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ABSTRACT

Two complementary methodologies are described to quantify the effects of crack-tip stress
triaxiality (constraint) on the macroscopic measures of elastic—plastic fracture toughness,
JJ and Crack-Tip Opening Displacement (CTOD). In the continuum mechanics methodolo-
gy, two parameters, J and @, suffice to characterize the full range of near—tip environments
at the onset of fracture. J sets the size scale of the zone of high stresses and large deforma-
tions while @ scales the near—tip stress level relative to a high triaxiality reference stress
state. Full-field finite element calculations show that the J-Q field dominates over physi-
cally significant size scales, i.e., it describes the environment in which brittle and ductile
failure mechanisms are active. The material’s fracture resistance is characterized by a
toughness locus, J¢(Q), which defines the sequence of J-Q values at fracture determined
by experiment from high constraint conditions (@ =0) to low constraint conditions (Q < 0).

To reduce experimental effort needed to construct a JJ-@ toughness locus, amicromechanics
methodology is described which predicts the toughness locus using crack-tip stress fields
and critical J-values from a few fracture toughness tests. A robust micromechanics model
for cleavage fracture has evolved from the observations of a strong, spatial self-similarity
of crack-tip principal stresses under increased loading and across different fracture speci-
mens. While the spatial variation remains self-similar, the magnitudes of principal
stresses vary dramatically as crack-tip constraint evolves under loading. The microme-
chanics model employs the volume of material bounded within principal stress contours at
fracture to correlate J, values for different specimens and loading modes. The J-Q descrip-
tion of the crack-tip stress fields predicts the similarity of principal stress contours as
constraint evolves under loading. For an applied JJ-value, the size, but not the shape, of
principal stress contours is altered by the near-tip, uniform hydrostatic stress states of ad-
justable magnitude characterized by @. These observations imply that values specified for
metallurgical parameters in the micromechanics model, such as the critical fracture stress
and the distance to the critical particle, have only a weak influence on the relative variation
of fracture toughness, J;, with constraint for a given material and temperature.

This report explores the fundamental concepts of the J-@ description of crack-tip fields,
the fracture toughness locus and micromechanics approaches to predict the variability of
macroscopic fracture toughness with constraint under elastic—plastic conditions. While
these concepts derived from plane-strain considerations, initial applications in fully 3-D
geometries are very promising. Computational results are presented for a surface cracked
plate containing a 6:1 semi-elliptical, a=t/4 flaw subjected to remote uniaxial and biaxial
tension. Crack-tip stress fields consistent with the J—-@ theory are demonstrated to exist
at each location along the crack front. The micromechanics model employs the J-@ descrip-
tion of crack—front stresses to interpret fracture toughness values measured on laboratory
specimens for fracture assessment of the surface cracked plate. The computational results
suggest only a minor effect of the biaxial loading on the crack tip stress fields and, conse-
quently, on the propensity for fracture relative to the uniaxial loading.
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Continuum and Micromechanics Treatment of
Constraint in Fracture

1. INTRODUCTION

Two fundamental concepts underlie both linear-elastic fracture mechanics and elastic—
plastic fracture mechanics: [1] the relevant crack-tip singularity dominates over micro-
structurally significant size scales and [2] the parameter K}, or J, uniquely scales the ampli-
tude of the near—tip fields. In an actual structure, the crack-tip field must be perturbed by
the external boundary and the loading distribution (from afar), and by the zone of inelastic-
ity and small-scale heterogeneities, e.g., grains, microcracks, crack face roughness (from
within). However, when the zone of inelasticity and small-scale heterogeneities remains
small compared to the external geometry, the asymptotic field is approximately unper-
turbed in an annulus which is larger than the zone of inelasticity and small-scale heteroge-
neities, but much smaller than the external geometry. Strain—stress fields in such an annu-
lus are determined completely by the singularity solution (see review article by Hutchinson
[1]). Under this condition, the effects of remote loading and external boundaries are com-
municated to the crack tip through Ky, orJJ, alone. Moreover, when linear elasticity prevails
at the macro-scale, then boundary loading as well as traction free boundaries exert their
influence on the near-tip field through Kj alone, with no effect on the actual distribution.
Similarly, the plastic fields for well-contained yielding sense external boundaries and load-
ing only through J [2,3,4]. However, for large-scale yielding in finite bodies, the relation-
ship between the scaling parameter, JJ, and the near-tip fields loses the one-to-one corre-
spondence [5,6,7] This loss of uniqueness, often termed loss of constraint, produces the in-
creases in fracture toughness observed for tension geometries and for shallow notch bend
specimens. The mismatch of constraint conditions at the crack tip apparently plays a domi-
nant role in the often disappointing correlation between fracture specimen behavior [C(T),
SE(B)] and the behavior observed in large-scale, tension loaded tests.

Constraint effects are most pronounced for low-to-medium strength structural steels
(and their weldments) operating in the ductile-to-brittle transition region where unstable
fracture occurs by the micromechanism of transgranular cleavage. Many nuclear, civil and
marine structures operate in the transition region over significant portions of their life-
times. Unlike the more ductile mechanism of slow stable tearing, cleavage fractures most
often trigger catastrophic failure of even highly redundant structural systems. Extensive
experimental studies (see, for example [8-12)) have readily demonstrated the much great-
er sensitivity of cleavage fracture toughness, J;, to constraint than is observed for ductile
initiation toughness, Jj., and for ductile crack growth resistance J-Aa.

In the past three years, new approaches have appeared to quantify constraint and to
predict the effects of constraint changes on macroscopic (engineering) fracture toughness
characterized by J and the crack tip opening displacement, CTOD or d. Very detailed, elas-
tic-plastic finite element analyses provide correlations of crack-tip stress fields over dis-
tances r < 1-89 with loading level (J), loading mode (tension vs. bending), specimen geome-
try and strain hardening. Such computations stimulated development of the J—@ continu-
um mechanics framework [13-19] to describe the near—tip fields under very general condi-
tions of loading in finite bodies. Within this framework, the J-integral sets the scale of de-
formation at the crack tip (i.e., the CTOD) while the hydrostatic stress parameter, @, quan-



tifies the level of stress triaxiality over distances r < 1-85 ahead of the tip in which the mi-
croseparation processes occur. Under increased loading, each fracture specimen for a specif-
ic material/temperature follows a characteristic J-@ driving force curve which defines the
evolution of crack~tip deformation and constraint. Specimens fracture at critical J-values
which depend on @ (critical J-values are determined by laboratory testing, the correspond-
ing @-values at fracture are determined from analysis). By testing fracture specimens that
exhibit a wide-range of constraint conditions (e.g. shallow-to—deep notch SE(B) speci-
mens), the toughness locus for the material is constructed, i.e., the curve connecting all crit-
1cal J vs. @ points.

The level of stress triaxiality, quantified conveniently by @, plays a dominant role in the
competition between fracture initiation by cleavage and ductile tearing for ferritic materi-
alsin the ductile-to—brittle transition region. Cleavage fractureis controlled by critical lev-
els of the hoop stress (opening) acting over microstructurally significant distances ahead
of the crack tip [20,21]. Ductile tearing is controlled by several competing processes, includ-
ing growth of a dominant void and coalesescence with the crack tip, interaction of many
growing voids leading to localization of plastic flow, and zigzag mode of ductile tearing
[22,23]. Each of these mechanisms is dependent to some extent on the mean stress. Since
@ quantifies both the hoop stress and the mean stress over the operative length scales for
both cleavage and ductile micromechanisms, it provides a common parameter to interpret
fracture initiation in terms of a single toughness locus.

