

TECHNICAL REPORT  
March 1, 1993 through May 31, 1993Project Title: REMOVAL OF CO<sub>2</sub> FROM FLUE GASES BY ALGAE  
DE-FC22-92PC92521

Principal Investigator: Cavit Akin

Institute of Gas Technology

Other Investigators: Salil Pradhan

Institute of Gas Technology

Project Manager: Dr. Dan Banerjee

Illinois Clean Coal Institute

## ABSTRACT

The objective of this research program is to determine the feasibility of the alga Botryococcus braunii as a biocatalyst for the photosynthetic conversion of flue gas CO<sub>2</sub> to hydrocarbons. The research program involves the determination of the biocatalytic characteristics of free and immobilized cultures of Botryococcus braunii in bench-scale studies, and the feasibility study and economic analysis of the Botryococcus braunii culture systems for the conversion of flue gas CO<sub>2</sub> to hydrocarbons.

The objective of the third quarter of this research program was to determine the growth and hydrocarbon formation characteristics of free and immobilized cells of Botryococcus braunii in bench-scale photobioreactors. Raceway and inclined surface type bioreactors were used for free cell and immobilized cell studies respectively. The free cell studies with air and CO<sub>2</sub> enriched air [10% (v/v) CO<sub>2</sub> in air] in media with and without NaHCO<sub>3</sub> were conducted. In the free cell system the extractable oil productivity was about 15 grams of oil per 100 gram of cell dry weight. This production level was achieved in 2% NaHCO<sub>3</sub> medium with 10% (v/v) CO<sub>2</sub> enriched air. In the 2% NaHCO<sub>3</sub> containing medium protozoa activity has disappeared, and bacterial and algal contaminations were suppressed and the system could be run contamination free for over 8 weeks. In the calcium alginate immobilized system, the support matrix lost its textural integrity in gas streams with 10% CO<sub>2</sub>. A thin layer of solidified agar on the bottom surface of the photobioreactor was tested and found satisfactory as an immobilization surface for the algae.

U.S. DOE Patent Clearance is NOT required prior to the publication of this document.

DOE/PC/92521--T41  
ds

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

## EXECUTIVE SUMMARY

An increased attention is now being given on the potential global warming effect of CO<sub>2</sub> released to the atmosphere from fossil fuel burning. The objective of this research program is to determine the feasibility of the alga Botryococcus braunii as a biocatalyst for the photosynthetic conversion of flue gas CO<sub>2</sub> to hydrocarbons. The research program involves determination of the biocatalytic characteristics of free and immobilized cultures of Botryococcus braunii in bench-scale studies, and the feasibility study and economic analysis of the Botryococcus braunii culture systems for the conversion of flue gas CO<sub>2</sub> to hydrocarbons.

The objective of the third quarter of this research program was to determine the growth and hydrocarbon formation characteristics of free and immobilized cells of Botryococcus braunii in bench-scale photobioreactors. Raceway and inclined surface type bioreactors were used for free cell and immobilized cell studies respectively.

The free cell studies with air and CO<sub>2</sub> enriched air [10% (v/v) CO<sub>2</sub> in air] in media with and without NaHCO<sub>3</sub> were conducted. In the free cell system the extractable oil productivity was about 15 grams of oil per 100 gram of cell dry weight. This production level was achieved in 2% NaHCO<sub>3</sub> medium with 10% (v/v) CO<sub>2</sub> enriched air. In the 2% NaHCO<sub>3</sub> containing medium protozoa activity has disappeared, and bacterial and algal contaminations were suppressed and the system could be run contamination free for over 8 weeks. The cells immobilized in calcium alginate beads indicated growth and oil formation but the exposure of these beads to gas streams with 10% CO<sub>2</sub> resulted in sequestering of Ca<sup>++</sup> as CaCO<sub>3</sub>, and thus deterioration of the bead structure. A thin layer of solidified agar on the bottom surface of the photobioreactor could serve as the immobilization surface for the cells in place of the alginate beads.

This research has the potential to have a positive influence for development of an environmentally friendly process for the removal of CO<sub>2</sub> from flue gases. Development of an economical process for flue gas CO<sub>2</sub> removal would eliminate potential restrictions for application of coal in electric power generation and would be an economic benefit to Illinois.

