

1 of 1

ESTIMATES FOR PU-239 LOADINGS IN BURIAL GROUND
CULVERTS BASED ON FAST/SLOW NEUTRON
MEASUREMENTS (U)

by
W. G. Winn

Westinghouse Savannah River Company
Savannah River Site
Aiken, South Carolina 29808

RECEIVED
AUG 11 1993
OSTI

R. C. Hochel
WSRC
K. J. Hofstetter
WSRC
R. A. Sigg
WSRC

A document prepared for:
requested by:
Mary Cunningham
Information Store, San Francisco, CA

DOE Contract No. **DE-AC09-89SR18035**

This paper was prepared in connection with work done under the above contract number with the U. S. Department of Energy. By acceptance of this paper, the publisher and/or recipient acknowledges the U. S. Government's right to retain a nonexclusive, royalty-free license in and to any copyright covering this paper, along with the right to reproduce and to authorize others to reproduce all or part of the copyrighted paper.

MASTER
d
DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P. O. Box 62, Oak Ridge, TN 37831; prices available from (615) 576-8401.

Available to the public from the National Technical Information Service, U. S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161.

SAVANNAH RIVER SITE
TECHNICAL DIVISION

WSRC-RP-89-675

Derivative Classifier
Robert W. Taylor
UNCLASSIFIED

KEYWORDS

Criticality
Burial Ground
TRU Waste
Pu-239
Neutron Counters
Estimations
Statistical Models

Lifetime Retention

INFORMATION ONLY

100 COPY

August 15, 1989

TO: M.A. EBRA *W.H.* *per*
FROM: W.G. WINN, R.C. HOCHEL,
K.J. HOFSTETTER, R.A. SIGG

Estimates for Pu-239 Loadings in Burial Ground Culverts
Based on Fast/Slow Neutron Measurements (U)

The above WSRC-RP, which follows this cover sheet, includes a Table of Contents, Main Text, and Appendices A - C. The data are tabulated to allow easy appraisal of estimated Pu-239 upper limit loadings for comparison with criticality limits.

DISTRIBUTION

SRP

L.M. Papouchado, 703-A
R.G. Garvin, 703-H
J.E. Haywood
S.S. Cathey
W.E. Stewart
J.R. Shappell
H.H. Rowland, 703-F
T.A. Reilly, 707-H
S.J. Mentrup, 724-7G
R.E. Hanvey
C.C. Robbins
D.W. Murdock

SRL

H.D. Harmon, 773-A
A.L. Boni
C.E. Coffey
G.T. Wright
C.W. Jenkins
K.A. Andringa, 773-41A
D.R. Finch
D.A. Orth
M.D. Boersma
R.W. Taylor, 735-A

TABLE OF CONTENTS

MAIN TEXT

INTRODUCTION	1
SUMMARY	2
MEASUREMENTS AND DATA SOURCES	2
ANALYSES	3
Direct m/p Methods (#1, #2)	3
(#3, #4, #5)	4
Statistical Methods (#6, #7)	4
(#8, #9)	5
Applicability to Maximum Drum	6
RESULTS	6
Preferred Methods	6
Other Methods	7
DISCUSSION	7
Appraisal of Preferred Methods	7
m/p Method (Method #5)	7
Statistical Method (Method #9)	9
m/p vs Statistical Method	9
Applicability to Remaining Culverts	10
Need for Realistic Criticality Limits	10
-	
ACKNOWLEDGEMENTS	10
REFERENCES	11
TABLES	13
FIGURES	15

APPENDICIES

A. Development of New Analysis Methods	A-1
B. Comparisons from Better Known Culverts	B-1
C. Tables for Pu-239 Estimates	C-1

SAVANNAH RIVER SITE
TECHNICAL DIVISION

WSRC-RP-89-675

Derivative Classifier
Robert Taylor

UNCLASSIFIED

CC: Distribution
(coversheet)

August 15, 1989

TO: M.A. EBRA
W.G. WINN, R.C. HOCHEL
FROM: W.G. WINN, R.C. HOCHEL
K.J. HOFSTETTER, R.A. SIEGEL

**Estimates for Pu-239 Loadings in Burial Ground Culverts
Based on Fast/Slow Neutron Measurements**

INTRODUCTION

This report provides guideline estimates for Pu-239 mass loadings in selected burial ground culverts. The relatively high recorded Pu-239 contents of these culverts have been appraised as suspect relative to criticality concerns, because they were assayed only with the solid waste monitor (SWM) per gamma-ray counting [ref 1]. After 1985, subsequent waste was also assayed with the neutron coincidence counter (NCC), and a comparison of the assay methods showed that the NCC generally yielded higher assays than the SWM [ref 2]. These higher NCC readings signaled a need to conduct non-destructive/non-intrusive nuclear interrogations of these culverts, and a technical team conducted scoping measurements to illustrate potential assay methods based on neutron and/or gamma counting [ref 3].

A fast/slow neutron method has been developed to estimate the Pu-239 in the culverts [ref 4]. In addition, loading records include the SWM assays of all Pu-239 cuts of some of the culvert drums [ref 5], and these data are useful in estimating the corresponding NCC drum assays from NCC vs SWM data [ref 2]. Together, these methods yield predictions based on direct measurements and statistical inference.

SUMMARY

Detailed Pu-239 estimates are given for 118 suspect culverts on pads 6, 10, and 13. A total of 9 estimate methods were examined, and one based on direct measurements and one based on statistical inference are adopted as the most appropriate guides. For arbitrary Pu-239 loading limits of 1000 g per drum and 2500 g per culvert, the direct method predicts that 82 culverts comply, and the statistical method predicts that all 118 comply.

Interferences from non-Pu-239 neutron sources cause some of the non-compliance cases in the direct method. Measurements on 36 culverts with better known Pu loadings imply that refinements for the Pu-238 contribution would allow 111 culverts to comply, using the direct method. These measurements also indicate that the SWM provides a better - albeit lower - estimate than the NCC, and thus currently accepted (NCC+SWM)/2 values are conservative on average. Gamma-ray measurements will provide additional information on some of the culverts. Ultimate compliance will depend on criticality loading limits, which are being evaluated and adopted for this work.

There are 93 suspect culverts that were not appraised in this study, because an overburden of soil rendered them inaccessible. However, their recorded SWM assays are much lower than those examined in the present work. Thus, compliance for these culverts may be demonstrable without direct measurements.

MEASUREMENTS AND DATA SOURCES

Measurements were conducted with the fast/slow neutron method, as described in detail earlier [ref 4]. Briefly, a fast and a slow neutron detector were centered atop each culvert and counted for 200 sec. The measured neutron rates were corrected for backgrounds for the adjacent culverts and general area. Each measured neutron rate was compared with a projected neutron rate based on culvert calibrations, which address neutron source location and drum moderator. These rate calibrations were convoluted with the SWM recorded Pu-239 for each drum per location, to yield the projected rate. The ratio of measured to projected neutron rates, designated m/p, reflects the agreement between the actual and recorded Pu-239 loadings. Multiplication of m/p by the recorded mass yields an estimate of the actual Pu-239 in the culvert.

Earlier work [ref 4] had already measured the 71 suspect culverts on pad 13, and the present study measured the 30 suspect culverts on pad 6 and the 17 on pad 10. Thus, results for a total of 118 culverts are presented in this report. There are 93 more culverts that still need to be appraised; however, they were inaccessible in this work due to a soil overburden. Also, it may be possible to cancel measurements on these pending the status of the 118, as the 93 have much lower SWM recorded Pu-239.

The present work also includes measurements on 36 "check" culverts that have better information on their Pu loadings, as both SWM and NCC data were available. These culvert measurements provide further appraisal of the fast/slow neutron method. In particular, they give better information on the effect of Pu-238. These culverts include 33 from pad 10 and 3 from pad 13. A total of 18 have only Pu-239; the other 18 have both Pu-238 and Pu-239.

Further data sources are from records of individual cuts of Pu-239. The cuts are assayed and packaged into the drums, and data on these suggest that most drums are loaded with 10-20 cuts of relatively small amounts of Pu-239 [ref 6]. This further implies that the accumulative percent error in the sum of these SWM assays (per drum loading) will be smaller than the error in a single assay of all these cuts. Given cut data for each drum, NCC vs SWM fluctuation data [ref 2] exist for predicting these errors and thus their upper limit excursions. Unfortunately, cut data for all drums were not available; only data for 68 drums could be examined for these fluctuations [ref 5]. The consistency of these predictions could be tested with the NCC and SWM data for the 36 "check" culverts.

ANALYSES

Two analyses, an m/p measurement method and one based on statistical inference, were considered most appropriate. These evolved from a total of nine different analyses that were examined. Five were described earlier [ref 4] and four new ones have evolved recently. All methods are summarized below, as a framework for discussing the two preferred methods. Each method is given a number and name for easy reference to analysis results, as summarized in Tables in Appendix C. The first five methods are based directly on the measured m/p ratios. The last four utilize statistical models. As will be discussed in further detail in the the RESULTS section, Method #5 is adopted as the preferred m/p-method, and Method #9 is the preferred statistical method. The direct methods and statistical methods leading to the preferred ones are described below.

Direct m/p Methods - Method #5 Preferred

Methods #1 - #5 directly estimate Pu-239 by multiplying each inventory value by its culvert ratio of measured/projected neutron rates. Method #5 is identified as the preferred direct method.

- (1) m/p x Inventory Pu-239. [Ref 4 Method #3]. The estimate is defined by its title.
- (2) m/p x 3Sig x Inventory Pu-239. [Ref 4 Method #4]. Estimate of Method #1 increased to account for upward 3-sigma fluctuations. The sigma includes all m/p measurements.

- (3) $m/p(Pu-239) \times \text{Inventory Pu-239}$. [Ref 4 Method #5]. Estimate is defined by its title, where $m/p(Pu-239)$ is based on culverts that only have Pu-239 and no other interfering neutron sources. The m/p values for these pure Pu-239 cases were low (average ~ 1) relative to earlier NCC/SWM values (average 1.40); thus, m/p values were normalized to 1.40 to be conservative. Later measurements with the check culverts showed that this conservative factor was unnecessary.
- (4) $m/p(Pu-239) \times 3\text{Sig}(Pu-239) \times \text{Inventory Pu-239}$. [Ref 4 Method #6]. Estimate of Method #3 increased to account for upward 3-sigma fluctuations. The sigma includes m/p measurements for culverts having only Pu-239 neutron sources.
- (5) $m/p \times 3\text{Sig}(Pu-239) \times \text{Inventory Pu-239}$Preferred m/p Method. [New Method]. Estimate uses measured m/p ratio (as in Methods #1 and #2) increased to account for 3-sigma Pu-239 fluctuations (as in Method #4). The average m/p ratio for the check culverts agrees well with 1.0 for check culverts containing only Pu-239, and the 3-sigma Pu-239 fluctuations are appropriate for upper limit estimates of their Pu-239. The check culverts that contain both Pu-238 and Pu-239 yield m/p values that are biased high; thus, using the $3\text{Sig}(Pu-239)$ for the upper limit Pu-239 estimate for these culverts should yield conservatively high results.

Statistical Methods - Method #9 Preferred

Methods #6 - #9 use statistical inference to estimate the Pu-239 loadings. Method #9 is identified as the preferred statistical method.

- (6) $13/\sqrt{n} \times \text{Inventory Pu-239}$. [Ref 4 Method #2]. This method takes credit for the cut averaging effect in m/p estimates, which lowers the fluctuations by a factor of \sqrt{n} . The n is an effective number of recorded Pu-239 cuts of a culvert loading, based on measured log-Normal distribution data. For a single cut ($n = 1$), a maximum factor of 13 gives the 3-sigma upper limit [ref 4]. The effective n is shown to be proportional to the recorded mass loading. The development is based on culverts having only Pu-239 neutron sources, and uses those with SWM that cluster about 248 g and 926 g, as shown in Figure 1. Appendix A provides further details.
- (7) Refined $13/\sqrt{n} \times \text{Inventory Pu-239}$. [New Method]. This method is the same as Method #6, except that the individual data points of Figure 1 are fitted to the model instead of using two averaged point clusters. This refined approach results in somewhat larger effective n (lower accumulative fluctuations) than afforded by the

point cluster approach. This is expected because the variation in SWM values with the point clusters introduces additional uncertainty in derived NCC values. Mathematical details for this method are discussed in Appendix A.

- (8) Cut Model x Inventory Pu-239. [New Method]. This method uses the data for the 68 drums with detailed cut information and the NCC vs SWM correlation. Figure 2 reproduces the NCC vs SWM correlation from an earlier study [ref 2]. The correlation shows that $\ln(\text{NCC})$ and its error increase linearly with $\ln(\text{SWM})$. Using the SWM recorded for each cut, the correlated NCC and error is calculated. The cut NCCs are then summed for each drum and their accumulated error is also determined. The resulting 3-sigma excursion upper limits for the 68 drums are plotted in Figure 3. The figure also includes an envelope curve that is conservatively higher than all measured NCC excursions. This envelope of NCC excursion vs drum SWM is also used to predict the culvert NCC excursion limits. Specifically, the correlated NCCs for the drums and their errors, as determined from the envelope curve, are summed to yield a culvert NCC and its corresponding accumulated error. From this, the 3-sigma excursion limits for the culverts are determined. The mathematical details for this method are given in Appendix A, where the predictions are shown to be consistent with observations for the 36 check culverts.
- (9) Conservative Cut Model x Inventory Pu-239....Preferred Statistical Method. [New Method]. This method yields results intermediate to those of Methods #7 and #8. Method #7 is thought to yield a high estimate, because it uses neutron rate fluctuations to infer fluctuations in the Pu-239 loadings. Here, the neutron rate contribution from drums in the bottom of the culvert can be diminished relative to rates from drums in the top; thus, all Pu-239 is not equally represented in the rates and their effective n from rates is lower (larger fluctuations). By contrast, Method #8 can yield low Pu-239 estimates. In Method #8, the cut model only uses 68 drums to predict the NCC (upper limit) vs SWM envelope curve for drums, and all values are accumulated from cuts with SWM less than 30 g. At the same time, Appendix A shows that these predictions are consistent with NCC and SWM measurements for the 36 check culverts, which have SWM cuts of somewhat larger mass. Yet the possibility of very large SWM cuts in the suspect culvert drums cannot be ignored, although they are less likely [ref 6]. Thus, Method #8 should be treated as a possibly low estimate. The Conservative Cut Model increases the drum envelope (Figure 3) by $\times 1.5$, to yield the culvert results in Figure 4. The excursion estimates agree with Method #8 for the lowest SWM loadings, where

the lowest probability for a large Pu-239 cut exists; they agree with Method #7 for the largest SWM loadings, where the highest probability for a large Pu-239 cut exists. The estimates increase monotonically with SWM between these limits.

Applicability to Maximum Drum of a Culvert

The above methods were used to estimate both the drum contents and the culvert contents. The m/p methods are not as suitable for the individual drums, because these methods only measure rates for the culvert. However, the projected rates (p-factor of m/p) do depend on the recorded SWM values for the drums, and modeling the projected rates with the drum SWM and distributional data does reduce the fluctuations in the m/p measurements [ref 4]. Also, in most culverts, the SWM of the highest drum is substantially larger than the SWM of the next highest drum, so the m/p of the culvert is heavily influenced by the highest drum. Because the highest drum is appraised relative to a criticality limit, multiplication of its SWM by the culvert m/p yields a useful guideline estimate for examining the drum compliance.

For the statistical methods, which are based on the effect of accumulative errors on the sums of cuts, the estimate for both drums and culverts are based on the same models, and thus the above concern for distinguishing between individual drums is not an issue.

RESULTS

Preferred Methods

Table 1A gives the Pu-239 estimates for the preferred m/p method, which is Method #5. Assuming example loading limits of 1000 g/drum and 2500 g/culvert, Table 1A projects that 82 of the 118 culverts would be in compliance. Table 1B reduces these estimates by including a special Pu-238 correction, which is described in the DISCUSSION section. Table 1B projects that 111 of the culverts would be in compliance with the above example limits.

Table 2 gives the Pu-239 estimates for the preferred statistical method, which is Method #9. Relative to the example limits of 1000 g/drum and 2500 g/culvert, Table 2 projects that all 118 culverts would be in compliance.

These tables are designed to allow rapid appraisal of the estimates against realistic criticality limits, which are yet to be certified. Each table is like a scatter plot, where the culvert estimates are ordered monotonically in the third column (vertical axis), and their corresponding maximum drum estimates are monotonically spaced and printed to the right along respective rows (horizontal axis). The first column gives the

table entry number, and the second column identifies the culvert number.

An example of how these tables are used is as follows. Using Table 1A, again suppose Pu-239 limits of 1000 g/drum and 2500 g/culvert. Then Table 1A has 88 culverts with < 2500 g, which is easily determined from columns 1 and 3. Of these, 6 can be easily identified as having maximum drum estimates that are as high as 1000 g. Thus, a total of 88-6 or 82 of these culverts and their drums meet the criteria. Using the table as a scatter plot, one would have drawn a horizontal line under the highest culvert estimate that is less than 2500 g (entry 88) and a vertical line just to the right of the highest drum estimate that is less than 1000 g. Then, the acceptable cases are those having both culvert estimates above the horizontal line and drum estimates to the left of the vertical line.

Other Methods

The results for all nine estimate methods are presented in similar tables in Appendix C, which in addition includes tables that order the data by culvert number for easy reference. Although the preferred methods are recommended at present, the over-conservatism in some of these alternative methods may become attractive, should their estimates be in compliance with the to-be-established criticality limits.

DISCUSSION

Appraisal of Preferred Methods

The preferred analysis methods are considered reasonable and conservative for several reasons. Both methods utilize estimates that are coupled with 3-sigma upper-limit fluctuations. The corresponding 0.1% probability for these limits needs to be appraised in terms of the probability of critical configurations, and preliminary studies [ref 7] indicate that these probabilities should be less than 10^{-3} so that current methods would render these probabilities to be less than 10^{-6} . Other conservative aspects for the preferred methods are discussed below.

Preferred m/p Method (Method #5). The results from the 36 check culverts support Method #5 as the preferred m/p method. The (NCC+SWM)/2 values for the 18 culverts containing only Pu-239 yield a low m/p geometric average of 0.74 ± 0.09 . When the SWM values are used, this average is 0.95 ± 0.11 , which is consistent with the desired value of 1. Because culvert calibrations in the laboratory used a well-known Pu-239 source [ref 4], the above result implies that the SWM measurements are generally more accurate than the NCC measurements. Appendix B details the analysis for these observations.

For the 18 check culverts containing both Pu-238 and Pu-239, the m/p values tend to be significantly greater than 1, yielding a geometric average of 1.78. Although a correction for Pu-238 contribution was developed [ref 4], the check culvert data show that as Pu-238 becomes a larger fraction of the total Pu, the m/p ratio is biased higher, which makes the correction conservatively high. Appendix B examines this Pu-238 bias trend and develops a bias correction factor R. An R factor was calculated for each of the 118 culverts under study, and each m/p estimate for Pu-239 was divided by its R, to yield the corrected Pu-239 estimates given in Table 1B. With these corrections, 111 of the 118 culverts meet the example criteria of 1000 g/drum and 2500 g/culvert.

The Preferred m/p Method is also conservative due to subcritical multiplication arguments. Measurement of the m/p values assumes that the ratio is entirely related to the ratio m_e/m_r of actual Pu-239 to recorded Pu-239. If a criticality concern exists, noticeable subcritical multiplication M should also be a factor in the m/p ratio r, so that

$$m/p = r = M m_e/m_r \quad (1)$$

An estimate for M is given by

$$M = \frac{1}{1 - k_{...}} = \frac{r m_r}{m_e} \quad (2)$$

where $k_{...}$ is the effective criticality constant for the culvert, such that $k_{...} = 1$ for the critical (infinite multiplication) case. Solving Equation 2 for $k_{...}$ yields

$$k_{...} = 1 - m_e/m_r r = 1 - m_e/m_{e0} \quad (3)$$

where $m_{e0} = m_r r$ is the Pu-239 estimated as the upper excursion (3-sigma limit) value of m/p x SWM in Method #5. From Equation 3, it is clear that for $k_{...}$ to be near the critical value of 1, the actual Pu-239 or m_e must be small relative to the m/p SWM estimate m_{e0} . However, there has to be a realistic lower limit on m_e because small amounts of Pu-239 cannot produce much multiplication to yield a substantial $k_{...}$. For example, suppose the Pu-239 of a drum were estimated as m/p SWM = 1000 g = m_{e0} . Then, if the actual mass were $m_e = 500$ g, which is the minimum possible critical mass, the $k_{...}$ would be 0.5. For lower actual masses, criticality would be impossible, and for higher actual masses, $k_{...}$ would be less than 0.5. Realistic critical configurations for the culverts would involve actual critical masses that are greater than the 500 g minimum considered here, which would render that even greater m/p SWM estimates could be in compliance with criticality concerns. It might be beneficial to examine individual cases using these concepts, to demonstrate compliance when the realistic critical limits become available.

In any event, Method #5 does not take credit for the subcritical multiplication effect, and its estimated masses can only be conservatively high with respect to its assumption of non-multiplication ($M=1$).

Preferred Statistical Method (Method #9). This method uses statistical modeling to infer the effect of individual cuts, which are summed to give the drum and culvert Pu-239 loadings. As described in the ANALYSES section, this method yields results that are intermediate to Method #7, which can produce overestimates, and Method #8, which can produce underestimates. The possible underestimates of Method #8 are for NCC excursion limits, as predicted from corresponding recorded SWM values. Because these NCC excursion limits exceed the SWM reading, the assay $(NCC+SWM)/2$ that would have been obtained by current policies would be lower than that of the NCC estimates of Method #8. Thus, although Method #8 may yield a low estimate, it could be even lower if credit for this averaging effect were included. In fact, data for the 36 check culverts indicate that $NCC/[(SWM+NCC)/2] = 1.22$, as shown in Appendix B. Thus, Method #8 is conservative relative to this effect. Method #9 uses a modification of Method #8, in which the drum NCC estimates are increased by $\times 1.5$ to force agreement with the higher loadings that are conservatively estimated by Method #7, as shown in Figure 4. Thus, Method #9 appears to be both a reasonable and conservative statistical method.