Another two-parameter approach also receiving considerable attention utilizes J and
the elastic T-stress [7,24-29]. These studies propose to correlate crack—tip stress triaxial-
ity in contained and fully~yielded cracked bodies using the the elastic T-stress. The J-T
and J-Q approaches are equivalent under well-contained yielding conditions [14-16].
However, under fully-yielded conditions the T-stress becomes undefined; moreover, T is
proportional to K and near limit load Ky (and thus T') approaches a saturation value inde-
pendent of additional plastic deformation. In contrast, the @-parameter continues to
evolve over the entire range of plastic yielding. Numerical studies have shown that the J-T
approach overestimates the actual stress triaxiality for some geometries and underesti-
mates it in other cases so that there is not a consistent trend [16,30]. An extensive study
of the limits of applicability of the T-stress as a correlator of near—tip stress triaxiality can
be found in [30]. Readers are referred to the publications [7,24-29] and references therein
for details of the J-T approach. This paper focuses on continuum and micromechanics ap-
proaches believed to have broader applicability.

The J-Q approach may become prohibitively expensive as the number of specimens and
temperatures of interest increases. Toreduce the cost, a micromechanics model for cleavage
fracture is introduced to predict the toughness locus using the finite element stress fields
and the J¢ values from a few fracture toughness tests. Recent developments [31,32]in the
formulation of a robust micromechanics model focus on the observation of a strong, spatial
self-similarity of crack—tip principal stresses under increased loading and across different
fracture specimens. While the spatial variation remains self-similar, the magnitudes of
principal stresses vary dramatically as crack—tip constraint evolves under loading. The mi-
cromechanics model employs the volume of material bounded within principal stress con-
tours at fracture to correlate J, values for different specimens and loading modes. The simi-
larity of principal stress contours as constraint evolves under loading is entirely consistent
with the J-@ description of the crack-tip stress fields. For an applied J-value, the sizc, but
not the shape, of principal stress contours is altered by the near—tip, uniform hydrostatic
stress states of adjustable magnitude characterized by @. These observations imply that

o



values specified for metallurgical parameters in the micromechanics model, such as the
critical fracture stress and the distance to the critical particle, have only a weak influence
on the relative variation of fracture toughness, J;, with constraint for a given material and
temperature.

This paper explores the fundamental concepts of the J-@ description of crack-tip fields,
the fracture toughness locus and micromechanics approaches to predict the variability of
macroscopic fracture toughness with constraint under elastic-plastic conditions. While
these concepts derived from plane-strain considerations, initial applications in fully 3-D
geometries are very promising. Computational results are presented for a surface cracked
plate containing a 6:1 semi—elliptical, a=t/4 flaw subjected to remote uniaxial and biaxial
tension. Crack-tip stress fields consistent with the J-Q theory are demonstrated to exist
ateach location along the crack front. The micromechanics model employs the J-@ descrip-
tion of crack—front stresses to interpret fracture toughness values measured on laboratory
specimens for fracture assessment of the surface cracked plate. The computational results
suggest only a minor effect of the biaxial loading on the crack tip stress fields and, conse-
quently, on the propensity for fracture relative to the uniaxial loading.



2. J-Q THEORY

Consider a cracked body of characteristic dimension L loaded remotely by a stress denoted
o . The scale of crack-tip deformation is measured by /0o where 0¢ is the material’s ten-
sile yield stress (d x J/0g). At a sufficiently low load, L >J/0g and it can be shown from di-
mensional grounds that all near-tip fields are members of a single family of crack-tip
fields. Each member field is characterized by its level of deformation as measured by J/og
and by its level of crack tip stress triaxiality as measured by @, which also identifies that
field as a particular member of the family. For example, the self-similar solution of Rice
and Johnson [33] and McMeeking [34] (as well as the HRR field [3,4]) is the @ =0 member
field. The @-family of fields provides the proper characterizing parameter for the full range
of near—tip stress states.

In the following discussion, attention is directed to the prospective fracture region
ahead of the crack tip on the scale of several crack opening displacements, d, representing
the environment in which the failure mechanisms are active.

2.1 @Q-Family of Fields-MBL Formulation

The @-family of fields is constructed using a modified boundary layer (MBL) formulation
in which the remote tractions are given by the first two terms of the small-displacement~-
gradient linear elastic solution (Williams [35]),

K -
0, = 7&% f0) + T8,,6y; (2.1)
Herer and 6 are polar coordinates centered at the crack tip with 6= 0 corresponding to aline
ahead of the crack is shown in the insert in Fig. 2.1. Cartesian coordinates, X and Y with
the X-axis running directly ahead of the crack, are used when it is convenient. Within the
MBL formulation,
— 2

J=1 =K} (2.2)
under plane strain conditions, where J is Rice’s J-integral [1], E is Young’s modulus and
v is Poisson’s ratio.

Fields of different crack tip stress triaxialities can be induced by applying different com-
binations of K and T. From dimensional considerations, these fields can be organized into
a family of crack tip fields parameterized by T'/ oy:

0, =04 ﬁj(j—/rCTD,B;T/aO) . (2.3)

That is, the load parameter 7'/ gy provides a convenient means to investigate and parame-
terize specimen geometry effects on near—-tip stress triaxiality under conditions of well-
contained yielding. Such studies have been carried out by Betegon and Hancock [24], Bilby
et al. [36] and Harlin and Willis [37]. Nevertheless, the result in (2.3) cannot have general
applicability since the elastic solution (2.1), upon which the T-stress is defined, is an
asymptotic condition which is increasingly violated as plastic flow progresses beyond well-
contained yielding.

Recognizing the above limitation, O'Dowd and Shih [13,14], referred to as OS, identified
members of the family of fields by the parameter @ which arises naturally in the plasticity
analysis. OS write:



Uij'—'aofij(J/OOQ) &o fij (/ Q) J h; (J/UOQ) (2.4)

The additional dependence of fij, gij and h; on dimensionless combinations of material pa-
rameters is understood. The form in (2.4) constitutes a one-parameter family of self-simi-
lar solutions, or in short a @—family of solutions. The annular zone over which (2.4) accu-
rately quantifies the actual field is called the J-Q annulus.

2.2 Difference Field and Near-Tip Stress Triaxiality

Using the modified boundary layer formulation, and considering a piecewise, power—law
hardening material, OS generated the full range of small scale yielding, plane strain solu-
tions, designated by (0 )ssy. OS considered the difference field defined by l

AUU- = (Ulj)SSY - (Ulj)HRR (25)
where (0;; )urr 1s the HRR field. They systematically investigated the difference field within
the forward sector |6| < 7/2 of the annulus J/og< r <5J/0¢, since this zone encompasses
the microstructurally significant length scales for both brittle and ductile fracture[20]. Re-

markably, the difference field in the forward sector displayed minimal dependence on r.
Notingthis behavior, OS expressed the difference field within the forward sector in the form

Ao Qooa @) , (2.6)

where the angular funciions 6;; are normalized by requiring 0;(6=0) to equal unity. More-
over, the angular functions within the forward sector exhibit these features: o,, =ogy =
constani and |org | < |ogg| (see Figs. 3, 4, and 5in [13]).

Thus the difference field within the sector |6|<n/2andJ /oo < r <5J/ag, correspond ef-
fectively to a spatially uniform hydrostatic stress state of adjustable magnitude, i.e.
A40;;=Q0¢0;j. Therefore @ defined by

Q= &00;‘_(%%_)1_@3. at 6= 0, r=2J/o, 2.7

is anatural measure of near—tip stress triaxiality, or crack tip constraint, relative to a high
triaxiality reference stress state. For definiteness we have evaluated @ at r=2J/0g, however
wenote that @ is efffectively independent of distance. In words, @ is the difference between
the actual hoop stress and the corresponding HRR stress component at r=2J/oy, the differ-
ence being normalized by 0¢. The distance chosen for the definition of @ lies just outside the
finite strain blunting zone. It is preferable that @ be defined at a distance which is some
multiple of the crack tip opening displacement; the present definition suffices for our pur-
poses.

OS also considered the difference field whereby the reference solution is the standard
small scale yielding solution, (0;j)ssy;T=0 which is driven by K} alone, i.e.,
doy; = (0)ssy ~ (0)ssy,7=0 (2.8)
In this case the difference field in the forward sector matches a spatially uniform hydrostat-
- ie stress state even more closely. Thus an alternative definition of @ is

O — (Ogg)ssy.T= '
Q=2 —XSWI0 400, r=2J/0 . (2.9)
0

Representative stress distributions of the @-family of fields can be found in [13,14].
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Figure 2.1  Definition of the Modified Boundary Layer (MBL) problem.
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Figure 2.2  Plane strain reference fields for n=10, E /0¢=500, v=0.3. Reference fields for sev-
eral n values are tabulated in Table 2.1. The material stress~strain curve has the
form given in (2.10).