The next quarter of this research program will involve continuation of the immobilized cell studies and the preliminary feasibility and economic analyses of the conversion of flue gas CO<sub>2</sub> to hydrocarbons by free and immobilized cultures of Botryococcus braunii, and identify areas of research emphasis for development of an economically viable process.

## OBJECTIVES

The overall objective of this research program is to determine the feasibility of the alga Botryococcus braunii as a biocatalyst for the photosynthetic conversion of flue gas CO<sub>2</sub> to hydrocarbons. In this research program, the biocatalytic characteristics of free and immobilized cultures of Botryococcus braunii will be determined in bench-scale studies, and the feasibility and economic merits of Botryococcus braunii culture systems for the conversion of flue gas CO<sub>2</sub> to hydrocarbons will be analyzed.

The research program involves four tasks covering the following specific objectives:

1. Assemble photobioreactors for the study of free and immobilized cultures of Botryococcus braunii.
2. Obtain type cultures of Botryococcus braunii from the algae culture collections, and build up the inocula for free and immobilized cell cultures.
3. Determine biocatalytic characteristics of Botryococcus braunii cultures for the conversion of flue gas CO<sub>2</sub> to hydrocarbons.
  - 3.1. Establish a baseline of the biocatalytic characteristics of Botryococcus braunii in free cell culture in thin aqueous layers.
  - 3.2. Determine the biocatalytic properties of Botryococcus braunii immobilized in calcium alginate beads for the conversion of CO<sub>2</sub> to hydrocarbons.
4. Conduct a feasibility and economic analyses of the conversion of flue gas CO<sub>2</sub> to hydrocarbons by free and immobilized cultures of Botryococcus braunii and make recommendations for future research needs toward development of the proposed conceptual process for the algae conversion of flue gas CO<sub>2</sub> to hydrocarbons.

The work in this quarter included only the third task.

## INTRODUCTION AND BACKGROUND

This research program addresses the research priority No. 7.1B. The objective of the research program is to determine the feasibility of the alga Botryococcus braunii as a biocatalyst for the photosynthetic conversion of flue gas

$\text{CO}_2$  to hydrocarbons. Bench-scale studies will be performed to determine the feasibility of free and immobilized cell cultures of Botryococcus braunii for the conversion of flue gas  $\text{CO}_2$  to hydrocarbons. The duration of the research program is 12 months.

$\text{CO}_2$  released to the atmosphere from burning fossil fuels has been receiving increased attention recently because of a potential global warming effect. There is a tendency toward establishing international regulations restricting the  $\text{CO}_2$  release from the power plants to 1990 emission levels. We present a conceptual process for the algal removal of  $\text{CO}_2$  from the flue gases. The ultimate goal of this conceptual process is to convert  $\text{CO}_2$  from the flue gases to liquid hydrocarbons for fuel applications. In this process,  $\text{CO}_2$  is scrubbed from the flue gases by using an alkaline solution and transferred to a bioreactor where, Botryococcus braunii serves as the biocatalyst. The solar energy is used as the energy source. Diesel-grade hydrocarbons, some biomass, and oxygen are produced in the bioreactor. Botryococcus braunii which will be used as the biocatalyst for the photosynthetic conversion of  $\text{CO}_2$  is reported to produce up to 86% of its dry weight as hydrocarbons. It is generally considered as the source of the hydrocarbons in many Torbanite shales. As a first step toward achieving this long term process development goal, this research program is undertaken. In this program, bench-scale studies are conducted to compare the biocatalytic characteristics of the free and immobilized cell cultures of Botryococcus braunii. Evaluation of feasibility and economic merits of using these culture systems for the removal of  $\text{CO}_2$  from flue gases is planned for the last quarter of the research program.

The research has the potential to have a positive influence for development of an environmentally friendly process for the removal of  $\text{CO}_2$  from flue gases. Development of an economical process for flue gas  $\text{CO}_2$  removal would eliminate potential restrictions for application of coal in electric power generation and would be an economic benefit to Illinois.

