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ABSTRACT

Vehicle lateral dynamics are affected by vehicle mass,
longitudinal velocity, vehicle inertia, and the cornering
stiffness of the tires. All of these parameters are
subject to variation, even over the course of a single
trip. Therefore, a practical lateral control system must
guarantee stability, and hopefully ride comfort, over a
wide range of parameter changes.  This paper
describes a robust controller which theoretically
guarantees stability over a wide range of parameter
changes. The robust controller is designed using a
frequency domain transfer function approach. An
uncertainty band in the frequency domain is
determined using simulations over the range of
expected parameter variations. Based on this bound, a
robust controller is designed by solving the
Nevanlinna-Pick  interpolation  problem. The
performance of the robust controller is then evaluated
over the range of parameter variations through
simulations.

1.0 INTRODUCTION

One of the fundamental goals of the Intelligent
Vehicle-Highway Systems (IVHS) community is to
develop automated highways where vehicles are
capable of automatically driving down the road, either
individually or in platoons of multiple vehicles. In
order to implement such a system, a controller that can
keep the vehicle centered in the lane is required. There
are many factors which make automatic lateral control
of vehicles difficult. These include changing vehicle
parameters (tire pressure, tire wear, etc.), changing
road conditions (rain, ice, bumps, crowns, etc.), as well
as disturbances caused by wind and other factors.
Another important consideration is driver comfort
while performing lane changes and reacting to
disturbances.
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Initial research efforts on automated highway systems
(AHS) were conducted by the Radio Corporation of
America in cooperation with General Motors in the
late 1950's [1],2]. A significant amount of research,
including the development of prototype experimental
equipment, was conducted at Ohio State University
between 1964-1980 |3]-[12]. This included research
on both lateral and longitudinal control of highway
vehicles. The largest current advanced vehicle control
system (AVCS) research effort is being conducted as
part of the Program on Advanced Vehicle Technology
for the Highway (PATH, more recently Partners for
Advanced Transit and Highways |[16]) in California
(13]-{16].

The PATH program has been investigating a frequency
shaped linear quadratic (FSLQ) optimal control
approach for the lateral controller, with feedforward
preview control to reduce feedback gains [15],{16].
Although the FSLQ approach incorporates ride
qualities into the performance index, other work which
attempts to design a lateral controller taking into
account ride comfort is described in {20]. Recent work
on robust control applied to car steering is described in
[17]-]119]. While many of the previously mentioned
efforts rely on buried magnets, electrified wires, or a
microwave radar to determine the vehicle's lateral
position, another promising approach involves using
vision. Efforts at Carnegie Mellon University (CMUj},
at the National Institute of Standards and Technology
(NIST), and in Germany have yielded promising
experimental result; using neural networks and
classical vision algorithms [21-23].

This paper describes a robust lateral controller which
theoretically guarantees stability over a wide range of
parameter changes. The controller is designed with the
plant uncertainty modeled as unstructured additive
perturbations in the frequency domain. This approach,
first described in {24], is reviewed in Section 2.0. The
modeling of the vehicle’s lateral dynamics is discussed
in Section 3.0. The controller design and simulation
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results are presented in Sections 4.0 and 5.0. A
summary and discussion of planned future research is
outlined in Section 6.0.

2.0 ROBUST STABILITY CONDITION FOR
UNSTRUCTURED ADDITIVE
PERTURBATIONS

Unstructured additive perturbations in the frequency
domain can be described by (2.1), where the nominal
plant transfer function is G (s), and the uncertainty in
the transfer function is 8G(s).

G(s) =G, (5)+5G(s) @.1)

Using this model for the parameter uncertainty, the
following class of systems can be defined.

Definition 2.1 [24]: A transfer function p(s) is said
to be in the class C(p,(s),r(s)) if
1) p(s) has the same number of unstable poles as that

of p,(s),
2) |pGw) = poCw) <|r(w), 22)
!r(jw)' >0, VweR

3) r(s) is a stable minimum phase transfer function
From [24], a controller ¢(s) is a robust stabilizer for

C(py(s),r(s)) if and only if the closed-loop system is
stable for the nominal plant, and

"(1 + /70(.")(?(.8‘))—] c(.s‘)r(s)"w < 2.3)

where

1|, = sup|F(jw)| Ywe R, F(s)e H* (24)

If the ¢ parameterization, originally described in [25],
is introduced where

c(s)
()= (2.5)
41s) 1+ po($)g(s)

The robust stability condition can be written as
"(](.S‘)I'(S)lL <l 2.6)

For the closed loop system to be internally stable, the
following three conditions are placed on g(s) (261,

Dgls)ye H”

2) ¢(s) must have zeros at the poles of p(s) in the
right half-plane (RHP).