2.3 Choice of Reference Field

The value of @ is slightly affected by the choice of reference field. Thus a small increment
(or decrement) must be applied to the Q-values if the reference field is changed from
(096)HRR to (093 )sSY:T=0, or vice versa. The reference field distributions according to the HRR
singularity and the small scale yielding solutions for small strain and finite strain are given
in Table 2.1. The material’s uniaxial stress—strain response is represented by an elastic
power-law model having the form

e = {O'/E if 0 =<0,

efafogr  if a>a, ° 0= 9/E (2.10)

with values of E/g¢g=500, v=0.3 adopted in the computations. Figure 2.2 shows typical refer-
ence fields determined from the MBL formulation with T=0.

In practice it really does not matter whether we use (059)HRR (2.7), or (dpg)ssy:T=0(2.9),
for the definition of @ so long as it is applied consistently. In other words, the evaluation
and tabulation of @ solutions for test specimens, the determination of the toughness locus
from test data, and subsequent applicaticns of such data to predict fracture in structural
components should be based on the same reference field. Nevertheless, use of (2.9) can ex-
tend the range of applicability of the J-@ approach and is preferable when it is desired to
assess the spatial extent of the J-Q annulus. A parameter which can ascertain the robust-
ness of the J—Q field is discussed in the next Section.

A reference distribution determined from a small-displacement—gradient analysis is
adequate for most applications. However, accurate descriptions of fields near the zone of
finite strains may be desirable in some applications, e.g. computational studies on the mi-
cromechanisms of ductile initiation. In such cases it is preferable to calculate (gsg)ssy.T=0
by a finite deformation analysis ard to use (2.9) for the definition of @. More importantly
for practical applications, the evolution of stress triaxiality in a finite-width, cracked body
can be evaluated for an actual stress—strain relation, not just the power-law relation, if the
(09g)ssY:.T=0 reference field for the MBL model is determined with the same stress—-strain
rvelation. This extends the applicability of the approach to a much broader range of material
responses. In contrast, the reference field (0gg)yrr is defined for an elastic power~law hard-
ening material and the calculations in the finite body also must employ an elastic power—
law hardening relation.

2.4 Variation of Q with Distance

Because Q scales the difference field relative to a reference stress state, it provides a sensi-
tive measure of the evolution of near—tip stress triaxiality in finite width cracked bodies.
It also can be used to detect changes irt the stress triaxiality that deviates from the pattern
that develops under MBL loadings. For this purpose, we consider Q(F) defined by

Q) =2 gf) SSYT=0  at6=0 (2.11)

where 7 = r/(J/g,). Note that (gsg)ssy:T=0 is chosen as the reference field.

The mean gradient of Q over 1 < F < 5,

@-=9-Qr=1 2.12)

can be used to monitor changes in the pattern of the stress triaxiality ahead of the crack
that do not conform to a spatially uniform hydrostatic stress field of adjustable magnitude.




Q' provides a measure of the robustness of the J-@ fields in the application of interest. For
example, @'=0.04 means 4oy varies by less than 0.160¢ over the interval 1 < F < 5; that
is, Aogg is effectively constant over those distances. On the other hand, an | Q' | muchlarger
than 0.1 implies that the variation of 4og over the interval 1 < 7 < 5 can be comparable
to gg. This is unacceptably large if the theory is employed to predict cleavage fracture which
is very sensitive to changes in the hoop stress.

Table 2.1: Reference stresses, ogy/0g, for MBL problem, T'/a¢=0.
n r/(J/og) HRR Small Strain Finite Strain
1 5.99 5.46 5.95
2 5.04 453 4.72
3 3 4.55 4.06 4.19
4 4.24 3.76 3.85
5 4.01 3.53 3.61
1 4.77 442 4.83
2 4.25 3.90 4.06
5 3 3.97 3.63 3.73
4 3.79 3.44 3.52
5 3.65 3.29 3.36
1 3.83 3.57 3.79
2 3.59 3.35 3.52
10 3 3.46 3.22 3.33
4 3.38 3.12 3.20
5 3.31 3.03 3.11
1 - 2.83 2.50
2 - 2.80 2.97
00 3 - 2.77 291
4 - 2.74 2.86
5 - 2.71 2.82

2.5 Simplified Forms for Engineering Applications

Two simplified representations for the @-family of fields within the forward sector have
been proposed by OS. The first is

Uz'j = (aij)HRR + anéij (2.13)
where ¢;; is the Kronecker delta. This form is consistent with (2.7). The second form is
0y = (O)ssy.r=0 + Q000 (2.14)

which is consistent with (2.9). The physical interpretation of (2.13) and (2.14) is this: nega-
tive (positive) @ values mean that the hydrostatic stress ahead of the crack is reduced (in-
creased) by Qog from the J-dominant stress state, or the standard small scale yielding
stress state. This interpretation is precise when |Q'| < 1.

A operational definition of @ consistent with its interpretation as a triaxiality pa-
rameter is

Om — (Om)ssy.T=
Qm = — ;‘OSSY*T ° at6=0, r=2J/0, (2.15)




where g, is the hydrostatic stress. We have calculated @ based on the hoop stress (2.9) and
the mean stress (2.15) for the full range of T—stresses and finite width geometries. The dif-
ference between @ and @,, is always less than 0.1.

Our numerical studies show that (2.14,2.15) provide a more accurate representation of
the full range of near-tip fields so that a fracture methodology based on (2.14,2.15) has a
greater range of validity. @ values presented in this paper are based on the definition in
(2.9). To simplify subsequent discussions, the term small-scale yielding (SSY) will refer to
the reference field (g;;)ssy:T=0 or equivalently (g;;)ssy.Q-0- Fields corresponding to T'= 0 or
Q = 0 will be explicitly stated as such.

2.6 Difference Field and Higher-Order Terms of the Asymptotic Series

The connection between the difference field and higher—order terms of the asymptotic se-
ries can be understood in the context of the MBL formulation. Here the stress fields obey
the functional form

0 = 9 fg(;,-/%,e;Q) (2.16)

which also should apply to finite-width crack geometries as long as the characteristic crack
dimension L is sufficiently large compared to J/0¢. Now, if one assumes a product depen-
dence on the first argument in (2.16) and works with deformation plasticity theory with
power law hardening behavior, then one obtains a series in r/(J/0):

1/(n+1)
0, = 0, (a;()%.ln_r) 6,-1(0,71) + second-order terms + higher—order terms (2.17)

where :a is a reference strain, a a material constant (equal to unity for the stress—strain
response defined by (2.10)) and I, is an integration constant. By definition, the asymptotic
series beyond the first term is equivalent to the difference field since (see Section 2.2 )

0, = (0)yrg + difference field . (2.18)

Thus the HRR field and (only) the second—order term provide a two-term approximation
to the solution for the MBL problem and this point appears not always to be understood.

The higher order asymptotic analysis of Li and Wang [17] and Sharma and Aravas [18]
has been extended by Xia, Wang and Shih [19]). They have obtained a five term expansion
for the series in (2.17) for n = 3 and a four term series for n=10. The four term series accu-
rately matches the radial and angular variations of the difference field given in Fig 3 and
Fig. 5 by O'Dowd and Shih [13] for an n =10 material. Indeed, in the forward sec-
tor|6| < /2, the collective behavior of the second, third and fourth order terms is effectively
equivalent to a spatially uniform hydrostatic stress state so that (2.17) can be approxi-
mated by the simpler form in (2.13).

Finally, it may be noted that an admissible range of stress states for an elastic—perfectly
plastic material can be written in the form

Gy = (ai_;)PrandLI + Qaﬂél_] , 101 < /4, (2.19)

where(0j)prandlt designates the Prandtl slip-line solution and the difference field corre-
sponds simply to a uniforn: hydrostatic stress state scaled by @ [14,25].



