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ABSTRACT of going from sample information to a complete
specification of the regions hydrogeology that

An assessment of the long term requiresgeostatisticaltechniques.
containment capabilities of a possible nuclear
wastedisposalsite requiresbothan understanding Stochastic simulation is one approach to
of the hydrogeology of the region under the inference step mentioned above, however
consideration and an assessment of the other geostatistical techniques are available.
uncertaintiesassociated with this understanding. Most alternativeapproachesrely on providing an
Stochastic simulation- thegeneration_f random estimate (usually a smoothed estimate based on
"realizations" of the regions hydrogeology, availabledata) of the hydrogeological parameter
consistent with the available information, values and trying to propagate the related
provides a way to incorporatevarious types of estimation uncertaintythrough the flow code to
uncertaintyinto a predictionof a complex system obtainan estimate of uncertaintyassociated with
response such as site containment capability, the flow model. Two problems are common
One statistical problem in stochastic simulation when using this approach. First, for complex
is: What features of the data should be "transferfunctions"like a flow code it is difficult
"mimicked" in the realizations?The answer can to accuratelypropagatethe uncertaintyassociated
depend on the application. A discussion is with the estimated surface through the transfer
provided of some of the more common data function to obtain an estimate of flow path
features used in recent applications. These uncertainty. Second,it is generally acceptedthat
featuresinclude spatialcovariancefunctions and a smoothedsurface will notadequatelyreflect the
measuresof the connectivity of extreme values, spatial variability in the hydrogeologic
as examples. Trends and new directions in this parametersof interest, and hence, this approach
area aresummarizedincludinga brief description may not yield an accurateestimate of the system
of some statistics (the features) presently in response.
experimentalstages.

Stochastic simulation is an alternative
approach that avoids these problems. The

INTRODUCTION objective of the simulations is to generate two-
or three-dimensional fields that share certain

Site characterizationis an importantaspect features or properties with the hydrogeologic
of many problems in waste management and region of interest. These realizations are then
environmentalrestoration. Often, a groundwater processedthroughthe transferfunction to provide
flow model is developedto estimate groundwater an estimate of the system response. By
travel time to help determine the hazards generatinga numberofrealizations and repeating
associated with waste emplacementor a strategy the analysis foreach, an uncertaintydistribution
for cleanup at a contaminated site. The flow for the system response can be estimated. For
model is computed by executing software that the present example, one would generate maps
generally requiresa complete description of the defining the hydrogeology of the region (the
hydrogeology in the region -- information thatis realizations), and use groundwater flow and
not available and must be estimated from data transportcodes (the transfix function) to obtain
usually consisting of bore hole, groundwater the relatedflow model on which the groundwater
and/or soil sample analytic results from within traveltimes (the system response)arebased. See
the region or from similar regions. It is this step FigureI fora diagramof thegeneralprocedure.
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figures may provide a better represenlation of the
Multiple Uncertainty properties or features at the site that are
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Different transfer functions will respond
differently to alternative sets of spatial features
modeled from the data. For any particular

0 r...' application this relationship must be evaluated.

Time
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There are many different simulation a
approaches that can be used to construct
realizations. The approaches differ in a number
of ways, including the features of the region that
are to be modeled, how closely the generated
realizations are constructed to mimic these

features and how conditioning information (dam,
noisy data, or oSer information based on site
knowledge) is utilized. A comparison of several
of the most frequently used simulation methods
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data, modeled, and input to the simulation e
algorithm is an important concern in most
spatial applications, often complicated by the
processingof the realizationsthrough a nonlinear
uanst'erfunction.

