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THE APPLICATION OF FRONT TRACKING TO THE SIMULATION OF

SHOCK REFRACTIONS AND SHOCK ACCELERATED INTERFACE MIXING

JOHN W. GROVE t'2,a,5, YUMIN YANG 4, QIANG ZIIANG 4'6, DAVID It. SHARP 7,
JAMES GLIMM 1,-''a,4, BRIAN BOSTON, AND RICHARD ilOLME5

ABSTRACT. We report new results on the Rayleigh-Taylor and Richtmyer-Meshkov instabili-
ties. Highlights include calculations of Richtmyer-Meshkov instabilities in curved geometries
without grid orientation effects, improved agrc._ . .nt between computations and experiments
in the case of Richtmyer-Meshkov instabilities at a plane interface, and a demonstration of
an increase in the Rayleigh-Taylor mixing layer growth rate with increasing compressibility,
along with a loss of universality of this growth rate. The principal computational tool used
in obtaining these results was a code based on the front tracking method.

1. INTRODUCTION

The mixing behavior of two or more fluids plays an important role in a number of physical

processes and technological applications. We consider two basic types of mechanical (i.e., non-

diffusive) fluid mi_ng. If a heavy fluid is suspended above a lighter fluid in the presence of a

gravitational field, small perturbations at the fluid interface will grow. This process is known as
the Rayleigh-Taylor instability. One can visualize this instability in terms of bubbles of the light

fluid rising into the heavy fluid, and fingers (spikes) of the heavy fluid falling into the light fluid.

A similar process, called the Richtmyer-Meshkov instability [13, 15], occurs when an interface is

accelerated by a shock wave. These instabilities have several common features. Indeed, Pdchtmyer's

approach to understanding the shock induced instability was to view that process as resulting from
an acceleration of the two fluids by a strong gravitational field acting for a short time.

We examine three separate aspects of the Rayleigh-Taylor and Pdchtmyer-Meshkov problems.

Section 2 discusses direct numerical simulations of Richtmyer-Meshkov type problems using front

tracking. Front tracking is an adaptive method which provides sharp resolution of distinct waves
in fluid flows. This is accomplished by the use of a dynamically moving co-dimension one grid

that follows the tracked wave fronts. Our conclusion is that front tracking is a valuable numerical

method due to its ability to remove numerical diffusion, enhance the resolution of the computation,

and reduce or eliminate grid orientation effects. Section 3 describes an analysis of the short term

growth in the unstable modes of a shocked interface using a linearization of the Euler equations.
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!
We compare tile solution of the linearized equations with an impulsive model of tile mixing process
due to Richtmyer, attd with numerical solutions of tile full Euler equations. We show that for
sufficiently smun amplitudes of tile perturbations in tile ttuid interface, the linear theory agrees
with the numerical solutions to the fully nonlinear system. We noticed that in many cases tile

results of the hnpulsive model disagreed with the exact solution to the linearized equations. We
also report in section 4 on recent work that has examined tile role of compressibility in the Rayleigh-
Taylor problem, lt is shown that the mixing layer growth rate increases markedly with increasing
compressibility and tills effect is accompanied by a loss of universality. This is the first prediction
of an important property of the Rayleigh-Taylor mixing layer outside of the range of existing
experiments.

2. FRONT ,lACKING SIMULATIONS OF SHOCK INDUCED SURFACE INSTABILITIES

The front tracking method represents a surface of discontinuity in a fluid flow as a sharp interface,
thereby eliminating numerical diffusion. This results in a substantial increase in computational
resolution, and a corresponding increase in efficiency, which has been utilized to increase the detail
and scope of computations attempted. Moreover, front tracking can be combined with modern
shock capturing methods to provide a computational tool of great flexibility for modeling flows
dominated by shocks and fluid interfaces. The shock capturing provides a robust alternative to

tracking when the interacting waves produce configurations that are too complicated to track, while
tracking improves the ability of the shock capturing code to resolve secondary features of the flow.
The general goal of our effort is to achieve a good balance between the increased resolution of the
tracked wave fronts and the robustness of the shock capturing methods.

An important aspect of our h'ont tracking code in simulations of the Richtmyer-Meshkov insta-
bility is its ability to handle interactions between tracked waves, lt can automatically detect the
collision of two wave fronts, analyze the resulting interaction, and modify the tracked wave data

structures accordingly. References [4, 6, 9, 11, 12] describe the basic algorithms and provide details
on the construction of our front tracking code.