2.7 J-Q Material Toughness Locus

The J-Q theory provides the quantitative framework to characterize a material’s fracture
resistance over a range of crack—tip stress triaxiality. The experimental determination of
the toughness iocus and its utilization in engineering applizations are discussed below.

The competition between fracture by cleavage and ductile tearing controls the fracture
resistance of ferritic steels in the ductile~to-brittle transition region. Now consider test
conditions where both mechanisms are operative. Fracture by (stress--controlled) cleavage
generally requires higher crack-tip constraint while ductile tearing develops at low
constraint; this is illustrated by the two distinct segments to the toughness locii shown in
Fig. 2.3a. Since measured toughness values generally exhibit scatter, both the lower and
higher toughness locii are indicated which define bands for brittle and ductile failure.
Toughness values over the full range of crack~tip constraints can be measured by using the
test geometries depicted in Fig. 2.3a. As an example, deeply—cracked SE(B) specimens gen-
erate high crack-tip stress triaxiality, i.e., @ =0. They produce driving force curves which
rise steeply and therefore intersect the toughness locii within a well-defined, narrow zone
of the J—Q diagram. In contrast, center—cracked panels and single-edge cracked panels
loaded in tension are low constraint crack geometries. They produce driving force curves
which rise with more shallow slopes and thus intersect the toughness locii over abroad zone
in the J-@ diagram. The shallow driving force curves of low constraint geometries imply
considerably greater scatter in cleavage toughness values (J;), a phenomenon commonly
observed in testing SE(B) specimens with small a/W ratios, for example.

Jcr'iti cal Jcritical
A Upper-Bound A

Structure B

Ductile

/ \
& Lower-Bound
g C

J - leavage
0 -Q 0 -Q
(a) Laboratory Testing (b) Fracture Assessment

Structure A

>

Figure 2.3  Application of the J-@ methodology in fracture assessments. (a) Laboratory test-
ing of specimens with varying constraint to measure the material’s fracture resis-
tance. Circles indicate anticipated scatter which define upper-lower bounds. (b)
Evaluation of structural flaws using measured toughness locus and predicted J-@
response for two structural configurations. Cleavage fracture is predicted for
Structure A; ductile tearing is predicted for Structure B.

Utilization of the toughness locus in fracture assessments is illustrated in Fig. 2.3b.
Suppose that the material’s fracture resistance under service conditions is characterized
by the indicated cleavage—ductile failure band. The driving force curve for a structure of



high crack-tip constraint, structure A, rises rapidly in the J-Q space so that cleavage
fracture occurs when the driving force curve intersects the failure locus. In contrast a low
constraint geometry such as structure B, induces a gradually rising driving force curve so
that ductile tearing is the likely event at overload.



3. MICROMECHANICAL CONSTRAINT CORRECTIONS

Dodds and Anderson [31,32] show that by quantifying the effects of finite size on the rela-
tionship between microscale crack driving force (e.g. near-tip stresses and strains) and
macro-scale crack driving force (e.g. J, CTOD), the apparent size effect on fracture tough-
ness can be predicted rigorously without resort to empirical arguments. These size effects
become steadily more pronounced as load increases due to the deviation of crack-tip region
deformations from the small scale yielding conditions essential for single parameter frac-
ture mechanics (SPFM) to apply. When SPFM becomes invalid, a micromechanics failure
criteriais required to establish the near—tip conditions at fracture. Finite element analysis,
or alternatively the near—tip stresses described by the J-@ theory, provides a means to
quantify the geometry dependent relations between these micromechanical failure condi-
tions and macro—scale crack driving force. This permits (in principle) prediction of fracture
in any body from toughness values measured using standard specimens.

For steels operating at temperatures where cleavage occurs after significant plastic de-
formation but before the initiation of ductile growth (lower to mid—transition), attainment
of a critical stress over a microstructurally relevant volume is an appropriate microme-
chanical failure criteria [21-39]. A number of important engineering structures can fail by
this mechanism, including high strength rails, offshore oil platforms, ships, storage tanks,
and nuclear pressure vessels after years of neutron irradiation embrittlement. Techniques
for predicting the apparent size effects on cleavage fracture toughness developed by Dodds
and Anderson are described in the following sections.

3.1 Transgranular Cleavage Mechanism

A number of micromechanical models for transgranular cleavage fracture have been pro-
posed, most derive from weakest-link statistics. The weakest-link models assume the larg-
est or most favorably oriented fracture~triggering particle controls the cleavage failure.
The actual trigger event involves a local Griffith instability of a microcrack which forms at
a microstructural feature such as a carbide or inclusion; satisfaction of of the Griffith ener-
gy balance occurs when the critical stress is reached in the vicinity of the microcrack. The
size and location of the triggering microstructural feature(s) dictate the fracture toughness
and produces the scatter routinely observed in results of cleavage fracture tests.

The Griffith instability criterion implies fracture at a critical normal stress near the
crack tip; the statistical sampling aspect of the mechanism (i.e., the probability of finding
atriggering microfeature near the crack tip) suggests a dominant role for the volume of ma-
terial within a process—zone over which the opening mode stress exceeds a threshold value
sufficient to initiate cleavage. The probability of cleavage fracture in a cracked specimen
may then be expressed in the following general form:

F = FIV(g,)] (5.1)
where F is the failure probability, o; is the maximum principal stress at a point and V(o;)
is the cumulative volume sampled over which the principal stress is equal to or greater than
01. This form of F applies to any fracture process controlled by maximum principal stress,
not just weakest-link failure which is now being questioned [40,41]. In particular, the F

criterion of (3.1) does not require material-specific assumptions for the distribution and
strength of cleavage triggering particles.

Unlike other micromechanics models, the present methodology does not attempt to pre-
dict absolute values of J; from metallurgical parameters that describe the distribution and

—
[}



3trength of cleavage triggering particles. Rather, the micromechanical model predicts the
variation of fracture toughness with constraint changes for a given material/temperature
by scaling to a reference condition. The crack-tip stress fields in a test specimen are
compared to the limiting solution of SSY. A J-like parameter, denoted Jy, is obtained from
this comparison to the reference solution. Jpis the J to which the SSY model (infinite body)
must be loaded to achieve the same stressed volume, and thereby the same likelihood of
cleavage fracture, as in a finite body.

A critical value of Jg represents the fracture toughness of an infinitely large specimen;
the ratio of applied J/Jo>1 implies that the specimen has experienced a constraint loss
that causes the commonly observed increase in measured fractured toughness.

3.2 Development of Constraint Corrections

By employing the family of near—tip states in the form of (2.4), the maximum principal
stress also has the form

5 —fl(JO/ = Q) . (3.2)

For any given value of @ and 6, 01/0g decreases monotonically once r extends beyond the
finitely deformed region of r <J/0p. Rearrangement of the above expression furnishes a
relation for the distance r as a function of @ and 0,/0¢ as

r= -0"L0g1(6;01/00, Q). (3.3)

Consider a particular level of the principal stress 01 /09. The area A over which the principal

stress is greater than o1/0g is given by
b4

2
A= %%—h(al/ao; Q), h= % jg"{(G; 0,/00, Q)0 . (3.4)

-7
The area enclosed by the contour of level 0,/0¢ depends on J as well as the triaxiality of
the near—tip fields identified with @. To fix ideas, let Ag and Jo designate the area and J
associated with thie @=0 field, and let Apg and Jpp designate the area and J associated with
a crack in a finite body with @ = 0. Then we have

14

J2
Ag = }_gho(%/ao); ho = % Jgﬁ(e;"l/ao’ Q = 0)do (3.9)
0
and
J2 1 (
App = %hFB(Ul/UO); hpp = 5 Ig%(dwl/ao’ Q)do . (3.6)
0

Upon initial loading of the finite body, @=0 so that Apg=h¢; compare expressions (3.5b) and
(3.6b). As the load increases, plasticity spreads over the body, @ becomes non-zero, and Arp
begins to deviate from Ay.