Figure 5 compares the preferred statistical method with the current accepted policy of using $(NCC+SWM)/2$ estimates. Here, the statistical estimates for the 118 suspect culverts and the $(NCC+SWM)/2$ values for the 36 check culverts are both plotted against their respective SWM values. Because the statistical estimates cluster well above the scatter for the $(NCC+SWM)/2$ values, the preferred statistical method is quite conservative, implying that probabilities considerably lower than 0.1% really correlate with the above-defined 0.1% upper limit estimates. Actually, Method #8 appears to yield fairly accurate 0.1% upper limit estimates of NCC, as illustrated by a similar plot in Appendix A; however, the data are inadequate for addressing fluctuations of large cuts, which are less likely. Thus, the conservatism of Method #9 makes it more favorable than Method #8.

Preferred m/p Method vs Preferred Statistical Method. The m/p Method generally predicts higher estimates than the Statistical Method. The m/p ratio can be high due to contributions from neutron sources other than Pu-239. Although the analysis includes a correction for some of these neutron sources, the overall results include a conservative bias that is attributed to these sources [ref 4]. Thus, estimates by the m/p Method can be unduly high. The Pu-238 bias factor R provides a correction for this effect. By contrast, the Statistical Method is based on culverts that contain only Pu-239 neutron sources and drum cut data for Pu-239 alone; thus, it is not biased by other neutron sources. Although these considerations favor use of the Statistical Method, it will be prudent to closely examine some of

the higher estimate cases of m/p Method, as a guide to their acceptance. Gamma-ray measurements for these can confirm whether the high estimates are caused by sources other than Pu-239.

Applicability to Remaining Culverts

The Statistical Method may be applicable for screening the remaining 93 suspect culverts that were inaccessible due to soil overburden. If so, actual measurements would not be necessary. These remaining culverts have SWM recorded Pu-239 loadings that are much lower than many of those analyzed in the present work. For example, the present study appraised 20 culverts with SWM recorded Pu-239 of 500-1200 g, and the largest loading for the remaining culverts is only 363 g. In addition, their individual drum loadings tend to be smaller. Further detailed data could enhance these appraisals. In particular, additional NCC and SWM data for culvert loadings would be useful to refine the correlations presented in this work. In particular, these data would be transformed to $(NCC+SWM)/2$ values, which are accepted for current assays.

Need for Realistic Criticality Limits

The results of the present work are presented in a way that acceptable culverts can easily be identified relative to critical loading limits for Pu-239. An effort [ref 8] has been underway to establish realistic limits for these culverts, because the present limits are based on general conditions for a postulated worst possible situation. Thus, the present limits are overly conservative relative to known moderator and geometry conditions of these culverts.

The realistic criticality limits are also needed to guide the completion of these appraisals. In particular, gamma-ray studies are being conducted only for culverts that are considered to be unacceptable from neutron measurements alone, and identification of these culverts is governed by the criticality limits. Because each gamma-ray measurement/analysis of a culvert can involve extensive time and effort, only culverts that absolutely require this appraisal should be studied.

ACKNOWLEDGEMENTS

J.R. Shappell has provided much data from culvert/drum records, including the detailed cut records and updated culvert loading information. S.J. Mentrup has helped assure smooth field measurements, by providing assistance from services in the burial ground.

REFERENCES

- (1) O.M. Morris, "Meeting Minutes - Suspect FB-Line TRU Waste", Memorandum to Distribution, December 17, 1987.
- (2) E.P. Shine, "Analysis of Large Differences between Neutron Coincident and Gamma Measurements for FB-Line TRU Waste Cuts", Memorandum to W.E. Stewart, October 7, 1988. *
- (3) R.C. Hochel, K.J. Hofstetter, R.A. Sigg, and W.G. Winn, "TRU Waste Culvert Monitoring Study", DPST-88-606, June 14, 1988.
- (4) W.G. Winn, R.C. Hochel, K.J. Hofstetter, R.A. Sigg, "Fast/Slow Neutron Method for Appraising Pu-239 Waste in Burial Ground Culverts", DPST-89-346, March 6, 1989.
- (5) J.R. Shappell, transmittal of culvert data below:
 - (a) Pu-239 cut data (SWM) for 68 drums from drum waste inventory worksheets.
 - (b) Data for suspect culverts - Culvert Log Book data on drum contents vs location, appended to COBRA inventory records referenced by:

W.J. Jaegge, "Pu-239 Inventory in Culverts with pre-11/16/85 FB Line Waste", Memorandum to G.H. Street, J.N. Chen, and J.R. Shappell, April 6, 1988.
 - (c) Data for 36 "check" culverts with NCC and SWM loadings - Culvert Log Book Data on drum contents (NCC & SWM) and location, appended to COBRA inventory records referenced by:

K.S. Weirzbicki, "Burial Slips and Completed Procedures for Culverts Containing FB-Line and TRU Waste", Memorandum to T.H. Fisher, February 28, 1989.
- (6) D.W. Murdock, F-Area Separations Department, "FB-Line Solid TRU Waste Analysis", Memorandum to J.K. McKibbin and R.E. Hanvey, August 4, 1988.

* Data in this report are consistent with an overall average NCC/SWM bias of 1.40, although recent measurements suggest this may be higher. The overall bias depends on the size distribution of the cuts investigated; thus, the detailed correlated data of this report of $\ln(\text{NCC})$ vs $\ln(\text{SWM})$ is considered the most reliable.

REFERENCES - continued

- (7) R.C. Hochel, K.J. Hofstetter, R.A. Sigg, and W.G. Winn,
"Probabilistic Assessment of Culvert Nuclear Safety", DPST-
89-383, April 10, 1989.
- (8) R.C. Hochel, K.J. Hofstetter, R.A. Sigg, and W.G. Winn,
"Nuclear Safety of Plutonium/Polyethylene Waste in TRU
Culverts", DPST-88-1014, December 12, 1988.

Table 1. Preferred a/p Analysis - Method #5

A. Base Analysis

B. Analysis with Pu-238 Correction

1	2	3	4	5
1 498	56	37		
2 537	263	187		
3 580	266	280		
4 385	264	98		
5 360	316	37		
6 547	397	271		
7 541	416	264		
8 489	416	188		
9 536	452	347		
10 374	476	187		
11 438	478	108		
12 444	490	154		
13 473	495	433		
14 437	521	310		
15 519	589	272		
16 508	590	393		
17 539	591	404		
18 454	560	209		
19 453	563	219		
20 522	595	437		
21 436	631	217		
22 459	682	218		
23 484	709	338		
24 428	716	348		
25 523	733	568		
26 367	760	448		
27 508	773	203		
28 491	796	319		
29 538	811	571		
30 517	813	407		
31 354	883	380		
32 400	898	328		
33 461	898	154		
34 557	913	151		
35 433	940	242		
36 278	942	576		
37 559	967	214		
38 479	969	266		
39 397	977	843		
40 426	983	451		
41 509	986	181		
42 443	993	327		
43 534	996	553		
44 548	1015	174		
45 540	1151	799		
46 504	1180	290		
47 413	1196	336		
48 258	1199	467		
49 401	1206	676		
50 520	1276	646		
51 531	1308	784		
52 538	1373	998		
53 528	1377	804		
54 370	1378	888		
55 504	1413	731		
56 487	1444	482		
57 396	1489	766		
58 546	1493	169		
59 483	1508	345		
60 437	1507	376		
61 413	1607	756		
62 544	1614	203		
63 493	1648	914		
64 553	1707	180		
65 554	1738	205		
66 555	1769	261		
67 551	1779	194		
68 403	1884	648		
69 404	1887	1819		
70 393	1831	928		
71 394	1847	980		
72 478	1870	543		
73 393	1879	944		
74 384	1905	988		
75 391	1973	1311		
76 501	1984	1041		
77 514	1998	1053		
78 510	2014	391		
79 346	2016	218		
80 494	2023	1448		
81 543	2023	238		
82 545	2031	378		
83 470	2127	514		
84 583	2134	407		
85 408	2149	630		
86 418	2184	500		
87 417	2255	746		
88 490	2411	1287		
89 480	2548	523		
90 381	2571	1444		
91 503	2586	1819		
92 558	2625	336		
93 492	2648	1507		
94 584	2662	1909		
95 486	2722	1476		
96 409	2814	1412		
97 581	2858	2145		
98 530	2897	1608		
99 552	3101	-86		
100 505	3200	1938		
101 370	3430	1029		
102 482	3710	745		
103 528	3910	586		
104 480	4298	1909		
105 412	3201	2419		
106 518	4848	2484		
107 527	5167	3473		
108 513	5084	1715		
109 456	5676	107		
110 515	5120	515		
111 516	5203	3806		
112 392	5253	3346		
113 332	5080	3456		
114 529	3581	4317		
115 481	3628	2482		
116 389	3134	1815		
117 324	1374	1125		
118 507	3657	18055		

1	2	3	4	5
1 498	69	45		
2 513	119	61		
3 374	121	47		
4 634	128	42		
5 475	136	119		
6 426	141	63		
7 438	145	46		
8 428	157	73		
9 444	153	51		
10 502	163	121		
11 404	170	169		
12 385	193	57		
13 405	196	56		
14 412	199	55		
15 447	199	57		
16 433	197	51		
17 410	208	38		
18 412	215	121		
19 367	216	127		
20 438	225	48		
21 354	233	90		
22 410	235	118		
23 417	238	79		
24 384	253	130		
25 483	257	59		
26 437	265	158		
27 520	283	231		
28 537	286	204		
29 415	300	94		
30 370	308	90		
31 494	308	218		
32 439	308	77		
33 581	311	236		
34 582	318	236		
35 508	344	90		
36 391	347	230		
37 413	348	173		
38 397	375	93		
39 378	385	225		
40 390	388	238		
41 461	393	67		
42 547	397	271		
43 448	397	256		
44 420	398	177		
45 531	403	224		
46 484	413	198		
47 454	416	155		
48 541	416	264		
49 472	417	128		
50 358	423	175		
51 488	424	230		
52 394	425	218		
53 490	430	289		
54 570	431	104		
55 517	431	216		
56 499	438	200		
57 309	438	80		
58 418	437	100		
59 493	437	241		
60 482	439	98		
61 460	442	91		
62 479	444	184		
63 491	450	180		
64 396	451	238		
65 526	452	347		
66 443	453	154		
67 492	467	188		
68 560	473	55		
69 530	475	243		
70 504	478	248		
71 519	589	278		
72 539	551		404	
73 381	553	310		
74 587	560	384		
75 503	579	273		
76 586	640		459	
77 454	644	201		
78 519	649	364		
79 533	723		563	
80 378	728	377		
81 518	738	378		
82 501	739	387		
83 298	748	381		
84 506	768	192		
85 538	811		571	
86 597	824	193		
87 557	920	154		
88 583	924	178		
89 534	926	593		
90 548	1008	184		
91 540	1151		799	
92 505	1210		563	
93 550	1276		646	
94 510	1288	250		
95 338	1370		637	
96 538	1373		505	
97 538	1377	204		
98 393	1446		785	
99 544	1495	169		
100 481	1589	331		
101 544	1618	203		
102 553	1707	180		
103 545	1714	319		
104 534	1738	205		
105 535	1745	257		
106 581	1770	176		
107 515	1788		736	
108 516	2015		1056	
109 546	2016	218		
110 543	2085	230		
111 399	2113	343		
112 528	2448	356		
113 558	2599	333		
114 513	2633		638	
115 522	3101			
116 520	3168			
117 527	3169			
118 324	3275			
119 329	3284			
120 507	3657			

Table 2. Preferred Statistical Analysis - Method #9

I = entry # / Cul = culvert # / Cul-Pu = q Pu-239 / Max-Drum-Pu = ; Pu-239

I Cul Cul-Pu Max-Drum-Pu ----->

1 498	331	275	
2 374	415	281	
3 434	450	259	
4 401	463	337	
5 550	474	323	
6 426	480	349	
7 458	492	279	
8 444	499	299	
9 475	507		480
10 428	525	382	
11 404	539		538
12 502	589		483
13 385	593	322	
14 400	597		400
15 427	599	322	
16 405	612	352	
17 402	620	315	
18 433	637	297	
19 432	645	286	
20 412	663		467
21 367	664		492
22 437	677		528
23 520	687		573
24 354	699		423
25 533	717		570
26 384	719		497
27 494	722		568
28 417	724		393
29 536	725		572
30 409	727		477
31 423	728	329	
32 515	729		567
33 519	738		567
34 517	741		561
35 521	742		575
36 547	753		561
37 540	758		563
38 522	759		574
39 538	759		566
40 391	762		573
41 526	765		572
42 527	782		575
43 370	802		405
44 439	819	387	
45 541	819		566
46 415	835		407
47 514	840		539
48 272	850		575
49 530	852		572
50 321	857		574
51 492	863		571
52 413	871		542
53 518	876		565
54 529	878		564
55 515	879		569
56 390	881		574
57 516	884		571
58 514	885		572
59 196	901		574
60 195	901		575
61 517	904		567
62 488	906		573
63 332	912		541
64 531	918		571
65 490	919		573
66 508	919		422
67 394	925		565
68 489	927		560
69 393	931		571
70 392	933		571
71 493	935		577
72 503	936		557
73 519	939		570
74 484	940		558
75 504	945		568
76 420	949		545
77 397	955		429
78 505	957		566
79 324	961		572
80 501	963		574
81 507	970		573
82 461	988	357	
83 443	993		524
84 491	995		547
85 454	995		526
86 352	1001		544
87 472	1022		484
88 453	1029		548
89 509	1044		396
90 356	1044		501
91 399	1048	351	
92 479	1059		488
93 480	1063		425
94 560	1066	313	
95 418	1068		444
96 482	1072		426
97 470	1073		452
98 481	1078		434
99 559	1414		532
100 506	1473		555
101 523	1645		538
102 545	1649		533
103 513	1657		551
104 510	1670		542
105 557	1705		524
106 558	1801		489
107 552	1841		531
108 555	1874		524
109 544	1890		497
110 548	1891		551
111 543	1967		496
112 532	2014		543
113 554	2102		516
114 546	2105		506
115 528	2113		549
116 553	2154		500
117 551	2168		530
118 549	2488		539

FIGURE 1. $13/\sqrt{n}$ Analyses

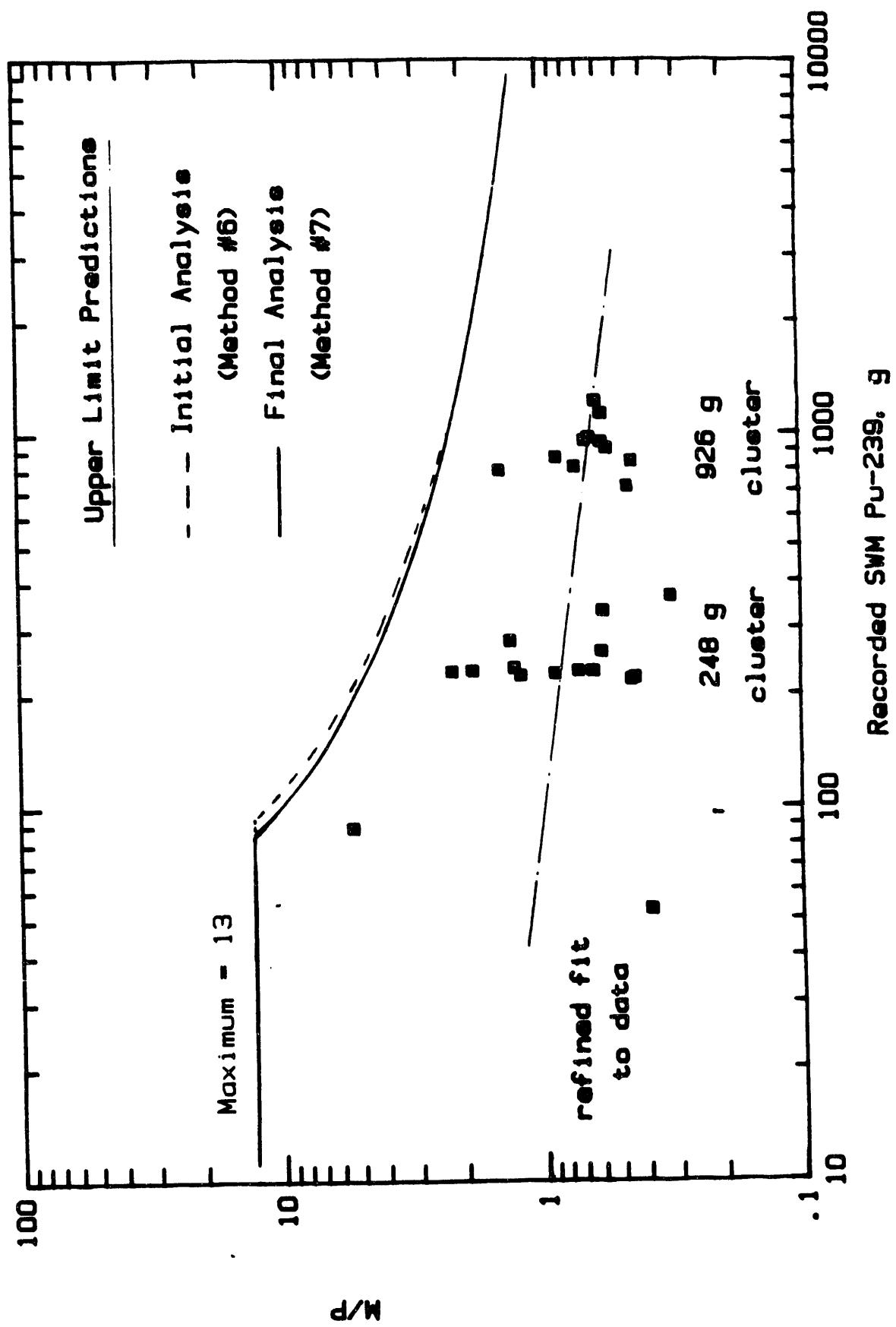


FIGURE 2. NCC vs SWM Measurements of Cuts

(From E.P. Shine, ref 2)