Figure 1 shows a front tracking simulation of the acceleration of a perturbed circular interface
by an expanding shock wave. The computation begins with a bubble of heavy fluid suspended in a
lighter fluid. The two flmds are initially at rest, and the bubble interface is given a slight sinusoidal
perturbation of the form r = (r0+_ cos(n0)), where (r, 8) are the polar coordinates of a point on the
bubble interface. Here ro = 0.8, e = 0.05, and n = 12. Both fluids are modeled using a polytropic

equation of state with -),= 1.33, and the density ratio across the bubble is 5. An expanding shock
with ahead Mach number 6.6 (pressure ratio 50) is installed at a distance 0.3 from the origin. The
entire computation takes piace within a square of side 6.0 using a 200 x 200 grid.

At about time 0.19 the expanding shock reaches the bubble interface and is refracted into an
inwardly directed rarefaction wave, and an outwardly directed transmitted shock. Note that we
track both edges of the reflected rarefaction. Figure Ib shows the tracked wave configuration shortly
after the expanding shock has passed through the bubble interface. By this point the average radius
of the bubble interface is approximately twice its initial value and the ripples on the interface have
experienced a phase inversion. Such an inversion is typical for interactions that produce reflected
rarefactions.

Figure lc shows the simulation just before the leading edge of the reflected rarefaction reaches the
origin. The reflection of the rarefaction wave at the origin produces additional outwardly directed
waves. These new waves are not tracked in our simulation, but are still reasonably well resolved by

the shock capturing method.

Figure ld shows the later time development of the bubble interface. Here the spikes of the heavy

fluid being ejected into the lighter fluid outside have become quite elongated. We also see that the
heads of the fingers are starting to pinch off. The velocity shear across the sides of the fingers is
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FIGURE 1. The acceleration of a perturbed circular interface by ashock wave. A significant
advantage of front tracking is the improvement in the resolution of interface features not
aligned with the finite difference grid. Note that even at latJe times the three fingers have
nearly the same shape and extension.

substantial, which explains the production of the Kelvin-Helmholtz type roll up on the sides of the
fingers.

This computation illustrates several important points. First is the ability of front tracking to
reduce grid orientation effects on the fluid interface. Since the underlying rectangular grid is square,
the effective grid size in directions diagonal to the grid is v_ times coarser than in directions parallel
to the grid. Unless the grid is quite fine, this can produce a substantial degradation in the resolution
of waves in these directions. This effect was cited, for example, in [1, 5] to explain the relatively
faster growth of fingers aligned with the coordinate axes as compared to fingers oriented at oblique
angles to the grid. We emphasize that there is very little indication of grid orientation effect in
our computation. Since the initial data is periodic in 0 with period 7r/6, each of the three spikes in
figure 1 should be identical. In our simulation we see that there !s only about a 2.5% difference in
the elongation of the spikes at the latest time shown.

We Mso comment that the asymmetry in the Kelvin-Helmholtz roll up on the sides of the outer
spikes appears to be due to an additional artificial mode that has been produced by the interaction
of the tracked wave with the boundary. For efficiency we conducted these simulations using a

quarter circular geometry with the axes of symmetry along the positive x and y axes replaced by
reflecting boundaries. As implemented, this results in a slight loss of information at the boundaries,
and can lead to the development of additional modes in such highly unstable problems as this one.

We are currently investigating improved algorithms for the propagation of curves at reflecting walls
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FIGURE 2. The interaction of a shock wave with a thermal boundary layer. Figures 2a-b
show the early stages of the simulation which is dominated by multiple wave interactions.
Figure 2c shows a detail from (b) illustrating the complexity of the tracked waves. Note
that here the y coordinate has been scaled by a factor of two to improve the visibility of the
multiple wave interactions. Figure 2d shows the late time formation of a central geyser in
' he layer.

which we hope will eliminate this extra mode.
Finally we observe that the expanding nature of the outgoing shock wave has an effect on the .....

fluid interface quite similar to that of a gravitational acceleration which enhances the unstable
behavior of the interface.

Figures 2 show a simulation of the acceleration of a thermal boundary layer by an expanding
shock wave. Such a layer might, for example, be produced by radiant energy from the explosion
that initiates the shock wave. This computation illustrate two important points. The first is the

ability of the front tracking code to handle complex interactions between the tracked waces. The
second is that a sharp resolution of these features is absolutely essential for obtaining the correct
answer to the questions of interest here.