An illustration of differences in the

genemled realizations that might result from the
use of models based on different features of the d

data is given in Figure 2. Figure 2a shows an Figure 2. GCD trench wail and realizations
image of a trench wall where the rectangular grid based on different features of GCD data.
points (black or white) indicate the type of

geologic material at that location. The trench In the remainder of this paper, we address
wall was analyzed as part of the Grater the questions: 1) What are some of the stochastic
Confinement Disposal (GCD) Project where flow models that might be used to represent the
times through the region were dependent on the hydrogeologieai region of interest? 2) What
patten_ because of differences in the conductivity features of a region have been modeled in recent
of the two types of materials. Figures 2b applications? and how do they compare? 3) What
through 2d show realizations mimicking this are some research directions for choositig features
trench wall that are generated t/sing different for use in stochastic simulation? Answers to

features of the original data and different these three questions will be discussed for three
simulation methods. The differences in features general characterization problems described in the
of the realizations may have very different impact following section.
on the transfer function when compared to one :
another. More importantly, any one of the
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STOCHASTIC MCDELS The final three sections of this paper address
the questions listed above for these

The types of stochastic models that might characterization problems. We reference a
be useful differ from application to application, number of possibleapproaches but relatively few
The statistical framework associated with most of these have been applied to problems in
site characterization problems can be put in one stochastic simulation. The applications of and
of the general categories listed below. These the theory behindthe use of random field models
categories are not unique. Many problems for making site specific inferences lies
(including the GCD example above) can be put substantially ahead of the use of these same
loosely into two of the categories. Some of the models for stochastic simulation applications.
methods discussed within a category can be, and Part of the problem is the lack of a general
have been applied in other categories. The framework within which to model an arbitrary set
categories are established only to try to illustrate of features, understood only through site
basic differences in characterizationproblems and information, and mimic them in the generated
to simplify the presentation, realizations in a way that reflects an appropriate

level of understanding. We don't address this
A) The region can be represented by a problem here--(differing) opinions on how this

homogeneous random field model. This type of process might be accomplished (for the problem
model is likely to apply to the transmissivity of site inference or for simulation) can be found
field at the Waste Isolation Pilot Project in the literature. Handcock and Stein (1993), the
underground site where the entire sampled discussion ofandrejoindertoGotway (1994),and
stratigraphic unit was created through the same Deutsch and Journel (1992b)are recent examples.
depositional and post-depositionalprocesses.

B) The region can be thought of as HOMOGENEOUS RANDOM FIELD
homogeneous in terms of its large scale CHARACTERIZATION
geological features, but,smaller featureslike the
orientation and location of fractures or the Random field models for continuous valued
mixture of different geological materials are the parametersare constructedby taking advantage of
features that are important to flow in the region, spatial relationships among parameter values at
These types of stochastic models are likely to be neighboring (and relatively close) points.
important to flow within a stratigraphic unit at Alternativemodels include Gaussian and Markov
Yucca Mountain that lie below the site of the random fields where the latter may assume one of
potential repository for high level nuclear waste a number of conditional distributions describing
or to the GCD Program where the flow model is the dependence of the value at one point on
determined by the relative sizes and locations of values at other points within a fixed
two different types of geological materials, neighborhood. Gaussianbased approaches have

dominated the geostatistieal literature until just
C) The region cannot be thought of as recently. Commonly used methods include LU

homogeneous in its large scale features. Two decomposition, turning bands (Journel 1974), the
different situations can leadto these types of site sequential Gaussian approach (Deutsch and
characterizationmodels. First, distinct regionsof Joumel, 1992a) and spectral approaches such as
differentorigin may result in completely different those developed in Mejia and Rodriguez-lturbe
hydmgeological characteristics. For situationsof (1974) and Gutjahr (1989). All of these methods
this type, the simulation must predict the usevariogramor covarianee informationmodeled
location size and shape of regions of different from the data as input features but differ in the
geologic materials based on sample information, way they use this information to generate the
This is one of the problems likely to be realizations.
encountered whendifferent stmtigraphic unitsare
involved. Another situation that might lead to Another approach to simulating continuous
these types of characterization problems is when random fields is to partition the range of
portions of the region of interest are much closer hydrogeological values into discrete categories
to a geological event (the source of volcanic (possibly representing different spatial
activity, for example), than others. In this case relationships) and then generate realizations of
it may be necessary to estimate a trend in the discrete-valuedfields. The discrete fields are then
region, transformedback to the continuous scale. It was

