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ABSTRACT

An assessment of the long term
containment capabilities of a possible nuclear
waste disposal site requires both an understanding
of the hydrogeology of the region under
consideration and an assessment of the
uncertainties associated with this understanding.
Stochastic simulation -- the generation of random
"realizations” of the regions hydrogeology,
consistent with the available information,
provides a way to incorporate various types of
uncertainty into a prediction of a complex system
response such as site containment capability.
One statistical problem in stochastic simulation
is: What features of the data should be
"mimicked” in the realizations? The answer can
depend on the application. A discussion is
provided of some of the more common data
features used in recent applications. These
features include spatial covariance functions and
measures of the connectivity of extreme values,
as examples. Trends and new directions in this
area are summarized including a brief description
of some statistics (the features) presently in
experimental stages.

INTRODUCTION

Site characterization is an important aspect
of many problems in waste management and
environmental restoration. Often, a groundwater
flow model is developed to estimate groundwater
travel time to help determine the hazards
associated with waste emplacement or a strategy
for cleanup at a contaminated site. The flow
model is computed by executing software that
generally requires a complete description of the
hydrogeology in the region -- information that is
not available and must be estimated from data
usually consisting of bore hole, groundwater
and/or soil sample analytic results from within
the region or from similar regions. It is this step

This work was supported by the United
States Department of Energy under
Contract DE-ACN4-94ALR5000,

of going from sample information to a complete
specification of the regions hydrogeology that
requires geostatistical techniques.

Stochastic simulation is one approach to
the inference step mentioned above, however
other geostatistical techniques are available.
Most alternative approaches rely on providing an
estimate (usually a smoothed estimate based on
available data) of the hydrogeological parameter
values and trying to propagate the related
estimation uncertainty through the flow code to
obtain an estimate of uncertainty associated with
the flow model. Two problems are common
when using this approach. First, for complex
"transfer functions" like a flow code it is difficult
to accurately propagate the uncertainty associated
with the estimated surface through the transfer
function to obtain an estimate of flow path
uncertainty. Second, it is generally accepted that
a smoothed surface will not adequately reflect the
spatial variability in the hydrogeologic
parameters of interest, and hence, this approach
may not yield an accurate estimate of the system
response.

Stochastic simulation is an alternative
approach that avoids these problems. The
objective of the simulations is to generate two-
or three-dimensional fields that share certain
features or properties with the hydrogeologic
region of interest. These realizations are then
processed through the transfer function to provide
an estimate of the system response. By
generating a number of realizations and repeating
the analysis for each, an uncertainty distribution
for the system response can be estimated. For
the present example, one would generate maps
defining the hydrogeology of the region (the
realizations), and use groundwater flow and
transport codes (the transfe. function) to obtain
the related flow model on which the groundwater
travel times (the system response) are based. See
Figure 1 for a diagram of the general procedure.
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Figure 1. General Procedure for Stochastic
Simulation

There are many different simulation
approaches that can be used to construct
realizations. The approaches differ in a number
of ways, including the features of the region that
are to be modeled, how closely the generated
realizations are constructed to mimic these
features and how conditioning information (data,
noisy data, or other information based on site
knowledge) is utilized. A comparison of several
of the most frequently used simulation methods
including their description, assumptions and a
simulation study comparing their precision and
accuracy is given in Gotway and Rutherford
(1994). In the present paper, we focus on the
first of these differences between approaches --
the features to be modeled. The determination of
statistics that should be calculated from sample
data, modeled, and input to the simulation
algorithm is an important concern in most
spatial applications, often complicated by the
processing of the realizations through a nonlinear
transfer function.