The layer is modeled as a region of warm gas bounded by the wall and a contact discontinuity.
A circular, expanding shock wave is initiated at a distance from the wall of three times the width
of the thermal layer, and an initial radius of half the thermal layer width. The fluid outside the
shock is at rest, and the density ratio between the gas inside and outside the thermal layer is 0.5.
An adiabatic exponent of 7 = 1.4 is used for the equation of state. The pressure ratio across tile
shock is initially 105, which gives an initial shock Mach number of 92.5. The collision between the
shock and thermal layer produces a number of interesting wave interactions and bifurcations that
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are aJ1 installed and handled automatically by our code.
When tile incident shock hits tile thermal layer, it produces a pair of connected shock refractions

with reflected rarefactions. As the blast continues to expand, there is eventually a bifurcation in the
structure of the two dimensional wave pattern created 1)y the refraction of the blast wave through

the thermal layer boundary. When this happens, the translnitted wave outruns the incident wave
producing a precursor type configuration as described in ii0]. In modeling this bifurcation we track
the precursor shock and the original incident shock but not the reflected rarefactions. This explains
the absence of the two middle wave edges between figures 2a and 2b, which only show the tracked
waves in the simulation. This rarefaction still present in the computation as a captured wave.

Figure 2c shows a detail from figure 2b of the reflection of the tracked waves near the wall. The
expanding nature of these waves leads to an eventual bifurcation from a regular to a blach type
reflection that has been installed for the outermost pair of reflections in figure 2c. The thermal'
layer acts like a channel for the waves inside it leading to a series of multiple reflections. Ali of this
complicated structure is resolved within a zone of only about 20 x 10 grid blocks. Eventually the
dominant characteristics of the flow shift from wave interactions to chaotic mixing, and at some

point we cease tracking all of the waves except the thermal boundary interface. Figure 2d shows
the interface at late time.

3. THE I:{IC[tTMYER-_/IESHKOV INSTABILITY IN PLANE GEOMETRY

The extremely complex nature of the Richtmyer-Meshkov instability makes it essential to in-
vestigate simplified fluid configurations that can be used to interpret experiments and to validate
numerical computations. We analyze here the case where a plane fluid interface at rest is accelerated
by the passage of a single plane shock wave through the interface.

If we represent the interface position at time t by y(x) = a(t) cos kx, a formula for the amplitude
growth rate,/z(t), was conjectured by Richtmyer [15] as

&(t) = kfi p+ - p- a(0+), (3.1)
P+ +P-

where fi is the average velocity of the contact surface after the interaction, p+ and p_ are the
post-shocked densities on the two sides of the contact, and a(0+) is the perturbation amplitude
immediately after the shock-contact interaction.

Formula (3.1), called the impulsive model, is based on the assumption that the main effect
of the shock wave passing through the interface is to compress the fluids on either side of the
interface and to give the fluid near the interface a push. It is also assumed that once the shock
has passed through the interface the fluids are incompressible. Richtmyer verified his conjecture

using a linearization of the Euler equations, and he demonstrated agreement between the impulsive
model and the solution of the linearized equations for a small parameter range corresponding to
the case of a reflected shock.

As a first step in our program we solved the linear equations numerically for a much broader
range of parameters, including both the case of reflected shocks and rarefactions. Illustrative results
are given in table 1. Our units are chosen such that Ui, = p_ = k = 1, where Ui, is the speed of
incident shock, p_ is the density of the state ahead of the incident shock, and k is the perturbation
wave vector. We can also set a(0-) to one since in the linear theory the growth rate, 5(t), is
proportional to this pre-shocked perturbation amplitude. The solution of the linearized equations
is completely determined by four dimensionless parameters: the adiabatic exponents 7_ and 7:, the
pre-shocked desity ratio p_/P2, and the incident shock strength (Pb -- P,,)/Pb. The subscripts 1 and
2 refer quantities on the incident and transmitted side of the fluid interface respectively, and a a_,,t
b refer to the ahead and behind sides of the incident shock. For the reflected shock case we :_,

= points of agreement as well as disagreement between the impulsive model and the linear theory.
The reflected rarefaction case showed substantial disagreement between the two theories.

_



I

6 GROVE, YANG, ZIIANG, SItARP, (;LI:_I._I, BC)STON, AND IIOLMES

Table la Table lb

Reflected Shock Reflected Rarefaction

[ II 1.1 I 2.0 I 4.o I 8.0 I a6.0l 11 0.91 0.5 10.2510.125 0.0625
1.0 010052 0.049 0.11 0.16 0.18 1.0 -0.00,t4 -0.014-0.025 -0.12 -0.26

0.011 0.080 0.14 0.18 0.18 -0.0042 -0.028 -0.048 -0.059 -0.064
0.5 0.011 0.070 0.11 0.12 0.11 0.5 -0.011 -0.081 -0.15 -0.19 -0.21