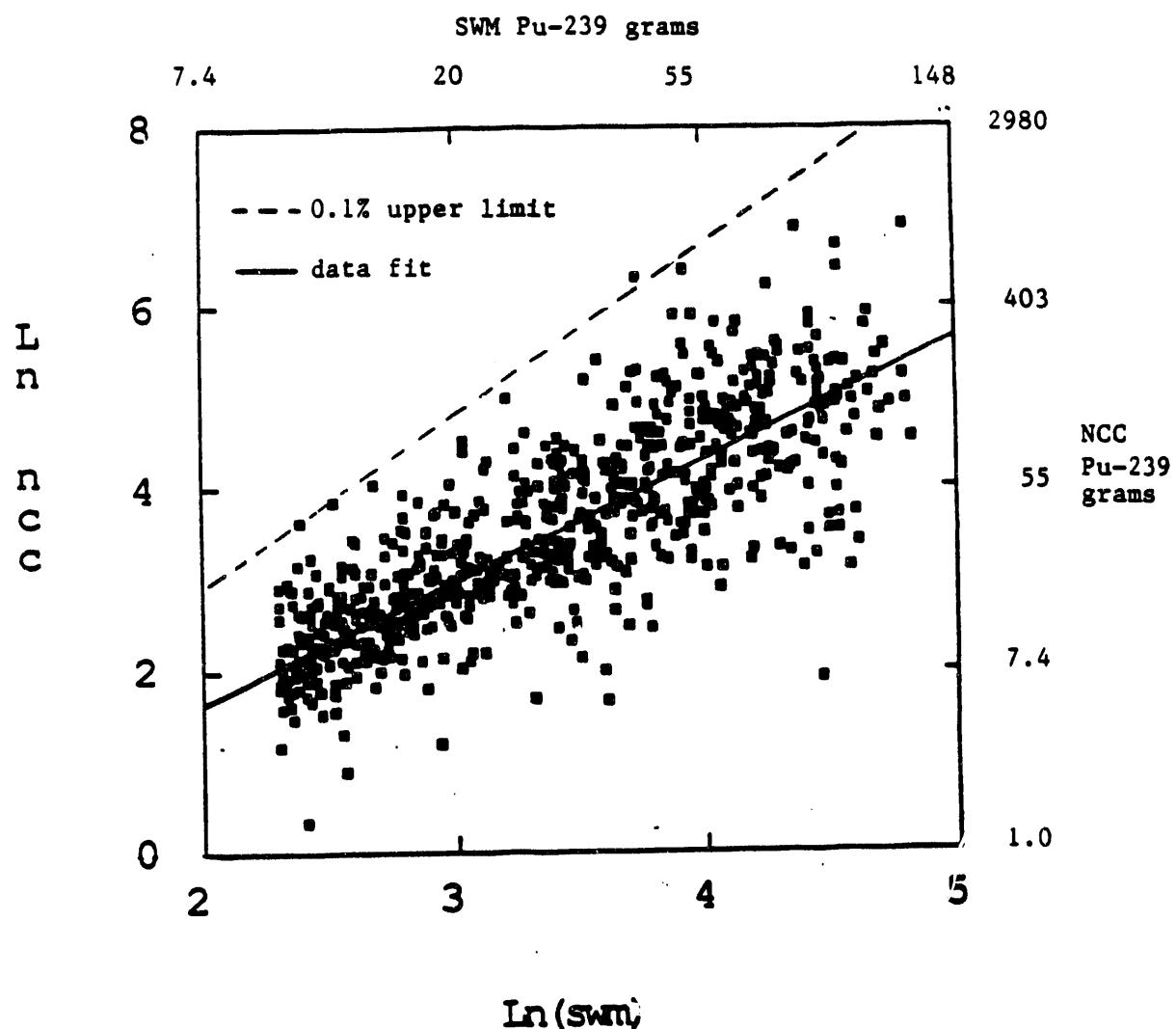


FIGURE 3. Predictions with Drum Cut Data

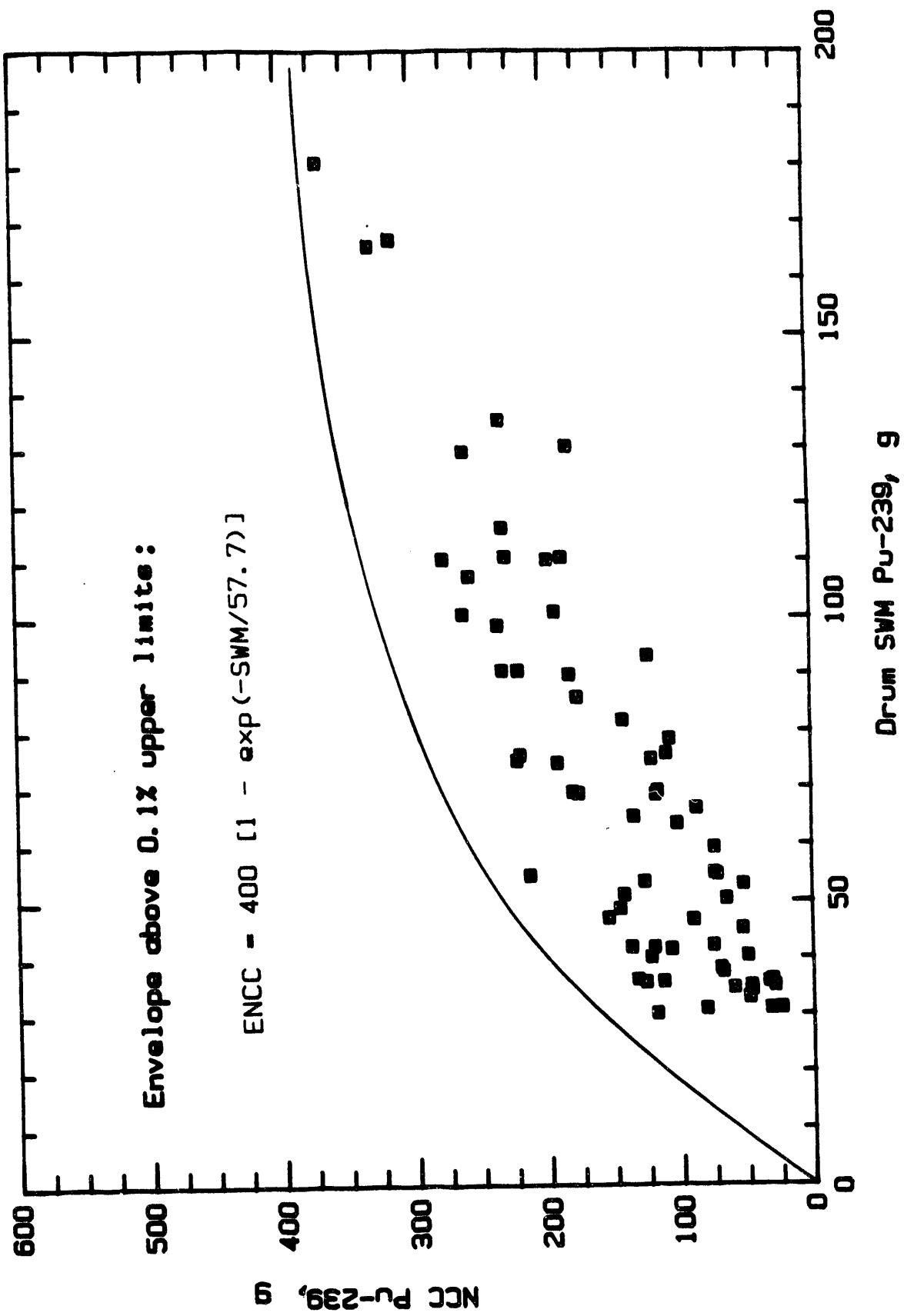


FIGURE 4

3-Sig Upper Limit NCC vs SWM

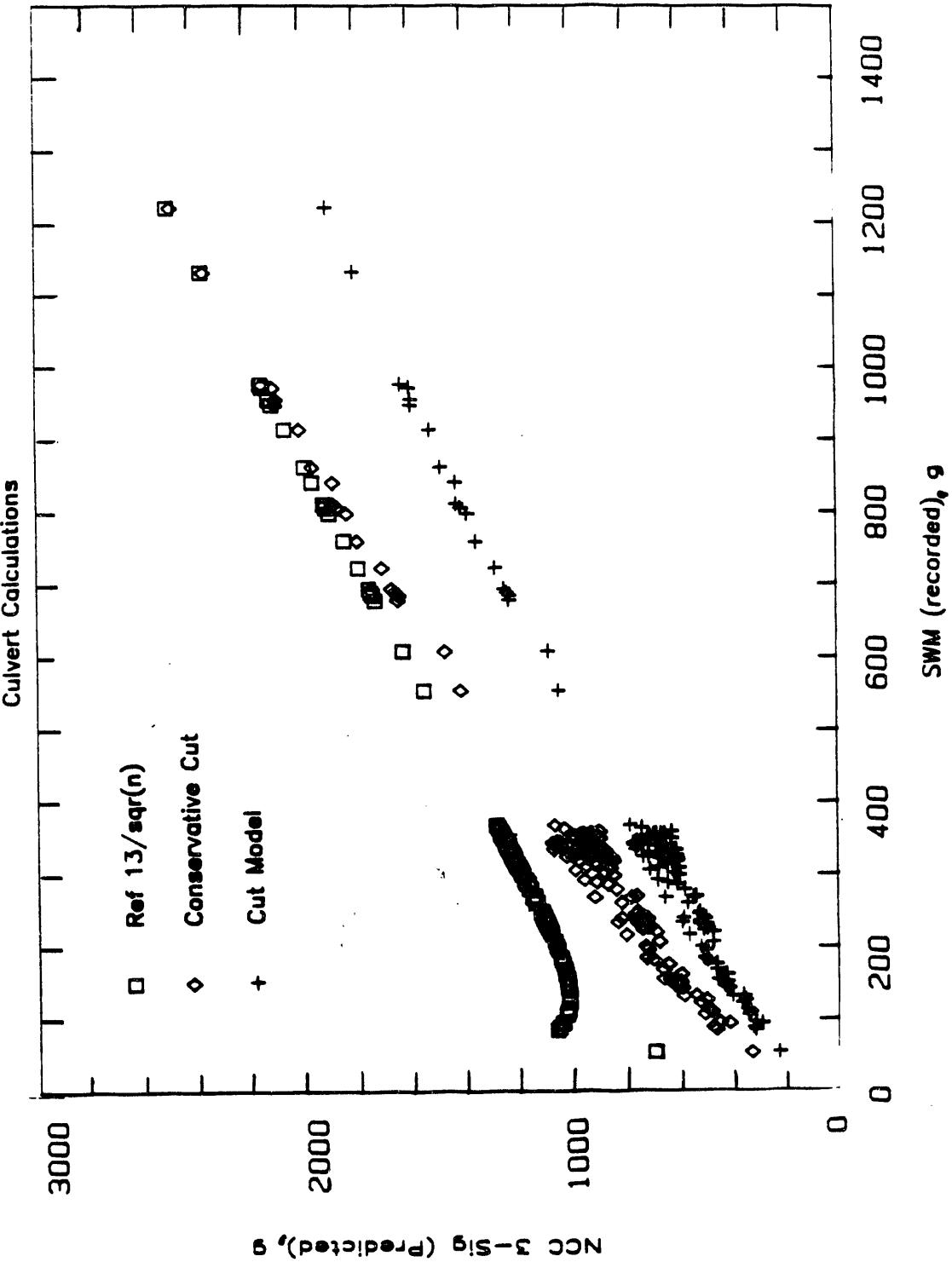
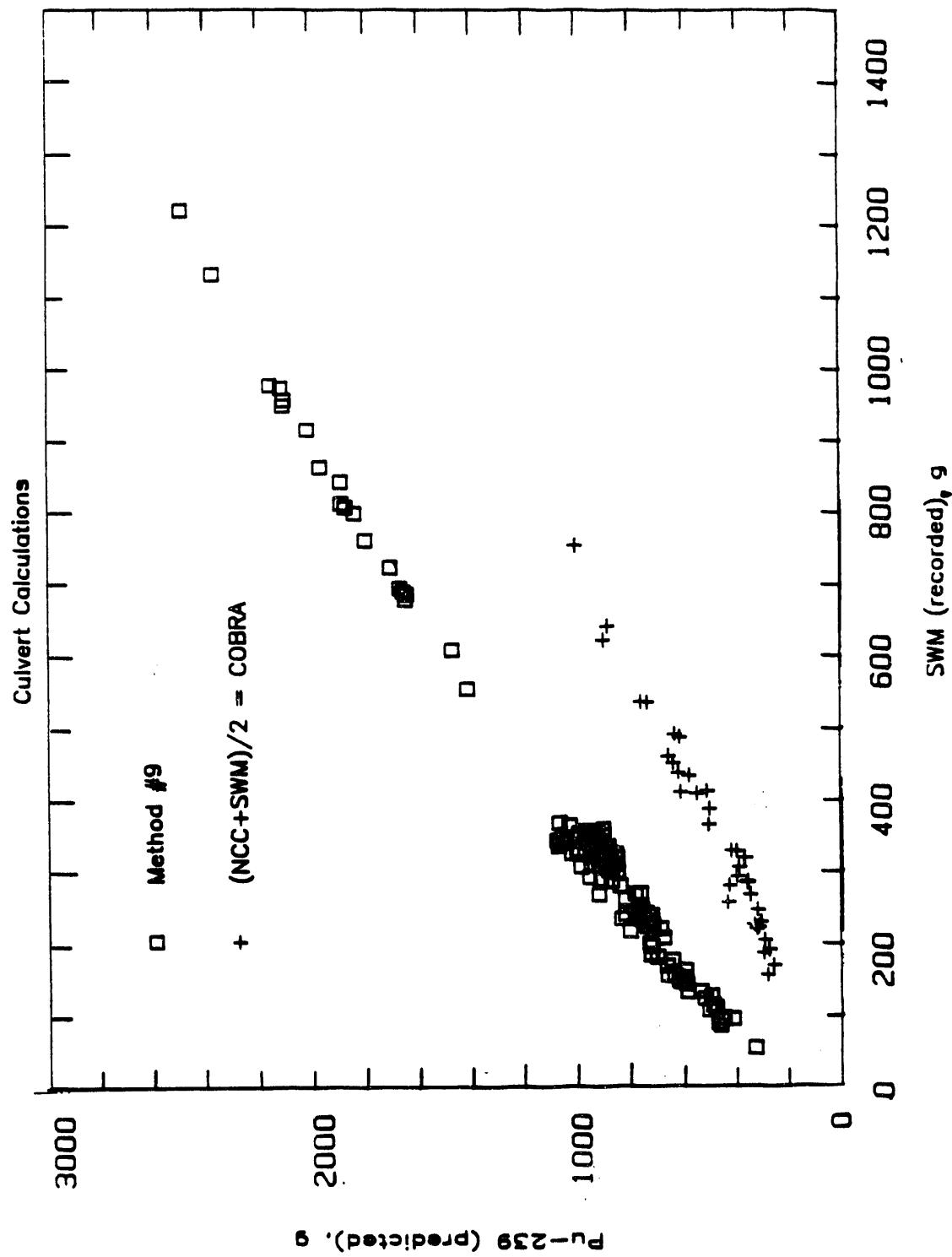



FIGURE 5. Method #9 vs $(NCC + SWM)/2$

APPENDIX A

Development of New Analysis Methods

This appendix develops the basis of three of the new analysis methods introduced in this report. These are (1) the Refined $13/\sqrt{n}$ Method, (2) the Cut Model Analysis, and (3) the Conservative Cut Model Analysis, which is a combination of the first two. Each method is developed in detail below.

I. Refined $13/\sqrt{n}$ Method (Method #7)

An earlier report [ref 4] showed that the meas/proj values for culverts having only Pu-239 neutron sources were log-normally distributed with distribution sigma of

$$\sigma_0 = \sigma_0(1)/\sqrt{n} \quad (A-1)$$

where $\sigma_0 = \text{constant} = \log(2.298)$

$n = m_r/92.8$

$m_r = \text{Pu-239 grams recorded by solid waste monitor (SWM)}$

The relationship between n (the effective number of Pu-239 components in the recorded total) and m_r was deduced using data that clustered about $m_r = 248$ g and $m_r = 926$ g, per data plotted in Figure 1. (Two additional points have been added since the earlier work). Using data from this figure, the n and σ_0 of each cluster was determined using the formalism of the earlier work [ref 4], viz:

$$\sigma_r^2 = \sigma_0^2 + \sigma_r^2 + \sigma_a^2 + \sigma_i^2 \quad (A-2)$$

where individual sigmas are given by

$\sigma_r = \text{total sigma of meas/proj distribution}$

$\sigma_r = \text{error in chemical form of Pu-239} = \sigma_r(1)/\sqrt{n} = \log(1.577)/\sqrt{n}$

$\sigma_a = \text{error in meas/proj analysis model} = \log(1.158)$

$\sigma_i = \text{error in recorded Pu-238 and other neutron sources} = 0$

In the analysis, σ_0 was calculated with Equation A-1, by substituting the value of n deduced from Equation A-2, with its above defined terms:

$$\sigma_r^2 = \sigma_0^2(1)/n + \sigma_r^2(1)/n + \sigma_a^2 \quad (A-3)$$

$$n = \frac{\sigma_r^2(1) + \sigma_r^2(1)}{\sigma_r^2 - \sigma_a^2}$$

Upon applying Equation A-3 to Equation A-1, the σ_0 for the two m_r (248 g and 926 g) clusters indicated that $n = m_r/92.8$. This is Method #6 of the main text.

A refinement of this method takes into account that meas/proj decreases slightly with m_r , as seen in Figure 1. The figure shows a $\log(\text{meas/proj})$ vs $\log(m_r)$ linear least-squares fit, in which calculated $1/\sigma_r^2$ weight each point. The difference between the fitted $\log(\text{meas/proj}) = Y$, and its measured value Y_i , is its residual ΔY_i . For a good fit, chi-square considerations yield

$$\sum_{i=1}^N \frac{(\Delta Y_i)^2}{(\sigma_r)^2} = N - 2 \quad (A-4)$$

where there are $N-2$ degrees of freedom after N points are fitted to a straight line. Calculating the (σ_r) , from Equations A-1 and A-3 with $n = m_r/92.8$ yields fair agreement for Equation A-4. By choosing $n = m_r/82.3$, the agreement is exact; thus, this latter formula for n is used in the Refined $13/\sqrt{n}$ Method. The fitted results of Figure 1 are also consistent with this n .

In summary, the σ_0 for the Refined $13/\sqrt{n}$ Method is defined by the above n and Equation A-1 as

$$\sigma_0 = \frac{\log(2.298)}{\sqrt{m_r/82.3}}$$

which corresponds to error factor $E = 10^\sigma$ [or $\exp(\sigma)$ for \ln] of

$$E_0 = (2.298) \sqrt{82.3/m_r}$$

The 0.1% probability for an upper-limit excursion corresponds to a level = (geo ave meas/proj) $\times E_0^3 = (1.071) \times E_0^3$, as consistent with the earlier treatment [ref 4]. This assures that the excursion is $\times 13$ for the lowest ($n=1$) inferred integral mass (82.3 g). For lower mass loadings, the excursion is conservatively defined as $\times 13$. These calculated excursions are also conservatively high relative to the observed meas/proj .

II. Cut Model Analysis (Method #8)

This model uses Pu-239 cut data for individual drums to predict their 0.1%-probability excursion levels of Pu-239. Then these drum results are combined to predict the 0.1%-probability excursion levels for individual culverts. The major development of this approach is discussed first. Then a section supporting the mathematical considerations follows. A final section appraises the reliability of the method.

Major Development

Detailed data for Pu-239 cut loadings of 68 drums were provided [ref 5], and a sample data sheet is given in Figure A-1. These cut values were measured by the solid waste monitor (SWM), which was later determined to read low relative to the neutron coincidence counter (NCC). Because the higher NCC readings are conservatively applied to assure that Pu-239 loadings are safely below criticality levels, the NCC readings are treated as a reliably safe upper-limit indicator of Pu-239. E.P. Shine [Ref 2] has examined NCC vs SWM readings shown in Figure 2, and deduced the correlation

$$\ln(\text{NCC}) = -0.9019 + 1.309 \ln(\text{SWM}) \pm (\ln(\text{SWM})/5)(0.9287) \quad (\text{A-5})$$

Thus, given an SWM measurement, the upper-limit excursion ENCC with 0.1%-probability corresponds to a level given by

$$\begin{aligned} \ln(\text{ENCC}) &= \ln(\text{NCC}) + 3 \sigma \\ &= -0.9019 + 1.309 \ln(\text{SWM}) + 3 (\ln(\text{SWM})/5)(0.9287) \end{aligned} \quad (\text{A-6})$$

These NCC predictions for cuts of a drum are combined to yield a drum ENCC. Each measured SWM = x predicts NCC = y and an excursion $3\sigma = \Delta y$, as deduced by Equations A-5 and A-6. The $\ln(\text{NCC})$ with $\pm \sigma$ is assumed to be distributed as a Gaussian; thus, the $\text{ENCC} = E_y = y \exp(3\sigma)$, and the corresponding y distribution is not Gaussian. If a set of Gaussian variables z_i were added, the excursion of their sum would be

$$E_{z_{\text{sum}}} = \sum z_i + \sqrt{\sum 3 (\sigma_i)^2} \quad (\text{A-7})$$

Although the y are not Gaussian, a formula analogous to this was used for the sum of the cuts in a drum, viz

$$E_{y_{\text{sum}}} = \sum y_i + \sqrt{\sum [y_i \exp(3\sigma_i) - y_i]^2} \quad (\text{A-8})$$

This formula for $E_{y_{\text{sum}}}$ is shown to be a conservative estimate in the next section, which develops pure mathematical considerations in more detail.

The excursions $EY_{..}$ for each drum with cut data were calculated using Equation A-8, as defined by y_i and σ_i values determined from Equations A-5 or A-6. The results are shown in Figure 3, which is a scatter plot of ENCC vs SWM for the 68 drums. It is noted that the ENCC values all lie beneath an envelope curve defined as

$$\begin{aligned} ENCC(\text{drum})_{\text{envelope}} &= 400 [1 - \exp(-SWM/57.7)] \\ ENCC(\text{drum})_{\text{envelope}} &= 400 [1 - \exp(-m_{..}/57.7)] \end{aligned} \quad (\text{A-9})$$

where in this application $SWM = m_{..}$, which is the recorded Pu-239 mass of the drum.

A scatter plot of $\sum y_i$ vs $\sum x_i$ (NCC vs SWM) for the drums is given in Figure A-2, and yields the correlation

$$\sum y_i = 0.85 \sum x_i \quad (\text{A-10})$$

This $NCC/SWM = 0.85$ is consistent with the fact that the individual cuts for drums examined are generally small, and Equation A-5 predicts $NCC/SWM \leq 1$ for $SWM \leq 18.8$ g. The equation predicts an NCC/SWM of 2.04 for the largest possible cut in this work, which corresponds to a drum loading of 187 g. The available cut distributions and loading data indicate that it is unlikely that a single drum has a cut with this high a SWM value. For example, if the 187 g were composed of ~10 cuts, which is typical, the average cut would have ~20 g Pu-239, which is in the range of the correlation used in this work. Ideally, the cut data for each drum/culvert in question should be analyzed using Equations A-5, A-6, and A-8; however, these data do not appear to be available. Thus, the drum estimates provided by Equations A-9 and A-10 are used in the Cut Model Analysis for the culverts.

The culvert NCC excursions are calculated by summing the drum predictions for each culvert. The individual drum data, $EY = ENCC(\text{drum})_{\text{envelope}}$ and $Y = \sum y_i$ are calculated using Equations A-9 and A-10, to yield the corresponding 3σ -deviations of $EY - Y$. Then the culvert NCC excursions are calculated as

$$ENCC(\text{culvert}) = \sum y_i + \sqrt{\sum (EY_i - Y_i)^2} \quad (\text{A-11})$$

$$ENCC(\text{culvert}) = 0.85 SWM + \sqrt{\sum (400[1 - \exp(-SWM/57.7)] - 0.85 SWM)^2}$$

$$ENCC(\text{culvert}) = 0.85 m_{..} + \sqrt{\sum (400[1 - \exp(-m_{..}/57.7)] - 0.85 m_{..})^2}$$

where $SWM = m_{..}$ is the total recorded Pu-239 for the culvert and $m_{..}$ is the Pu-239 per individual drum. The coefficient 0.85 is again used, and it is tempting to increase it to at least 1.0. However, increasing it has little effect on $ENCC(\text{culvert})$, because increases in the first term of Equation A-11 tend to be cancelled by decreases in its second term. Thus, the 0.85 coefficient derived from Figure A-2 was used for Method #8.

Mathematical Considerations

The above development depends on features of the log-Normal distribution and the Central Limit Theorem. First, the moments of the distribution are examined, so that the variance and mean are available. Then the Central Limit Theorem is applied to these parameters. Finally, the application of these concepts to the present work is discussed.

Moments. A variable x , which has a log-Normal distribution, has a Gaussian distribution with variable $z = \ln(x)$. Because such a distribution applies for x with its log to any base, the convenient choice of $z = \ln(x)$ is used in the development that follows. Specifically, it is desired to find the moments $\langle x^n \rangle$ as

$$\langle x^n \rangle = \int_{-\infty}^{\infty} x^n f(x) dx \quad (A-12)$$

where

$$f(x) dx = \frac{1}{\sqrt{2\pi} \sigma} \exp(-[\ln(x) - \ln(c)]^2/2\sigma^2) d\ln(x)$$

and $\ln(c)$ denotes the maximum of the $\ln(x)$ distribution and c is its geometric mean. To derive the moments in detail, note that $x^n = \exp[n\ln(x)]$, and substitute explicitly into Equation (A-12),

$$\langle x^n \rangle = \frac{1}{\sqrt{2\pi} \sigma} \int_{-\infty}^{\infty} \exp(-[\ln(x) - \ln(c)]^2/2\sigma^2 + n\ln(x)) d\ln(x)$$

Upon completing the square in the $\exp()$ factor,

$$\begin{aligned} \langle x^n \rangle &= \frac{1}{\sqrt{2\pi} \sigma} \int_{-\infty}^{\infty} \exp(-[\ln(x) - (\ln(c) + n\sigma^2)]^2/2\sigma^2) \\ &\quad * \exp(-[\ln(c)^2 - (\ln(c) + n\sigma^2)^2]/2\sigma^2) d\ln(x) \end{aligned}$$

The above integral includes a Gaussian factor which has variable $\ln(x)$ and geometric mean $\ln(c) + n\sigma^2$. The other factor is a constant. Thus the integral yields the $\exp(\text{constant})$ factor, which is reduced to yield

$$\begin{aligned} \langle x^n \rangle &= \exp([n\sigma^2 + 2n\sigma^2\ln(c)]/2\sigma^2) = \exp(n\sigma^2/2 + n\ln(c)) \\ \langle x^n \rangle &= c^n \exp(n\sigma^2/2) \end{aligned} \quad (A-13)$$

Variance. The variance s^2 is calculated using the first two moments $\langle x \rangle$ and $\langle x^2 \rangle$ defined by Equation A-13.

$$\begin{aligned} \langle x \rangle &= c \exp(\sigma^2/2) \\ \langle x^2 \rangle &= c^2 \exp(2\sigma^2) \end{aligned}$$

Using these moments, the variance for a single measurement x_i is

$$s^2 = \langle x^2 \rangle - \langle x \rangle^2 \\ = c^2 [\exp(2\sigma^2) - \exp(\sigma^2)] \quad (A-14)$$

Central Limit Theorem. If N values of x_i are summed, the Central Limit Theorem predicts that this sum (or average $= \sum x_i/N$) will have a Gaussian distribution that has a variance composed of the sum of the individual variances (or for the average, the variance $= 1/N \sum [s_i]^2/N = s^2/N$). This can be true even for x_i that have different distributions*. The Gaussian prediction becomes more dependable as N increases.

