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ABSTRACT

Massive slump complexes and at least two rock avalanches flank the
eastern rim of the Pajarito Plateau along northern White Rock Canyon,
north of TA-33. Landslides failed along mechanically weak rocks in the
Santa Fe Group, within the Puye Formation, or in Pliocene alluvial and
lacustrine units. The landslides are mainly of early or middle Pleistocene
age. The toe area of at least one slump complex has been active in the late
Pleistocene, damming White Rock Canyon near the mouth of Water Canyon.
Lacustrine sediment that filled this lake, or series of lakes, to an
elevation of at least 1710 m is preserved at a number of upstream sites,
including a deposit near the Buckman townsite that exposes 30 m of
lacustrine sediment. Charcoal collected at several sites has been
submitted for 14C dating.  Landslides, however, probably do not represent
a significant short-term threat to the material disposal areas at TA-33.
Bedrock that lies beneath the TA-33 mesa is relatively stable, the mesa
shows no signs of incipient failure, and past periods of slide activity
were responses to rapid downcutting of the Rio Grande and climate
change, probably over periods of several decades, at least.

Rockfall and headward erosion of gullies do not represent
significant decadal hazards on canyon rims near TA-33. Gully migration
near MDA-K is a potential threat, but the gullies were not examined in
detail. A system of north-trending faults, at least one of which displays
Pleistocene activity, bisects the TA-33 mesa. If these faults are capable
of producing significant seismic shaking, generalizations about landslide
and rockfall hazards must be reevaluated.

INTRODUCTION

White Rock Canyon (WRC) was cut by the Rio Grande from Otowi
bridge to near Cochiti Dam (Fig. 1) in Miocene through early Quaternary
rocks. The northern part of the Canyon is flanked by extensive landslides
and small areas of Quaternary alluvial, fluvial and lacustrine deposits.
The landslides, mostly massive slumps and flows derived from the
slumps, extend from near the Rio Grande to the canyon rims along more
than 80% of the area between Ancho Canyon and Otowi bridge. Slides are
smaller and more widely spaced to the south. Most slides incorporate
basalt and resistant rock types that underlie the basalt; several slides,
the most prominent southwest of Water Canyon, include coherent beds of
upper Bandelier Tuff. Soils containing Stage IV B¢a horizons and covering
deposits of the el Cajete tephra (~150,000 years before present(?))
suggest that most slides failed in the early or middle Pleistocene.
Reactivation of at least one and probably several slump complexes
dammed northern White Rock Canyon (NWRC) near the mouth of Water
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Canyon, forming lakes that extended tens of kilometers upstream. The
youngest period of lacustrine deposition is probably late Pleistocene, and
may be as young as a few tens of thousands of years ago.

The history of NWRC and the stratigraphy, age and geologic history
of bedrock and surficial materials are summarized by Dethier (1993a).
Bedrock geology is discussed in more detail by Spiegel and Baldwin
(1963), Griggs (1963), Aubele (1978), and Dethier (1993b). This report
summarizes field data collected in the vicinity of TA-33 during field
studies with S. Reneau in 1993; age control based on 14C and other
techniques will be reported in a later paper.

SETTING

Northern White Rock Canyon (NWRC), for purposes of this report,
begins at Otowi bridge and extends south to the vicinity of Chaquehui
Canyon in the southern Espanola basin. This section of White Rock Canyon
is bounded by the Pajarito Plateau to the west, the Cerros del Rio to the
east and the broad flood plain of the Rio Grande to the north. Topography
is steep and rugged in the canyon and along major tributaries that drain
the Pajarito Plateau (Fig. 2) such as Mortandad and Ancho Canyon. Local
relief ranges from 170 to more than 300 m and cliff areas as high as 100
m are common.