0.013 0.080 0.12 0.13 0.11 -0.0068 -0.047 -0.077 -0.086 -0.080

o.o5 o.o015 o.0o9o 0.013 0.013 0.012 o.o5 -0,00_6 -o.o_a -0.026 -0.03r -0.045
o.o015 0.0092 0.013 0.014 0.01'2 -0.00078 -0.0054-0.088-o.oo99-o.oo93

(a) (b)

TABLE 1. Comparison of terminal velocities between the impulsive model and linear theory.
The left column of table la shows the incident shock strength [(ph - p_)/pb], and the top

row the pre-shocked density ratio (plp2). The upper number in each entry is from the
impulsive model, and the lower is the result of numerical simulations of the linear theory.
The two adiabatic exponents are 71 = 3'2 = 1.5.

We have also compared the results of the linear theory to those obtained by simulation of the

full Euler equations. This serves both to determine the range of validity of the linear theory and
to validate the solution of the full Euler equations at small amplitudes.

Figures 3 and 4 show a comparison of the linear theory and the full Euler equations. In this
problem the interface is accelerated by a shock moving from air to SF6. The parameters were chosen

to agree with those occurring in the experiments reported by Benjamin [2]. The density ratio of
SF6 to air at standard conditions is 5.1, and the adiabatic exponents were taken as %it = 1.4

and 7sF_ = 1.0394. The initial amplitude, a(0-), was 0.0637 times the period of the sinusoidal

perturbation. Figure 3 shows a plot of the normalized amplitude of the fluid interface, a(t)/a(O-),
after its acceleration by a shock with ahead Mach number Mo = 1.24. Figure 4 shows the value

of &(t)/a(O-) for the same simulation together with the value calculated from the Benjamin's

experiments [2]. The horizontal time axis in these figures is normalized so that t = 0 corresponds
to the time at which the shock wave has completed its refraction through the interface.

Referring to the figures we emphasize the following points. First, for sufficiently small amplitudes
the simulations of the linear theory and the full Euler equations agree. Second, the growth rate

as determined by the solution of the full Euler equations is in substantial agreement with the

experimentally measured growth rate. Third, the growth rate as predicted by the linear theory,

which agrees with the impulsive model in this case, disagrees with experiment by a factor of

approximately two.

In these figure we also compare front tracking calculations where ali curves were tracked (incident,
reflected and transmitted shock waves and material interface) and where only the material interface

is tracked. We note that while the two nonlinear computations agree for much of the simulation

they begin to diverge at late times.

In ongoing work we are investigating the case of reflected rarefactions, the effects of mass diffusion

on the mixing rates, and exploring the interaction over a wide range of flow parameters.

4. THE INFLUENCE OF COMPRESSIBILITY ON THE GROWTH RATE OF A RAYLEIGH-TAYLOR

MIXING LAYER

Previous investigations[7,8, 16] reported on the behavior of the outer envelope of the bubbles

produced by a Rayleigh-Taylor unstable interface.For incompressibleor nearly incompressible

flows,the heightof thisenvelope isgiven by

h(t) = c_Agt _', (.1.1)
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(a) (b)
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t t

FIGURE 3. A comparison of three separate calculations of the amplitude, a(t)/a(O-), of
a shocked air-SF6 interface. We see that the linear theory agrees with the nonlinear com-
putations for sufficiently small amplitudes. Figure 3b shows a detail for early times in the
computations.

where A = (P2 - p_)/(P2 + Pl) is the Atwood ratio of the densities of the two fluids, g is the grav-
itational acceleration, and a _ 0.06 is an approximately universal constant. We use M 2 = Ag/cab
as a dimensionless measure of the compressibility, where A is the wave length of the perturbation,
and c_, is the sound speed of the heavy fluid at the interface. The number c_ is universal in the
sense that it is independent of both the thermodynamic properties of the two fluids, as well as the
initial conditions at the unstable interface. This formula agrees with the experimental results of
Read and Youngs [14].

Further justification of the validity of formula (4.1) was provided by analysis which established
the existence of a renormMization group fixed point for a set of equations that approximate the
fluid motion in terms of the dynamics of a statistical ensemble of elementary modes governed by
pairwise interactions [8, 16]. Numerical solutions of this model gave a value for a in excellent
agreement with both experiments and computations.

