

1 of 1

DECLASSIFIED

HW-74406

This document classified by:

G. A. Last

G. A. Last, Supervisor
Fuel Element Design

This document consists of
3 pages, No. 16 of
34 copies.

**FINAL REPORT: LOW EXPOSURE IRRADIATION OF AN
ENRICHED SEVEN-ROD CLUSTER IN KER LOOP 1,
PT-IP-246-A**

R. L. Call

July 25, 1962

Classification Cancelled and Changed To

RECLASSIFIED

By Authority of R. M. O'Brien
CG-PR-2, 3-15-94
By J. E. Sauray 3-31-94
Verified By M. Hanson, 4-4-94

DISTRIBUTION

1. F. W. Albaugh	16. G. A. Last
2. W. K. Alexander	17. J. E. Minor
3. T. W. Ambrose/T. W. Evans	18. J. W. Nicholaus
4. J. A. Ayres	19. K. W. Norwood
5. J. H. Brown	20. D. P. O'Keefe
6. S. H. Bush	21. J. W. Riches
7. J. J. Cadwell	22. D. R. Stenquist
8. T. T. Claudson	23. J. T. Stringer
9. D. R. Dickinson	24. J. C. Tobin
10. R. L. Dillon	25. J. W. Weber
11. E. A. Evans	26. R. G. Wheeler/R. K. Marshall
12. S. M. Gill	27. O. J. Wick
13. J. W. Goffard/F. E. Young	28. 300 File
14. W. K. Kratzer	29. Record Copy
15. L. E. Kuhlken	30-34. Extra

~~This document contains restricted data defined in the Atomic Energy Act of 1954. Its transmission, communication, or disclosure, in any manner to any person is prohibited.~~

DECLASSIFIED

FINAL REPORT: LOW EXPOSURE IRRADIATION OF AN
ENRICHED SEVEN-ROD CLUSTER IN KER LOOP 1,
PT-IP-246-A

R. L. Call

DECLASSIFIED

INTRODUCTION

One of the early candidate fuel elements for the N Reactor was the seven-rod cluster fuel element. An objective of the program to determine the suitability of the seven-rod cluster fuel element for N Reactor use was to evaluate the irradiation performance of coextruded, Zircaloy-2-clad, seven-rod cluster fuel elements over a range of exposures from low exposures to high exposures. This report describes the irradiation testing of an enriched seven-rod cluster fuel element which was irradiated to 520 MWD/T.

SUMMARY AND CONCLUSIONS

The seven-rod cluster was fabricated from 0.593 inch diameter Zircaloy-2-clad rods with 1.6 percent enriched uranium cores. Cladding thickness was 0.030 inch. The cluster was irradiated in KER Loop 1 in 250 C water to an exposure of 520 MWD/T. After discharge, the cluster was examined in the KE view pit and appeared to be in excellent condition. No further examination was made.

DISCUSSION

Fabrication of the Fuel Element

The fuel rods from which the cluster was made were cut from coextruded, Zircaloy-2-clad rod stock fabricated by Nuclear Metals, Inc. (NMI) of Concord, Massachusetts.⁽¹⁾ Cladding thickness was 0.030 inch and the cores were 1.6 percent enriched uranium. The fabrication process for making the rod stock into clusters has been given elsewhere⁽²⁾ and will not be repeated here.

Irradiation History

The fuel element was charged into KER Loop 1 in May 1959, under the provisions of PT-IP-246-A⁽³⁾ and Supplement A to the PT.⁽⁴⁾ Some additional fuel elements were also charged into Loop 1 along with the enriched seven-rod cluster. These were a natural uranium seven-rod cluster with modified end caps and end supports,⁽⁵⁾ a 36-inch long KER-size, tube-in-tube fuel element with uranium-2 wt. % zirconium alloy cores and a 33-inch long KER-size, rod-in-tube fuel element with uranium-2 wt. % zirconium alloy cores. The charge was irradiated until the enriched seven rod cluster had reached an exposure of 520 MWD/T. During the test, the loop conditions were:

Inlet temperature	223 C
Outlet temperature	262 C
Flow	50 gpm

The pH of the loop water was maintained at 10.0 by LiOH additions.

The temperature conditions calculated for the enriched seven-rod cluster are given in Table I.

TABLE I
TEMPERATURE DISTRIBUTION

DECLASSIFIED

	<u>Peripheral</u> <u>Rod</u>	<u>Center</u> <u>Rod</u>
Local bulk water temperature	250 C	250 C
Cladding surface temperature	290 C	280 C
Cladding-to-core interface temperature	355 C	335 C
Core center temperature	495 C	450 C

Postirradiation Examination

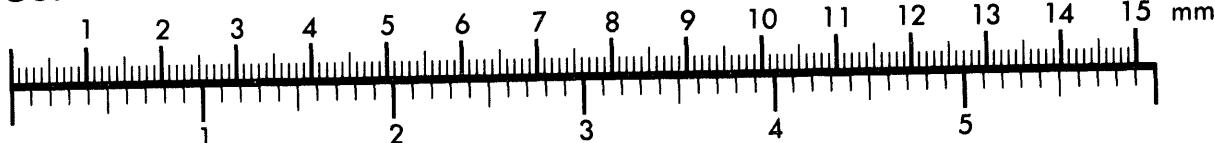
After the fuel elements were discharged from the loop, they were visually examined in the KE view pit. The rods of the enriched cluster appeared to be in excellent condition and were clean and free of film. No post-irradiation examinations other than the visual examination were made.

ACKNOWLEDGEMENTS

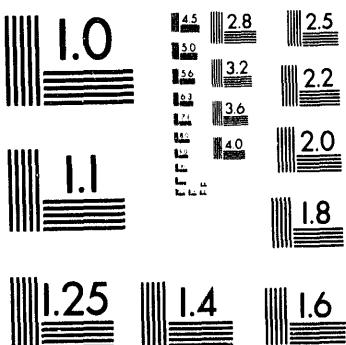
The author wishes to acknowledge the contributions of T. T. Claudson who prepared the seven-rod cluster fuel element for irradiation and W. K. Kratzer who conducted the irradiation testing.

REFERENCES

1. Lowenstein, P., et al., Final Report to the Hanford Atomic Products Operation, Fuel Element Fabrication and Development, NMI-4708, June 1958. (Confidential).
2. Call, R. L., T. T. Claudson, and R. Teats, Final Report: Irradiation Performance of Enriched Zircaloy-2-Clad Seven-Rod Cluster Fuel Elements, Production Test IP-214-A (RM-295), HW-70659. May 1962. (Confidential).
3. Kratzer, W. K., Production Test IP-246-A, Low Exposure Irradiation of Zircaloy-2-Jacketed Seven-Rod Cluster Elements and Zircaloy-2 Jacketed Zirconium Alloy Tube-and-Tube Elements, HW-59747. April 1959. (Secret).
4. Kratzer, W. K., Supplement A to Production Test IP-246-A, Low Exposure Irradiation of Zircaloy-2 Jacketed Seven-Rod Cluster Element and Zircaloy-2 Jacketed Zirconium Alloy Tube-and-Tube Elements, HW-60271. May 1959. (Secret).
5. Wheeler, R. G., Seven-Rod Cluster Irradiation of Fuel Rods with Modified End Closure and End Fixtures, HW-63715. February 1960. (Confidential)



AIM


Association for Information and Image Management

1100 Wayne Avenue, Suite 1100
Silver Spring, Maryland 20910
301/587-8202

Centimeter

Inches

MANUFACTURED TO AIIM STANDARDS
BY APPLIED IMAGE, INC.

**DATE
FILMED**

12/16/94

END