CLIMATE AND VEGETATION

Slope stability along NWRC is probably a function of climate,
particularly effective moisture, the magnitude and duration of erosive
peak flows on the Rio Grande, and periods of rapid canyon cutting induced
by shifts in canyon position. Present climate near NWRC is not monitored,
but is arid to semi-arid with annual precipitation of about 250 mm and
mean annual temperature of about 15° C along the floor of the canyon (see
Spaulding, 1992). Many tributaries to the Rio Grande, such as Los Alamos
Canyon, drain areas that receive at least 50% more precipitation and are 3
to 5 °C cooler. Precipitation in the Jemez Mountains exceeds 500 mm. In
most years about half of the annual precipitation occurs during intense
convective storms associated with the summer monsoon season of July
and August. During the rest of the year precipitation is associated with
frontal passage and tends to be less intense. Before extensive upstream
damming and diversion for agriculture, peak discharge in the Rio Grande
tended to occur in two periods (Nordin and Beverage,1965). The summer
storm season was characterized by peak flows of relatively short duration
whereas the snowmelt season of April -June produced sustained flows and
high peak discharges. Channel scour and at least local lowering of base
level is thus most likely during the latter flows.



Vegetation is sparse near the Canyon, to the east for tens of km and
for several km to the west. Sagebrush, rabbit brush, grasses and cactus
are common near the bottom of the Canyon, giving way to a mixture of
pinon, juniper and grassland on Canyon slopes and in the lower reaches of
tributary canyons and to pinion and Ponderosa pine to the west of the
Canyon (Spaulding, 1992). Vegetation is generally most dense on north-
facing slopes, and most sparse on slopes with south aspect.

PALEOCLIMATE

Late Cenozoic climates are not well documented in the southwestern
U.S.; even latest Pleistocene and Holocene changes in temperature and
precipitation are not well constrained. Wolfe (1978) suggests that
Pliocene climate of the northern hemisphere was similar to that of the
late Holocene. In the southern U.S., Pliocene climate may also be similar
to that of the late Holocene. Fossil records from northern latitudes
(Wolfe, 1978) show that these areas were warmer than at present during
the Pliocene, but that differences were minimal at lower latitude such as
that of New Mexico. Thick, buried BCg horizons within the upper Puye
Formation (Waresback, 1986) and on some Pliocene basalt flows near
White Rock suggest that extended warm, dry periods characterized at
least some of Pliocene time.

Pleistocene climates presumably have alternated between colder
and wetter (?) pluvial periods and warmer, drier interpluvials, but the
scale of these changes is not well known. Records of climate change
extracted from pluvial lakes (for instance Smith,1984) and from
speleothems or vein calcite offer the best hope for reconstructing
terrestrial Pleistocene paleoclimate, although records and dating for the
early Pleistocene are incomplete. Winograd and others (1992) suggest
that pluvial periods during the past 180,000 years may have been cooler
than older pluvial periods. The late Pleistocene in northern New Mexico,
for instance, has been characterized as dry and cold (Galloway, 1970) or
as moist and cool (Bachhuber, 1989). Geologic evidence demonstrates that
the upper Rio Grande drainage in New Mexico and Colorado supported
extensive alpine glaciers during the middle and late Pleistocene and that
water input to nearby pluvial lakes was synchronous with glacial maxima
(Allen and Anderson, 1993). Maximum discharges along the Rio Grande
during peak melt periods must have been greater than those that occurred
during the late Holocene.

AGE CONTROL FOR QUATERNARY DEPOSITS
Age control for Quaternary landslides and other deposits is not yet
well-established, but one marker unit, the 150 ka el Cajete tephra, offers
radiometric control and charcoal fragments in lacustrine sediment have



beeng submitted for dating by 14C techniques. Amino-acid ratios from
fossil gastropods, particularly Succinea and Vallonia, in sediment
associated with landslides, can be used to calculate an approximate age
for the sediment (Dethier and McCoy, 1993). | have also made
semiquantitative age estimates for deposits based on the degree of soil
development, particularly the morphology of Bgg horizons. Age estimates
based on cation ratios in rock varnish (see Dethier and others, 1988) are
noted below, but the accuracy of ages from this technique is not known.

Three other techniques have potential application in the NWRC area.
Thermoluminescence (TL) or electron-spin resonance (ESR) techniques
could be applied to some of the sedimentary sequences, using age control
derived from elsewhere in the Espanola basin. The paleomagnetic
signature, particularly intensity, of lacustrine deposits at Buckman might
permit correlation with dated paleomagnetic sequences from other sites
in the western United States. Techniques based on the accumulation of
cosmogenic isotopes such as Al, Be, Ne, or C| have already been applied to
questions of erosion rate in the vicinity of NWRC( Albrecht and others,
1993). When the validity of such techniques is better established, they
could be used to calculate exposure ages for large blocks on some of the
landslides, or possibly rates of cliff retreat along the edge of the Pajarito
Plateau.