Present Application. The Central Limit Theorem indicates that the sum of cuts in a drum should be approximately normally distributed. However, the drum excursions defined by Equation A-8 differ from those that are predicted by the log-Normal treatment above. The excursions are compared below for these cases, where the average (sum/N) values are used:

Sum Average	0.1% Probability Excursion Value	
General	$\sum x_i/N + 3 s/\sqrt{N}$	
Log-Normal	$c \exp(\sigma^2/2) + 3 c \sqrt{[\exp(2\sigma^2) - \exp(\sigma^2)] / \sqrt{N}}$	
Present Work	$c + [c \exp(3\sigma) - c] / \sqrt{N}$	

By calculating the ratio of the Present Work and Log-Normal cases, it is recognized that the Present Work is conservatively high relative to the Log-Normal one. This is illustrated below for cases ranging up to $\sigma = 1.2$, which corresponds to individual cut excursions of NCC/SWM that exceed the maximum of 13 observed earlier [ref 4].

Cuts	Data	Sum Average Excursion Value		[<u>Present Work</u> / <u>Log-Normal</u>]
		Present Work	Log-Normal	
10	0.4	1.73 c	1.51 c	1.15
	0.8	4.17 c	2.61 c	1.60
	1.2	12.25 c	5.55 c	2.21
20	0.4	1.52 c	1.39 c	1.10
	0.8	3.24 c	2.25 c	1.44
	1.2	8.96 c	4.53 c	1.98
30	0.4	1.42 c	1.33 c	1.07
	0.8	2.82 c	2.09 c	1.35
	1.2	7.50 c	4.07 c	1.84

* K.V. Bury, *Statistical Models in Applied Science*, John Wiley and Sons, 1974, p. 69.

Thus, in the analysis for the present work, each excursion calculated for the sum of cuts by Equation A-8 and A-11 is an overestimate, even though the excursion for each individual cut is well represented by Equation A-6.

Comparison with Culverts with Known NCC vs SWM Values

Subsequent to the analysis for Method #8, NCC and SWM data from 36 culverts loaded after 1985 were made available, as discussed in Appendix B. These data are plotted in Figure A-3, along with the predictions of the above analysis. The NCC vs SWM data fit the straight line $NCC = 1.583 \text{ SWM}$ and the scatter about this line is much smaller than Equation A-5 would project for individual cuts with these SWM values; this is expected since each culvert contains many individual cuts and their individual NCC/SWM relative fluctuations statistically average lower when the cuts are summed to yield the culvert inventory. Figure A-3 shows that the upper limits of this scatter barely reach the ENCC(culvert) 3σ upper limit excursions of NCC projected by Method #8 above. Thus, the projections by Method #8 are consistent with measurements on culverts having known NCC and SWM values.

It should be recalled that acceptable current inventories are defined as $(NCC + SWM)/2$ in post-1985 COBRA listings [ref 5]. Thus, instead of projecting NCC vs SWM values, the COBRA vs SWM values should be examined, viz:

$$\text{COBRA} = (NCC + SWM)/2 = (1.583 \text{ SWM} + \text{SWM})/2 = 1.29 \text{ SWM}$$

A plot of COBRA vs SWM in Figure A-3 shows that Method #8 is conservatively high relative to COBRA. Also, the point scatter (not plotted) for COBRA is only 1/2 that for NCC alone.

One concern about the comparison of Method #8 with the culvert data for NCC vs SWM is that Method #8 uses fluctuations about $NCC = 0.85 \text{ SWM}$ and the culvert data fluctuate about $NCC = 1.583 \text{ SWM}$. The discrepancy is probably due to the average size of the cuts involved in the analysis data. For example, Equation A-5 for individual cuts predicts $\text{SWM} = 11 \text{ g Pu-239}$ for $NCC/\text{SWM} = 0.85$ and $\text{SWM} = 82 \text{ g Pu-239}$ for $NCC/\text{SWM} = 1.58$. Actually, each case should be evaluated as the sum of cuts to yield an $\langle x \rangle$ value, as developed in Equation A-13. Substituting NCC and its σ from Equations A-5 as the c and σ in Equation A-13 yields $\text{SWM} = 10 \text{ g}$ for $\langle NCC \rangle/\text{SWM} = 0.85$ and $\text{SWM} = 39 \text{ g}$ for $\langle NCC \rangle/\text{SWM} = 1.58$. As explained in the preceding section, Method #8 is already mathematically conservative relative to this summing scenario. Fortunately, it is sufficiently conservative to accommodate sums of both the smaller and larger cuts, as evidenced by Figure A-3. Thus, the above discrepancy in NCC/SWM averages has no impact on the overall usefulness of these predictions.

Method Reliability

Overall, the method appears to be reasonable. However, despite its many conservatisms, the method does not address the possibility that a large cut of Pu-239 is included in a drum. As discussed earlier, the available cut data for developing the drum excursions shown in Figure 3 are relatively low (SWM < 30 g). The cuts for the 36 check culverts plotted in Figure A-3 are somewhat larger (average consistent with SWM = 39 g), but quite higher cuts are possible (SWM = 187 g for drum maximum), although very unlikely relative to cut distribution data [ref 6]. Clearly, additional cut data for drums would be useful, particularly for the culvert/drums of the present study. Should these become available, the Cut Model Analysis can be refined.

Despite the above concern about actual cut sizes, it is worthwhile to appreciate various conservatisms imbedded in this analysis. The analysis does not take credit for the fact that present assays use the average of the SWM and NCC values, which tends to be lower than the NCC value alone. Thus, the present predictions will tend to be high since only the NCC values are used. The fact that the excursions for summed cuts are overestimated has already been elaborated upon in the preceding section, which shows that the present analysis is conservative relative to more realistic predictions for log-Normal combinations using the Central Limit Theorem. Finally, the envelope curve for drum excursions is higher than any excursion actually observed.

III. Conservative Cut Model (Method #9)

A combination analysis intermediate to the Refined $13/\sqrt{n}$ Method and the Cut Model Analysis is developed. The Refined $13/\sqrt{n}$ Model is thought to be conservatively high, because neutrons from drums in the lower half of the culvert are shielded by the upper drums. Thus, the averaging effect for all Pu-239 in the culvert may not be witnessed in the measured neutron rates. The Cut Model Analysis is conservative in general, but an individual large cut in a drum is not addressed with this method. Thus, it is wise to allow that this method can give an underestimate for Pu-239. Clearly, a well-chosen analysis yielding predictions intermediate to the above two cases should be more realistic.

For the intermediate analysis, called the Conservative Cut Model, the drum envelope for cuts is increased by x1.5, and the cut model analysis of Section II is repeated, yielding the plot in Figure 4. This analysis agrees with the Refined $13/\sqrt{n}$ Method for the most heavily loaded culverts, where the chance of large cuts is more likely. It agrees better with the Cut Model Analysis for the culverts with lighter loadings, where the probability for large cuts is smaller. As shown in Figure 4, the predictions gradually increase toward the Refined $13/\sqrt{n}$ Method values, as the SWM loadings increase over the culvert range.

The results for the Conservative Cut Model are also plotted in Figure 5, where the predictions are well above the scatter of $(NCC+SWM)/2$ values for the 36 check culverts. Thus, the method should be quite conservative relative to presently accepted $(NCC+SWM)/2$ values in general. Also, the m/p results of the present work indicate that the SWM is more accurate than the $(NCC+SWM)/2$ value on the average, and the Conservative Cut Model is even more conservative relative to SWM predictions. The 0.1% upper limit excursions of the Cut Model (Method #8) are fairly consistent with the check culvert NCC excursions; therefore, the Conservative Cut Model excursion limits should be associated with a probability significantly lower than 0.1%.

FIGURE A-1. Example Drum Inventory Worksheet

FIGURE A-2. Sums of Cuts - NCC vs SWM

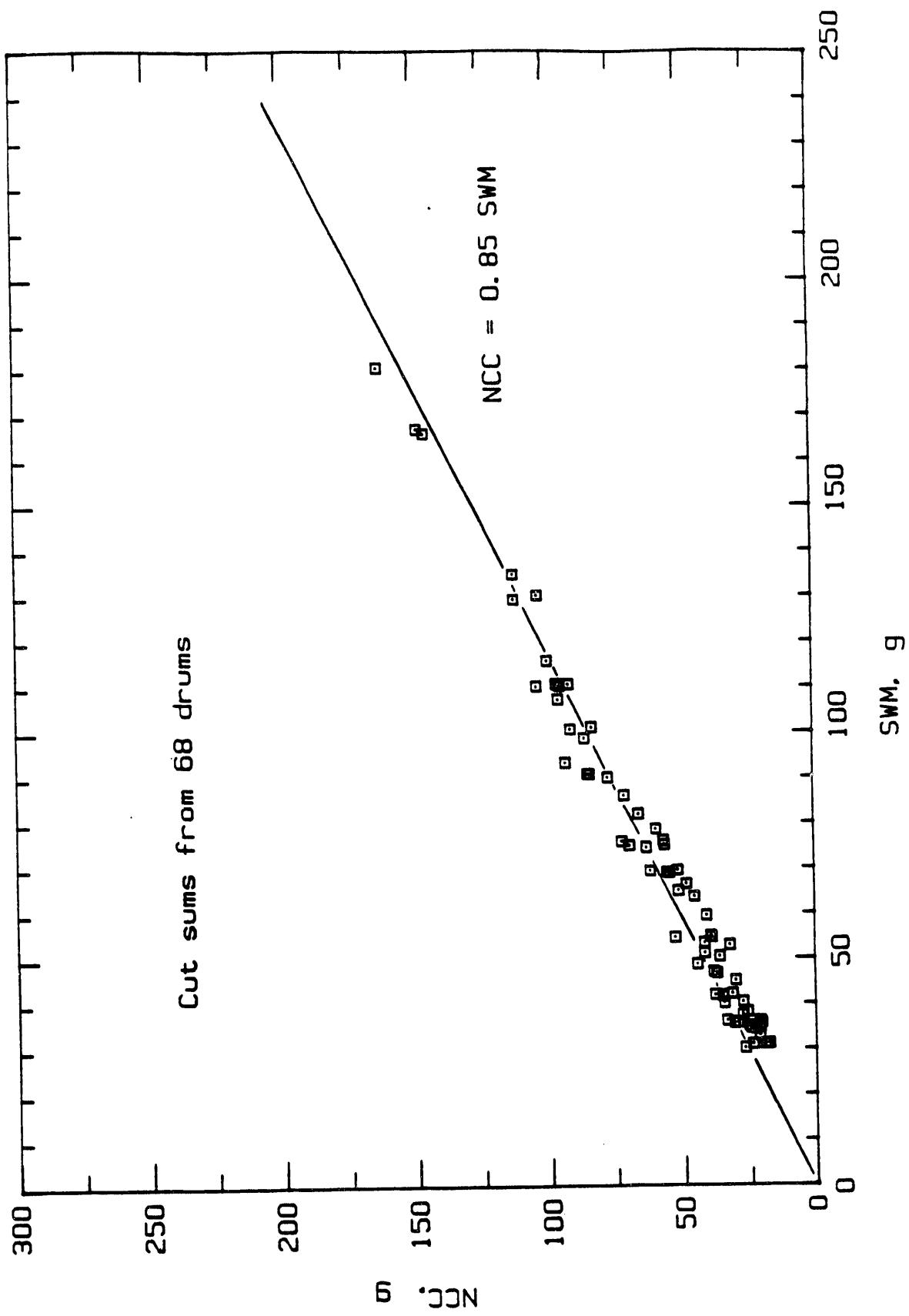
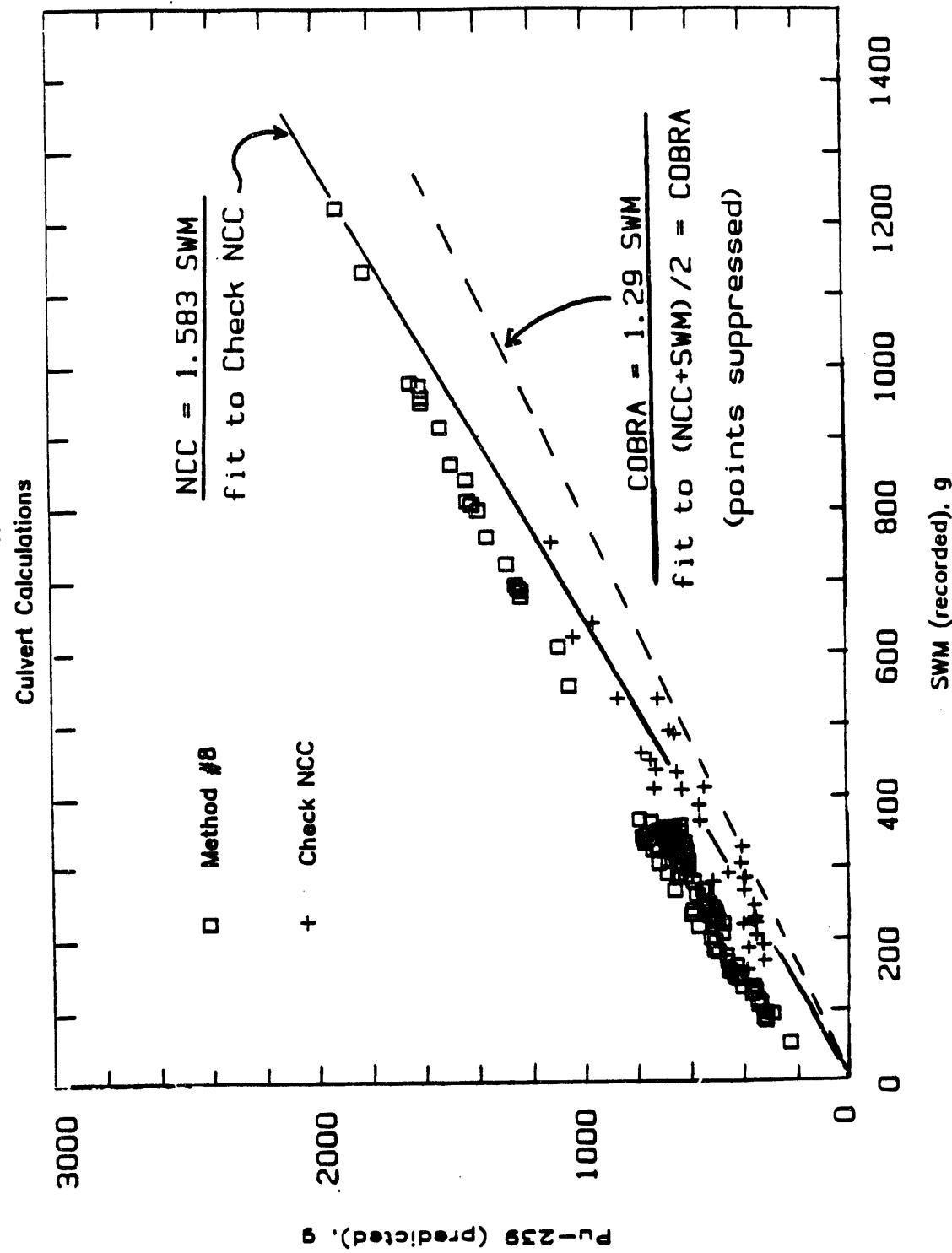



FIGURE A-3. Method #8 vs Check NCC

Appendix B. Comparisons using Better Known Culverts

After 1985, culvert loadings have used values of (NCC+SWM)/2 for Pu inventory in the COBRA files (Ref 5), as these are thought to be better known than the earlier COBRA values, which were based only on SWM measurements. Measurements on 36 culverts inventoried with these later estimates served as a check on the in-the-field measurements program. The results of these check measurements are summarized in Tables B-1 and B-2, and their implications are discussed below. The tables include the raw NCC and COBRA values provided [ref 5]. All check culvert data were transformed to isotopic Pu-239 values for plots in this report, by using the COBRA(isotope) and COBRA(quantity) values of these tables.

Table B-1 includes culverts for which only Pu-239 neutron sources are present. There were 18 of these, and the table illustrates that a representative geometric average of their measured/projected neutron rates m/p is 0.74 ± 0.09 . This average should be 1.00 if the projected rates were accurate; thus, the neutron rates projected by (NCC+SWM)/2 estimates are too large. In order to examine the results for rate projected for SWM estimates, the plot in Figure B-1 was used. Here, NCC is plotted against COBRA = (NCC+SWM)/2 for the check culverts, yielding a least squares fit of $\text{NCC} = 1.2225 \text{ COBRA}$. From this, one can solve for SWM as:

$$\text{SWM} = 2 \text{ COBRA} - \text{NCC} = 2 \text{ COBRA} - 1.2225 \text{ COBRA} = 0.7775 \text{ COBRA}$$

Thus, if the SWM were used instead of the COBRA value, the above average m/p would be divided by 0.7775 to yield 0.95 ± 0.11 , which is in good agreement with 1.00. Thus, on average, the SWM values are more accurate, and the later COBRA values of (NCC+SWM)/2 serve as a conservative overestimate.

Table B-2 summarizes 18 check culverts that include neutron sources from both Pu-238 and Pu-239. The m/p ratios for these culverts are calculated using the $\text{COBRA} = (\text{NCC}+\text{SWM})/2$ values and the ratio of the tabulated Pu-238/Pu-239 is also recorded. Figure B-2 plots the m/p vs Pu-238/Pu-239 and illustrates that as Pu-238/Pu-239 increases, the m/p is increasingly larger than 1.00. Although the correlation has some scatter, the trend is apparent and implies that the Pu-238 waste may contain PuO₂ that has oxygen non-depleted in O-17, which is a prominent target for (α, n)-production of neutrons. (The Pu-238 oxide standards used in calibrations at the Fab Lab were purportedly depleted in O-17). In any event, the trend gives a basis for correcting some of the high m/p values to lower values, yielding better compliance with critical loading limits. The plotted curve of Figure B-2 is given by:

$$m/p = R(\text{COBRA}) = 0.7775 + 0.032 [100 \text{ Pu238/Pu239(COBRA)}]^\alpha$$

where m/p is determined using the Pu239 from COBRA. To transform

to SWM units, the substitutions of $R(SWM) = R(COBRA)/0.7775$ and $Pu239(COBRA) = Pu239(SWM)/0.7775$ are made to yield:

$$R(SWM) = 1.00 + 0.02488 [100 Pu238/Pu239(SWM)]^*$$

The $R(SWM)$ for the 118 suspect culverts used this $R(SWM)$ factor to correct for Pu-238. Specifically, the R was calculated for the recorded Pu-238 and Pu-239 for each culvert and then divided into the corresponding estimate for Method #5, yielding the results in Table 1B.

In the present study, $R(SWM)$ corrected the Pu-239 estimates of Method #5 as follows:

$$\begin{aligned} \text{Pu-239 (Corrected)} &= \text{Pu-239 (Method #5)} / R(SWM), \text{ in general} \\ &= \text{Pu-239 (Method #5)} / 20, \quad R(SWM) > 20 \\ &= 1.29 \text{ Pu-239 (SWM)} \text{ if } > \text{above cases} \end{aligned}$$

Thus, the general formula applies between limits. If $R(SWM) > 20$, then $R(SWM) = 20$ is used to be conservative relative to extrapolated values in Figure B-2. If the correction yields a value less than $COBRA = (NCC+SWM)/2 = 1.29$ SWM, then it is set equal to 1.29 SWM to yield predicted agreement with currently accepted values.

TABLE B-1. Check Culverts with no Pu-238

		----- Pu-239 -----			
Pad	Culvert	Quantity, g		Isotope, g COBRA	m/p COBRA
		NCC	COBRA		
13	565	1202.7	1008.5	933.96	0.763
	567	610.2	504.92	461.60	0.529
	568	668.3	552.36	517.84	1.280
10	570 +	396.4	396.43	372.64	0.462
	571 +	367.7	367.67	318.65	0.417
	582	373.5	295.38	277.66	0.503
	583	408.45	287.21	269.98	1.261
	584	412.5	334.58	294.41	1.424
	585	342.4	261.19	245.51	0.142 *
	586	378.7	311.51	292.82	0.698
	587	405.9	302.14	284.01	0.615
	588	420.79	327.57	307.91	0.747
	589	380.0	321.30	302.02	2.272
	590	417.3	351.05	329.98	0.657
	591	420.0	361.17	339.49	0.415
	592	412.0	358.26	336.77	0.783
	593	350.7	278.78	257.03	0.497
	594	393.3	320.86	287.77	1.027

Analysis of m/p Ratios

Analysis	Geometric Average of Ratios (NCC+SWM)/2	SWM
All values	0.68 ± 0.10	0.88 ± 0.13
All less +	0.72 ± 0.11	0.93 ± 0.15
All less *	0.75 ± 0.09	0.96 ± 0.11
All less +,*	0.80 ± 0.10	1.03 ± 0.13
Representative	0.74 ± 0.09	0.95 ± 0.11

Note: SWM = 0.7775 (NCC+SWM)/2 = 0.7775 COBRA (post-1985)

+ Culvert loaded before 1986, SWM values likely.

* Low value not included in some averages above.