#### EXPERIMENTAL PROCEDURES

**Photobioreactors:** A raceway type bioreactor for the study of free cell cultures and a variable inclined surface type bioreactor suitable for the study of immobilized cells were used. The schematic illustrations and the operation procedures of these photobioreactors were given in the second quarterly report.

**Test Media:** Bold's Bristol's modified medium, with or without the addition of  $\text{NaHCO}_3$ , was used as a the growth medium (Appendix 1).

**Inoculum Preparation:** Initial inoculum of Botryococcus braunii 572 was prepared from the stock cultures by using soil extract medium and Bold's Bristol's Medium as described in the Appendix 1. The inoculated liquid media indicated steady growth of Botryococcus braunii in all growth bottles and brought up to six 1000 ml volumes in six Fernbach flasks by using pH 10 CAPS buffered Bold's Bristol's medium with 10%  $\text{CO}_2$  enriched headspace. Strict adherence to aseptic techniques had to be practiced in order to avoid competing algal contamination.

**Studies in the Raceway Photobioreactor:** Twelve liters of Bold's Bristol's medium was pumped into the sanitized raceway photobioreactor at about  $55^\circ\text{C}$ . When the medium temperature cooled down to the room temperature (about  $22^\circ\text{C}$ ), 1100 ml of Botryococcus braunii inoculum was added. Air mixed with 10%  $\text{CO}_2$  was sparged continuously through the well portion of the raceway photobioreactor at 370 ml/minute. The pH of the medium was measured and the culture was examined under the microscope daily. In the phosphate buffered medium, pH of the medium remained at 7.3. Botryococcus braunii cell growth was profuse and oil production was visible under the microscope. After three weeks of incubation, the cells were harvested and the biomass weight and the oil content were determined. The wet pellet weight was 28 grams, dry biomass weight was 2.8 grams, and the cell oil concentration was 15 grams per 100 gram of cell dry weight.

**Immobilized Cells:** Initially free cells of Botryococcus braunii 572 were immobilized in calcium alginate gels to form beads of approximately 2 mm diameter (Appendix 2). In preliminary studies the cells immobilized in calcium alginate beads indicated growth and oil formation but the exposure of these beads to gas streams with 10%  $\text{CO}_2$  resulted in sequestering of  $\text{Ca}^{++}$  as  $\text{CaCO}_3$ , and thus deterioration of the bead structure. A thin layer of solidified agar was tested and found satisfactory as the immobilization surface. The agar media was prepared as described in the Appendix 1 and added to the photobioreactor to form a solidified gel layer of about 0.5 cm thickness. Botryococcus braunii suspension was spread over the agar surface and the cells were allowed to grow and become attached on the agar surface.

**Determination of Biomass Dry Weight:** In free cell systems algae cells were harvested from the bioreactor medium by centrifugation. The residue was washed twice with milli-Q water. Washed residue was dried in an oven at  $80^\circ\text{C}$  to a

constant dry weight. The biomass determination in the calcium alginate immobilized cells was made after solubilizing the calcium alginate by suspending the beads in 2% sodium citrate solution in water and centrifuging, washing the cell residue and drying as in the free cell biomass determination.

**Determination of Hydrocarbons and Other Oily Products:** The dried biomass was extracted with hexane. The solvent was evaporated under air stream. Oily material remaining after solvent evaporation is weighed after the evaporation of the solvent. The amount of oily material is expressed as percent of cell dry weight. In one test the cell free supernatant was also extracted with hexane. No oil was recovered from the supernatant by this hexane extraction, indicating that all of the oil produced by the algae remained within the centrifuged cell biomass.

**Other Determinations:** Bioreactor samples were observed under the microscope daily to follow the growth stage of the Botryococcus braunii, absence of algal contamination, and visible oil formation. In the Bold's Bristol's modified medium, growth of bacteria and protozoa was observed in the raceway type of photobioreactor at increasing levels as the incubation period progressed. No contamination occurred in the 2 percent NaHCO<sub>3</sub> containing media. The gas flow rates, CO<sub>2</sub>/air ratio, and the pH of the medium were monitored and, if needed, adjusted daily in all bench-scale photobioreactors.