METHOD

| mapped the geology of the area NW of the Rio Grande between
Chaquehui Canyon and Water Canyon at a scale of 1:6,000, and performed
reconnaissance investigations of landslides and lacustrine deposits as far
north as Otowi bridge. | also did a detailed survey of the stability of the
canyon rim NE of Chaquehui Canyon and along the south-facing portion of
the TA-33. In the detailed survey, | recorded the location of all young
(late Holocene) rockfalls that contained two or more blocks. Rockfalls
were judged to be young when they met the following criteria : (1)one edge
of each fallen block > 50 cm; (2) blocks generally unstable; (3) absence of
lichen cover, rock varnish, or weathering "patina” on fresh surfaces
exposed by the rockfall; (4) presence of caliche on most joint surfaces
exposed by rockfall and (5) no rounding of fresh surfaces of fallen blocks.
| examined size characteristics of 23 areas where rockfalls had occurred
and hunted along the rim for areas of widened joints, fresh fractures, and
other evidence of incipient failure. | also recorded the location of all late
Holocene gullies cut > 40 cm deep into Pleistocene or Holocene sediment
in the vicinity of the TA-33 rim, and on a reconnaissance basis SE of MDA-
K at TA-33.
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RESULTS

Plate 1 (sent under separate cover to Steve Reneau, LANL) shows the
location of landslides and other surficial deposits, rockfall and gully
locations, and reconnaissance bedrock geology in the vicinity of TA-33.

- BEDROCK GEOLOGY

Cliffs and scarps of landslides along WRC expose as much as 250 m
of horizontal to slightly dipping Miocene, Pliocene, and lower Quaternary
rocks. Principal units, from oldest to youngest (see Table 1), include the
sedimentary rocks of the Santa Fe Group, volcaniclastic and quartzite-rich
gravel of the Puye Formation, older alluvial deposits, basaltic flows and
phreatomagmatic deposits of the Cerros del Rio volcanic field, and the
lower and upper Bandelier Tuff (Griggs, 1964: Dethier, 1993b). Figure 3
shows the interfingered relationships among the bedrock units near the
northern end of WRC. Each of the bedrock units is incorporated, at least
locally, into the massive slides that flank the Rio Grande. Most failure
surfaces are apparently within the Santa Fe Group, Pliocene alluvium, or
the volcanic deposits. The stratigraphy and selected characteristics of
the bedrock units are summarized in Table 2: stratigraphic significance is
described by Dethier (1993a;b).

PRE-MIDDLE PLEISTOCENE HISTORY OF WHITE ROCK CANYON AND VICINITY
Lateral shifts in the position of the ancestral Rio Grande during the

mid-to late Pliocene were contemporary with net aggradation of almost
200 m near WRC, but thick, canyon-filling basalt flows suggest that local
relief must have been at least 60 m at times during this period. The
lower Bandelier Tuff lies locally on landslide debris, demonstrating that
at least some mass movements took place during the late Pliocene. This
is not surprising, given steep local slopes, and exposure of some of the
same planes of failure that also caused slides during the Pleistocene.
South of White Rock, the Rio Grande apparently flowed in a sinuous
paleocanyon within 60 m of present grade before eruption of the lower
Bandelier Tuff. Steve Reneau (LANL) has mapped remnants of the
paleocanyon 1 to 2 km W. of the modern Rio Grande between Frijoles
Canyon and Water Canyon. The paleocanyon apparently was shallower or
absent north of White Rock, based on the elevation of the lower Bandelier
Tuff near the present river. Both of the pyroclastic eruptions filled the
paleocanyon and northern White Rock Canyon, damming the Rio Grande, at
least briefly. A shift of the Rio Grande from its early Pleistocene
paleocanyon and downcutting of 125- 250 m probably occurred rapidly
after eruption of the 1.1 Ma upper Bandelier Tuff, but isolated gravel
deposits from this time, located along the edge of the canyon and on some
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interfluves, have not been mapped in detail. Such mapping would be useful
in analysis of landslide stability in the Pajarito Plateau area, since rapid
incision by the Rio Grande and at least some of it tributaries probably
induced massive slumping of unstable bedrock units.