TABLE B-2. Check Culverts with Pu-238
(All culverts on Pad 10)

Culvert	----- Pu-239 -----		-- Pu-238 --		m/p COBRA	
	NCC	Quantity, g COBRA	Isotope, g COBRA	Isotope, g COBRA		
459	735.6	635.646	582.869	4.862	0.83	1.449
562	786.7	613.906	570.745	16.662	2.92	2.015
569	549.9	425.628	395.802	9.141	2.31	0.576
572	796.3	639.701	596.746	2.42	0.41	0.963
573	841.8	736.87	624.490	20.30	3.25	3.095
575	581.7	512.01	476.580	34.20	7.18	0.864
576	443.6	389.979	354.677	22.632	6.38	1.683
577	706.3	616.167	570.295	0.838	0.15	0.169
578	480.1	395.856	371.823	26.356	7.09	0.234
579	695.2	581.338	539.142	0.147	0.03	0.431
580	774.6	621.483	580.392	6.976	1.20	0.396
581	827.7	658.68	619.131	53.42	8.63	7.619
596	589.4	433.12	401.810	83.8	20.86	14.925
597	941.4	761.55	702.020	23.3	3.32	2.008
600	1064.3	887.33	801.582	8.20	1.02	1.136
601	457.7	417.256	363.257	45.673	12.57	7.013
602	598.6	505.215	474.878	49.376	10.40	5.387
604	1127.1	902.12	828.93	8.30	1.00	0.731

Analysis of m/p Ratios

Analysis	Geometric Average of Ratios (NCC+SWM)/2	SWM
All values	1.38 ± 0.40	1.78 ± 0.51

Note: SWM = 0.7775 (NCC+SWM)/2 = 0.7775 COBRA (post-1985)

* Values given as Pu-238/Pu-239 x 100%.

FIGURE B-1. NCC /S (NCC+SWM)/2

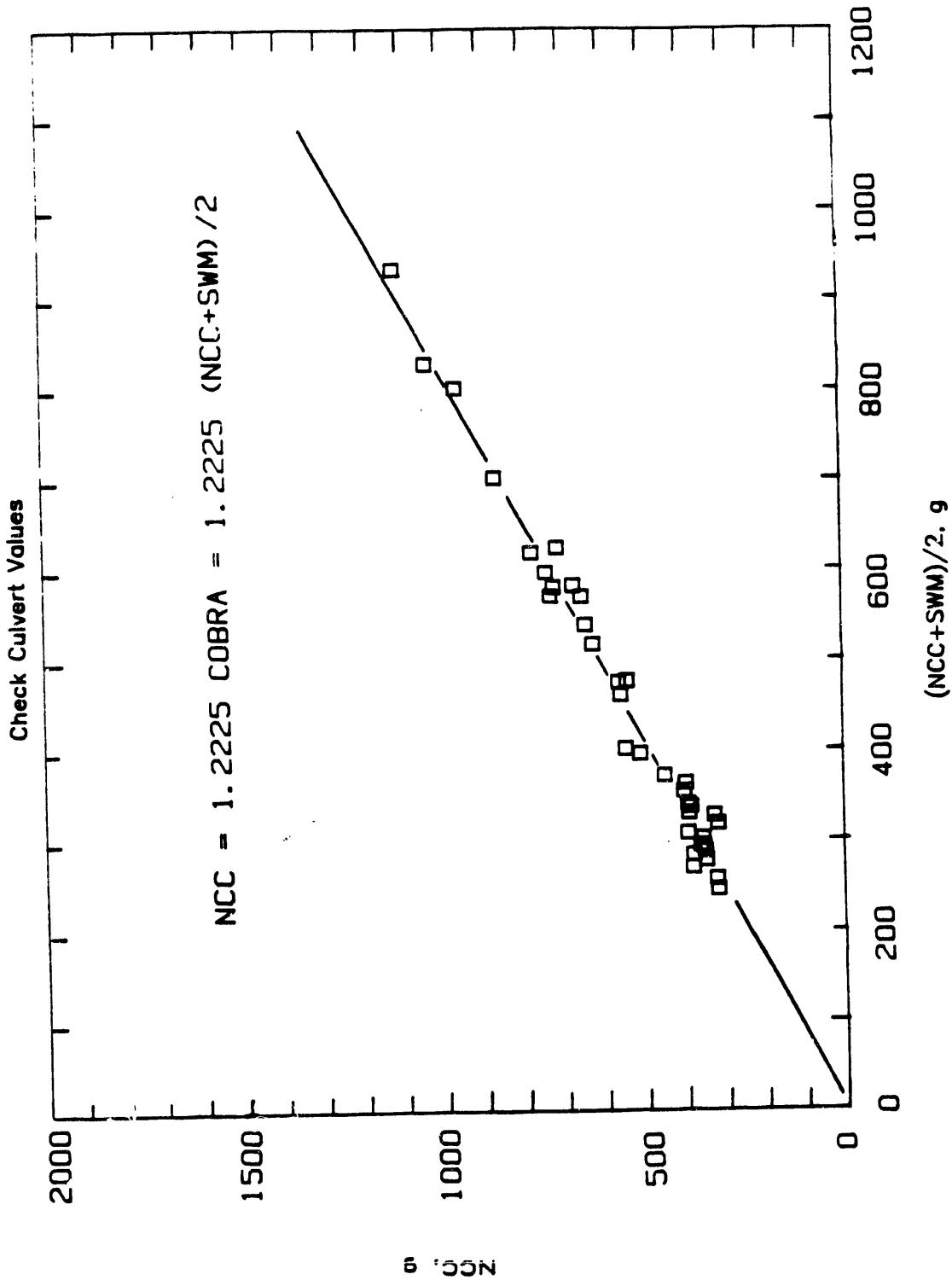
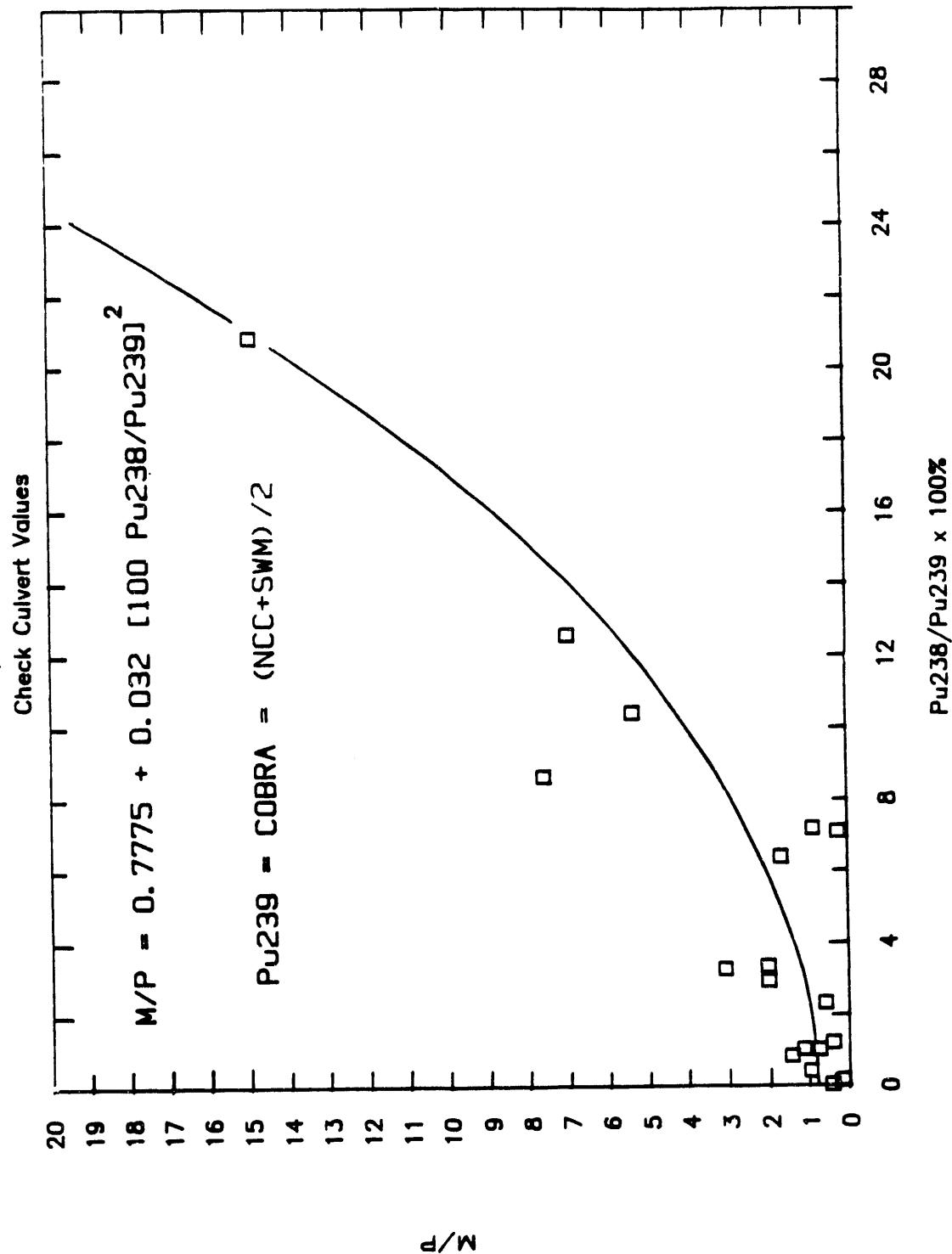



FIGURE B-2. M/P vs Pu238/Pu239

APPENDIX C

Pu-239 Estimates for Each Analysis Method

Table C-1 summarizes the Pu-239 predictions for Method #1 thru Method #9, as defined in the main text. The table format is similar to that of Tables 1 and 2, where the culvert and max drum estimates are monotonically arrayed so that they may be easily appraised against their criticality limits. Table C-2 includes the same data, but here all estimates are ordered according to culvert number.

A summary of the Pu-239 estimation formulae used in the different methods is given below. Some methods yield direct estimates and others are 0.1% upper limit excursions. This distinction is made below and in the tables, to guide proper interpretation by the user. Variables in the formula below are: m/p = measured/projected neutron rates; SWM = solid waste monitor Pu-239, in grams; 3sig factors = E^3 , where E is error factor per log-Normal σ = log(E).

m/p Methods

(1) m/p x Inventory Pu-239

Direct estimate

$$\text{Pu-239} = \text{m/p SWM}$$

(2) m/p x 3Sig x Inventory Pu-239

0.1% upper limit excursion

$$\text{Pu-239} = \text{m/p} (1.46)^3 \text{ SWM} = 3.12 \text{ m/p SWM}$$

(3) m/p(Pu-239) x Inventory Pu-239

Direct method

$$\text{Pu-239} = (1.40/0.989 \text{ m/p}) \text{ SWM} = 1.416 \text{ m/p SWM}$$

(4) m/p(Pu-239) x 3Sig(Pu-239) x Inventory Pu-239

0.1% upper limit excursion

$$\text{Pu-239} = (1.40/0.989 \text{ m/p}) (1.395)^3 \text{ SWM} = 3.84 \text{ m/p SWM}$$

(5) m/p x 3Sig(Pu-239) x Inventory Pu-239 ... Preferred m/p

0.1% upper limit excursion

$$\text{Pu-239} = \text{m/p} (1.395)^3 \text{ SWM} = 2.71 \text{ m/p SWM}$$

Statistical Methods

(6) $13/\sqrt{n} \times$ Inventory

0.1% upper limit excursion

$$\text{Pu-239} = 1.071 (2.298) \quad \frac{3\sqrt{92.8/\text{SWM}}}{\text{SWM}}$$

$\text{SWM} > 92.8$
 $\text{SWM} \leq 92.8$

(7) Refined $13/\sqrt{n} \times$ Inventory

0.1% upper limit excursion

$$\text{Pu-239} = 1.071 (2.298) \quad \frac{3\sqrt{82.3/\text{SWM}}}{\text{SWM}}$$

$\text{SWM} > 82.3$
 $\text{SWM} \leq 82.3$

(8) Cut Model \times Inventory Pu-239

0.1% upper limit excursion

$$\text{Pu-239} = 0.85 \text{ SWM} + \sqrt{\sum \{400[1-\exp(-\text{SWM}_4/57.7)] - 0.85 \text{ SWM}_4\}^2}$$

(9) Conservative Cut Model \times Inventory Pu-239 ... Preferred Statistical Method

0.1% upper limit excursion

$$\text{Pu-239} = 0.85 \text{ SWM} + \sqrt{\sum \{600[1-\exp(-\text{SWM}_4/57.7)] - 0.85 \text{ SWM}_4\}^2}$$

TABLE C-1. P-236 Estimates Ordered by Mass

Method #1 m/p x SWM (direct)

I = entry #, Cul = culvert #, Cul-Pu = g Pu-239, Max-Drum-Pu = g Pu-239

I Cul Cul-Pu Max-Drum-Pu -----

1 498 21 14
2 517 37 59
3 520 39 81
4 185 109 34
5 560 117 17
6 547 146 150
7 541 154 97
8 489 154 57
9 516 167 128
10 374 175 69
11 432 176 38
12 444 181 57
13 475 183 160
14 437 192 114
15 519 195 100
16 502 202 145
17 529 203 149
18 454 207 77
19 453 208 81
20 522 220 161
21 414 223 80
22 458 252 60
23 484 263 125
24 418 264 126
25 533 271 209
26 367 281 165
27 508 285 75
28 591 294 118
29 538 299 211
30 517 300 150
31 354 304 118
32 400 315 124
33 461 331 57
34 557 337 56
35 433 347 89
36 272 347 212
37 559 350 79
38 479 350 98
39 397 361 90
40 426 363 167
41 509 364 67
42 443 366 126
43 524 367 205
44 248 374 64
45 540 425 295
46 506 437 107
47 415 441 124
48 352 443 183
49 401 445 249
50 550 471 238
51 531 481 267
52 415 507 367
53 532 508 75
54 390 514 307
55 506 521 270
56 427 533 156
57 396 549 283
58 546 552 62
59 423 554 127
60 439 556 139
61 413 592 279
62 344 596 75
63 493 613 337
64 553 630 67
65 554 635 76
66 555 635 96
67 551 657 72
68 405 673 237
69 404 675 671
70 395 676 345
71 394 682 339
72 472 690 201
73 393 694 248
74 384 703 365
75 391 738 484
76 501 734 384
77 514 737 389
78 510 743 144
79 549 744 80
80 494 747 532
81 543 747 88
82 545 750 140
83 470 785 190
84 523 787 150
85 402 793 232
86 418 806 184
87 417 832 276
88 490 890 475
89 480 938 194
90 321 949 533
91 503 954 450
92 558 968 124
93 492 977 554
94 526 982 704
95 488 1004 545
96 409 1039 521
97 521 1058 799
98 510 1069 592
99 552 1144 179
100 505 1217 568
101 170 1266 380
102 482 1369 286
103 528 1483 216
104 420 1586 704
105 412 1587 892
106 518 1788 916
107 527 1870 1282
108 513 1870 393
109 456 2095 633
110 515 2262 1182
111 516 2355 1235
112 392 2566 1274
113 332 2946 1370
114 529 3167 1593
115 481 3152 768
116 399 4171 618
117 324 5072
118 507 13600

Method #2 m/p x JSig x SWM 2.1% upper limit

I = entry #, Cul = culvert #, Cul-Pu = g Pu-239, Max-Drum-Pu = g Pu-239

I Cul Cul-Pu Max-Drum-Pu -----

1 498 54 42
2 517 103 215
3 520 110 253
4 185 339 106
5 560 364 42
6 547 457 112
7 541 479 104
8 489 479 210
9 516 521 400
10 374 548 215
11 432 550 117
12 444 564 177
13 475 570 499
14 337 600 157
15 519 609 313
16 502 633 453
17 519 634 465
18 454 644 241
19 453 649 251
20 522 685 503
21 434 727 250
22 458 785 251
23 484 817 190
24 428 825 194
25 513 844 451
26 367 879 516
27 508 890 234
28 491 917 367
29 518 924 658
30 517 936 468
31 354 948 369
32 400 981 386
33 461 1034 177
34 557 1051 174
35 533 1082 278
36 252 1084 663
37 559 1091 247
38 479 1093 306
39 397 1125 280
40 426 1132 520
41 509 1135 308
42 443 1143 388
43 534 1147 639
44 540 1168 201
45 540 1325 920
46 506 1362 334
47 415 1377 387
48 392 1381 572
49 401 1388 778
50 550 1469 743
1 531 1499 834
2 515 1581 1146
3 512 1585 235
4 390 1603 957
5 504 1626 842
6 427 1662 486
7 396 1714 682
8 546 1732 194
9 423 1739 197
10 439 1739 413
11 413 1830 871
12 344 1858 1052
13 493 1913 1052
14 553 1949 208
15 584 1994 236
16 559 2036 301
17 551 2048 224
18 405 2101 739
19 404 2106 2094
20 395 2108 1076
21 394 2126 1059
22 472 2152 628
23 393 2164 1086
24 384 2193 1138
25 391 2274 1510
26 501 2290 1199
27 514 2300 1215
28 510 2319 450
29 549 2321 251
30 494 2331 1660
31 541 2331 274
32 545 2339 415
33 470 2449 591
34 523 2457 468
35 403 2474 725
36 416 2514 575
37 417 2596 861
38 490 2776 1482
39 480 2937 605
40 321 2960 1662
41 503 2977 1403
42 538 3022 387
43 492 3049 1735
44 526 3065 2198
45 488 3133 1700
46 409 3242 1625
47 521 3291 2692
48 530 3335 1849
49 552 3370 560
50 505 3379 1771
51 170 3468 1184
52 482 4271 893
53 528 4628 675
54 420 4949 2198
55 412 4952 1735
56 518 5579 1359
57 527 5814 1938
58 513 5816 1227
59 456 6515 1975
60 515 7056 1486
61 516 7349 1474
62 392 8005 1375
63 332 9197 1475
64 529 9880 1370
65 481 11082 1928
66 399 13015 41-
67 324 15824 2143
68 507 43432 2143

Table 1-1. (Cont'd.)

Method 4: m/p(Pu239) x SWM = direct.

I = entry # / Cul = culvert # / Cul-Pu = g Pu-239 / Max-Drum-Pu = g Pu-239

I Cul Cul-Pu Max-Drum-Pu ----->

1 498	29	19	
2 537	137	98	
3 520	141	115	
4 385	154	48	
5 560	165	19	
6 547	207	142	
7 541	218	138	
8 489	218	95	
9 516	216	182	
10 374	249	98	
11 432	250	51	
12 444	256	80	
13 475	259	226	
14 417	272	162	
15 519	276	142	
16 502	287	206	
17 539	288	211	
18 454	292	109	
19 451	294	115	
20 522	311	228	
21 434	330	111	
22 450	356	114	
23 484	371	177	
24 428	374	179	
25 533	383	295	
26 367	397	234	
27 508	404	106	
28 491	416	167	
29 538	424	298	
30 517	425	213	
31 354	430	167	
32 400	445	175	
33 461	469	80	
34 557	477	79	
35 433	491	126	
36 272	492	101	
37 559	495	112	
38 479	496	139	
39 397	511	127	
40 426	514	236	
41 509	515	94	
42 443	519	176	
43 524	520	290	
44 548	530	91	
45 540	601	417	
46 506	618	152	
47 415	625	175	
48 352	627	260	
49 401	630	353	
50 550	667	137	
51 531	681	378	
52 535	717	520	
53 532	719	107	
54 390	727	435	
55 504	738	382	
56 427	754	221	
57 396	778	400	
58 546	781	88	
59 423	785	180	
60 439	787	197	
61 413	800	195	
62 544	843	106	
63 493	868	478	
64 553	892	94	
65 554	905	107	
66 555	924	116	
67 551	930	102	
68 405	953	315	
69 404	956	950	
70 395	957	488	
71 194	965	481	
72 472	977	285	
73 193	982	493	
74 384	985	516	
75 391	1023	685	
76 501	1039	544	
77 514	1044	551	
78 510	1052	204	
79 549	1053	114	
80 494	1058	754	
81 543	1058	124	
82 545	1061	198	
83 470	1112	268	
84 523	1115	213	
85 402	1123	329	
86 418	1141	261	
87 417	1178	391	
88 490	1260	672	
89 480	1328	274	
90 321	1343	754	
91 503	1351	637	
92 558	1371	176	
93 492	1384	788	
94 526	1391	997	
95 488	1422	771	
96 409	1471	738	
97 521	1494	1131	
98 530	1514	839	
99 551	1620	254	
100 505	1723	804	
101 370	1792	517	
102 482	1938	405	
103 528	2099	306	
104 420	2246	997	
105 412	2247	1264	
106 518	2532	1297	
107 527	2648	1815	
108 513	2649	557	
109 456	2966	896	
110 515	3202	1673	
111 516	3335	1748	
112 392	3633	1804	
113 332	4 74	1940	
114 529	4 84	2295	
115 481	5029	1088	
116 399	5907	875	
117 324	7182	3728	
118 507	19258	9747	

Method 4: m/p(Pu239) x SWM = 0.1 upper limit

I = entry # / Cul = culvert # / Cul-Pu = g Pu-239 / Max-Drum-Pu = g Pu-239

I Cul Cul-Pu Max-Drum-Pu ----->

1 498	79	53	
2 537	172	265	
3 520	181	311	
4 385	416	130	
5 560	447	52	
6 547	562	184	
7 541	590	374	
8 489	590	298	
9 516	641	492	
10 374	673	265	
11 432	677	144	
12 444	694	218	
13 475	701	614	
14 417	738	439	
15 519	749	385	
16 502	779	557	
17 539	780	572	
18 454	792	296	
19 453	798	311	
20 522	842	618	
21 434	894	307	
22 450	966	308	
23 484	1005	479	
24 428	1014	484	
25 533	1038	800	
26 367	1076	635	
27 508	1094	287	
28 491	1128	452	
29 518	1149	809	
30 517	1152	576	
31 354	1166	454	
32 400	1207	474	
33 461	1272	217	
34 557	1293	314	
35 433	1310	342	
36 272	1333	819	
37 559	1341	304	
38 479	1344	176	
39 397	1384	346	
40 426	1392	639	
41 509	1395	256	
42 443	1406	477	
43 534	1410	785	
44 348	1437	247	
45 540	1629	1131	
46 506	1675	411	
47 415	1694	475	
48 392	1698	704	
49 401	1707	957	
50 530	1807	914	
51 531	1844	1026	
52 535	1944	1409	
53 532	1950	289	
54 390	1971	1178	
55 504	2000	1035	
56 427	2044	598	
57 396	2108	1084	
58 546	2117	239	
59 423	2127	488	
60 439	2134	533	
61 513	2276	1071	
62 544	2285	287	
63 493	2353	1294	
64 533	2417	2042	
65 534	2452	291	
66 535	2504	370	
67 551	2519	275	
68 405	2583	909	
69 404	2590	2576	
70 395	2593	1324	
71 384	2615	1302	
72 472	2647	772	
73 393	2661	1336	
74 384	2697	1400	
75 391	2797	1857	
76 501	2816	1474	
77 514	2829	1494	
78 510	2852	593	
79 549	2855	308	
80 494	2867	1059	
81 543	2867	337	
82 545	2877	536	
83 470	3012	727	
84 523	3021	576	
85 403	3042	892	
86 418	3093	708	
87 417	3193	1822	
88 490	3414	2045	
89 480	3600	744	
90 321	3641	1726	
91 503	3662	2134	
92 538	3716	2701	
93 492	3750	2134	
94 526	3770	4748	
95 488	3854	2090	
96 409	3987	1999	
97 521	4047	1065	
98 530	4102	2274	
99 552	4390	689	
100 505	4670	2178	
101 370	4856	1456	
102 482	5253	1098	
103 528	5689	830	
104 420	6086	2721	
105 412	6091	1425	
106 518	6861	1114	
107 527	7175	4713	
108 513	7178	1509	
109 456	8038	2429	
110 515	8678	4748	
111 516	9018	4748	
112 392	9845	1370	
113 332	11313	5257	
114 529	12151	6112	
115 481	13630	3748	
116 399	14077	2371	
117 324	14942	1112	
118 507	15419	19419	