For a given material and temperature, the present micromechanics model requires the
attainment of equivalent stressed volumes (Arg X thickness B) for cleavage fracture in dif-
ferent specimens. The ratio of applied J-valuesin a finite body and the reference @=0stress
state that generate equivalent stressed volumes is found by equating areas in (3.5) and
(3.6) to yield



Jl
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The results thus far are generally applicable and do not rely upon any particular form of
the J-@ fields.

The J ratios are evaluated using (3.7) at each loading level and for a range of principal
stress values. The ratio quantifies the size and geometry dependence of cleavage fracture
toughness. Consider, for example, a test specimen that fails at J. =200 kPa-m. Suppose the
computed ratio Jrp/Jp=2 at fracture (Jrp=e/¢) in the test specimen; then a very large speci-
men made from the same material and tested at the same temperature is predicted to fail
atJ,=100kPa - m. Similarly, the fracture toughness ratios for test specimens with the same
absolute size but varying crack—depths to specimen-widths, a/ W, may be quantified. The
model predicts a sharp increase in fracture toughness with decreasing a /W ratio.

Self-Similar Principal Stress Contours

The character of the near—tip fields has been investigated by O’'Dowd and Shih [13,14] and

~Xia, Wang and Shih [19]. From their results, e.g., (2.14), we write

g9 _ r .

= ff~2— 8b)
——fo(Jo/%ﬁ) +Q (3.8b

where the form in (3.8b) describes the fields in the forward sector, |6| < n/2 and r <5J/go.
Detailed computational studies have shown that principal stresses of sufficiently high lev-
el, say 01/00 > 2.0, are found only in the {orward sector. The form in (3.8b) is applicable in
the preceding micromechanics analysis if we confine attention to 1/0p > 2.0. Rearranging
(3.8b) yields

g9, — r

G, Q —fo(m,9> . (3.9)
The form in (3.9) constitutes a self-similar field for 0,/0¢ ~ @. Moreover, the behavior of
01/00~ Q obeys the form governing the @=0 reference solution, which has been determined
by small-scale yielding analysis.

To understand the implications of (3.9), we focus on a particular value of 01/09, say
01/09=3. Consider the behavior of 01/0p - Q as the deformation level, measured by J, in-
creases. Suppose for the moment that @ remains constant; then the contour for a fixed level
of 01/00—~ @, presented in the normalized distances X/(J/op) and Y/(J/0p), remains unal-
tered in size and shape with increasing deformation level. As an example, the outermost
contour in Fig. 3.1 corresponding to the reference solution, fixed @ =0, maintains its size
and shape as the deformation level is increased.

Now let @ evolve with increasing deformation as happens in a finite size body. @ de-
creases gradually corresponding to a loss of stress triaxiality as the deformation level in-
creases; 01/0g— @ must increase since 01/0g is fixed. Therefore the evolution (size reduc-
tion) of a contour, associated with a fixed value of 01/0¢, under increasing plastic yielding
can be described by contours, associated with increasingly higher levels of 0,/09 - @, gov-
erned by (3.9). The sequence of diminishing contours associated with increasing levels of
01/00~ @, corresponding to a fixed level of 01 /09=3, is depicted in Fig. 3.1 for ashallow notch
SE(B) specimen.
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Figure 3.1  Comparison of a maximum principal stress contour for SSYq-g with those for
an a/W=0.15, n=10 SE(B). SE(B) contours decrease in size with increasing de-
formation (i.e. with decreasing aog/¢J).
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Areas within principal stress contours for an a/ W=0.15, n=10 SE(B). Values are
normalized by area within contour for SSYq=g at same J-value.
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Finally, the asymptotic studies show fo is nearly separable in r and 6 when r/(J/0g) is
sufficiently small (HRR field). Consequently, the shape of a contouris maintained as its size
diminishes. The self-similarity of o1 /00— @ prevails only to the extent that the J-@ form
in (2.14) remains applicable.

Inverted Relationships

A specialized form of (3.3)is developed by noting the dependence of r on 01/ and @ involve
them in the combination oy/0¢ - @, i.e.,

r= (-;%gl(e;ol/ao - Q). (3.10)
The results in (3.4) through (3.7) are simplified by using the form in (3.10).

The key question to resolve with this approach concerns the sens1t1v1ty of the Apg/Ag
and Jyp/Joratios to a1 /0p. Let Jpp denote the value associated with (0;/ 0o)". Then to first—

order
YFB " J ;‘B 00)‘ Og

When @ =0, the ratio J¥g/Jg is insensitive to o1/0g since the quantity in []is scaled by Q.
When Q is large (negative), the Jrp/Jo exhibits a small sensitivity to o1/0¢. The weak de-
pendence of JF/Jo on 01/0¢ has been confirmed by analyzing the evolution of near-tip
fields in common fracture specimens. Figures 3.1-3.3 provide typical results obtained
through finite element modeling. The specimen is a single-edge notched bend bar contain-
ing a shallow notch, a/W=0.15, with a strain hardening exponent of n=10. Figure 3.2 shows
the area enclosed by principal stress contours (Arg). The SE(B) areas are normalized by the
area, Ao, defined by the same contour of the reference solution (@=0) when loaded to the
same J as the SE(B); Jo=Jrp. The area ratios remain relatively insensitive to oy /0¢ until
the deformations become excessive. Jg is calculated for each line of this figure using (3.7).
Jrp/Jo ratios are independent of the principal stress selected for computation over a wide
range as shown in Fig. 3.3. In practice, the computation of Jrp/Jo ratios is terminated when
the values differ by more than 10% at the smallest and largest principal stress values as
indicated on the figure. A larger deviation indicates breakdown in the similarity of the
SE(B) and SSY stress fields and thus an unacceptably large dependence on the critical frac-
ture stress.

To simplify applications of this methodology, the SSY areas within principal stress con-
tours are expressed as a function of principal stress (01) and strain hardening coefficient
(n) as:

26202
Ayogeqa

= 10£/250000 (3.12)
3
where the curve fitting function is given by
2 3 4
g9 gy 9,

with fitting coefficients H; given in Tab].e 3.1 for a range of hardening exponents.
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Figure 3.3  Influence of specified critical stress on the micromechanics prediction of frac-
ture toughness variation with constraint for an a/W=0.15, n=10 SE(B).
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Figure 3.4  Micromechanics prediction of a/W effects on cleavage fracture toughness for an
n=35, SE(B) fracture specimen.
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Table 3.1: Fit coefficients for (3.13)
Mini- Maxi- |
n H H, Hy Hj H, mum mum
oy/og o1/0g
4.0 6.4306 -2.4711 0.5037 —0.07975 0.00552 2.0 4.0
5.0 6.2579 -2.1653 0.3749 -0.06603 0.00505 2.0 4.0
10.0 7.6641 —-4.3138 1.7368 -0.43685 0.03560 2.0 3.6
20.0 -3.2613 14.4338 -10.2659 3.01033 -0.34420 2.0 3.2

These expressions are obtained by curve fitting the results of small-displacement gradient,
finite element analyses conducted on the MBL problem with T/0g=0. The material stress-
strain curve employed in the analyses follows the conventional Ramberg-Osgood model

given by
n

E=F+adf (3.14)

which exhibits a slightly different behavior than the elastic power-law model defined in
(2.10).

3.3 Application of the Constraint Corrections in Fracture Testing

The computational procedures outlined above have been applied to generate Jrp/Jo ratios
for a variety of test specimens and material properties [30,31]. Figure 3.4 provides the re-
sults of such computations for SE(B) specimens having arange ofa / Wratios modelled with
an n=>5 strain hardening material. Values of Jrg and J are plotted on separate axes to facil-
itate removal of the size effect in experimental data. Points on the curves describe (JFB, Jo)
pairs that produce equal stressed volumes of material in the finite—-size test specimen and
in the SSY model. Upon initial loading, crack-tip plasticity is well contained within a sur-
rounding elastic field and identical values for Jrp and Jo correspond to the same stressed
volume of material at the crack tip. This 1:1 line is shown on the figure for reference. At
higher loads and as constraint relaxes under extensive plasticflow, the finite-size test spec-
imen requires more applied-<J (J¥p > Jo) to achieve the same conditions for cleavage (same
stressed volume) as in SSY.