An illustration of differences in the
generated realizations that might result from the
use of models based on different features of the
data is given in Figure 2. Figure 2a shows an
image of a trench wall where the rectangular grid
points (black or white) indicate the type of
geologic material at that location. The trench
wall was analyzed as part of the Grater
Confinement Disposal (GCD) Project where flow
times through the region were dependent on the
patterns because of differences in the conductivity
. of the two types of materials, Figures 2b
through 2d show realizations mimicking this
trench wall that are generated using different
features of the original data and different
simulation methods. The differences in features
of the realizations may have very different impact
on the transfer function when compared to one
another. More importantly, any one of the

figures may providc a better representation of the
properties or featurcs at the site that are
important to flow there and hence more
accurately predict the containment or
environmental restoration capabilities of the site.
Different transfer functions will respond
differently to alternative sets of spatial features
modeled from the data. For any particular
application this relationship must be evaluated.
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Figure 2. GCD trench wall and realizations
based on different features of GCD data.

In the remainder of this paper, we address
the questions: 1) What are some of the stochastic
models that might be used to represent the
hydrogeological region of interest? 2) What
features of a region have been modeled in recent
applications? and how do they compare? 3) What
are some research directions for choosing features
for use in stochastic simulation? Answers to
these three questions will be discussed for three
general characterization problems described in the
following section.



STOCHASTIC MCD:Z=LS

The types of stochastic models that might
be useful differ from application to application.
The statistical framework associated with most
site characterization problems can be put in one
of the general categories listed below. These
categories are not unique. Many problems
(including the GCD example above) can be put
loosely into two of the categories. Some of the
methods discussed within a category can be, and
have been applied in other categories. The
categories are established only to try to illustrate
basic differences in characterization problems and
to simplify the presentation.

A) The region can be represented by a
homogeneous random field model. This type of
model is likely to apply to the transmissivity
field at the Waste Isolation Pilot Project
underground site where the entire sampled
stratigraphic unit was created through the same
depositional and post-depositional processes.

B) The region can be thought of as
homogeneous in terms of its large scale
geological features, but, smaller features like the
orientation and location of fractures or the
mixture of different geological materials are the
features that are important to flow in the region.
These types of stochastic models are likely to be
important to flow within a stratigraphic unit at
Yucca Mountain that lie below the site of the
potential repository for high level nuclear waste
or to the GCD Program where the flow model is
determined by the relative sizes and locations of
two different types of geological materials.

C) The region cannot be thought of as
homogeneous in its large scale features. Two
different situations can lead to these types of site
characterization models. First, distinct regions of
different origin may result in completely different
hydrogeological characteristics. For situations of
this type, the simulation must predict the
location size and shape of regions of different
geologic materials based on sample information.
This is one of the problems likely to be
encountered when different stratigraphic units are
involved. Another situation that might lead to
these types of characterization problems is when
portions of the region of interest are much closer
to a geological event (the source of volcanic
activity, for example), than others. In this case
it may be necessary to estimate a trend in the
region.

The final three sections of this paper address
the questions listed above for these
characterization problems. We reference a
number of possible approaches but relatively few
of these have been applied to problems in
stochastic simulation. The applications of and
the theory behind the use of random field models
for making site specific inferences lies
substantially ahead of the use of these same
models for stochastic simulation applications.
Part of the problem is the lack of a general
framework within which to model an arbitrary set
of features, understood only through site
information, and mimic them in the generated
realizations in a way that reflects an appropriate
level of understanding. We don't address this
problem here -- (differing) opinions on how this
process might be accomplished (for the problem
of site inference or for simulation) can be found
in the literature. Handcock and Stein (1993), the
discussion of and rejoinder to Gotway (1994), and
Deutsch and Journel (1992b) are recent examples.

HOMOGENEOUS RANDOM FIELD
CHARACTERIZATION

Random field models for continuous valued
parameters are constructed by taking advantage of
spatial relationships among parameter values at
neighboring (and relatively close) points.
Altemative models include Gaussian and Markov
random fields where the latter may assume one of
a number of conditional distributions describing
the dependence of the value at one point on
values at other points within a fixed
neighborhood. Gaussian based epproaches have
dominated the geostatistical literature until just
recently. Commonly used methods include LU
decomposition, turning bands (Journel 1974), the
sequential Gaussian approach (Deutsch and
Joumnel, 1992a) and spectral approaches such as
those developed in Mejia and Rodriguez-Iturbe
(1974) and Gutjahr (1989). All of these methods
use variogram or covariance information modeled
from the data as input features but differ in the
way they use this information to generate the
realizations.