Method #5 m/p x J3,j,Pu239) x SWM = 0.1% upper limit)

I = entry # / Cul = culvert # / Cul-Pu = q Pu-239 / Max-Drum-Pu = q Pu-239

I Cul Cul-Pu Max-Drum-Pu -----

1 498	56	37	
2 537	263	187	
3 520	269	220	
4 185	294	92	
5 560	316	37	
6 547	397	271	
7 541	416	264	
8 489	416	182	
9 536	452	147	
10 374	476	187	
11 432	478	102	
12 444	490	154	
13 475	495	433	
14 437	521	310	
15 519	529	272	
16 502	550	193	
17 539	551	404	
18 454	560	209	
19 453	563	219	
20 522	595	437	
21 434	631	217	
22 458	682	218	
23 484	709	338	
24 428	716	142	
25 533	733	565	
26 167	760	448	
27 508	773	203	
28 491	796	319	
29 538	811	571	
30 517	813	407	
31 354	823	320	
32 400	852	335	
33 461	898	154	
34 557	913	151	
35 433	940	242	
36 272	942	576	
37 559	947	214	
38 479	949	266	
39 397	977	243	
40 426	983	451	
41 509	986	181	
42 443	993	317	
43 534	996	559	
44 548	1015	174	
45 540	1151	799	
46 506	1183	290	
47 415	1196	336	
48 352	1199	497	
49 401	1206	676	
50 550	1276	646	
51 531	1302	724	
52 535	1373	995	
53 532	1377	204	
54 390	1392	832	
55 504	1413	731	
56 427	1444	422	
57 395	1489	766	
58 546	1495	169	
59 423	1502	145	
60 439	1507	176	
61 413	1607	756	
62 544	1614	203	
63 493	1662	914	
64 553	1707	180	
65 594	1732	205	
66 595	1769	261	
67 551	1779	194	
68 405	1824	642	
69 404	1829		1819
70 395	1831	935	
71 394	1847	920	
72 472	1870	545	
73 393	1879	944	
74 384	1905	988	
75 391	1975	1311	
76 501	1989	1041	
77 514	1998	1058	
78 510	2014	191	
79 549	2016	218	
80 494	2025		1442
81 543	2025	238	
82 545	2021	378	
83 470	2127	514	
84 523	2134	407	
85 402	2149	630	
86 418	2184	500	
87 417	2259	748	
88 490	2411		1287
89 480	2542	525	
90 321	2571		1444
91 503	2586		1219
92 558	2625	336	
93 493	2648		1507
94 526	2662		1909
95 488	2723		1476
96 409	2816		1412
97 521	2858		2165
98 530	2897		1606
99 552	3101	486	
100 505	3298		1538
101 370	3410		1029
102 482	3710		775
103 528	4018	586	
104 420	4298		1909
105 412	4301		2419
106 518	4846		105 557
107 527	5067		2483
108 513	5069	1066	
109 456	5676		1473
110 515	6129		109 555
111 516	6383		109 544
112 392	6953		2003
113 332	7989		1202
114 529	8581		111 543
115 481	9626		1341
116 399	11304		1453
117 324	13744		112 532
118 507	16897		2117

Method #6 13/R SWM = 0.1% upper limit.

I = entry # / Cul = culvert # / Cul-Pu = q Pu-239 / Max-Drum-Pu = q Pu-239

I Cul Cul-Pu Max-Drum-Pu -----

1 498	694	459
2 401	1102	618
3 405	1144	663
4 402	1144	559
5 385	1144	578
6 427	1145	576
7 433	1145	513
8 412	1145	1129
9 404	1146	1147
10 502	1146	1202
11 400	1147	825
12 550	1148	581
13 444	1149	516
14 367	1150	1188
15 428	1152	758
16 432	1154	485
17 354	1158	915
18 409	1159	1191
19 417	1161	797
20 458	1162	469
21 426	1166	652
22 384	1169	1183
23 423	1173	596
24 475	1173	1206
25 437	1179	1152
26 370	1188	842
27 520	1192	1157
28 537	1195	1146
29 531	1197	1153
30 424	1199	424
31 529	1201	1150
32 374	1203	479
33 525	1203	
34 547	1204	1160
35 536	1204	1156
36 540	1204	1147
37 415	1206	852
38 538	1209	1149
39 494	1212	1151
40 439	1213	778
41 521	1216	1160
42 526	1220	1155
43 522	1222	1158
44 541	1238	1149
45 527	1246	1160
46 508	1246	913
47 391	1249	1157
48 514	1261	1145
49 413	1270	1145
50 323	1272	1146
51 387	1277	942
52 272	1286	1159
53 390	1287	1157
54 461	1298	640
55 492	1299	1155
56 420	1300	1145
57 531	1306	1154
58 530	1312	1155
59 518	1314	1148
60 503	1317	1145
61 529	1317	1148
62 484	1318	1145
63 454	1319	1153
64 321	1320	1150
65 472	1320	1200
66 515	1322	1151
67 504	1326	1151
68 352	1327	1145
69 488	1328	1157
70 394	1329	1149
71 516	1332	1154
72 514	1333	1155
73 490	1333	1156
74 470	1335	1051
75 519	1335	1153
76 517	1335	1150
77 509	1341	808
78 324	1341	1155
79 418	1342	1012
80 493	1342	1162
81 483	1343	927
82 399	1344	659
83 481	1346	926
84 480	1347	923
85 456	1348	1177
86 479	1349	1194
87 501	1351	1158
88 491	1355	1144
89 392	1356	1157
90 433	1357	1154
91 443	1359	1155
92 507	1362	1157
93 505	1363	1149
94 489	1363	1146
95 393	1364	1156
96 395	1367	1157
97 453	1374	1144
98 560	1380	553
99 559	1348	1150
100 506	1727	
101 545	1828	
102 523	1839	
103 513	1844	
104 510	1852	
105 557	1893	
106 558	1947	
107 552	2003	
108 555	2013	
109 544	2021	
110 548	2064	
111 543	2094	
112 532	2168	
113 546	2217	
114 554	2227	
115 528	2251	
116 553	2257	
117 551	2478	
118 549	2603	

Method #7 Refined 13/sqrt(SHM) 0.1% upper limit)

I = entry # / Cul = culvert # / Cul-Pu = g Pu-239 / Max-Drum-Pu = ; Pu-239

I Cul Cul-Pu Max-Drum-Pu ----->

1 498	594	459
2 444	1015	516
3 502	1015	1040
4 424	1015	1015
5 428	1015	758
6 385	1017	578
7 405	1018	563
8 458	1019	469
9 402	1019	559
10 426	1021	552
11 427	1021	576
12 433	1022	513
13 412	1023	1056
14 475	1024	1043
15 400	1028	825
16 167	1032	1032
17 432	1038	485
18 414	1039	424
19 374	1041	479
20 354	1043	915
21 409	1045	1045
22 417	1047	797
23 550	1051	581
24 384	1057	1029
25 423	1062	596
26 401	1062	618
27 437	1069	1015
28 370	1080	842
29 520	1084	1042
30 537	1088	1026
31 533	1091	1037
32 539	1095	1032
33 535	1097	1033
34 547	1098	1025
35 536	1098	1041
36 540	1098	1027
37 415	1101	852
38 538	1104	1031
39 494	1107	1034
40 439	1108	778
41 521	1111	1045
42 526	1115	1039
43 522	1118	1044
44 541	1115	1030
45 527	1144	1046
46 508	1144	913
47 391	1147	1042
48 534	1159	1024
49 413	1169	1015
50 332	1172	1015
51 397	1176	942
52 272	1186	1045
53 390	1190	1043
54 461	1196	680
55 492	1200	1039
56 420	1201	1016
57 531	1207	1038
58 530	1213	1039
59 518	1215	1029
60 503	1218	1021
61 529	1218	1028
62 484	1219	1023
63 494	1220	1015
64 321	1221	1044
65 472	1222	1039
66 515	1223	1034
67 504	1227	1036
68 352	1228	1015
69 488	1229	1042
70 394	1230	1030
71 516	1234	1038
72 514	1235	1039
73 490	1235	1061
74 470	1236	1051
75 519	1237	1036
76 517	1237	1032
77 509	1242	808
78 324	1243	1039
79 418	1243	1012
80 493	1244	1049
81 482	1245	927
82 399	1246	659
83 481	1248	966
84 480	1249	923
85 456	1250	1026
86 479	1251	1026
87 501	1253	1044
88 491	1257	1016
89 396	1258	1043
90 392	1259	1038
91 443	1261	1016
92 507	1265	1042
93 505	1265	1031
94 489	1266	1024
95 393	1266	1041
96 395	1270	1045
97 433	1277	1017
98 560	1283	553
99 559	1553	1015
100 506	1631	1020
101 545	1732	1015
102 523	1743	1015
103 513	1748	1018
104 510	1756	1015
105 557	1797	1016
106 558	1851	1035
107 552	1805	1015
108 555	1916	1016
109 544	1924	1028
110 540	1967	1018
111 543	1996	1020
112 532	2070	1013
113 546	2119	1023
114 554	2129	1018
115 528	2152	1017
116 553	2158	1027
117 551	2376	1015
118 549	2501	1015

Method #8 Cut Model x SHM 0.1% upper limit:

I = entry # / Cul = culvert # / Cul-Pu = g Pu-239 / Max-Drum-Pu = ; Pu-239

I Cul Cul-Pu Max-Drum-Pu ----->

1 498	225	183
2 374	291	189
3 424	313	173
4 401	316	225
5 350	324	216
6 426	335	232
7 475	342	320
8 458	345	186
9 444	354	199
10 404	360	159
11 428	366	254
12 502	402	122
13 385	417	215
14 427	423	214
15 400	424	267
16 405	428	235
17 402	434	210
18 433	447	198
19 413	455	111
20 367	460	128
21 422	461	190
22 520	472	382
23 437	476	352
24 354	492	282
25 533	495	380
26 536	500	382
27 494	503	179
28 384	504	331
29 409	505	118
30 515	506	178
31 417	510	262
32 539	510	178
33 537	511	174
34 521	513	183
35 423	520	219
36 540	524	175
37 547	525	174
38 530	525	378
39 522	525	383
40 526	530	381
41 391	538	182
42 527	549	383
43 370	566	270
44 541	574	177
45 534	583	173
46 439	588	258
47 415	594	271
48 492	603	181
49 272	603	183
50 518	611	177
51 529	612	176
52 530	612	181
53 413	617	161
54 515	617	179
55 321	617	183
56 516	617	181
57 514	618	181
58 390	624	382
59 395	632	383
60 396	632	382
61 488	639	182
62 332	643	161
63 531	647	181
64 394	652	177
65 517	653	178
66 508	654	283
67 393	658	383
68 303	659	371
69 392	660	381
70 490	661	382
71 519	663	380
72 504	667	379
73 493	671	384
74 489	671	373
75 484	673	372
76 420	677	363
77 397	683	286
78 324	689	381
79 505	690	377
80 501	691	383
81 507	694	382
82 461	713	239
83 454	715	381
84 443	715	150
85 352	718	162
86 491	731	385
87 472	735	322
88 453	744	386
89 456	750	334
90 509	757	384
91 479	762	325
92 399	764	234
93 470	767	301
94 480	768	283
95 418	770	296
96 482	773	284
97 481	778	290
98 560	785	209
99 559	1048	354
100 506	1088	370
101 523	1228	358
102 545	1229	355
103 513	1239	367
104 510	1248	361
105 557	1281	350
106 558	1354	326
107 552	1385	354
108 555	1410	349
109 544	1425	312
110 548	1428	367
111 541	1486	331
112 531	1524	362
113 520	1570	344
114 546	1588	337
115 528	1604	366
116 553	1636	333
117 551	1812	333
118 549	1911	359

Table C-1... (Continued)

Method #9 Conservative Culvert x SWM 0.18 upper limit:

I = entry # Cul = culvert # Cul-Pu = q Pu-239 Max-Drum-Pu = q Pu-239

I Cul Cul-Pu Max-Drum-Pu ----->

1 498	131	275	
2 374	415	283	
3 434	450	259	
4 401	463	337	
5 550	474	123	
6 426	480	149	
7 458	492	279	
8 444	499	299	
9 475	507		480
10 428	525	382	
11 404	539		510
12 502	589		483
13 385	591	122	
14 400	597		400
15 427	599	122	
16 405	612	352	
17 402	620	315	
18 433	637	297	
19 412	645	286	
20 412	661		467
21 367	664		492
22 437	677		528
23 520	687		573
24 354	699		423
25 533	717		570
26 384	719		497
27 494	722		568
28 417	724		393
29 536	725		572
30 409	727		477
31 423	728	329	
32 535	729		567
33 539	738		567
34 517	741		561
35 521	742		575
36 547	753		561
37 540	758		563
38 522	759		574
39 530	759		566
40 391	762		573
41 526	765		572
42 527	782		575
43 370	802		405
44 439	819	387	
45 541	819		566
46 515	825		407
47 514	840		324
48 272	850		575
49 530	852		572
50 321	857		574
51 492	863		571
52 413	871		542
53 518	876		565
54 529	878		564
55 515	879		569
56 390	881		574
57 516	884		571
58 514	885		572
59 396	901		574
60 395	901		575
61 517	904		567
62 488	906		573
63 332	912		541
64 531	918		571
65 490	919		573
66 508	919		422
67 394	925		565
68 489	927		560
69 393	931		573
70 392	933		571
71 493	935		577
72 503	936		557
73 519	939		570
74 484	940		558
75 504	945		568
76 420	949		545
77 397	955		429
78 505	957		566
79 326	961		572
80 501	963		574
81 507	970		573
82 461	988	357	
83 443	993		524
84 491	995		547
85 454	995		526
86 352	1001		344
87 473	1022		484
88 453	1029		548
89 509	1044		396
90 456	1044		501
91 389	1048	351	
92 479	1059		488
93 480	1063		425
94 560	1066	313	
95 418	1068		444
96 462	1072		426
97 470	1073		452
98 481	1078		434
99 559	1414		532
100 506	1472		555
101 523	1645		518
102 545	1649		533
103 513	1657		551
104 510	1670		542
105 557	1705		524
106 558	1801		489
107 552	1841		531
108 555	1874		524
109 544	1890		497
110 548	1891		531
111 543	1967		496
112 532	2014		543
113 554	2102		516
114 546	2105		506
115 528	2113		549
116 553	2154		500
117 551	2168		530
118 549	2408		539

TABLE C-2. Pu-239 Estimates Ordered by Culvert/ Methods #1, #2

Culvert Pad	Recorded Mass	Method #1				Method #2			
		a/p x SWM			a/p < 3Sig x SWM				
		Culvert	Max Drum	Meas/Proj	Culvert	Max Drum	Culvert	Max Drum	
#	#	#	#	#	#	#	#	#	#
272	13	299.027	182.810	1.162	347.469	212.425	1084.104	662.767	
321	10	323.805	181.850	2.930	948.749	532.821	2960.096	1662.400	
324	13	339.472	176.200	14.940	5071.712	2632.428	15823.740	8213.175	
332	13	288.188	133.940	10.229	2947.875	1370.072	9197.370	4274.625	
352	6	329.263	136.420	1.344	442.529	183.348	1380.692	572.047	
354	6	180.841	70.360	1.680	303.813	118.205	947.896	368.799	
367	6	167.871	99.010	1.671	280.512	165.446	875.199	516.191	
370	6	216.070	64.800	3.857	1265.522	379.534	3948.429	1184.145	
374	6	93.848	36.880	1.870	175.496	68.966	547.547	215.173	
384	6	195.460	101.420	3.596	702.874	364.706	2192.967	1137.884	
385	6	142.240	44.460	0.763	108.529	33.923	338.611	105.840	
390	6	301.462	180.100	1.704	513.691	306.890	1602.717	957.498	
391	6	269.640	179.010	2.703	728.837	483.864	2273.971	1509.656	
392	6	351.124	174.380	7.307	2565.663	1274.195	8004.869	3975.487	
393	6	356.008	178.760	1.948	693.504	348.224	2163.731	1086.460	
394	6	330.690	164.650	2.061	681.552	339.344	2126.443	1058.752	
395	6	358.680	183.100	1.884	675.753	344.960	2108.350	1076.276	
396	6	350.357	180.210	1.568	549.360	282.569	1714.003	881.616	
397	6	291.585	72.480	1.237	360.691	89.458	1125.355	279.732	
399	6	342.056	50.670	12.195	4171.373	617.921	13014.684	1927.912	
400	6	161.460	63.460	1.948	314.524	123.620	981.315	385.695	
401	6	84.780	47.540	5.248	444.925	249.490	1388.167	778.409	
402	6	146.709	43.020	5.404	792.815	232.480	2473.584	725.338	
404	6	131.873	131.150	5.118	674.926	671.226	2105.769	2094.224	
405	6	144.970	50.990	4.644	673.241	236.798	2100.511	738.808	
409	6	182.690	91.590	5.687	1038.958	520.872	3241.549	1625.122	
412	6	154.470	86.860	10.275	1587.179	892.487	4951.999	2784.558	
413	6	286.100	134.610	2.073	593.085	279.047	1850.426	870.625	
415	6	233.380	65.510	1.891	441.322	123.879	1376.923	386.504	
417	6	184.890	61.320	4.500	832.005	273.940	2595.856	860.933	
418	6	340.000	77.820	2.370	805.800	184.433	2514.096	575.432	
420	6	309.360	137.390	5.127	1586.089	704.399	4948.597	2197.723	
423	6	199.780	45.830	2.774	554.190	127.132	1729.072	396.653	
426	6	109.327	50.190	3.319	362.856	166.581	1132.112	519.732	
427	13	151.346	44.290	3.520	532.738	155.901	1662.142	486.410	
428	13	122.034	58.290	2.164	264.326	126.256	824.696	393.919	
432	13	175.290	37.290	1.006	176.342	37.514	550.186	117.043	
433	13	153.204	39.430	2.263	346.701	89.230	1081.706	278.398	
434	13	94.980	32.600	2.453	232.986	79.968	726.916	249.500	
437	13	206.270	122.620	0.932	192.244	114.282	599.800	336.539	
439	13	239.610	59.840	2.321	556.135	138.889	1735.141	433.333	
443	13	352.340	119.450	1.040	366.434	124.228	1143.273	387.591	
444	13	126.380	39.710	1.431	180.850	56.825	564.251	177.294	
453	13	363.432	141.570	0.572	207.883	80.978	648.595	232.651	
454	13	323.667	120.880	0.638	206.500	77.121	644.279	240.619	
456	13	344.396	104.080	6.082	2094.616	633.015	6535.203	1975.005	
458	13	113.037	36.090	2.226	251.620	80.336	785.056	250.649	
461	13	305.770	52.270	1.084	331.453	56.661	1034.139	176.781	

TABLE C-2. Pu-239 Estimates Ordered by Culvert/ Methods #1,#2

Culvert Pad #	Recorded Mass Culvert	Method #1			Method #2			
		a/p x SWM		Culvert	Max Drum	a/p x 3Sig x SWM		
		#	g			#	g	
470	13	334.901	80.860	2.344	785.008	189.536	2449.225	591.352
472	13	324.490	94.620	2.126	689.866	201.162	2152.381	627.626
475	13	105.977	92.740	1.724	182.704	159.884	570.038	498.837
479	13	345.430	96.750	1.014	350.266	98.105	1092.830	306.086
480	13	343.640	70.990	2.730	938.137	193.803	2926.988	604.664
481	13	343.477	74.280	10.341	3551.896	768.129	11081.914	2396.564
482	13	341.354	71.346	4.010	1368.830	286.097	4270.748	892.624
484	13	322.785	154.000	0.811	261.779	124.894	816.749	389.669
488	13	329.822	178.900	3.045	1004.308	544.751	3133.441	1699.622
489	13	355.619	155.860	0.432	153.627	67.332	479.318	210.074
490	13	333.991	178.260	2.664	889.752	474.885	2776.026	1481.640
491	13	349.800	140.180	0.840	293.832	117.751	916.756	367.384
492	10	308.824	175.780	3.164	977.119	556.168	3048.612	1735.244
493	13	340.105	187.040	1.803	613.209	337.233	1913.213	1052.167
494	13	238.244	169.690	3.136	747.133	532.148	2331.056	1660.301
498	13	53.400	35.300	0.385	20.359	13.590	64.144	42.402
501	10	346.830	181.540	2.116	733.892	384.139	2289.744	1198.513
502	13	131.580	94.130	1.542	202.896	145.148	633.037	452.863
503	10	321.610	151.570	2.967	954.217	449.708	2977.157	1403.090
504	10	328.440	169.960	1.587	521.234	269.727	1626.251	841.547
505	13	355.340	165.750	3.425	1217.039	567.694	3797.163	1771.205
506	10	608.096	149.180	0.718	436.613	107.111	1362.232	334.187
507	13	355.056	179.710	38.305	13600.420	6883.792	42433.311	21477.430
508	13	267.526	70.240	1.066	285.183	74.876	889.770	233.613
509	13	339.232	62.190	1.072	363.657	66.668	1134.609	208.003
510	13	694.000	134.590	1.071	743.274	144.146	2319.015	649.735
513	13	688.950	144.820	2.715	1870.499	393.186	5035.958	1226.741
514	10	333.900	176.300	2.208	737.251	389.270	2300.224	1214.524
515	10	325.730	170.180	6.943	2261.543	1181.560	7056.015	3686.466
516	10	333.290	174.700	7.067	2355.360	1234.605	7348.723	3831.967
517	13	335.320	167.710	0.895	300.111	150.100	936.348	468.313
518	10	320.040	163.990	3.587	1788.063	916.212	5578.758	2838.582
519	13	335.320	172.310	0.582	195.156	100.284	608.887	312.887
520	13	219.900	179.270	0.452	99.395	81.030	310.112	252.814
521	13	241.970	183.260	4.359	1054.747	798.830	3290.811	2492.351
522	10	247.510	181.610	0.887	219.541	161.088	684.969	502.595
523	10	685.250	130.660	1.149	787.352	150.128	2456.539	468.400
526	13	245.400	175.980	4.003	982.336	704.448	3064.889	2197.878
527	13	267.410	183.290	6.992	1869.731	1281.564	5833.560	3998.479
528	10	972.150	141.810	1.523	1482.529	216.260	4625.490	674.732
529	13	322.100	162.020	9.831	3166.563	1592.819	9879.683	4969.594
530	13	318.510	176.540	3.356	1068.920	592.468	3335.029	1848.501
531	13	313.710	174.470	1.532	480.604	267.288	1499.484	833.939
532	13	913.870	135.450	0.556	508.112	75.310	1583.309	234.968
533	13	225.070	173.530	1.202	270.534	208.583	844.067	650.779
534	10	279.040	155.390	1.317	367.496	204.649	1146.587	638.504
535	13	230.510	167.090	2.198	506.661	367.264	1580.782	1145.863
536	13	231.510	177.780	0.721	166.919	128.179	520.786	399.920