Information of this type is useful for both analysis of fracture test data and for assessing
the defect integrity of structures. Path A-B-C on Fig. 3.4 illustrates the procedure to re-
move geometry dependence from experimental cleavage fracture toughness data (J,value
at A) by determining the geometry independent cleavage fracture toughness (J, value at
C) corresponding to a measured J; value. Alternatively, Fig. 3.4 permits determination of
the apparent fracture toughness for an SE(B) with any a/W ratio from a known, Jp value
(path C-D-E for example).

Figure 3.5a shows the J; values measured by Sumpter and Forbes [10] for a BS4360
43A steel (n=5) using SE(B) specimens tested over a wide range of a/W ratios. The data
readily demonstrate the dramatic increase in cleavage fracture toughness with decreasing
a/W ratio. To remove the constraint effect on toughness, each experimental data point is
processed using a path similar to A-B-C in Fig. 3.4 to obtain the corresponding Jg value.
Figure 3.5b shows these “constraint corrected” toughness values. The toughness variation
with a/W ratio is effectively removed with this technique. The small remaining scatter in
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the experimental data for different a/W ratios may be attributed to true metallurgical vari-
ations in the material and the unavoidable procedural variations in testing a large number
of specimens. Application of this technique to other materials including A36, A515 and
A533B [42] have been equally successful in removing the geometry dependence of J; val-
ues.
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Figure 3.5 (a) Effect of initial crack depth on cleavage fracture toughness in a mild steel
(Sumpter and Forbes [10]); (b) J, values (specimen size independent fracture
toughness) calculated from experimental J, data using the micromechanics
constraint correction.

3.4 Engineering Use of J-@Q Fields in the Micromechanics Model

When available, a J-Q description of the crack—tip stresses for a test specimen or structural
component may be readily employed to generate the constraint corrections for fracture
toughness of the type shown in Fig. 3.4. Here we outline a procedure that is computation-
ally simpler than the stressed volume approach defined by (3.2)«3.7) but which yields es-
sentially the same result.

Figure 3.6 shows the variation of opening mode stress on the crack plane with distance
from the crack tip for several deformation levels for an SE(B) specimen with a/W=0.15,
n=10. The SE(B) stresses are normalized by the stress in the SSY model at the same rela-
tive distance ahead of the crack tip when the SSY model is loaded to the same J as the
SE(B). Distances are normalized by the similarity length—scale r/(J/(aoy¢)). The indepen-
dence ofthese normalized stresses with distance from the crack tip indicates again the simi-
larity of the SSY and SE(B) stress distributions. Jpis calculated at anumber of points along
each line on this graph as the J value required in the SSY model to achieve the same open-
ing mode stress as in the finite body. The following equation is solved iteratively for Jo using
a simple nonlinear root solver:

(0ge)rp _ (Ogp)ssy
078 - Z0SSY, 0= 0 (3.15)

where a closed—form fit to the crack—plane stresses in SSY is given by

SE‘%)ESﬂ = Gl(;ﬁ)G2 exp(GSr“} (3.16)

where
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(0peirB stress at distance r from the tip at loading JFB in finite body;

r normalized distance from tip: 7 = —1—
Jolaoge,
C; SSY fit coefficients summarized in Table 3.2.
The finite-body stresses needed in (3.15) are given by
(U”)FB (GBO)SSY ,
3, =0, +Aan (347

where the SSY term in (3.17) is given by the expression on the right side of (3.16) with Jg
replaced by Jrg. The potential for a small radial dependence of @ under large—scale yielding
is included in (3.17). The Jpp/Jo ratio is computed over a range of distances ahead of the
tip at each load level, typically 1-2 < r/(J/og) = 4-5 with the specific values dependent upon
the degree of strain hardenirg. The objective is to sample the stress field at locations out-
side the finitely deformed zcae, r 2 23, but within the process zone applicable for cleavage
fracture. Herrens and Read (43); Miglin, et al. [44] determined fractographically the limit
of the cleavage process zone as r =89.

Figure 3.7 shows the Jrp/Jo ratios computed using this approach for each loading level
indicated in Fig. 3.6. The similarity between the SSY and finite-body stress distributions
makes the specific r/é value used in the calculations unimportant over a wide range of de-
formation. In practice, Jo calculated by (3.15) is considered valid when tha values calcu-
lated at r=36 and at r=8d differ by less than 10%. A larger deviation signals too great a
dependence cf Jop on the critical distance selected and, consequently, a breakdown of the
method. Figure 3.8 compares the constraint corrections for fracture toughness computeu
using the simpler approach with crack-plane stresses given by a J-Q analysis and the more
complex approach requirii:e computation of stressed volumes within principal stress con-
tours. Differences in the constraint corrections are insignificant for engineering applica-
tions..

Table 3.2: Fit coefficients for SSYQ-o in (3.16)

n G, Go Gs n Gy | G Gj
4.0 0.842 -0.2817 | -0.926 10.0 1.801 -0.1169 | -5.169
5.0 1.077 -0.2312 | -2.181 18.0 2.219 -0.0668 | -6.165
7.0 1.422 -0.1687 | -3.952 50.0 2.646 -0.0255 | -6.810




1.1 | T T T ' T ' et
aoy/J |
1.0 "1419— :j—
—e
499 .
-9 - R . —
0.9 192 1 000000
(00)¥B I ’59
(o' ) 67 ‘
34 ' ' oo
- 22 |
16 Increasing
0.7 Deformation SE(B)
. a/W=0.15, n=10 |1
0.6 ) ! 1 l 1 l 1 —I L
r/d

Figure 3.6  Opening stress on the crack plane normalized by SSYq-( at same J-applied.
a/W=0.15, n=10 SE(B).
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4. SURFACE CRACKS UNDER BIAXIAL LOADING

Bass, et. al [45] recently outlined current deficiencies in the understanding of constraint
effects on the crack-initiation toughness of shallow surface cracks subjected to uniaxial
and biaxial far-field tension loadings. In nuclear applications, the internal pressure alone
generates a 1:0.5 biaxial tension loading while the pressurized thermal shock (PTS) event
may generate the more severe case of 1:1 biaxial tension in addition to alocally severe bend-
ing field. The very few testing programs (see Bass, et. al [45] for a review) conducted on
biaxially loaded surface cracks report a 25-40% reduction in toughness values (K; ) relative
to the values obtained from SE(B) and C(T) specimens containing cracks of similar relative
depth. These results imply a significantly increased crack-tip constraint under biaxial
loading relative to uniaxial loading. Moreover, the biaxial test results appear to negate the
now well established increases in fracture toughness for shallow notch, SE(B) specimens
relative to deep notch toughness.

Researchers currently frame discussions of the biaxial vs. uniaxial loading influence on
constraint in terms of in—plane and out-of-plane effects. Shallow crack SE(B) specimens,
for example, exhibit a strong in—plane effect on constraint; the small crack depth relaxes
crack-tipstresses when plastic zones sense the nearby free surfaces behind the crack. Out-
of-plane effects refer to tensile stresses acting parallel to the crack front. While these
stresses exist and vary along the front of uniaxially loaded specimens, test programs dem-
onstrate the much smaller influence of thickness (B), which governs the out-of-plane
stress, relative to the crack—-depth effect once B exceeds a significant fraction of the speci-
men width (W), usually B = W/2. The biaxial test results suggest that mechanically applied,
remote out—of-plane stress restores crack—tip triaxiality lost to the shallow—crack in-plane
effect. Strength—of-materials type models have been proposed to examine the interaction
of in-plane and out-of-plane stresses. Such methods are severely limited since they rely
on superposition of stresses which does not apply under elastic-plastic conditions at the
crack tip.