Another approach to simulating continuous
random fields is to partition the range of
hydrogeological values into discrete categories
(possibly representing different spatial
relationships) and then generate realizations of
discrete-valued fields. The discrete fields are then
transformed back to the continuous scale. It was
differences in the spatial relationships at different
levels of the hydrogeologic parameters that



provided one of the primary motivations for
partitioning the range of possible parameter
values into an ordered set of discrete categories
and allowing different (indicator) covariance
relationships for each category (Journel and
Alabert (1989)). This sequential indicator
method uses these indicator variograms to
compute probabilities of falling into each
category as the algorithm sequentially assigns
values to different grid nodes and uses these
probabilities to randomly select a category. The
categorical assignments are later transformed back
to the continuous scale in most applications.

While progress has been made on
characterization of Markov random fields (for
example Besag, 1974 or Cressie, 1991, Chapters
6 and 7) none of the recent geostatistical
simulation applications exploit this statistical
framework. Goutsias (1994) describes a method
for generating Markov field realizations and
investigates several of the theoretical aspects of
this approach. The use of methods exploiting
other features of the data are being investigated.
Experimental work is underway at Sandia
National Laboratories with a nonparametric
approach where values at different points of the
region of interest are simulated sequentially by
comparing the pattern observed at the time of
simulation to the spatial pattern of the original
data. Weights for the relative likelihood of
taking on values over any given interval can then
be established and the value at that point
generated randomly. This nearest neighbor
approach requires the definition of metrics that
can be used to quantify the closeness of patterns
in a reasonable way.

RELATIVELY SMALL SCALE
FEATURE CHARACTERIZATION

Regions that are homogenous in terms of
large scale features but where flow properties
depend on smaller scale features such as a fracture
network or the mixture and pattern of different
geological materials, for example, require
different methods of simulation, in general, than
do stationary regions of continuous valued
parameters. Very often the data used to
characterize such a region is taken from drifts or
trenches where a two dimensional subsection of
the region can be observed. These subsections
are referred to as "training sets” by some authors.

There are several approaches (o
characterization of these discrete features. One
approach is to establish the parameters associated

with a point process and to establish
distributions for the shape, size and orientation of
the geological features of interest. Boolean
models and generalizations including marked
point processes are examples of this approach
used in a number of applications. Another
approach is to model the region as a random set
characterized by its frequency of intersection with
user defined sets or "structuring elements” of
various size and shape. A third approach,
applicable to the modeling of a fracture network
in particular, is to assume a model of random
tessellations that adequately matches the training
set and retain various features that describe the
tessellation model. A detailed treatment of these
and other approaches to random set
characterization is given in Stoyan et al. (1989).

There have been a number of applications
requiring the characterization of small scale
features. Modeling fracture networks has been
predominate in the geostatistical applications.
Chiles (1988) provides an example of two of the
approaches described above applied to a granite
massif. Corresponding to the Boolean model,
Chiles generated a set of "parent” locations using
a fixed density Poisson field. He then used a
variogram based on fracture occurrence relative to
the parent to establish a "parent-daughter” model
that captures the clustering of fractures. The
point process is "marked" with orientation and
trace length values selected at random from their
estimated distributions. Chiles also uses a fractal
approach to simulate the fracture network where
the "local fractal dimension" is calculated using
the frequency of intersection of the fracture
network in the training set with squares of
various size. As such, the analysis is an
application of the random set methodology
mentioned second above. In a number of
applications where the fractal approach has been
used, the frequency of intersection approach leads
to the definition of a fixed fractal dimension
through a certain range of square size. These
networks are modeled as self similar fractal
networks., Chiles discusses methods for
simulation using either set of spatial features.