LANDSLIDES IN THE VICINITY OF TA-33
Distribution

Pervasive landslides are among the most striking geologic features
of White Rock Canyon north of the TA-33 area. Between TA-33 and Otowi
bridge, a distance of about 16 km, slump complexes cover some 20 km2,
with an average distance between rims of about 1.8 km . In the 20 km
south of Chaquehui Canyon, the distance between rims averages < 1 km and
landslides cover <20% of this area (D.P. Dethier, unpublished mapping,
1985-86). Landslide zones between Chaquehui Canyon and Otowi bridge
have been examined in reconnaisssance west of the Rio Grande and can be
divided into 11 groups (Fig. 4:Table 3). Values for landslide size, defined
as area/rim length, range from extremely small near Chaquehui Canyon to
> 1.5 km2/km between Ancho Canyon and Water Canyon. Plate 1 shows
landslides and other deposits in the vicinity of TA-33 and TA-70 at a
scale of 1:6,000. A cover of colluvial material, much of it older than ~150
ka, may conceal more extensive landslides south of the TA-33 mesa;
bedrock could also lie beneath the colluvium.

’

Description _and Age

Most landslides along NWRC are massive slump complexes covered
with basaltic boulders, flanked by colluvium and talus, and best exposed
between Anchd and Pajarito Canyons. Deposits consist of large slump
blocks with coherent internal stratigraphy near canyon rims and
progressively more deformed slumps that grade into debris flows closer
to the Rio Grande (Table 3). Dips in massive slump blocks range from 8°
to 70° toward head scarps. Many of the slump complexes consist of
individual blocks separated by scarps that may have formed at different
times. The eastern edge of Water Canyon W. (Fig. 4; Plate 1), for instance,
includes several individual slumps that were active after deposition of
the el Cajete tephra, possibly in late Pleistocene time. Slumps to the
west are covered with the tephra, and may have formed during middle
Pleistocene time.

Two slides, particularly one north of the mouth of Ancho Canyon, are
topographically complex and have low height/length values, suggesting
that they originated as avalanches or flows (Hsu, 1975). Gently sloping
upper surfaces of slump blocks in many slide complexes are sites of
fluvial, colluvial and eolian deposition and are separately mapped by
Dethier (1993b). Small debris slides and areas of rockfall are common



along the Rio Grande, particularly in areas affected by fluctuations in the
pool elevation of Cochiti Lake. Small areas of recent rockfall are also
Sscattered along steep canyon rims, particularly on the western side of
NWRC.

Four small landslides (probably debris flows) consisting exclusively
of Bandelier Tuff are exposed in Chaquehui Canyon SW of MDA-E. The
slides rest on alluvial deposits of Chaquehui Canyon at the same elevation
as that of the modern arroyo and do not seem to be covered with el Cajete
tephra. The slides appear to be part of debris aprons shed from adjacent
cliffs of upper Bandelier Tuff, but may be remnants of a larger mass that
flowed from upstream. Neither the slide material nor the stratigraphic
context is similar to other slides | have examined in the area

Slide material covers rocks of the Santa Fe Group, the Puye
Formation, or landslide deposits at most sites. Morphology of most
failures and inclusions of Bandelier Tuff in some (Water Canyon W. for
instance), suggests that slides were active in early to middle Pleistocene
time, but that many became relatively stable in the middle or late
Pleistocene. El Cajete tephra lies on landslide deposits in areas south of
Chaquehui Canyon, where fall deposits were thickest. The tephra occurs
as isolated deposits on most landslides and on many colluvial slopes north
of Chaquehui Canyon, but is apparently not present on others. Fluvial
reworking of the thin, pumiceous deposits makes geologic evidence
equivocal at many sites. Contact relations with lacustrine deposits,
discussed below, offer additional possibilities for age control.

Soils on landslide deposits are generally 0.8 to 1.4 m thick.
Carbonate morphology (Birkeland, 1984: Machette, 1985) is Stage IV at
some sites and Stage Ill carbonate is present in most exposures. Cation
ratios in rock varnish (Dethier and others, 1 988) on clasts from massive
slumps at the SW edge of La Mesita and in the Mortandad Canyon and
Overlook zones suggest that those slides stabilized at least 250,000
years ago.