The scarcity of testing programs that address biaxial loading effects on fracture tough-
ness and their significant complexity (large plate specimens, scale-model pressure vessels,
thermo-mechanical loading, etc.) leave open an experimental resolution of this issue. How-
ever, the J-@Q and micromechanics concepts described in Sections 2 and 3 provide the ana-
lytical framework to clarify the in-plane and out-of-plane effects on crack-tip stress fields
(using J-@) and on cleavage fracture toughness (using micromechanics).

4.1 Part-Through Surface Crack Model

Figure 4.1 shows a flat plate containing a part-through surface crack considered in an ini-
tial analytical investigation. The semi-elliptical surface crack has geometric parameters
a/t=0.25, 2c/a=6.0. =0 and ¢=90° correspond to lines along the free surface and directly
ahead of the front at the point of maximum depth. Radial distances ahead of (and normal
to) the crack front are denoted r. The plate is loaded by a remote uniaxial tension, o3 in
one case, and by a remote biaxial tension, 0% = 0 in the second case. The material re-
sponse is modeled with small-strain, deformation plasticity; the uniaxial flow properties
obey a Ramberg-Osgood relationship with hardening exponent n=10 and a=1.

Symmetry conditions enable consideration of only one—quarter of the full specimen in
the finite—element model as shown if Fig. 4.1. The element mesh contains 1980 20-node,
1soparametric elements and 9800 nodes. The level of mesh refinement in r at each point
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Figure 4.1  Finite-element model for investigation of constraint in surface cracked plate
subjected to uniaxial and biaxial remote tension loadings.

AN\

1.2 M 1 v 1 v T M T M 1 v 1 v 1 M
Biaxial

10 Uniaxial 7]

0.8t -

g® " -
70— 0.6 v

'S X ]

04 CMOD o

cmop .

0.2

¢ = 90°

0'0 A 1 " I " 1 A 1 . 1 " 1 N
00 001 002 003 004 005 006 007 008
CMOD/a
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along the crack front matches the refinement employed in previous models {14,31] of two—
dimensional specimens. The innermost ring of elements incident on the crack front con-
tains degenerate 20-node elements with edge nodes retained in the mid—point location. Ini-
tially coincident nodes along the crack front are unconstrained to permit blunting deforma-
tions. Uniform reduced integration (2x2x2)in all elements performed satisfactorilyin these
models.

The intensity of local deformation at each point s along the front is given by [46]

. ou;

J1ocat(8) = ]1}11_:30 I[Wn1 - aijsx—:nj]dl“ 4.1)
where, W denotes the strain-energy density, I; is a vanishingly small contour in the princi-
pal normal plane at s, n is a unit normal vector to I, 0 and u; are Cartesian components
of stress in the crack front coordinate system. Numerical evaluation of (4.1)is accomplished

with a domain integral method (46,47].

Figure 4.2 shows the overall load-displacement response in terms of Crack Mouth
Opening Displacement (CMOD). Under SSY, CMOD remains unaffected by the biaxial
loading. With the onset of gross plasticity, however, the biaxial loading provides a signifi-
cant stiffening effect; at 0™ /09=1.1 the biaxial CMOD is only 55% of the uniaxial value.

Assimilar effect of the biaxial loading on the J-values can be seenin Fig. 4.3. At the point
of maximum crack depth (¢=90°), the uniaxial J-value is twice the biaxial value when both
models are loaded to 0®/0g=1.1. The comparison of biaxial and uniaxial distributions for
Jlocal along the crack front is shown in Fig. 4.4. The distributions are identical under SSY
but reveal considerable differences under large scale yielding in the region of sharpest front
curvature (¢ < 30°). The biaxial loading depresses the level of J relative to the uniaxial load-
ing in this region of the crack front.

4.2 Crack-Front Stress Triaxiality

Figure 4.5 shows the behavior of near—tip stress triaxiality along radial lines normal to the
crack front at ¢=17° and 90° for the uniaxial and biaxial loadings. @—-values are defined
from opening-mode stresses on the crack-plane using (2.9). At ¢= 90°, the variation of @
with r remains negligible up to the maximum applied load of 0%/0g=1.1. At loadings
0%/og<0.4, the model lacks sufficient refinement to resolve stresses over the region
2 = rf(J)pe0/0¢) < 5. The crack-tip constraint steadily decreases with increased global
loading and plastic deformation (@ becomes more negative). The biaxial loading exerts only
a minor influence toward reducing the constraint loss under large-scale yielding at ¢= 90°.

The ¢=17°location on the crack front has high curvature and lies a small distance from
the traction—free face of the plate (see Fig. 4.1). Under increased uniaxial loading, Q steadi-
ly decreases indicating a gradual loss of stress triaxiality. @ develops a weak dependence
on radial distance as the maximum applied loading is approached; @ varies by + 6.7% from
the mean value over 2 < r/(J, /0y < 5 at 0%/op=1.1. The biaxial loading maintains
stress triaxiality at significantly higher levels as plastic flow progresses from well-con-
tained through large-scale yielding. The radial dependence increases to +17% over
2 = r/(J1ea/0¢) = 5 at 0%/0g=1.1. The radial dependence of @ when large~scale yielding
prevails is induced, in large part, by the nearby free surface.

Alternatively, @ may be computed from values of the mean stress ahead of the crack tip
by appealing to the defining equation (2.15). Figure 4.6 illustrates the potential differences
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in the two methods to evaluate @ (2.9, 2.15). @-values computed from the opening mode
stress and the mean stress are shown for a plane—strain model of a shallow notch SE(B)
specimen and for the present surface crack model. The SE(B) specimen exhibits no differ-
ence for the two computational procedures while the small differences at high load levels
for the surface crack are considered insignificant for engineering applications. The @-val-
ues for the surface crack shown in Fig. 4.6:represent the condition (uniaxial vs. biaxial load-
ing, crack-front location) having the largest discrepancy for the two computational proce-
dures. Subsequent discussion of @—values here refer to those defined by (2.9).

Figure 4.7 summarizes the J-@ description of stress triaxiality at different points along
the crack front. Both the uniaxial and biaxial cases are taken to the same load level, i.e.,
0%log=1.1. Q is evaluated at r/(J},.,;/0y) = 2ahead of the crack front. Under uniaxial load-
ing, @ values for ¢ = 45°saturate at—0.8 for large-scale yielding. Near the free surface, ¢=0,
stress triaxiality is reduced to a level approaching the yield stress even at relatively low
loads (@ —-2.0). Biaxial loading promotes essentially uniform stress triaxiality, @=-0.7,
over much of the crack front. However, at the ¢=2.4° and 17°locations, the influence of biax-
ial loading is very pronounced. Final @-values for these two locations reveal an increase
in stress triaxiality on the order of the yield stress relative to the uniaxial loading response.
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Figure 4.7  Evolution of stress triaxiality in surface—cracked plate with increasing local
deformation, as measured by Jjocq1/a00, along radial lines emanating from dif-
ferent points on the crack front. @ is evaluated at r/(Jygcq)/00)=2. Both geome-
tries are loaded to the same level 0 /0g=1.1.

For crack front locations ¢—0, the mechanically imposed biaxial stress, o5, corre-
sponds to a positive T-stress (a stress parallel to X, see Fig. 4.1). Under SSY conditions
in the surface—cracked plate, the T—stress elevates @ slightly above zero in accord with the
discussion in Section 2. Under LSY conditions, the T-stress brings about a higher level of
stress triaxiality near the free surface; however, the @-values are still negative indicating
aloss of stress triaxiality relative to the high constraint, reference condition of plane-strain
SSYT1-0. Thus, at an identical value of applied- in uniaxial and biaxial loading, the the
crack front region with maximum opening mode stress occurs near ¢ =17° for the biaxial
loading. However, the magnitude of remote loading required to generate the equivalent J-
values is larger for the biaxial case (see Fig. 4.3 and 4.4; note the overall larger J-values
for uniaxial loading).
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4.3 Matching Structural and Test Specimen Constraint

Consider the fracture assessment of a structural configuration which is modeled adequate-
ly by the surface cracked plate subjected to uniaxial or biaxial loading. The J-@ and micro-
mechanics concepts provide quantitative frameworks to select a corresponding laboratory
test specimen, an SE(B) for example, which produces the same crack front constraint as the
structural configuration. The cleavage fracture toughness, J., measured with such a speci-
men should then be employed in fracture assessments of the structure. These two ap-
proaches are illustrated in Figs. 4.8 and 4.9.