**Media pH:** The initial pH of the Bold's Bristol's modified medium was 7.3 and maintained this level in the phosphate buffered system. Since CO<sub>2</sub> has a strong buffering effect, the pH of the CAPS buffered medium dropped from 10 to 8.2 upon sparging 10 percent CO<sub>2</sub>. In the Bold's Bristol's modified medium with 2 percent NaHCO<sub>3</sub>, the initial pH was about 10, and dropped to 8.3 upon sparging with 10 percent CO<sub>2</sub>.

**Temperature:** The bioreactors were located on the laboratory bench. Special temperature control was not applied. All test runs were conducted at room temperature which ranged between 23° to 25°C.

**Illumination:** The bioreactors were illuminated continuously by fluorescent shop lights with two 40 watt bulbs. The lights were located at 6 inches from the top of the liquid medium for the raceway type and inclined surface bioreactors. Illumination of the bioreactors by locating the light source beneath the bottom surface was also tested. Such bottom illumination was found to be undesirable because it resulted in excessive heating of the culture medium.

**General Test Matrix:** Tests were conducted in Bold's Bristol's modified medium, with or without the addition of  $\text{NaHCO}_3$ , in free cell and immobilized cell systems. The test matrix is given in Table 1. Each test was run in duplicate.

## RESULTS AND DISCUSSION

**Free Cell Studies:** The visual daily observation of the raceway type photobioreactors indicated that the cells became settled at the bottom of the bioreactor right after inoculation and a layer of near uniformly distributed growth of Botryococcus braunii cells attached to the inner bottom surface of the bioreactor took place when the Bold's Bristol's modified medium was used. Microscopic examination indicated presence of typical single cells and clusters of cells of Botryococcus braunii. Starting with the second week of growth, the oil droplets were visible under the microscope and could be squeezed out of the cells by pressing the cover slip over the microscope slide. Contamination with bacteria and protozoa was observed as the Botryococcus braunii cell population increased. All Botryococcus braunii cells remained attached to the inner bottom surface of the raceway and of the well section of the bioreactor. Contamination by other algal cells was observed toward the end of the third week at which time the contents of the bioreactor was collected, centrifuged at 10,000 rpm 10 minutes, the residue was washed twice with milli-Q water and dried. Dry biomass weight was determined, and the dry cell biomass was extracted with hexane and the oil recovered and weighed. The biomass concentration was 23 mg/100 ml, and the oil content was 15 g/100 g dry biomass. In subsequent runs we encountered significant contamination by other types of algae with spherical, spindle, and filamentous cell morphologies starting with the second week of incubation. Presence of the foreign algae diluted the Botryococcus braunii biomass. In these contaminated systems the test was terminated at the end of the second week at which time nearly 50% of the cell biomass was algae other than the Botryococcus braunii. The oil content of the biomass was about 6 g oil/100 g of dry biomass. When the medium contained 2%  $\text{NaHCO}_3$ , the cell growth was localized in large and thick clusters attached to the inner bottom surface of the bioreactor along the fast flow zones of the circulating medium. No suspended cells could be observed. The bacterial contamination and the protozoa activity was suppressed and no algal contamination was observed over eight weeks of incubation period. (This reactor is still operating without any contamination). The biomass content of the samples taken from the thick algal mat sections had about 200 mg cell dry weight/100 ml medium. The oil content of these cells was similar to the cells grown in the  $\text{NaHCO}_3$  free medium: 15 g oil/100 g of cell dry weight.

**Immobilized Cell Studies:** Botryococcus braunii cells were immobilized in calcium alginate beads as described in Appendix 2. The beads were put in a raceway photobioreactor to form a monolayer at the inner bottom surface of the raceway. Bold's Bristol's medium buffered at pH 10 with CAPS buffer was used. When air enriched with 10% CO<sub>2</sub> was sparged through the medium the Ca<sup>++</sup> ions used in the gel formation of alginate diffused out of the gel and a white fluffy precipitate of CaCO<sub>3</sub> formed and settled at the bottom of the well section of the photobioreactor. In spite of the removal of some of the Ca<sup>++</sup> ions the beads remained intact and growth of the algae became visually detectable by the formation, and increase in intensity, of the green color of chlorophyll in the beads. The beads shrank in size as the CaCO<sub>3</sub> formation increased and as the incubation period advanced. After three weeks the remaining beads were removed. Biomass dry weight and the oil content were determined. The biomass was 178 mg dry weight/100 gram wet bead, and the oil content was 5 g oil/100 g of cell dry weight. Because of the calcium alginate bead structure deterioration in presence of 10% CO<sub>2</sub>, immobilization with this system was abandoned, and immobilization of cells on solidified agar surface was tested. Since the Botryococcus braunii cells grew into agar and remained attached on the agar surface in clusters, this system was satisfactory for the immobilized cell studies. Agar surface immobilized cell studies are in progress.