Landslides exposed along White Rock Canyon result from the steep
slopes and removal of lateral Support produced by canyon cutting, the
occurrence of mechanically weak rocks such as layers of clayey altered
volcanic rock, and fluctuations in the elevation of regional and perched
water tables. Climate changes such as the greater effective moisture and
more rapid downcutting associated with pluvial periods and shifts in
canyon position probably helped to destabilize slides. Formation and
sudden draining of lakes and earthquakes may have acted as short-term
triggers for slide activity. The lower parts of failure planes are seldom
exposed in NWRC. Dips of planes between slump blocks near the canyon
rim are 70 to 85°, but slope morphology and mechanical considerations



suggest that deeper parts of those planes must have shallow dips. In
general, massive failures have occurred along: (1) steeply dipping planes
rooted in the Santa Fe Group; (2) 10 to 30 ° planes (where measured)
within the Puye Formation, fanglomerate facies; (3) subhorizontal planes
in clayey silt layers found at several levels of Pliocene fluvial and
lacustrine deposits; and (4) steep planes, possibly joints, in the Bandelier
Tuff. Slump complexes along NWRC become smaller south of Ancho Canyon,
and are limited features of the landscape south of Chaquehui Canyon.

LANDSLIDE DAMS AND LACUSTRINE SEDIMENTATION IN NORTHERN WHITE
ROCK CANYON
Lacustrine silt, clay and sand accumulated at elevations as high as

about 1707 m in NWRC in a series of lakes trapped behind landslide dams
in the vicinity of the mouth of Water Canyon. In this discussion | assume
that there were at least two to as many as 4 different lakes trapped
behind landslide dams and representing separate episodes of
sedimentation. It is also possible that preserved sediment accumulated in
a single lake with a dam that failed in stages, or in a series of lakes of
similar age.  Most field evidence suggests multiple lakes separated in
time by thousands to several tens of thousands of years. The landslide
dam that impounded the lakes was located about one km southwest of the
mouth of Water Canyon, at the toe of the Water Canyon W. slump complex
(Figs. 4;5). In the dam area, boulder gravel containing Rio Grande
lithologies, bars composed of large boulders, abandoned channels, and
lacustrine sediment are stranded at a series of levels as high as 60 m
above the modern channel. El Cajete tephra occurs in the B horizon of a
soil buried by one of the lacustrine sequences in the dam area, at a site
called "Rattlesnake" (Fig. 5), demonstrating that at least some of the lake
sediment is late Pleistocene. At this site and in most of the dam area,
field evidence suggests that the slump blocks that impounded the lakes
had been active before formation of the lakes, and after their drainage as
well, complicating correlations based on elevation. At one upstream site
(SW Otowi bridge), deformed lake sediment rests on a slump block that
has dropped at least 20 m since their deposition. Reconnaissance field
data suggest that slumps may also have dammed the Rio Grande in late
Pleistocene time in the Pajarito Canyon zone (Fig. 4), perhaps at
elevations of a few tens of meters above the modern Rio Grande. It seems
reasonable that canyon-cutting by the Rio Grande has episodically
dammed White Rock Canyon. What is more surprising, perhaps, is that fine
sediment from the lacustrine episodes has been preserved at several
localities above the dam area.



Lacustrine deposits as thick as 30 m provide evidence for the style
of sedimentation in the slide-dammed lakes of NWRC. The sites noted on
Fig. 5 are the most extensive exposures of lacustrine sediment found to
date, the largest of which occurs at the mouth of Canada Ancha, near the
Buckman townsite (Fig. 2). Lacustrine sediment at the Buckman site (Fig.
6)is exposed over a lateral distance of almost 200 m, and extends 30 m
vertically. The lower 15 m of sediment is rich in silt and clay, whereas
the upper part of the section is sandier. The unconformable contact
suggests that the silts were exposed subaerially or that strong bottom
currents eroded the deposits before deposition resumed in a shallower
lake. Charcoal fragments at the base of the silt-rich sequence have been
submitted for 14C dating. More than 20 m of similar fine-grained deposits
crop out southwest of Otowi bridge.