Tessellation models have been investigated
in a number of fracture characterization
applications. Gray et al. (1976) relate the
fraction of polygons having k vertices or k
straight sides and other characteristics of the
network to features like percentages of "T", "Y"
and "X" joints in the network. Examples in this
paper and in Stoyan et al. (1989) Chapter 10,
where features such as node intensity and edge
midpoint intensity are used, show networks



generated by simulating physical processes such
as crack growth or crystal growth from an initial
point process or sequentially generated point
process. Simulations conducted by generating
random hydrogeological processes in a region are
available, but not common in geostatistical
applications.

The use of methods exploiting other
features of the data are under investigation.
Guardiano and Srivastava (1992) use multi-point
features of the data to model a number of
complex geometries using a method they call
extended normal equations algorithm. This
algorithm is like a discrete version of the nearest
neighbor approach where the metric defining
closeness of patterns is provided by Bayes
Theorem calculated using the frequency of
occurrences of the patterns in the training data
set. Stoyan et al. (1989) describes another
approach to modeling discrete features that might
prove useful particularly when the shape of the
discrete features is of importance. This method
requires that the discrete features be mapped to an
appropriate "representation space” where they can
be modeled as realizations of a point process. A
directed line process in two dimensions, for
example, can be modeled as a point process on a
cylinder in three-dimensional space.

LARGE SCALE FEATURE
CHARACTERIZATION

One problem with using a single set of
features to specify spatial relationships for an
entire region is that this set of features is then
applicable to all values over the range of the
hydrogeologic parameter to be simulated. This
may prove inappropriate if: (1) there are distinct
subsets of the region where the general pattern of
the spatial relationship does not apply or (2)
there are significant trends in the parameter
values throughout the region. For applications
where (1) applies, an appropriate approach
requires, first, trying to establish the thickness or
shape of specific subsets of the region (different
stratigraphic units for example), and later,
simulating values within these sub-regions. The
former step leads to categorical or discrete
variable simulations which, in general, involve a
different set of assumptions and different
stochastic simulation methods then continuous
parameter simulations.

The two techniques encountered most in
geostatistical applications are the truncated
Gaussian approach (Galli et al. 1990 and Dowd,

1992) and a discrete version of the sequential
indicator approach (Deutsch and Journel 1992a).
The former method is restricted to a single
covariance function for expressing the continuity
within sub-regions and the spatial relationships
between sub-regions. The latter method permits
an indicator variogram to be specified for each
sub-region but provides no guidance for between
sub-region relationships beyond that given in
conditioning data (conditioning sample data will
help order the sub-regions in a meaningful way
that reflects site information). A comparison of
these two approaches is included in Gotway and
Rutherford (1994).

Some of the approaches described in
previous subsections are applicable to large scale
feature characterization. Nearest neighbor and
multipoint covariance function approaches may
prove useful in this type of application. For
cases where the specific shape of the sub-regions
is important, methods wused for the
characterization of random sets may be more

appropriate.

For applications where (2) applies, an
unanswered question in the geostatistics literature
is whether trends in the hydrogeological
parameters of interest should be modeled
explicitly first, and features of the residuals
should be used in the analysis, or whether the
trends can be adequately captured through using
features of the original data. A third alternative
is to model a region with trend as an intrinsic
random function with stationary increments. The
geostatistical literature is rich in alternative
methods for modeling, particularly when
Gaussian random fields with a trend are involved.
Methods and applications of stochastic
simulation by comparison are very sparse for this
situation. In many cases the trend is ignored.
Methods are applied even though some of the
assumptions may not be satisfied.

The use of methods exploiting models with
trend are being investigated. Armstrong (1991)
describes the progress in simulating random
fields with stationary increments using
generalized covariance models. Universal kriging
or alternative methods that separate large and
small scale variability such as median polish
kriging (Cressie (1986)) can be used as long as
estimates of the uncertainty in the trend
parameters are available along with estimates of
the covariability of the de-trended random .field.
The simulation would then proceed -- generate a
trend at random, then add to this a realization of
the de-trended field representing small scale



variability. Features of the de-trended field may
or may not have to be recomputed after the trend
has been generated. A comparison of the utility
of these approaches in stochastic simulation
would be useful.
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