#### CONCLUSIONS AND RECOMMENDATIONS

The reported third quarter studies confirmed our second quarter observations that Botryococcus braunii can tolerate and grow well in 10% CO<sub>2</sub> and produce oil. The capability of Botryococcus braunii to grow in 2% NaHCO<sub>3</sub> solution and suppression of the bacterial and algal contamination and the protozoa activity is very encouraging toward development of an alkaline scrubbing system for the flue gas followed by removal of the CO<sub>2</sub> from the alkaline solution by Botryococcus braunii. Calcium alginate immobilization is not practical in presence of 10% CO<sub>2</sub> and it would be similarly inconvenient in the presence of NaHCO<sub>3</sub>. Other surface immobilization techniques need be developed. Oil productivity we observed so far is low and conditions that improve the oil productivity need be identified. In the forth quarter studies, surface adhesion immobilization systems will be continued and the economic and feasibility of the conceptual process for the removal of CO<sub>2</sub> from flue gases by algae will be analyzed and research needs for development of an economical process will be suggested.

Table 1. TEST MATRIX FOR GROWTH AND HYDROCARBON PRODUCTION STUDIES WITH THE FREE AND IMMOBILIZED CELLS OF Botryococcus Braunii

| Test Run       | pH Initial | pH After CO <sub>2</sub> Add'n | Buffer            | Carbon Source                  |                                    |
|----------------|------------|--------------------------------|-------------------|--------------------------------|------------------------------------|
|                |            |                                |                   | CO <sub>2</sub> % (v/v) in Air | NaHCO <sub>3</sub> g/100 ml Medium |
| 1              | 7.3        | 7.3                            | Phosphate         | 10                             | --                                 |
| 2              | 7.3        | 7.3                            | Phosphate         | 10                             | --                                 |
| 3 <sup>a</sup> | 10         | 8.2                            | CAPS <sup>b</sup> | 10                             | --                                 |
| 4              | 10         | 8.3                            | --                | 10                             | 2.0                                |
| 5 <sup>c</sup> | 10         | 8.3                            | --                | 10                             | 2.0                                |

<sup>a</sup> Cells were immobilized in calcium alginate matrix.

<sup>b</sup> CAPS: 3-[Cyclohexyl amino] - 1 propanesulfonic acid.

<sup>c</sup> Cells were immobilized on solidified agar surface.

Table 2. GROWTH AND HYDROCARBON PRODUCTION BY THE FREE AND IMMOBILIZED CELLS OF Botryococcus braunii

| Test Run       | pH After CO <sub>2</sub> Add'n | Carbon Source                  |                             | Biomass          |                        |
|----------------|--------------------------------|--------------------------------|-----------------------------|------------------|------------------------|
|                |                                | CO <sub>2</sub> % (v/v) in Air | NaHCO <sub>3</sub> g/100 ml | Dry wt mg/100 ml | oil <sup>a</sup> g/100 |
| 1              | 7.3                            | 10                             | --                          | 23               | 15                     |
| 2 <sup>b</sup> | 7.3                            | 10                             | --                          | 23               | 6                      |
| 3 <sup>c</sup> | 8.2                            | 10                             | --                          | 178 <sup>c</sup> | 5                      |
| 4 <sup>d</sup> | 8.3                            | 10                             | 2.0                         | 200 <sup>d</sup> | 15                     |
| 5 <sup>e</sup> | 8.3                            | 10                             | 2.0                         | In Progress      |                        |

<sup>a</sup> Oil is expressed as grams of hexane extractable matter per 100 g of biomass dry weight.

<sup>b</sup> Cells were immobilized in calcium alginate matrix.