TABLE C-2. Pu-239 Estimates Ordered by Culvert/ Methods #1, #2

Culvert Pad #	Culvert #	Recorded Mass			Method #1 a/p x SWM		Method #2 a/p x 3Sig x SWM	
		Culvert	Max Drum	Meas/Proj	Culvert	Max Drum	Culvert	Max Drum
		g	g	#	g	g	g	g
537	13	222.630	158.400	0.436	97.067	69.062	302.848	215.475
538	13	235.960	166.080	1.269	299.433	210.756	934.232	657.557
539	13	228.490	167.570	0.890	203.356	149.137	634.471	465.308
540	13	231.650	160.810	1.833	424.614	294.765	1324.797	919.666
541	13	260.820	165.420	0.589	153.623	97.432	479.304	303.989
543	13	861.775	101.150	0.867	747.159	87.697	2331.136	273.615
544	10	811.310	101.910	0.734	595.502	74.802	1857.965	233.382
545	10	677.780	126.200	1.106	749.625	139.577	2338.829	435.481
546	13	948.097	106.970	0.582	551.792	62.257	1721.592	194.240
547	13	231.350	157.900	0.633	146.445	99.951	456.907	311.846
548	13	841.400	144.570	0.445	374.423	64.334	1168.200	200.721
549	13	1221.550	131.950	0.609	743.924	80.358	2321.043	250.716
550	13	88.345	44.697	5.330	470.879	238.235	1469.142	743.293
551	13	1131.993	123.600	0.580	656.556	71.688	2048.455	223.667
552	13	797.840	125.150	1.434	1144.103	179.465	3569.600	559.931
553	13	976.340	103.120	0.645	629.739	66.512	1964.787	207.519
554	13	955.320	113.250	0.669	639.109	75.764	1994.020	236.384
555	13	805.730	118.920	0.810	652.641	96.325	2036.241	300.535
557	13	722.698	119.570	0.466	336.777	55.720	1050.745	173.845
558	10	760.166	97.350	1.274	968.451	124.024	3021.569	386.955
559	13	554.018	125.390	0.631	349.585	79.121	1090.706	246.858
560	13	367.785	42.510	0.317	116.588	13.476	363.754	42.044

TABLE C-2. Pu-239 Estimates Ordered by Culvert/ Methods #3, #4

Culvert Pad	#	Recorded Mass			Method #3		Method #4	
		Culvert	Max Drum	Meas/Proj	a/p(Pu239) x SWM		a/p(Pu239) x 3Sig(Pu239) x SW	
					Culvert	Max Drum	Culvert	Max Drum
		#	#	#	#	#	#	#
272	13	299.027	182.810	1.162	492.017	300.794	1333.365	815.152
321	10	323.805	181.850	2.930	1343.428	754.474	3640.690	2044.624
324	13	339.472	176.200	14.940	7181.544	3727.518	19461.984	10101.574
332	13	288.188	133.940	10.229	4174.191	1940.022	11312.058	5257.460
352	6	329.263	136.420	1.344	626.622	259.621	1698.143	703.574
354	6	180.841	70.360	1.680	430.199	167.378	1165.839	453.594
367	6	167.871	99.010	1.671	397.206	234.271	1076.427	634.875
370	6	216.070	64.800	5.857	1791.979	537.420	4836.263	1456.407
374	6	93.848	36.880	1.870	268.502	97.655	673.440	264.646
384	6	195.460	101.420	3.596	995.270	516.424	2697.181	1399.509
385	6	142.240	44.460	0.763	153.677	48.035	416.463	130.175
390	6	301.462	180.100	1.704	727.387	434.557	1971.218	1177.649
391	6	269.640	179.010	2.703	1032.033	685.151	2796.810	1856.760
392	6	351.124	174.380	7.307	3632.979	1804.260	9845.373	4889.544
393	6	356.008	178.760	1.948	982.001	493.086	2661.223	1336.263
394	6	330.690	164.650	2.061	965.078	480.511	2615.361	1302.184
395	6	358.680	183.100	1.884	956.866	488.464	2593.108	1323.737
396	6	350.357	180.210	1.568	777.893	400.118	2108.091	1084.320
397	6	291.585	72.480	1.237	510.738	126.955	1384.100	344.049
399	6	342.056	50.670	12.195	5906.664	874.976	16007.060	2371.184
400	6	161.460	63.460	1.948	445.366	175.046	1206.942	474.373
401	6	84.780	47.540	5.248	630.014	353.278	1707.339	957.383
402	6	146.709	43.020	5.404	1122.627	329.192	3042.318	892.110
404	6	131.873	131.150	5.118	955.695	950.456	2589.934	2575.735
405	6	144.970	50.990	4.644	953.309	335.305	2583.467	908.677
409	6	182.690	91.590	5.687	1471.165	737.555	3986.856	1998.775
412	6	154.470	86.860	10.275	2247.446	1263.761	6090.578	3424.792
413	6	286.100	134.610	2.073	839.809	393.130	2275.882	1070.802
415	6	233.380	65.510	1.891	624.911	175.413	1693.510	475.370
417	6	184.890	61.320	4.500	1178.119	390.731	3192.703	1058.881
418	6	340.000	77.820	2.370	1141.013	261.158	3092.145	707.737
420	6	309.360	137.390	5.127	2245.902	997.428	6086.393	2703.031
423	6	199.780	45.830	2.774	784.733	180.020	2126.425	487.853
426	6	109.327	50.190	3.319	513.805	233.878	1392.410	639.230
427	13	151.346	44.290	3.520	754.357	220.756	2044.307	598.247
428	13	122.034	58.290	2.166	374.285	178.779	1014.313	484.490
432	13	175.290	37.290	1.006	249.700	53.119	676.687	143.954
433	13	153.204	39.430	2.263	490.928	126.350	1330.413	342.408
434	13	94.980	32.600	2.453	329.908	113.234	894.051	306.865
437	13	206.270	122.620	0.932	272.217	161.823	737.708	438.541
439	13	239.610	59.840	2.321	787.487	196.666	2134.089	532.966
443	13	352.340	119.450	1.040	518.870	175.907	1406.138	476.708
444	13	126.380	39.710	1.431	256.083	80.464	693.986	218.058
453	13	363.432	141.570	0.572	294.362	114.665	797.722	310.742
454	13	323.667	120.880	0.638	292.403	109.204	792.413	295.943
456	13	344.396	104.080	6.082	2965.977	896.349	8037.797	2429.105
458	13	113.037	36.090	2.226	356.294	113.756	965.558	308.279
461	13	305.770	52.270	1.084	469.340	80.232	1271.911	217.427

TABLE C-2. Pu-239 Estimates Ordered by Culvert/ Methods #3, #4

Culvert Pad	#	Recorded Mass			Method #3		Method #4	
		Culvert	Max Drum	Meas/Proj	s/p(Pu239) x SWM		s/p(Pu239) x 3Sig(Pu239) x SW	
					Culvert	Max Drum	Culvert	Max Drum
		#	#	#	#	#	#	#
470	13	334.901	80.860	2.344	1111.571	268.383	3012.358	727.317
472	13	324.490	94.620	2.126	976.850	284.846	2647.263	771.931
475	13	105.977	92.740	1.724	258.709	226.395	701.102	613.532
479	13	345.430	96.750	1.014	495.977	138.916	1344.097	376.462
480	13	343.640	70.990	2.730	1328.402	274.425	3599.970	743.691
481	13	343.477	74.280	10.341	5029.484	1087.671	13629.902	2947.589
482	13	341.354	71.346	4.010	1938.263	405.114	5252.692	1097.859
484	13	322.785	154.000	0.811	370.679	176.850	1004.539	479.263
488	13	329.822	178.900	3.045	1422.100	771.367	3853.891	2090.404
489	13	355.619	155.860	0.432	217.536	95.341	589.524	238.375
490	13	333.991	178.260	2.664	1259.889	672.437	3414.299	1822.303
491	13	349.800	140.180	0.840	416.066	166.736	1127.539	451.854
492	10	308.824	175.780	3.164	1383.601	787.534	3749.558	2134.217
493	13	340.105	187.040	1.803	868.304	477.522	2353.105	1294.085
494	13	238.244	169.690	3.136	1057.941	753.521	2867.019	2042.043
498	13	53.400	35.300	0.385	29.112	19.244	78.892	52.152
501	10	346.830	181.340	2.116	1039.191	543.940	2816.209	1474.078
502	13	131.580	94.130	1.542	287.301	205.530	778.586	556.987
503	10	321.610	151.570	2.967	1351.171	636.787	3661.674	1725.692
504	10	328.440	169.960	1.587	738.068	381.933	2000.164	1035.038
505	13	355.340	165.750	3.425	1723.328	803.854	4670.219	2178.445
506	10	608.096	149.180	0.718	618.244	151.670	1673.441	411.024
507	13	355.056	179.710	38.305	19258.195	9747.449	52189.708	26415.586
508	13	267.526	70.240	1.066	403.819	106.024	1094.349	287.326
509	13	339.232	62.190	1.072	514.938	94.401	1395.482	255.828
510	13	694.000	134.590	1.071	1052.476	204.111	2852.210	553.140
513	13	688.950	144.820	2.715	2648.627	556.752	7177.779	1508.797
514	10	333.900	176.300	2.208	1043.948	551.207	2829.098	1493.771
515	10	325.730	170.180	6.943	3202.345	1673.089	8678.356	4534.070
516	10	333.290	174.700	7.067	3335.190	1748.201	9038.366	4737.623
517	13	335.320	167.710	0.895	424.958	212.542	1151.635	575.989
518	10	320.040	163.990	5.587	2531.898	1297.356	6861.443	3515.836
519	13	335.320	172.310	0.582	276.341	142.003	748.885	384.827
520	13	219.900	179.270	0.452	140.743	114.739	381.414	310.941
521	13	241.970	183.260	4.359	1493.522	1131.144	4047.445	3065.400
522	10	247.510	181.610	0.887	310.871	228.101	842.459	618.133
523	10	685.250	130.660	1.149	1114.891	212.582	3021.354	576.096
526	13	245.400	175.980	4.003	1390.988	997.498	3769.578	2703.220
527	13	267.410	183.290	6.992	2647.539	1814.694	7174.830	4917.821
528	10	972.150	141.810	1.525	2099.261	306.225	5688.997	829.868
529	13	322.100	162.020	9.831	4483.856	2255.431	12151.250	6112.218
530	13	318.510	176.540	3.356	1513.590	838.935	4101.829	2273.514
531	13	313.710	174.470	1.532	680.535	378.480	1844.249	1025.680
532	13	913.870	135.450	0.556	719.486	106.639	1949.808	288.992
533	13	225.070	173.530	1.202	383.076	295.354	1038.137	800.408
534	10	279.040	155.390	1.317	520.374	289.782	1410.213	785.310
535	13	230.510	167.090	2.198	717.432	520.046	1944.241	1409.323
536	13	231.510	177.780	0.721	236.357	181.502	640.527	491.870

TABLE C-2. Pu-239 Estimates Ordered by Culvert/ Methods #3, #4

Culvert Pad	#	Recorded Mass			Method #3		Method #4	
		Culvert	Max Drum	Meas/Proj	a/p(Pu239) x SWM		a/p(Pu239) x 3Sig(Pu239) x SW	
					Culvert	Max Drum	Culvert	Max Drum
		#	#	#	#	#	#	#
537	13	222.630	158.400	0.436	137.446	97.792	372.480	265.017
538	13	235.960	166.080	1.269	423.997	298.430	1149.033	808.745
539	13	220.490	167.570	0.890	287.952	211.178	780.351	572.294
540	13	231.650	160.810	1.033	601.254	417.387	1629.399	1131.118
541	13	260.820	165.420	0.589	217.530	137.964	589.507	373.883
543	13	861.775	101.150	0.867	1057.977	124.179	2867.118	336.525
544	10	811.310	101.910	0.734	843.230	105.920	2285.154	287.042
545	10	677.780	126.200	1.106	1061.469	197.641	2876.580	535.608
546	13	948.097	106.970	0.582	781.338	88.153	2117.426	238.901
547	13	231.350	157.900	0.633	207.365	141.530	561.960	383.547
548	13	841.400	144.570	0.443	530.183	91.096	1436.796	246.871
549	13	1221.550	131.950	0.609	1053.396	113.786	2854.704	308.361
550	13	88.345	44.697	5.330	666.764	337.341	1806.932	914.193
551	13	1131.993	123.600	0.580	929.683	101.510	2519.442	275.093
552	13	797.840	125.150	1.434	1620.049	254.123	4390.333	688.672
553	13	976.340	103.120	0.645	891.711	94.182	2416.536	255.232
554	13	955.320	113.250	0.669	904.978	107.282	2452.492	290.735
555	13	805.730	118.920	0.810	924.140	136.396	2504.420	369.634
557	13	722.698	119.570	0.466	476.877	78.899	1292.336	213.816
558	10	760.166	97.350	1.274	1371.327	175.618	3716.297	475.924
559	13	554.018	125.390	0.631	495.013	112.035	1341.485	303.616
560	13	367.785	42.510	0.317	165.088	19.082	447.390	51.711

TABLE C-2. Pu-239 Estimates Ordered by Culvert/ Methods #5, #6

Culvert Pad	#	Recorded Mass			Method #5		Method #6	
		Culvert	Max Drum	Meas/Proj	a/p x 3Sig(Pu239) x SWM		13/√n SWM	
					9	9	9	9
272	13	299.027	182.810	1.162	941.642	575.672	1286.483	1159.193
321	10	323.805	181.850	2.930	2571.109	1443.944	1319.507	1158.524
324	13	339.472	176.200	14.940	13744.339	7133.880	1340.857	1154.824
332	13	288.188	133.940	10.229	7988.741	3712.896	1272.394	1145.607
352	6	329.263	136.420	1.344	1199.255	496.874	1326.909	1144.890
354	6	180.841	70.360	1.680	823.333	320.335	1157.834	914.680
367	6	167.871	99.010	1.671	760.189	448.358	1130.180	1188.425
370	6	216.070	64.800	3.057	3429.565	1028.536	1188.015	842.400
374	6	93.848	36.880	1.870	475.594	186.897	1202.804	479.440
384	6	195.460	101.420	3.596	1904.789	988.354	1168.967	1182.693
385	6	142.240	44.460	0.763	294.114	91.931	1143.997	577.980
390	6	301.462	180.100	1.704	1392.103	831.673	1289.681	1157.334
391	6	269.640	179.010	2.703	1975.148	1311.272	1248.923	1156.613
392	6	351.124	174.380	7.307	6952.947	3453.068	1356.923	1153.722
393	6	356.008	178.760	1.948	1879.395	943.688	1363.699	1156.449
394	6	330.690	164.650	2.061	1847.006	919.621	1328.851	1148.676
395	6	358.680	183.100	1.884	1831.291	934.843	1367.415	1159.397
396	6	350.357	180.210	1.568	1488.765	765.763	1355.861	1157.408
397	6	291.585	72.480	1.237	977.472	242.973	1276.783	942.240
399	6	342.056	50.670	12.195	11304.421	1674.565	1344.407	658.710
400	6	161.460	63.460	1.948	852.360	335.010	1147.364	824.980
401	6	84.780	47.540	5.248	1205.748	676.118	1102.140	618.020
402	6	146.709	43.020	5.404	2148.530	630.021	1143.985	559.260
404	6	131.873	131.150	5.118	1829.049	1819.022	1146.371	1146.676
405	6	144.970	50.990	4.644	1824.482	641.721	1143.925	662.870
409	6	182.690	91.590	5.687	2815.576	1411.564	1159.109	1190.670
412	6	154.470	86.860	10.275	4301.256	2418.638	1145.169	1129.180
413	6	286.100	134.610	2.073	1607.261	756.216	1269.709	1145.392
415	6	233.380	65.510	1.891	1195.981	335.713	1206.248	851.430
417	6	184.890	61.320	4.500	2254.734	747.797	1160.680	797.160
418	6	340.000	77.820	2.370	2183.718	499.815	1341.581	1011.660
420	6	309.360	137.390	5.127	4298.300	1908.920	1300.130	1144.667
423	6	199.780	45.830	2.774	1501.854	344.529	1172.671	595.790
426	6	109.327	50.190	3.319	983.341	451.433	1167.544	652.470
427	13	151.346	44.290	3.520	1443.720	422.491	1144.521	575.770
428	13	122.034	58.290	2.166	716.322	342.154	1152.389	757.770
432	13	175.290	37.290	1.006	477.886	101.662	1154.267	484.770
433	13	153.204	39.430	2.263	939.559	241.814	1144.880	512.590
434	13	94.980	32.600	2.453	631.392	216.713	1199.386	423.800
437	13	206.270	122.620	0.932	520.980	309.704	1178.540	1151.709
439	13	239.610	59.840	2.321	1507.125	376.388	1213.200	777.920
443	13	352.340	119.450	1.040	993.035	336.638	1338.608	1154.715
444	13	126.380	39.710	1.431	490.103	153.996	1149.212	516.230
453	13	363.432	141.570	0.572	563.363	219.450	1374.041	1144.047
454	13	323.667	120.880	0.638	559.614	208.999	1319.321	1153.385
456	13	344.396	104.080	6.082	5676.411	1715.469	1347.628	1177.007
458	13	113.037	36.090	2.226	681.891	217.711	1162.090	469.170
461	13	305.770	52.270	1.084	898.242	153.550	1293.367	679.510

TABLE C-2. Pu-239 Estimates Ordered by Culvert/ Methods #5 & #6

Culvert Pad	Recorded Mass	Method #5				Method #6			
		Culvert Max Drum		Meas/Proj	$a/p \times 3\text{Sig(Pu239)} \times \text{SWM}$	Culvert Max Drum		$13/\sqrt{n} \text{SWM}$	Culvert Max Drum
		#	#		#	#	#		
470	13	334.901	80.860	2.344	2127.372	513.642	1334.596	1051.180	
472	13	324.490	94.620	2.126	1869.536	545.149	1320.434	1200.456	
475	13	105.977	92.740	1.724	495.129	433.285	1173.331	1205.620	
479	13	345.430	96.750	1.014	949.221	265.863	1349.054	1194.348	
480	13	343.640	70.990	2.730	2542.352	525.205	1346.587	922.870	
481	13	343.477	74.280	10.341	9625.637	2081.631	1346.362	965.640	
482	13	341.354	71.346	4.010	3709.520	775.324	1343.442	927.498	
484	13	322.785	154.000	0.811	709.420	338.463	1318.129	1145.058	
488	13	329.822	178.900	3.045	2721.675	1476.274	1327.669	1156.541	
489	13	355.619	155.860	0.432	416.330	182.468	1363.158	1145.526	
490	13	333.991	178.260	2.664	2411.228	1286.937	1333.352	1156.125	
491	13	349.800	140.180	0.840	796.285	319.106	1355.090	1144.193	
492	10	308.824	175.780	3.164	2647.993	1507.215	1299.417	1154.566	
493	13	340.105	187.040	1.803	1661.797	913.402	1341.726	1162.269	
494	13	238.244	169.690	3.136	2024.731	1442.121	1211.660	1151.105	
498	13	53.400	35.300	0.385	55.715	36.830	694.200	458.900	
501	10	346.830	181.540	2.116	1980.848	1041.016	1350.985	1158.311	
502	13	131.580	94.130	1.542	549.849	393.352	1146.493	1201.937	
503	10	321.610	151.570	2.967	2585.928	1218.709	1316.542	1144.360	
504	10	328.440	169.960	1.587	1412.545	730.939	1323.790	1151.247	
505	13	355.340	165.750	3.425	3298.177	1538.450	1362.771	1149.170	
506	10	608.096	149.180	0.718	1183.221	290.271	1726.815	1144.205	
507	13	355.056	179.710	38.305	36857.138	18655.073	1362.376	1157.074	
508	13	267.526	70.240	1.066	772.843	202.914	1246.308	913.120	
509	13	339.232	62.190	1.072	985.510	180.669	1340.527	808.470	
510	13	694.000	134.590	1.071	2014.273	390.635	1851.646	1145.398	
513	13	688.950	144.820	2.715	5069.053	1063.533	1844.321	1143.923	
514	10	333.900	176.300	2.208	1997.951	1054.923	1333.228	1154.886	
515	10	325.730	170.180	6.943	6129.783	3202.027	1322.113	1151.363	
516	10	333.290	174.700	7.067	6383.027	3343.779	1332.395	1153.913	
517	13	335.320	167.710	0.893	813.302	406.772	1335.169	1150.101	
518	10	320.040	163.990	5.587	4845.652	2482.935	1314.426	1148.390	
519	13	335.320	172.310	0.582	528.873	271.771	1335.169	1152.527	
520	13	219.900	179.270	0.452	269.360	219.591	1191.896	1156.783	
521	13	241.970	183.260	4.359	2858.365	2164.830	1215.981	1159.510	
522	10	247.510	181.610	0.887	594.957	436.549	1222.268	1158.359	
523	10	685.250	130.660	1.149	2133.725	406.848	1838.732	1146.895	
526	13	245.400	175.990	4.003	2662.131	1909.054	1219.820	1154.688	
527	13	267.410	183.290	6.992	5066.970	3473.038	1246.164	1159.532	
528	10	972.150	141.810	1.525	4017.653	586.065	2251.411	1144.027	
529	13	322.100	162.020	9.831	8581.391	4316.538	1317.204	1147.581	
530	13	318.510	176.540	3.356	2896.772	1605.589	1312.367	1153.035	
531	13	313.710	174.470	1.532	1302.436	724.351	1305.931	1153.776	
532	13	913.870	135.450	0.556	1376.983	204.091	2168.306	1145.145	
533	13	225.070	173.530	1.202	733.148	565.260	1197.280	1153.224	
534	10	279.040	155.390	1.317	995.913	554.598	1260.708	1145.401	
535	13	230.510	167.090	2.198	1373.051	995.285	1203.109	1149.800	
536	13	231.510	177.780	0.721	452.350	347.366	1204.198	1155.817	