differences in the spatial relationships at different
levels of the hydrogeologic parameters that



provided one of the primary motivations for with a point process and to establish
partitioning the range of possible parameter distributionsfor the shape, size andorientationof
values into an orderedset of discrete categories the geological features of interest. Boolean
and allowing different (indicator) covariance models and generalizations including marked
relationships for each category (Journel and point processes are examples of this approach
Alabert (1989)). This sequential indicator used in a number of applications. Another
method uses these indicator variograms to approachis to model the region as a randomset
compute probabilities of falling into each characterizedby its frequencyof intersectionwith
category as the algorithm sequentially assigns user defined sets or "structuring elements" of
values to different grid nodes and uses these various size and shape. A third approach,
probabilities to randomlyselect a category. The applicable to the modeling of a fracturenetwork
categorical assignmentsare later transformedback in particular, is to assume a model of random
to the continuous scale in most applications, tessellations that adequately matches the training

set and retain various features that describe the
While progress has been made on tessellation model. A detailed treatment of these

characterization of Markov random fields (for and other approaches to random set
example Besag, 1974 or Cressie, 1991, Chapters characterization is given in Stoyan et al. (1989).
6 and 7) none of the recent geostatistical
simulation applications exploit this statistical There have been a number of applications
framework. Goutsias (1994)describes a method requiring the characterization of small scale
for generating Markov field realizations and features. Modeling fracture networks has been
investigates several of the theoretical aspects of predominate in the geostatistical applications.
this approach. The use of methods exploiting Chiles (1988) provides an example of two of the
other features of the data are being investigated, approaches described above applied to a granite
Experimental work is underway at Stadia massif. Corresponding to the Boolean model,
National Laboratories with a nonparametric Chiles generated a set of "parent" locations using
approach where values at different points of the a fixed density Poisson field. He then used a
region of interest are simulated sequentially by variogrambased on fracture occurrence relative to
comparing the pattern observed at the time of the parent to establish a "parent-daughter" model
simulation to the spatial pattern of the original that captures the clustering of fractures. The
data. Weights for the relative likelihood of point process is "marked" with orientation and
taking on values over any given intervalcan then trace length values selected at randomfrom their
be established and the value at that point estimated distributions. Chiles also uses a fraetal
generated randomly. This nearest neighbor approach to simulate the fracture network where
approach requires the definition of metrics that the "local fractal dimension" is calculated using
can be used to quantify the closeness of patterns the frequency of intersection of the fracture
in a reasonable way. network in the training set with squares of

various size. As such, the analysis is an
application of the random set methodology

RELATIVELY SMALL SCALE mentioned second above. In a number of
FEATURE CHARACTERIZATION applicationswhere the fractalapproachhas been

used, the frequencyof intersectionaPlXOaehleads
Regions that are homogenous in terms of to the definition of a fixed fractal dimension

large scale features but where flow properties through a certain range of square size. These
dependon smallerscale featuressuchas afracture networks are modeled as self similar fractal
network or the mixture and pattern of different networks. Chiles discusses methods for
geological materials, for example, require simulation usingeither set of spatial features.
different methods of simulation, in general, than
do stationary regions of continuous valued Tessellation models have been investigated
parameters. Very often the data used to in a number of fracture characterization
characterize such a region is taken from drifts or applications. Gray et al. (1976) relate the
trenches where a two dimensional subsection of fraction of polygons having k vertices or k
the region can be observed. These subsections straight sides and other characteristics of the
are referredto as "trainingsets" by some authors, network to features like percentages of "T","Y"

and "X" joints in the network. Examples ".mthis
There are several approaches to paper and in Stoyan et al. (1989) Chapter 10,