<sup>c</sup> mg cell dry weight/100g wet beads.

<sup>d</sup> Concentration of cells in 30 ml sample taken from the concentrated cell mat location in the raceway bioreactor.

<sup>e</sup> Cells were immobilized on solidified agar surface.

## APPENDIX 1

**Bold's Bristol's Medium:**

Six stock solutions, 400 ml in volume each, are employed. Each solution contains one of the following in milli-Q water:

|                                       |        |
|---------------------------------------|--------|
| NaNO <sub>3</sub>                     | 10.0 g |
| CaCl <sub>2</sub> ·2H <sub>2</sub> O  | 1.0 g  |
| Mg·SO <sub>4</sub> ·7H <sub>2</sub> O | 3.0 g  |
| K <sub>2</sub> HPO <sub>4</sub>       | 3.0 g  |
| KH <sub>2</sub> PO <sub>4</sub>       | 7.0 g  |
| NaCl                                  | 1.0 g  |

Ten ml of each stock solution is added to 940 ml of milli-Q water. To this add a drop of 1.0% FeCl<sub>3</sub> solution and 6 ml PIV metal solution. Autoclave solution biotin.

\* PIV metal solution. To 1000 ml of mail-q water add, 0.75g of Na<sub>2</sub> EDTA, and dissolve fully. Add the following salts:

|                                                     |       |
|-----------------------------------------------------|-------|
| FeCl <sub>3</sub> ·6H <sub>2</sub> O                | 97 mg |
| ZnCl <sub>2</sub> ·4H <sub>2</sub> O                | 41 mg |
| ZnCl <sub>2</sub>                                   | 5 mg  |
| CoCl <sub>2</sub> ·6H <sub>2</sub> O                | 2 mg  |
| Na <sub>2</sub> MoO <sub>4</sub> ·2H <sub>2</sub> O | 4 mg  |

**Vitamin Stock Solutions:**

|                 |                           |
|-----------------|---------------------------|
| Thiamin         | 10 mg/l                   |
| B <sub>12</sub> | 15 X 10 <sup>-4</sup> g/l |
| Biotin          | 25 X 10 <sup>-4</sup> g/l |

Filter-Sterilize each solution. Aseptically add 0.01 ml of B<sub>12</sub> and Biotin and 0.1 ml of thiamin to sterile Bold's Bristol's medium.

**NaHCO<sub>3</sub> Added Media:**

Bold's Bristol's medium is utilized and NaHCO<sub>3</sub> is added to achieve 2% NaHCO<sub>3</sub> concentration.

**Agar Media for Cell Immobilization:**

One gram agar (Difco) was added to 100 ml Bold's Bristol's medium or the Bold's Bristol's medium with 2% NaHCO<sub>3</sub>. The mixture was steamed to dissolve the agar and then steam sterilized.

## APPENDIX 2

IMMOBILIZATION OF Botryococcus braunii  
IN CALCIUM ALGINATE MATRIX

A 8% sodium alginate solution (final volume 200 ml) and a 0.2M solution of  $\text{CaCl}_2$  (final volume 1000 ml) were prepared. The solutions were autoclaved and cooled to room temperature. Botryococcus braunii inoculum (300 ml) was added to the 8% sodium alginate solution. With the aid of a peristaltic pump, the sodium alginate and algae solution was added dropwise into the  $\text{CaCl}_2$  solution to form the immobilized cells embedded in beads of calcium alginate gel. The beads were kept in the  $\text{CaCl}_2$  solution overnight at about 4°C. Afterwards the liquid was decanted and the immobilized cell beads were washed three times in a sterile saline solution. The beads were resuspended in Bold's Bristol's Medium (pH 10, CAPS buffer) and added to the bioreactor.

IMMOBILIZATION OF Botryococcus braunii ON  
SOLIDIFIED AGAR SURFACE

Agar media was prepared as described in the Appendix 1 and added to the photobioreactor to form a layer of about 0.5 cm thickness and allowed to solidify. Botryococcus braunii suspension was spread over the agar surface and the cells were allowed to grow and attach themselves on the agar surface.