Figure 4.8 compares the computed J-@ driving force curves for SE(B) specimens having
a range of a/ W ratios with the driving force curves at ¢=90° (uniaxial loading) and ¢=17°
(biaxial loading) for the surface cracked plate. An SE(B) specimen with a/W=0.05 best
matches the evolution of stress triaxiality for the uniaxially loaded plate while an
a/W=0.20 best matches triaxiality for the biaxial loading. By using the J-@Q description of
crack front stresses as input to the micromechanics model (as described in Section 3.4), the
effects of constraint on cleavage fracture toughness for the surface cracked plate and SE(B)
specimens of selected a/W ratios are predicted as shown in Fig. 4.9. An SE(B) specimen with
a/W=0.05 very closely matches the uniaxial loading curve for ¢=90° while an a/W=0.20
SE(B) specimen closely matches the biaxial loading curve for ¢=17°.

Table 4.1 shows predicted values of the remote stress at cleavage fracture determined
by the micromechanics approach. Fracture occurs when the applied Jp reaches a critical
value at the crack front position exhibiting the most stress triaxiality, i.e., the locations at
which Jjycq) generates the maximum Jg values. As indicated by Figs. 4.7 and 4.9, critical
locations on the crack front are ¢=17° for biaxial loading and ¢=90° for uniaxial loading.
InTable 4.1, three representative values of Jo/(aop) at fracture are considered. Correspond-
ing values of Jj,cq; for the biaxial and uniaxial loadings are found from Fig. 4.9 with the
applied loads to produce these J—values given by Figs. 4.3 and 4.4. These computations sug-
gest that, despite the higher stress triaxiality of the biaxial loading at ¢=17°, slightly larger
fractureloads arc predicted for the biaxial loading. For this combination of material proper-
ties and crack—specimen geometry, the effects of higher stress triaxiality at ¢=17° are offset
by the lower applied J-values at this location on the crack front relative to the ¢=90° loca-
tion.

The potential advantage offered by the micromechanics approach becomes clear from
Fig. 4.9. It is not necessary to determine which laboratory specimen matches the structural
constraint; rather, any a/W ratio SE(B) can be tested to measure the size independent frac-
ture toughness, J,, from which the structural toughness, J, for each loading case (uniaxial
and biaxial) is predicted firom the corresponding structural response curves shown in Fig.
4.9. When deep notch SE(B) data is already available, from material qualification tests for
example, no additional shallow—crack testing is needed to apply the micromechanics ap-
proach. Such applications of the micromechanics model imply that the same fracture mode
(cleavage) occurs in both the laboratory specimen and the structural configuration. The cur-
rent model cannot predict the effects of specimen geometry and loading mode on the frac-
ture toughness (Jy.) which characterizes the initiation of stable, ductile tearing. However,
the model does predict when fracture by cleavage becomes highly unlikely. Consider the
response for the a/W=0.5 SE(B) specimen shown in Fig. 4.9; if the J, measured with this
specimen is sufficiently large, the driving force curve for a shallow notch SE(B) specimen
or for the surface—cracked plate never attain such a large value of J,. The model predicts
that cleavage, without prior tearing, does not occur, i.e., the interaction of crack-tip plastic
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zones and nearby free surfaces prevents near—tip stresses from achieving the critical levels
needed to trigger cleavage.

The SE(B) responses employed in this discussion are obtained from 2-I*, plane—strain
computations. In such cases, constraint matching with a structural configuration is accom-
plished by varying the absolute specimen size and/or the a/W ratio. For the same a/W ratio,
large specimens increase constraint at a given J—value relative to small specimens. Simi-
larly, for a fixed specimen size, large a/W ratios increase constraint at a given J-value rela-
tive to small a/W ratios. Different thicknesses provide yet another means to vary constraint
in test specimens, although experimental and computational evidence suggest the thick-
ness effect is much less significant than absolute size or a/W effects when specimens of usu-
al proportions are employed (B = W/2).

Table 4.1: Predicted Loads at Fracture for Surface-Cracked Plate
Biaxial Loading (¢=17°) Uniaxial Loading (¢=90°)
Jo. Siocal Jioc | g Jiocal iocal a
ao, aog, 0g€ ot 0y ao OgEt 0y
0.00333 0.00549 0.69 0.89 0.00960 1.20 0.86
0.00665 0.01453 1.82 1.06 0.02650 3.31 1.01
0.00833 0.02300 2.88 1.14 0.03682 4.60 1.05
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5. CONCLUSIONS

Our investigations have shown that two-parameters, J and @, suffice to characterize the
full range of near—tip environments at the onset of fracture. J sets the size scale of the zone
of high stresses and large deformations while Q scales the near-tip stress level relative to
a high triaxiality reference stress state. The structure of the J-@ fields has been estab-
lished by higher—order asypmtotic analysis and full-field numerical calculations within
the context of the modified boundary layer formulation. Detailed analyses of finite~width,
crack bodies show that the J-@Q fields dominate over physically significant size scales, i.e.
they represent the environment in which the ductile and brittle mechanisms are operative.
Therefore, the J-Q fields furnish the theoretical basis to address onset of clevage fracture,
the initiation of ductile tearing, as well as the competition between cleavage fracture and
ductile tearing. Indeed, the J-Q theory can provide a framework which allows the cleavage
and ductile toughness loci to be measured and utilized in engineering applications.

Constraint effects on cleavage fracture have been the subject of a number of recent stud-
ies. The J-Q theory together with a micromechanical model for cleavage predicts that
cleavage fracture toughness depends sensitively on near-tip stress triaxiality. The cleav-
age toughness locus has been measured, for example by Sumpter and Forbes [10] for a mild
steel and by Kirk, et al. [42] for A515 steel. The toughness data do show a strong
dependence on @. Toughness elevations of about 5 or so have been measured in low
constraint crack geometries. Constraint is also expected to exert an influence on the
initiation of ductile tearing; however, mechanistic studies of ductile tearing and the limited
experimental data suggest that ductile initiation toughness dependsless strongly on stress
triaxiality. Systematic experimental studies are required to quantify constraint effects on
the initiation of ductile tearing.

The experimental determination of a toughness locus can become very costly, requiring
considerable material and testing time, especially if toughness data are required for a
number of temperatures. An alternative approach for cleavage fracture appears feasible.
The constraint correction procedure advocated here uses a limited experimental database
to predict cleavage toughness over a broad range of stress triaxiality. The procedure has
been applied to several series experiments and the results are very encouraging. The
procedure and its theoretical basis are discussed in Section 3. Though it has not been
discussed, a similar procedure can be developed (in principle) for the initiation of ductile
tearing. As is the case for cleavage fracture toughness, the procedure can be used in
conjunction with the J-Q fields to determine geometry— and load-dependent ductile
fracture toughness data.

Procedures such as the one in Section 3 hold promise for predicting toughness loci for
cleavage and ductile fracture and can facilitate engineering applications of the J-@ ap-
proach. However, the incorporation of micromechanics failure criterion in a fracture me-
chanics methodology is not without its limitations. It is essential that the failure criterion
be a sufficiently realistic model of the actual fracture process. In applications where
cleavage and ductile failure modes are operative, competing failure processes also must be
considered. Unfortunately, the initiation of ductile tearing is also a process involving
several competing mechanisms, such as void formation vs. void growth and coalescence,
void sheet formation and shear localization, and as yet there is no general agreement as
to the essential features of a realistic model. Micromechanical models for ductile tearing
are necessarily more complex, involving more metallurgical properties for a material, than
the models for cleavage fracture. Considering the enormous economic payoffs, however,
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greater efforts are warranted to establish realistic, robust micromechanical models for
ductile fracture.
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