The above investigations, which were conducted for compressibilities M 2 _< 0.1, have been ex-
tended to flows with moderate to large values of M a. We conducted a series of numerical simu-
lations of Rayleigh-Taylor unstable flows for a variety of different parameter regimes and values
of M 2 ranging from 0.1 to 1.0 [3]. Two significant observations were made on the basis of these
numerical computations. The first is that a shows a marked dependence on M 2, with the value
of a for M 2 = 1 nearly two and a half times the value of the incompressible (M 2 = 0) limit of

ai,¢o_p = 0.06. In general, a appears to an increasing function of M 2. The second observation was
that a was no longer universal for larger values of M 2, which is expressed by a dependence of a on
the initial distribution of the perturbations on the unstable interface.

Table 2a summarizes the results of our investigation into the dependence of a on compressibility.
The value of a, as summarized in the last column of table 2a, was computed by fitting the bubble

height h(t), as measured from an ensemble of N different numerical simulations, versus t_. Each
individual simulation used a different set of random surface perturbations to act as seeds for the
unstable modes, and the reported value of a is the statistical average of the individual a_'s of the

separate runs. For sample runs with N > 1 the root-mean-square (rms) is also reported. The other
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FIGURE 4. The rate of change, a(t), of the amplitude of a shocked air-SF6 interface. The
dark dashed line shows the measurement of a(t)/a(0-) obtained from the experiments of
Benjamin [2] using the same flow parameters as used in this computation. The experimental
number has been converted into dimensionless units as mentioned in the text.

columns of table 2 report respectively, the compressibility M 2 of the initial configuration, the grid
sizes used for the simulation, the minimum and maximum of the fourier modes used to generate
the initial random interface, the number of fourier modes (hmax - kmi, + 1), and the number N
of samples. In each sample, the amplitudes of the fourier modes were selected from independent
Gaussian random variables.

The data reported in table 2a clearly indicate an increase in a for larger values of M 2. We also
note that for M s = 0.5, a is also dependent on the number of modes on the initial random surface.

We also compared the predicted values of a as computed from the renormalization group fixed
point model with the numerical computations. These results are summarized in table 2b. We
observe ii dependence of a on M s, and note that the RG fixed point model begins to fail for larger
values of M 2.

5. CONCLUSION

This article summarizes recent work by members of our group on the modeling and analysis of
unstable fluid interfaces. Our experience is that front tracking is an effective tool for the compu-
tation of these flows in two dimensions and allows us to achieve good resolution of complex flows

even on relatively coarse grids.

To summarize, our principal conclusions are: front tracking substantially reduces grid orientation
effects for computations in curved geometries, the solution of the linearized Euler equations agrees
with numerical solutions of the full Euler equations for the 1Echtmyer-Meshkov problem at suffi-

ciently small amplitudes, our front tracking simulation of the Richtmyer-Meshkov problem agrees
with the experimental results of Benjamin, and the rate of growth of a Rayleigh-Taylor mixing
layer increases with increasing compressibility.
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" Table 2a

The growth rate a for a Rayleigh-Taylor mixing layer.

Line M "_ Domain kma× kmin Modes Samples Modulation a ]_ __ ,,,

1 .1 208 x 300 36 24 13 1 Yes .062
2 208 x 300 18 6 13 l Yes .059
3 208 x 300 22 10 13 4 Yes .066 "4-.004
4 208 x 300 22 10 13 8 No .068 :t: .004
5 640 x 300 78 39 40 1 Yes .072

,,

6 .2 320 x 300 37 18 20 4 No .084 :t: .003
7 .3 320 x 300 37 18 2'0 4 No .096 4-.004

8 :5 i04 x 300 i0 5 6 -- 1 .... Yes .0736
9 104 x 300 10 5 6 8 No .099 =t: .008
10 320 x 300 37 18 20 1 Yes .105
11 320 x 300 37 18 20 8 No .121 =l=.006
12 320 x 300 28 9 20 1 Yes .106
13 320 x 300 57 38 20 1 Yes .106
14 640 x 300 74 35 40 1 Yes .119
15 960 x 300 114 55 65 1 Yes .123
16 1280 x 300 159 80 80 1 Yes .116
17 1 640 x 300 74 35 40 1 Yes 137

18 960 x 300 114 55 65 1 Yes .144
....

Table 2b

A comparsion of a to RG Theory

M _ c_comp amodel error (%)
0.1 0.062-0.070 0.064-0.076 0
0.2 0.081-0.087 0.073-0.080 1
0.3 0.092-0.100 0.080-0.086 7
0.5 0.114-0.128 0.089-0.094 19
1.0 0.137-0.144 0.105-0.107 24

TABLE 2. Table 2a shows the results of our numerical computations of the growth rate
for a Rayleigh-Taylor mixing layer. A Comparison of a as predicted by numerical simulation
vs. the renormalization group theory is shown in table 2b. This table is reproduced from
reference [3].
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