characterization of these discrete features. One where features such as node intensity and edge
approach is to establish the parameters associated midpoint intensity are used, show networks
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generatedby simulating physical processessuch 1992) and a discrete version of the sequential
as crack growth or crystalgrowth from an il_itial indicatorapproach (Deutsch and Journel 1992a).
point process or sequentially generated point The former method is restricted to a single
process. Simulations conducted by generating covaxiancefunction forexpressing thecontinuity
randomhydrogeologicalprocessesin aregion are within sub-regions and the spatial relationships
available, but not common in geostatistical between sub-regions. The lattermethod permits
applications, an indicator variogramto be specified for each

sub-regionbut provides no guidance forbetween
The use of methods exploiting other sub-region relationships beyond that given in

features of the data are under investigation, conditioning data (conditioning sample data will
Guardiano and Srivastava (1992) use multi-point help order the sub-regions in a meaningful way
features of the data to model a number of that reflects site information). A comparison of
complex geometries using a method they call these two approaches is included in Gotway and
extended normal equations algorithm. This Rutherford(1994).
algorithm is like a discrete version of the nearest
neighbor approach where the metric defining Some of the approaches described in
closeness of patterns is provided by Bayes previous subsections are applicable to large scale
Theorem calculated using the frequency of feature characterization. Nearest neighbor and
occurrences of the patterns in the training data multipoint covariance function approaches may
set. Stoyan et al, (1989) describes another prove useful in this type of application. For
approach to modeling discrete features that might cases where the specific shape of the sub-regions
prove useful particularly when the shape of the is important, methods used for the
discrete features is of importance. This method characterization of random sets may be more
requires that the discrete features be mapped to an appropriate.
appropriate "representation space" where they can
be modeled as realizations of a point process. A For applications where (2) applies, an
directed line process in two dimensions, for unansweredquestion in the geostatistics literature
example, can be modeled as a point process on a is whether trends in the hydrogeological
cylinder in three-dimensional space, parameters of interest should be modeled

explicitly first, and features of the residuals
should be used in the analysis, or whether the

LARGE SCALE FEATURE trends can be adequately captured through using
CHARACI'ERIZATION features of the original data. A third alternative

is to model a region with trend as an intrinsic

One problem with using a single set of random function with stationary increments. The
features to specify spatial relationships for an geostatistical literature is rich in alternative
entire region is that this set of features is then methods for modeling, particularly when
applicable to all values over the range of the Gaussian random fields with a trend are involved.
hydrogeologic parameter tobesimulated. This Methods and applications of stochastic
may prove inappropriate if: (1) there are distinct simulationby comparison are very sparse for this
subsets of the region where the general patternof situation. In many cases the trend is ignored.
the spatial relationship does not apply or (2) Methods are applied even though some of the
there are significant trends in the parameter assumptions may not be satisfied.
values throughout the region. For applications
where (1) applies, an appropriate approach The use of methods exploiting models with
requires,fwst, trying to establish the thicknessor trendare being investigated. Armstrong (1991)
shape of specific subsets of the region (different describes the progress in simulating random
stratigraphic units for example), and later, fields with stationary increments using
simulating values within these sub-regions. The generalizedcovariancemodels. Universallvriging
former step leads to categorical or discrete or alternative methods that separate large and
variablesimulationswhich, in general,involve a small scale variability such as median polish
different set of assumptions and different kriging (Cressie (1986)) can be used as long as
stochastic simulation methods then continuous estimates of the uncertainty in the trend
parametersimulations, parametersareavailable along with estimates of

the covariabflityof the de-trended random.field.
The two techniques encountered most in The simulation would then proceed--generate a

geostatistical applications are the truncated trendat random,then add to this a realizationof
Gaussian approach (Galli et al. 1990and Dowd, the de-trended field representing small scale
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variability. Features of the de-trended field may Gotway, C. A. (1994). "The Use of
or may not have to be recomputed after the trend Conditional Simulation in Nuclear-Waste-Site
has been generated. A comparisonof the utility Performance Assessment." Technometrics, 36,
of these approaches in stochastic simulation 129-140.
would be useful.
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