Thinner sequences of lacustrine sediment are exposed near the
intersections of the Blue Dot and Red Dot Trails with the Rio Grande
(Figs.7; 8). The base of both deposits is 8 to 10 m above the present Rio
Grande. Both deposits and those in the Rattlesnake area are capped with
Rio Grande gravels. Thin-bedded, silt-rich fine sand is the most common
sediment. Cross-laminated to cross-stratified beds suggest moderate to
strong currents swept the bottom of the lake at irregular intervals,
perhaps when nearby arroyos were in flood. Neither the Blue Dot nor the
Red Dot sections expose other evidence for breaks in sedimentation. The
gravel cap in both areas shows the the Rio Grande locally deposited gravel
before returning to its prelacustrine base level. Mapping of gravel
deposits near these areas and at Rattlesnake, however, suggests that the
upper gravels are remnants from channels filled by the Rio Grande as it
aggraded over the lacustrine deposits before failure of the landslide dam.
If this interpretation is correct, landslide dams must have been stable for
at least tens of years, if not much longer.

In the area downstream from Water Canyon, a fluvial deposit filled
with boulders several meters in diameter and other reconnaissance field
evidence indicates that the dam area may have failed catastrophically
during at least one event. | have mapped similar bouilder-rich deposits
downstream in the Cochiti Dam quadrangle, but most evidence there
suggested that the fluvial deposits were older than the el Cajete tephra.
Additional field mapping could help indicate the age of these deposits and
whether flood released during a dam failure produced significant
downstream scour or undercutting of deposits near the channel.
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ROCK AVALANCHES

Two deposits, one of substantial size, appear to have originated as
rock falls or avalanches from the western rim of White Rock Canyon (Fig.
5). | have not studied one of the deposits, located along the northern
margin of the Pajarito zone (Fig. 5 , but in air photo views it superficially
resembles the much larger slide at Ancho Canyon. The Ancho Canyon rock
avalanche has a surface area of ~ 0.50 km2, and using 40 m as a minimum
average thickness, the apparent volume is 20 x 106 m3. Assuming that the
avalanche originated near the present rim, it fell >300m vertically and
travelled about 1500 m laterally to the Rio Grande. The excessive travel
distance, the low surface angle, and presence of surface features such as
lateral ridges all indicate rapid , flowing motion of the rock debris. Field
mapping (Plate 1) suggests that the rock avalanche covers an older slide
complex, but colluvium and talus obscure contacts. El Cajete tephra
covers the upper slopes and toe areas of the slide, indicating that despite
its fresh appearance, it is older than about 150 ka. | have not seen any
field evidence that suggests the origin of the rock avalanche. The basaltic
andesite of which it is composed is highly fractured and platey, and two
scarps near the rim ( Plate 1) suggest the potential for additional
failures. Suuden acceleration of the rock mass, produced by an
earthquake on a nearby fault, is a plausible trigger for the rock avalanche,
but it could also have been a stochastic event.

DISCUSSION

LANDSLIDE HAZARDS AT TA-33

Landslides do not appear to represent a decadal hazard to MDAs or
structures located at TA-33, barring the unknown effects of a major
earthquake located on a fault near TA-33. Slump complexes that line
NWRC upstream from TA-33 become narrower along the edge of TA-33 and
to the south. This change in slide size and style is apparently a result of
bedrock stratigraphy. Pliocene alluvial and lacustrine deposits, zones in
the Santa Fe Group, and altered zones in the Puye Formation fanglomerate,
the three units asssociated with massive slope failures to the north,
become thin or absent south of Chaquehui Canyon. Some phreatomagmatic
deposits exposed to the south are sufficiently weak to produce slumping,
but the scale of failure is relatively small. The scale of canyon cutting
required to initiate slumping by removal of lateral support is apparently



ten or more meters, an amount of erosion unlikely to occur in 10 to 100
years. The duration of climate change required to raise the position of the
water table substantially needs to be addressed through modeling, but it
would probably take several decades of dramatically increased effective
moisture. Finally, there is no indication that large slumps move rapidly in
the vicinity of rim areas.

