442 0.764 0.772 -0.187 0.018
3.0 0.381 0.425 0.806 0.809 -0.125 -0.004
a=0.75
03 0.389 2.602 0.500 3.845 -2.097 52.268
0.5 0.389 1.462 0.518 1.639 -2.001 16.901
1.0 0.392 0.722 0.586 0.790 -1.669 2.469
1.5 0.397 0.549 0.663 0.719 -1.344 0.227
2.0 0.404 0.489 0.729 0.746 -1.089 -0.334
2.5 0.410 0.464 0.779 0.784 -0.895 -0.484
3.0 0415 0.452 0.815 0.817 -0.747 -0.506
=10
0.3 0.400 2.637 0.512 3.629 -- -
0.5 0.400 1.464 0.533 1.561 - -
1.0 0.404 0.721 0.606 0.782 -- -
1.5 0.413 0.555 0.681 0.727 - --
2.0 0.423 0.500 0.742 0.755 -- -
2.5 0.431 0.480 0.787 0.791 - -
3.0 0.439 0.472 0.820 0.822 -- --
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APPENDIX A

Solutions for Convective Component

The method of separation of variables is employed to solve Egs. (11a) and (11b), and the

integration constants are determined from the boundary conditions. Satisfying Eqs. (12a), (12b),

(12c), (12e) and (12g), the function p ° takes the form

J
® 4 1 n
p:°(r,0,z,t) = [¥ D, (t) cosh [A — R p,Rcosb (61a)
n=1 R J )\. ) R
and p; takes the form

pr(0,2,) = |3 (En(t)cosh [xn %] + D, (t)sinhp, sinh (xﬂ _Zﬁz])

n=1

J (A ‘J
1 n'I—{'
Rcos6 (61b)
T

in which D,(t) and E (t) = integration functions that can be determined by satisfying Egs. (12d)
and (12f). Substituting Egs. (13a), (13b), (61a) and (61b) into Eq. (12d), one obtains a

differential equation

. A )
sinhB, sinhp, D, + iR_" sinhB, coshB, D, + coshp, E
A A G
+ _gﬁ: sinhB, E, = - ER_: * (B, sinhB,, + C, coshP,) k() (62)

and Substituting Egs. (13b) and (61b) into Eq. (12f), one obtains another differential equation
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. A . A G
coshB, D, + (1-0) % sinhf, D, - aE = - % .Z‘.‘. (A, sinhB, - aC) k()  (63)

then, Egs. (62) and (63) can be solved for D,(t) and E(t).

Taking the Laplace transformation on both sides of Egs. (62) and (63) and assuming the
homogeneous initial conditions for D,(t) and E(t), one obtains two algebraic equations for
determination of the Laplace transforms of D,(t) and E (t). The required solutions for D,(t) and
E,(t) are then obtained by finding the inverse Laplace transforms; then replacing D (t) and E (t)
in Egs. (61a) and (61b) with the results obtained, one can cast the final expressions into the form
presented in Egs. (15) and (16).

The expressions for C ! (r, 2,) and C)}(r,2,) for k=1 and 2 are given as follows.

G 1 AL
Ca(nz) = - =2 — x, cosh [A (64a)
An Anl R Jl()\-n)
1N, <
-G 11 "n
Ca(nz) = —= + Ly, cosh [, =t R (64b)
An n2 R Jl(}"n)
G z
C,,':(r,zz) = - ..A_" : Al xzcosh(}»n _RE] + X, sinhBlnsin(kn ERE]]
n nl
I
LI, R
N (65a)
1I\""n
G z
Cnl;(f,zz) = - -KE ’ 7\1—- yzcosh(kn "ﬁz') +y, sinhﬁlnsin()\.n _ZI%”
n n2
1A £
R (65b)
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where
A -
x, = _1_:1_‘_15_1\_‘33 (66a)
nl n2
y, = 9 - Ap g (66b)
| T
Anl - An2
A -
x, = -/:;q_i_A_qi (66¢)
nl n2
and
_ 4" Ay g (66d)
R 'y
nl n2
in which
[ tanh
¢ = L |A tanhp, + aB, 220Px (672)
Al coshf3,
[ tanh
q, = R A, tanhB,, tanhf, - aC, Pay (67b)
Al coshf,
q, = Xl- [Brl tanhP, - A, sinhf  tanhf tanhBZn] + C, (67¢)
and
q, = 11_'. [B, (1 -a)tanhp,, tanhp,, + C, tanhf,, - A, sinhf, tanhp, ] (67d)
and
A, =1 + a tanhf, tanhB, (68)
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The characteristic cquation for the natural frequencies can be obtained from the associated
eigenvalue problem of Eqs. (62) and (63). Letting (t) = 0 and D(t) = D,e™, E,(t) = E,¢* in
Egs. (62) and (63), one obtains two homogeneous equations which are expressed by

D

E

n

o sinhB,, sinhB, coshf,
coshf, -a

Dn
-0 (69)
E

n

sinh, coshf, sinhf,
(1-oa)sinhf,, 0

+ g)\'"

R

It is easy to show that the determinant of Eq. (69) is Eq. (19), the characteristic equation.
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