3) p(s)¢(s) must interpolate to 1 at the poles of
p(s) in the RHP.

Introduce the function
u(s) = g(s)r(s) (2.7)
and the robust stability condition can be written as

el <1 (2.8)

The robust stability problem for additive unstructured
perturbations reduces to an equivalent interpolation
problem of finding a strictly bounded real (SBR)
function u(s) which interpolates at the unstable poles
of the nominal plant in the RHP. This interpolation
problem is often referred to as the Nevanlinna-Pick
interpolation problem.

3.0 MODEL OF LATERAL DYNAMICS
A two-degree of freedom bicycle model, described by

(3.1) and (3.2), is used to model the lateral dynamics
of the vehicle (27].

0 21,C,, -2,C,,
mv, +[mVl 0,
3.0

Vl
2C, +2C,

H—y ,=2C,8 (1)

, 2:C, +2;C,,
[Q, +|————
' (3.2)

21,C,, - 2,C,,

H——|% =2,C,8 (1)

A description of the coefficients in (3.1) and (3.2)
appears in Table 3.1. The estimated nominal values
for a GMC Jimmy (Blazer), the planned test vehicle.
are outlined in Table 3.2. [t is assumed that the
parameters will vary over time, and the expected range
of variations is also summarized in Table 3.2. For the
simulation results in this paper, the velocity and
cornering  stiffness were varied while the other
parameters were held constant. The velocity was
varied from 20 m/s (45 mph) to 40 m/s (91 mph), with



30 m/s (68 mph) being the nominal velocity.  The
cornering stiffness was varied from 85 to 115 percent
of the nominal value.

Parameter | Description
m Vehicle mass (kg)
V. Longitudinal velocity (vehicle
coordinates) (m/s)
' Lateral velocity (vehicle
‘ coordinates) (m/s)
[,4, Distance from front and rear axles
to c.g. (m)
Q Yaw rate about the c.g. (rad/s)
o, Front steering angle (rad)
C.C, Front and rear tire cornering
stiffness (kn/rad)
A Inertia about z-axis (kgem?)
Table 3.1, Summary of Coefficients in Bicycle
Model
Parameter | Nominal Value | Range
v, 30 0.667-1.33
C,..C, 42000 0.85t0 1.15
m 1590 constant
L1, 1.17,1.42 constant
A 3200 constant

Table 3.2, Summary of Expected Parameter Changes

The transfer function from steering angle to lateral
path error (at the c.g.) is of the form of (3.3) below.

E/(5) a8’ +as+a,
8,(s) s(sT+bs+b,)

(3.3)

A program was written to determine the bound on the
frequency domain uncertainty of the nominal plant as
the velocity and cornering stiffness vary over the
ranges in Table 3.2. The program finds the magnitude
of

[ w) =py Gw) = p(w)] (3.4)

where p,(s) is the transfer function of the nominal
plant and p(s) is the transfer function of the actual

plant as the parameters are varied. The results of the
computer simulation are shown in Figure 3.1. The

results are plotted as the ratio of Ir(s)/ po(s)|. This
format of data presentation was chosen because it
facilitates the choice of r(s) as a function of p(s).

This simplifies the calculations required to arrive at the
robust controller designed in the next section,
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Figure 3.1, Simulation of Plant Uncertainty

4.0 CONTROLLER DESIGN

Using the data in Figure 3.1, a conservative bound on
the plant uncertainty can be expressed as

r(s)=0.67p,(s) (4.1)

Using this bound, a robustly stabilizing controller can
be designed if there exists an SBR solution to (2.8). A
slight modification must also be made to the approach
described in Section 2.0 because the plant has a double
pole at the origin. Define

p(s)

Po($)="73~ (42)
s
where () is a stable transfer function. Similarly,
define
§)
r( )~ m( (43)
s

where r/(s) is a stable minimum phase transfer

m

function. Also define
g(s) = s2G(s) 4.4)
where g(s)e H”. From (4.3) and (4.4)

q(s)r(s)=g(s)r, (s) = u(s) (4.5)



Also,
Po($)g(s) = p(s)g(s) (4.6)

Because the plant has two poles at the origin, there are
two interpolation conditions that can be written as

raa,) 067p(a;)
pla,)  pla,)

u(o,)= =067, a,=0 47)

In addition, there are two interpolation points at
infinity because r(s) has a relative degree of 2. An
SBR u(s) which meets these interpolation conditions
is shown below.