## DISCLAIMER

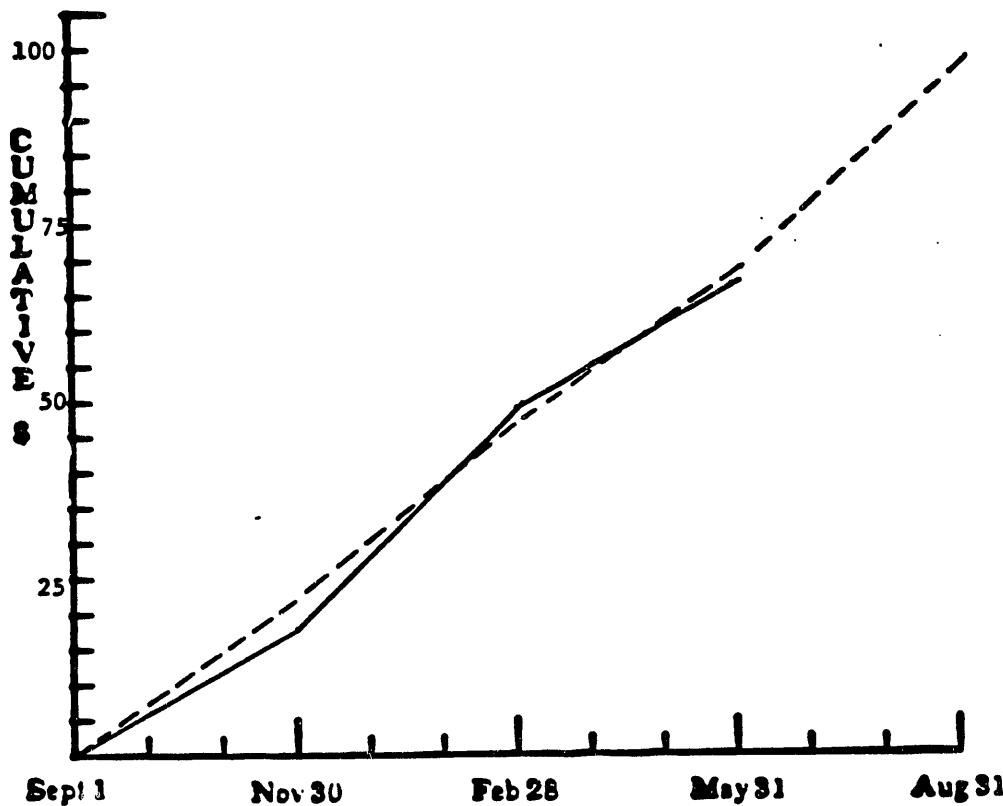
This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

PROJECT MANAGEMENT REPORT  
March 1, 1993 through May 31, 1993

Project Title: REMOVAL OF CO<sub>2</sub> FROM FLUE GASES BY ALGAE

Principal Investigator: Cavit Akin  
Institute of Gas Technology  
Other Investigators: Salil Pradhan  
Institute of Gas Technology  
Project Manager: Dr. Dan Banerjee  
Illinois Clean Coal Institute