TABLE C-2. Pu-239 Estimates Ordered by Culvert/ Methods #5,#6

Culvert Pad	#	#	Recorded Mass			Method #5		Method #6	
			Culvert	Max Drum	Meas/Proj	s/p x 3Sig(Pu239) x SWM		13/√n SWM	
						Culvert	Max Drum	Culvert	Max Drum
			#	#	#	#	#	#	#
537	13	222.630	158.400	0.436		263.051	187.159	1194.719	1146.283
538	13	235.960	166.080	1.269		611.464	571.147	1209.104	1149.323
539	13	228.490	167.570	0.890		531.093	404.162	1200.926	1150.033
540	13	231.650	160.810	1.833		1150.705	798.812	1204.351	1147.119
541	13	260.820	165.420	0.589		416.318	264.042	1238.101	1149.020
543	13	861.775	101.150	0.867		2024.801	237.659	2093.718	1183.307
544	10	811.310	101.910	0.734		1613.809	202.713	2021.194	1181.597
545	10	677.780	126.200	1.106		2031.483	370.254	1829.111	1149.327
546	13	948.097	106.970	0.582		1495.358	168.715	2217.156	1171.523
547	13	231.350	157.900	0.633		396.865	270.866	1204.023	1146.123
548	13	841.400	144.570	0.445		1014.686	174.344	2064.468	1143.922
549	13	1221.550	131.950	0.609		2016.034	217.769	2603.106	1146.340
550	13	88.345	44.697	5.330		1276.082	643.617	1148.485	581.061
551	13	1131.993	123.600	0.580		1779.267	194.274	2477.529	1151.142
552	13	797.840	125.150	1.434		3100.518	486.350	2001.792	1150.023
553	13	976.340	103.120	0.645		1706.594	180.249	2257.372	1178.985
554	13	955.320	113.250	0.669		1731.986	203.321	2227.449	1161.805
555	13	805.730	118.920	0.810		1768.658	261.041	2013.158	1153.235
557	13	722.698	119.570	0.466		912.666	151.000	1893.237	1154.599
558	10	760.166	97.350	1.274		2624.504	336.105	1947.432	1192.721
559	13	554.018	125.390	0.631		947.376	214.418	1648.104	1149.860
560	13	367.785	42.510	0.317		315.953	36.519	1380.127	552.630

TABLE C-2. Pu-239 Estimates Ordered by Culvert/ Methods #7, #8

Culvert Pad #	Culvert #	Recorded Mass			Method #7		Method #8	
		Culvert	Max Drum	Meas/Proj	Refined 13/ \sqrt{n} SWM	Culvert	Max Drum	Cut Model x SWM
		g	g	#	g	g	g	g
272	13	299.027	182.810	1.162	1186.353	1045.079	602.942	383.170
321	10	323.805	181.850	2.930	1220.660	1044.191	616.807	382.887
324	13	339.472	176.200	14.940	1242.668	1039.137	689.352	381.127
332	13	288.188	133.940	10.229	1171.590	1014.975	643.308	360.742
352	6	329.263	136.420	1.344	1228.303	1015.463	718.039	362.394
354	6	180.841	70.360	1.680	1043.266	914.680	491.353	281.838
367	6	167.871	99.010	1.671	1032.285	1032.324	459.798	329.082
370	6	216.070	64.800	5.857	1080.000	842.400	566.283	269.886
374	6	93.848	36.880	1.870	1040.830	479.440	290.580	188.907
384	6	195.460	101.420	3.596	1057.490	1029.076	504.380	331.024
385	6	142.240	44.460	0.763	1017.189	577.980	416.732	214.894
390	6	301.462	180.100	1.704	1189.693	1042.593	623.831	382.360
391	6	269.640	179.010	2.703	1146.773	1041.612	537.985	382.024
392	6	351.124	174.380	7.307	1259.159	1037.575	660.011	380.522
393	6	356.008	178.760	1.948	1266.098	1041.389	658.146	381.946
394	6	330.690	164.650	2.061	1230.306	1029.850	652.409	376.944
395	6	358.680	183.100	1.884	1269.900	1045.349	631.601	383.254
396	6	350.357	180.210	1.568	1258.070	1042.693	631.894	382.394
397	6	291.585	72.480	1.237	1176.199	942.240	683.206	286.101
399	6	342.056	50.670	12.195	1246.316	658.710	764.294	233.782
400	6	161.460	63.460	1.948	1027.570	824.980	423.813	266.829
401	6	84.780	47.540	5.248	1062.086	618.020	315.631	224.516
402	6	146.709	43.020	5.404	1019.015	559.260	433.726	210.216
404	6	131.873	131.150	5.118	1014.693	1014.623	360.045	358.797
405	6	144.970	50.990	4.644	1018.257	662.870	427.882	234.701
409	6	182.690	91.590	5.687	1044.968	1045.298	505.077	318.213
412	6	154.470	86.860	10.273	1023.077	1056.381	454.553	311.226
413	6	286.100	134.610	2.073	1168.767	1015.091	612.383	361.196
415	6	233.380	65.510	1.891	1100.534	851.630	594.029	271.477
417	6	184.890	61.320	4.500	1047.031	797.160	509.641	261.797
418	6	340.000	77.820	2.370	1243.413	1011.660	769.893	296.169
420	6	309.360	137.390	5.127	1200.575	1015.695	676.768	363.021
423	6	199.780	45.830	2.774	1061.998	595.790	519.761	219.238
426	6	109.327	50.190	3.319	1021.115	652.470	335.192	232.393
427	13	151.346	44.290	3.520	1021.315	575.770	423.446	214.348
429	13	122.034	58.290	2.166	1015.112	757.770	365.721	234.345
432	13	175.290	37.290	1.006	1038.352	484.770	460.997	190.402
433	13	153.204	39.430	2.263	1022.343	512.590	447.460	198.033
434	13	94.980	32.600	2.453	1038.770	423.800	312.946	172.654
437	13	206.270	122.620	0.932	1068.992	1014.997	475.766	352.233
439	13	239.610	59.840	2.321	1108.206	777.920	508.247	258.206
443	13	352.340	119.450	1.040	1260.885	1015.773	715.361	349.535
444	13	126.380	39.710	1.431	1014.543	516.230	353.672	199.011
453	13	363.432	141.570	0.572	1276.673	1016.952	743.760	363.605
454	13	323.667	120.880	0.638	1220.467	1015.376	715.339	350.771
456	13	344.396	104.080	6.082	1249.625	1025.962	750.438	334.132
458	13	113.037	36.090	2.226	1018.601	469.170	344.841	185.997
461	13	303.770	52.270	1.084	1195.619	679.510	713.229	238.328

TABLE C-2. Pu-239 Estimates Ordered by Culvert/ Methods #7, #8

Culvert Pad	#	Recorded Mass			Method #7		Method #8	
		Culvert	Max	Drum	Refined	13/ \sqrt{H} SWM	Cut Model	x SWM
		#	g	g	#	g	g	g
470	13	334.901	80.860	2.344	1236.226	1051.180	767.257	301.498
472	13	324.490	94.620	2.126	1221.618	1039.412	734.762	322.397
475	13	103.977	92.740	1.724	1024.022	1042.961	341.922	319.827
479	13	345.430	96.750	1.014	1251.088	1035.774	762.060	325.210
480	13	343.640	70.990	2.730	1248.556	922.870	768.340	283.121
481	13	343.477	74.280	10.341	1248.325	963.640	777.547	289.599
482	13	341.354	71.346	4.010	1245.325	927.498	772.984	283.840
484	13	322.785	154.000	0.811	1219.235	1022.801	672.874	372.271
488	13	329.822	178.900	3.045	1229.087	1041.514	638.536	381.990
489	13	355.619	155.860	0.432	1265.544	1023.911	671.374	373.150
490	13	333.991	178.260	2.664	1234.945	1040.944	661.080	381.789
491	13	349.800	140.180	0.840	1257.280	1016.489	720.960	364.766
492	10	308.824	175.780	3.164	1199.834	1038.773	602.856	380.989
493	13	340.105	187.040	1.803	1243.561	1049.068	670.942	384.359
494	13	238.244	169.690	3.136	1106.513	1033.715	503.134	378.873
498	13	53.400	35.300	0.385	694.200	458.900	224.959	183.047
501	10	346.830	181.540	2.116	1253.070	1043.906	690.512	382.795
502	13	131.580	94.130	1.542	1014.663	1040.306	401.938	321.735
503	10	321.610	151.570	2.967	1217.594	1021.436	659.416	371.078
504	10	328.440	169.960	1.587	1227.149	1033.931	667.293	378.971
505	13	355.340	165.750	3.425	1265.148	1030.667	689.907	377.390
506	10	608.096	149.180	0.718	1631.432	1020.192	1088.174	369.855
507	13	355.056	179.710	38.305	1264.744	1042.241	694.445	382.241
508	13	267.526	70.240	1.066	1143.987	913.120	653.717	281.592
509	13	339.232	62.190	1.072	1242.329	808.470	756.584	263.865
510	13	694.000	134.590	1.071	1755.735	1015.068	1248.087	361.182
513	13	688.950	144.820	2.715	1748.448	1018.194	1238.544	367.489
514	10	333.900	176.300	2.208	1234.817	1039.224	618.104	381.160
515	10	325.730	170.180	6.943	1223.353	1034.107	613.406	379.051
516	10	333.290	174.700	7.067	1233.939	1037.848	617.402	380.630
517	13	335.320	167.710	0.893	1236.815	1032.160	652.610	378.135
518	10	320.040	163.990	5.587	1215.404	1029.367	610.500	376.679
519	13	335.320	172.310	0.582	1236.815	1035.842	662.690	379.811
520	13	219.900	179.270	0.452	1084.433	1041.845	471.976	382.105
521	13	241.970	183.260	4.359	1111.147	1045.498	512.732	383.300
522	10	247.510	181.610	0.887	1118.117	1043.970	525.491	382.816
523	10	685.250	130.660	1.149	1743.108	1014.583	1228.065	350.446
526	13	245.400	175.980	4.003	1115.451	1038.946	529.553	381.055
527	13	267.410	183.290	6.992	1143.834	1045.526	549.223	383.309
528	10	972.150	141.810	1.525	2152.474	1017.036	1602.383	365.748
529	13	322.100	162.020	9.831	1218.278	1027.960	612.314	373.869
530	13	318.510	176.540	3.356	1213.273	1039.432	612.442	381.238
531	13	313.710	174.470	1.532	1206.600	1037.652	647.173	380.552
532	13	913.870	135.450	0.556	2070.099	1015.253	1523.882	361.756
533	13	225.070	173.530	1.202	1090.521	1036.558	494.550	380.233
534	10	279.040	155.390	1.317	1159.273	1023.626	583.311	372.931
535	13	230.510	167.090	2.198	1097.046	1031.483	506.473	377.899
536	13	231.510	177.780	0.721	1098.258	1040.319	500.331	381.637

TABLE C-2. Pu-239 Estimates Ordered by Culvert/ Methods #7, #8

Culvert Pad	#	Recorded Mass			Method #7		Method #8	
		Culvert	Max	Drum	Refined 13/14 SWM	Culvert	Max	Drum
		#	#	#	#	#	#	#
537	13	222.630	158.400	0.436	1087.633	1025.514	511.010	374.307
538	13	235.960	166.080	1.269	1103.695	1030.915	524.943	377.509
539	13	228.490	167.570	0.890	1094.609	1032.052	509.744	378.082
540	13	231.650	160.810	1.833	1098.428	1027.122	523.752	375.358
541	13	260.820	165.420	0.589	1135.211	1030.420	573.800	377.250
543	13	861.773	101.150	0.867	1996.132	1029.619	1485.595	330.701
544	10	811.310	101.910	0.734	1924.172	1028.466	1424.606	331.608
545	10	677.780	126.200	1.106	1732.322	1014.554	1229.215	355.107
546	13	948.097	106.970	0.582	2118.524	1023.093	1597.867	337.350
547	13	231.350	157.900	0.633	1098.063	1025.191	524.706	374.083
548	13	841.400	144.570	0.445	1967.115	1018.091	1428.424	367.348
549	13	1221.550	131.950	0.609	2300.812	1014.702	1911.045	359.365
550	13	88.345	44.697	5.330	1052.632	581.061	324.005	215.653
551	13	1131.993	123.600	0.580	2376.470	1014.831	1811.928	353.037
552	13	797.840	125.150	1.434	1904.914	1014.638	1385.422	354.282
553	13	976.340	103.120	0.645	2158.382	1027.031	1636.326	333.027
554	13	955.320	113.250	0.669	2128.726	1018.478	1593.637	343.811
555	13	805.730	118.920	0.810	1916.197	1015.941	1409.753	349.070
557	13	722.698	119.570	0.466	1797.087	1015.737	1280.645	349.640
558	10	760.166	97.350	1.274	1850.935	1034.818	1354.301	325.983
559	13	554.018	125.390	0.631	1552.857	1014.616	1048.328	354.472
560	13	367.785	42.510	0.317	1282.887	552.630	784.770	208.532

TABLE C-2. Pu-239 Estimates Ordered by Culvert/ Method #9

Culvert Pad #	Culvert #	Recorded Mass			Method #9		
		Culvert Max Drum Meas/Proj			Conservative Cut Model x SWM		
		Culvert	Max Drum	Meas/Proj	Culvert	Max Drum	Meas/Proj
		#	#	#		#	#
272	13	299.027	182.810	1.162	850.101	574.755	
321	10	323.805	181.850	2.930	856.962	574.331	
324	13	339.472	176.200	14.940	961.124	571.690	
332	13	288.188	133.940	10.229	911.529	541.113	
352	6	329.263	136.420	1.344	1000.590	543.591	
354	6	180.841	70.360	1.680	698.891	422.757	
367	6	167.871	99.010	1.671	664.427	492.124	
370	6	216.070	64.800	5.857	802.336	404.828	
374	6	93.848	36.880	1.870	414.529	283.361	
384	6	195.460	101.420	3.596	718.907	496.537	
385	6	142.240	44.460	0.763	592.980	322.341	
390	6	301.462	180.100	1.704	881.497	573.541	
391	6	269.640	179.010	2.703	762.085	573.036	
392	6	351.124	174.380	7.307	933.466	570.783	
393	6	356.008	178.760	1.948	931.237	572.919	
394	6	330.690	164.650	2.061	925.486	565.416	
395	6	358.680	183.100	1.884	901.477	574.881	
396	6	350.357	180.210	1.568	900.945	573.591	
397	6	291.585	72.480	1.237	954.912	429.152	
399	6	342.056	50.670	12.195	1048.213	350.673	
400	6	161.460	63.460	1.948	596.991	400.243	
401	6	84.780	47.540	5.248	462.760	336.774	
402	6	146.709	43.020	5.404	619.647	315.325	
404	6	131.873	131.150	5.118	539.403	338.196	
405	6	144.970	50.990	4.644	611.903	352.052	
409	6	182.690	91.590	5.687	726.591	477.320	
412	6	154.470	86.860	10.273	662.540	466.839	
413	6	286.100	134.610	2.073	871.491	541.793	
415	6	233.380	65.510	1.891	834.806	407.215	
417	6	184.890	61.320	4.500	723.729	392.695	
418	6	340.000	77.820	2.370	1067.627	444.234	
420	6	309.360	137.390	5.127	948.992	544.531	
423	6	199.780	45.830	2.774	728.403	328.836	
426	6	109.327	50.190	3.319	480.261	348.590	
427	13	151.344	44.290	3.520	599.265	321.522	
428	13	122.034	58.290	2.166	524.501	381.518	
432	13	175.290	37.290	1.006	645.226	285.603	
433	13	153.204	39.430	2.263	637.333	297.050	
434	13	94.980	32.600	2.453	449.620	258.981	
437	13	206.270	122.620	0.932	676.717	529.350	
439	13	239.610	59.840	2.321	818.945	387.309	
443	13	352.340	119.450	1.040	992.569	524.303	
444	13	126.380	39.710	1.431	498.601	298.517	
453	13	363.432	141.570	0.572	1029.237	548.407	
454	13	323.667	120.680	0.638	995.260	526.156	
456	13	344.396	104.080	6.082	1044.188	501.198	
458	13	113.037	36.090	2.226	492.174	278.996	
461	13	305.770	52.270	1.084	987.535	357.491	

TABLE C-2. Pu-239 Estimates Ordered by Culvert/ Method #9

Culvert Pad	Culvert	Method #9					
		Recorded Mass			Conservative Cut Model x SWM		
		Max	Drum	Meas/Proj	Culvert	Max	Drum
#	#	#	#	#	#	#	#
470	13	334.901	80.860	2.344	1072.553	452.247	
472	13	324.490	94.620	2.126	1021.796	483.596	
475	13	105.977	92.740	1.724	506.809	479.741	
479	13	345.430	96.730	1.014	1058.784	487.815	
480	13	343.640	70.990	2.730	1062.686	424.682	
481	13	343.477	74.280	10.341	1077.715	434.399	
482	13	341.354	71.346	4.010	1071.971	425.761	
484	13	322.785	154.000	0.811	940.018	558.406	
488	13	329.822	178.900	3.045	905.932	572.985	
489	13	355.619	155.860	0.432	926.722	559.726	
490	13	333.991	178.260	2.664	919.352	572.683	
491	13	349.800	140.180	0.840	994.719	547.150	
492	10	308.824	175.780	3.164	863.262	571.484	
493	13	340.105	187.040	1.803	934.984	576.539	
494	13	238.244	169.690	3.136	721.977	568.309	
498	13	53.400	35.300	0.385	331.217	274.571	
501	10	346.830	181.540	2.116	962.520	574.193	
502	13	131.580	94.130	1.542	588.908	482.603	
503	10	321.610	151.570	2.967	935.922	556.617	
504	10	328.440	169.960	1.587	945.148	568.457	
505	13	355.340	165.750	3.425	957.317	566.070	
506	10	608.096	149.180	0.718	1472.119	554.782	
507	13	355.056	179.710	38.305	969.829	573.361	
508	13	267.526	70.240	1.066	919.381	422.388	
509	13	339.232	62.190	1.072	1044.107	395.797	
510	13	694.000	134.590	1.071	1670.261	541.773	
513	13	688.950	144.820	2.715	1656.612	551.233	
514	10	333.900	176.300	2.208	884.942	571.739	
515	10	325.730	170.180	6.943	879.274	568.577	
516	10	333.290	174.700	7.067	884.306	570.945	
517	13	335.320	167.710	0.893	904.371	567.203	
518	10	320.040	163.990	5.587	875.399	563.019	
519	13	335.320	172.310	0.582	939.068	569.716	
520	13	219.900	179.270	0.452	686.850	573.157	
521	13	241.970	183.260	4.359	741.616	574.951	
522	10	247.510	181.610	0.887	759.082	574.224	
523	10	685.250	130.660	1.149	1645.121	537.669	
526	13	245.400	175.980	4.003	764.783	571.582	
527	13	267.410	183.290	6.992	781.891	574.964	
528	10	972.150	141.810	1.525	2112.883	548.622	
529	13	322.100	162.020	9.831	877.720	563.804	
530	13	318.510	176.540	3.356	851.943	571.857	
531	13	313.710	174.470	1.532	917.813	570.829	
532	13	913.870	135.450	0.556	2013.777	542.635	
533	13	225.070	173.530	1.202	717.149	570.350	
534	10	279.040	155.390	1.317	839.958	559.396	
535	13	230.510	167.090	2.198	729.162	566.848	
536	13	231.510	177.780	0.721	725.092	572.455	

TABLE C-2. Pu-239 Estimates Ordered by Culvert/ Method #9

Culvert Pad	#	#	Method #9					
			Recorded Mass			Conservative Cut Model x SWM		
			Culvert	Max Drum	Meas/Proj	Culvert	Max Drum	
			g	g	#	g	g	
537	13		222.630	158.400	0.436	740.609	561.460	
538	13		235.960	166.080	1.269	759.327	566.263	
539	13		228.490	167.570	0.890	738.422	567.123	
540	13		231.650	160.810	1.833	757.992	563.037	
541	13		260.820	165.420	0.589	819.189	565.875	
543	13		861.773	101.150	0.867	1967.029	496.051	
544	10		811.310	101.910	0.734	1889.883	497.412	
545	10		677.780	126.200	1.106	1649.039	532.660	
546	13		948.097	106.970	0.582	2105.327	506.025	
547	13		231.350	157.900	0.633	753.206	561.125	
548	13		841.400	144.570	0.445	1891.461	531.021	
549	13		1221.550	131.950	0.609	2487.807	539.047	
550	13		88.345	44.697	5.330	473.781	323.480	
551	13		1131.993	123.600	0.580	2367.773	529.536	
552	13		797.840	125.150	1.434	1840.592	531.423	
553	13		976.340	103.120	0.645	2153.907	499.541	
554	13		955.320	113.250	0.669	2102.160	515.716	
555	13		805.730	118.920	0.810	1873.650	523.604	
557	13		722.698	119.570	0.466	1705.279	524.460	
558	10		760.166	97.350	1.274	1800.505	488.975	
559	13		554.018	125.390	0.631	1414.037	531.708	
560	13		367.785	42.510	0.317	1066.422	312.797	

**DATE
FILMED**

10/6/93

END