OTHER GEOLOGIC HAZARDS NEAR TA-33
Rockfalls
Detailed mapping of the mesa rim near the TA-33 MDAs
demonstrates that rockfalls have not been common in the Upper Bandelier
Tuff in this area during at least the past few decades. In the 6900 m of
rim that | examined, | mapped 23 areas of rockfall, all of them small
(Plate 1). All mapped failures occurred in a zone within 3 m of the mesa
rim and most involved a characteristic failure width of < 2 m and included
less than 5 blocks. One of the largest failures, on the mesa rim south of
MDA-E, appears to have resulted from drading activities at the site.
Grading and drainage diversion may also have contributed to some of the
small rockfalls 50 m south of MDA-D. Evidence of incipient failure
surfaces is also minimal. | found two zones, neither near MDAs (Plate 1),
where intersecting fracture sets outlined areas of potential failure
between 3 and 4 meters wide. If | assume that all mapped rockfalls
occurred randomly over the past 100 years, there is < 50 % chance of a
rockfall from any kilometer of rim during a ten year period. Rockfall
events are probably not random, but the characteristic failures are
sufficiently small to keep impact on the MDAs small over any short time

period.
Faults

Mapping of the canyon rim near TA-33 suggests that a near-vertical
fault striking 350+10 © apparently offsets the Upper Bandelier Tuff (1.1
Ma) by > 3.5 m. The Pleistocene fault is exposed about 650 m west of
MDA-D and 1100 m east of MDA-E (Plate 1). At least two additional
north-striking faults cut the Pliocene bedrock that lies beneath the
south-facing mesa rim at the edge of White Rock Canyon. These faults
may also have had Pleistocene activity, but reconnaissance mapping did
not indicate that fault planes cut through the Upper Bandelier Tuff. This
fault zone should be mapped in detail, since the triggering effect of
seismic shaking on landslide stability cannot be evaluated without local
acceleration values.
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Headward erosion _alon [i

| mapped gullies that showed evidence of recent headward erosion
along the parts of the TA-33 mesa that overlook lower Ancho Canyon,
White Rock Canyon, and the northeastern edge of Chaquehui Canyon. Active
gullies were widely separated along most of the rim area (Plate 1). Two of
the deepest gullies were cut into the Upper Bandelier Tuff by water
diverted from roads near MDA-E and MDA-D. Since the Tuff is reasonably
resistant to erosion, neither gully appeared to represent a short-term
threat to these disposal areas. The gully system on the upland east of
MDA-K is more extensive. Gullies there are dissecting Quaternary
sediment and appear to have been active in late Holocene time. Headward
erosion may represent a long-term threat to MDA-K, but | did not evaluate
the possibility.

SUMMARY

Massive landslides and slumps along White Rock Canyon are a result
of zones of weak rock material exposed by downcutting, removal of lateral
support during canyon cutting, and increased pore pressures during periods
of pluvial climate. The slides were active during at least late Pliocene
through middle Pleistocene time, and probably more recently. A lacustrine
deposit 30 m thick near the mouth of Canda Ancha provides the best
evidence for damming of White Rock Canyon, probably by landslides, in
middle or late Pleistocene time. Alluvial deposits rich in large boulders,
exposed downstream may have resulted from floods related to repeated
failures of upstream dams. Landslides, however, probably do not represent
a significant short-term threat to the material disposal areas at TA-33.
Bedrock that lies beneath the TA-33 mesa appears to be relatively stable,
the mesa shows no signs of incipient failure, and past periods of slide
activity were responses to rapid downcutting of the Rio Grande and
climate change, probably over periods of several decades, at least.
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LIST OF FIGURES AND PLATES

Figure 1. Map showing location of White Rock Canyon

Figure 2. Drainages in the vicinity of White Rock Canyon

Figure 3. Relationships among bedrock units exposed in the vicinity of
White Rock Canyon (modified from Waresback and Turbeville, 1990

Figure 4. Map showing location of landslides and landslide zones in
northern White Rock Canyon, New Mexico

Figure 5. Map showing location of lacustrine deposits and probable
landslide dams, northern White Rock Canyon, New Mexico

Figure 6. Sketch of stratigraphic section exposed near the Buckman site
White Rock quadrangle, New Mexico

Figure 7. Measured section exposed near the Blue Dot Trail, White Rock
quadrangle, New Mexico

Figure 8. Measured section exposed near the Red Dot Trail, White Rock
quadrangle, New Mexico

Plate 1. Geologic map of the TA-30 and TA-70 areas, scale 1: 6,000
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ELEVATION, IN METERS
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Description
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4 — SiSpb above Rio Grande
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