~ 804(s+%)
T(s+2)s+2)(s+2)

u(s) (4.8)

The Bode plot of u(s) is shown in Figure 4.1
Because u(s) is an SBR function, the magnitude is
strictly less than 1.
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Figure 4.1, Bode Plot of u(s)

Using (4.5).

os) = u(s) _ u(s) 4.9)
r(s)  0.67p,(s)
The robustly stabilizing controller is given by
e(s) 4(s) (4.10)

1= py(9)a(s)

The nominal plant transfer function for the parameters
in Table 3.2 is

52.8302(s> +32181s+ 67.9875)
s2(s* +6.48425+16.8989)

[)0(.\‘): “@.10)

The controller can then be expressed as

€ D)5 +648425 4 168989) o)
y)= \a.
7 52.8302(5+ 6)(s7 +32181s+679875)

The performance of this controller is discussed in the
next section.

5.0 SIMULATION RESULTS

The controller ¢(s) designed in the previous section
was simulated with the family of plants described by
the parameter changes in Table 3.2. A simulated lane
change, shown in Figure 5.1, was the desired
trajectory.

Desired Lane Change Trajectory
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Figure 5.1, Lane Change Trajectory

The closed-loop response of the family of plants is
shown in Figure 5.2. Note that all of the closed-loop
systems have stable responses, as expected. However,
the overshoot of the plants in the family varies from 6
to 20 percent. If this is undesirable, the performance
of the control system may be modified by a choice of a
different u(x). The poles of u(s) are the poles of the
closed-loop system with the nominal plant p,(s) when
the uncertainty is chosen as a fraction of the nominal
plant.
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Figure 5.2, Lane Change Response
of the Family of Plants

The next section discusses some of the advantages and
limitations of this controller design, as well as future
plans.

6.0 SUMMARY & CONCLUSIONS

Vehicle lateral dynamics are affected by vehicle mass,
longitudinal velocity, vehicle inertia, and the cornering
stiffness of the tires. All of these parameters are
subject to variation, even over the course of a single
trip. This paper describes a robust lateral controller
design which models the parameter uncertainty as
unstructured perturbations in the frequency domain. A
nominal car model was chosen, and then a bound on
the frequency domain uncertainty was determined by
simulation as the velocity and cornering stiffness were
varied. The frequency domain uncertainty bound was
presented as the ratio |r(s)/ po(s)l. After determining

a suitable uncertainty bound, a controller was designed
and the family of closed-loop systems was simulated.
The family of systems was stable, but the overshoot
varied between 6 and 20 percent for a simulated lane
change. If this performance is unacceptable, the
performance of the system may be varied by selecting
the poles of u(s), which correspond to the poles of the
closed-loop system with the nominal plant. For these
simulations, the location of the lane sensor was the
center of gravity. Moving the sensor to the front of the
vehicle improves the system damping also.

One advamtage of the robust control approach
presented in this paper is that a single fixed controller
can guarantee stability, and some performance, for a
system with the prescribed uncertainty. This

eliminates the need for gain scheduling, or some form
of adaptive control. Because the uncertainty model is
unstructured, other errors in system modeling, as well
as disturbances, can still result in a system which is in
the class C(p,(s),r(s)), and therefore closed-loop
stable.

Difficulties with the approach presented in this paper
include determining the nominal plant, p,(s), as well
as the uncertainty bound. The approach taken was to
choose a nominal plant, and then determine a
frequency bound for the different parameter changes.
This limits the magnitude of the parameter changes
that will provide an SBR solution for u(s) (the ratio
lr(s)/ PO(S)l can be greater than 1 if the parameter
changes are too large). An alternate approach would
be to determine the expected parameter changes, and
then find the envelope of the family of transfer
functions. The nominal plant could then be chosen
based on the shape of the envelope.

Another difficulty with the approach presented in this
paper is the limited performance guarantees that can be
expected. At best, the poles of the family of closed-
loop systems can be placed to the left of a certain point
on the real axis, providing a degree-of-stability
guarantee [28]. It would be desirable to place all of
the poles of the family of closed-loop systems in a
certain region (D-stability). This is an area of future
research. However, there is a tradeoff between the
magnitude of the uncertainty bound and the degree-of-
stability available.

Future plans include full-scale testing of the controller
on a 1 mile test track located at Sandia National
Laboratories. A buried wire reference system is
currently being used to determine vehicle position
relative to the lane. Field testing should provide
valuable results on the validity of the controller design
approach, as well as a better vehicle model. One
application of a low-level lateral control system is
automatic vehicle operation in an automated highway
system (AHS). However, other exciting applications
include automatic lane holding and collision avoidance
to improve safety.
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