COMMENTS

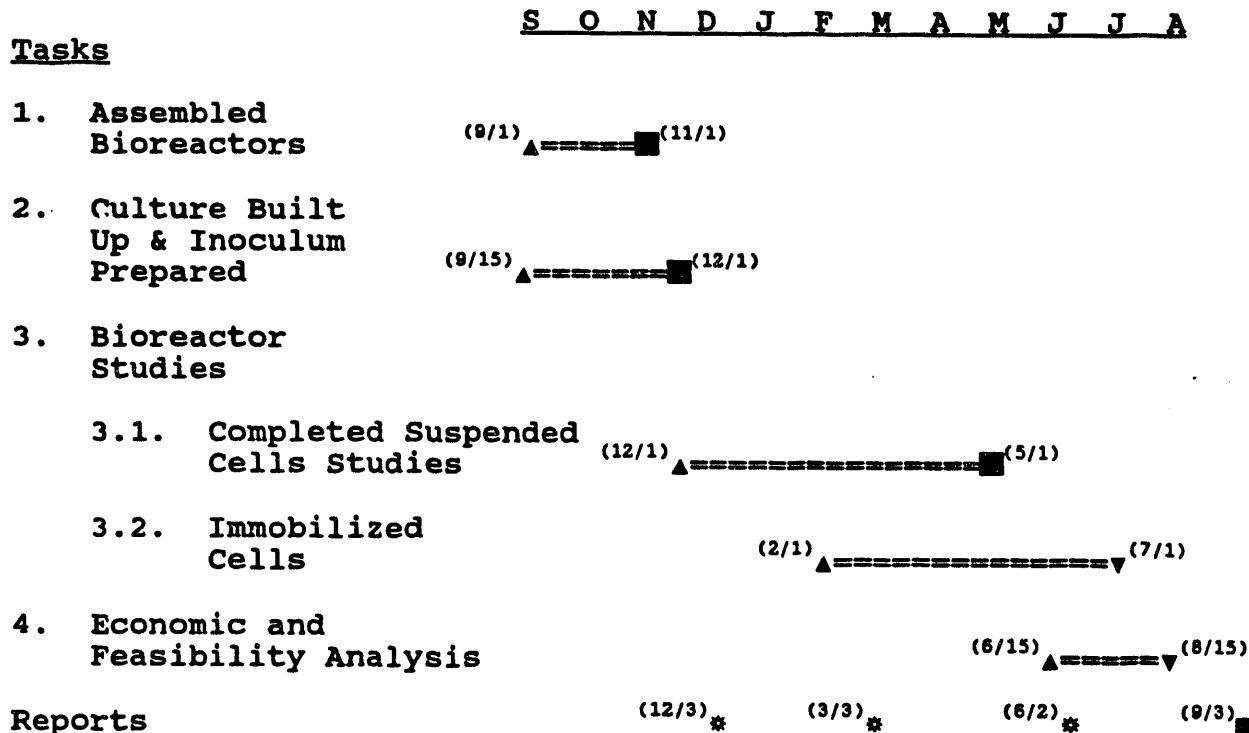

There were no significant deviations of estimated actual cost from the projected cost. Co-investigator Dr. Andrea Maka left IGT at mid March. Dr. Akin took over the laboratory work which was conducted by Dr. Maka. All equipment and cultures were in time. The research work progressed as planned in the proposal.

**EXPENDITURES - EXHIBIT B**

**Cumulative Projected and Estimated Actual Expenditures by Quarter**

| Quarter &                            | Types of Cost                 | Direct Labor     | Materials and Supplies | Travel | Major Equipment | Other Direct Costs | Indirect Costs | Total            |
|--------------------------------------|-------------------------------|------------------|------------------------|--------|-----------------|--------------------|----------------|------------------|
| Sept. 1, 1992<br>to<br>Nov. 30, 1992 | Projected<br>Estimated Actual | 7,500<br>6,000   | 570<br>600             | -      | -               | -                  | -              | 21,744<br>17,275 |
| Sept. 1, 1992<br>to<br>Feb. 28, 1993 | Projected<br>Estimated Actual | 15,000<br>17,000 | 1,895<br>700           | -      | -               | -                  | -              | 44,401<br>47,726 |
| Sept. 1, 1992<br>to<br>May 31, 1993  | Projected<br>Estimated Actual | 23,000<br>23,500 | 3,220<br>1,500         | 268    | -               | -                  | -              | 68,786<br>66,624 |
| Sept. 1, 1992<br>to<br>Aug. 31, 1993 | Projected<br>Estimated Actual | 30,351<br>31     | 3,710<br>268           | -      | -               | 8,000              | 57,365         | 99,694           |

• Cumulative by quarter


**CUMMULATIVE COSTS BY QUARTER - EXHIBIT C****Months and Quarters**

0 = Projected Expenditures \_\_\_\_\_

Δ = Actual Expenditures \_\_\_\_\_

Total CRSC Award \$ 99,694

## SCHEDULE OF PROJECT MILESTONES

Legend

- ▲ Beginning of Task
- ▼ Completion of Task
- \* Quarterly Technical Progress and Project Management Reports
- Annual (final) Technical Report
- Completed

(/) numbers in parenthesis indicate the beginning or the completion dates month/day) for the tasks and the delivery dates for the reports.

END

DATE  
FILMED  
1014 193

