¥, - o \‘
oV, N AlIM y 4 N &

LAIRN 4
¥ v %‘;;Q \\\) Association for Information and lmmage Management

Q Vo WP) / 'ff’ f‘?§ % .
\\\// « 8 s e St W 9\\ S&eN

301/587-8202

W \\\\b//
Centimeter

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 mm

, Inches 10 =l iz
““ = iz
““ =|_|__ k“'% ll22
= e
i2s flis e
//// C;b
N N A
oﬁ\y/; ///) ///&C\\\ ////\\/4\ //\\\\\
a\ /) 2
§7}\//&% > \ //// i //\\\ ;,\AA'\» %/\\\
/E§%¢j§> ///// MANUFACTURED TO AIIM STANDARDS %/{1\\\ Qg;‘:;&’u“\ (5
r» /\\/// BY APPLIED IMAGE, INC. /%'L\\ " 2L ,{"\

Lonl~G30SI5] -4

UCRL-JC-113562
PREPRINT

RE
Ce
J{/(/ 9/ VED

~ Using Unix System Auditing for Detecting () S
Network Instrusions /

Marvin J. Christensen

This paper was prepared for submittal to the
15th Department of neljﬂ' Computer Security Group Training Conference
buquerque, New Mexico
May 3-6, 1993

March 1993

Thisisa preprintofa paperintended for publication in a journal or proceedings. Since
changes may be made before publication, this preprint is made available with the
understanding that it will not be cited or reproduced without the permission of the

author.

MASTER

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor the University
of California nor any of their employees, makes any warranty, express or implied, or
assumes anylegal liability or responsibility for the accuracy, compieteness, or usefulness
of any information, apparatus, product, or process disdosed, or represents that its use
wouldnotinfringe privately owned rights. Reference herein to any specific commercial
products, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute orimply its endorsement, recommendation, or favoring
by the United States Government or the University of California. The views and
opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or the University of California, and shall not be used for
advertising or product endorsement purposes.

Using Unix System Auditing for Detecting
Network Intrusions

Marvin J. Christensen
Computer Incident Advisory Capability (CIAC)
Computer Security Technology Center (CSTC)
Lawrence Livermore National Laboratory!

P.O. Box 808 MS. L-303

Livermore, CA. 94550.
~ (510)423-5173
mjchristensen@lInl.gov

ABSTRACT

Intrusion Detection Systems (IDSs) are designed to detect actions -
of individuals who use computer resources without
authorization as well as legitimate users who exceed their
privileges. Although significant progress is being made in IDS
research, at present IDSs are no panacea.

This paper describes a different approach, namely a decision
aiding approach to intrusion detection. The introduction of a
decision tree represents the logical steps necessary to distinguish
and identify different types of attacks. This tool, the Intrusion
Decision Aiding Tool (IDAT), utilizes IDS-based attack models
and standard Unix audit data. Since attacks have certain
characteristics and are based on already developed signature
attack models, experienced and knowledgeable Unix system
administrators know what to look for in system audit logs to
determine if a system has been attacked. Others, however, are
usually less able to recognize common signatures of
unauthorized access. Users can traverse the tree using available
audit data displayed by IDAT and general knowledge they
possess to reach a conclusion regarding suspicious activity.
IDAT is an easy-to-use window based application t..at gathers,
analyzes, and displays pertinent system data according to Unix
attack characteristics. IDAT offers a more practical approach and
allows the user to make an informed decision regarding
suspicious activity.

1 This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National
Laboratory under contract W-7405-Eng-48.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITB%}d

1.0 Introduction

Computer system administrators have realized that computer
systems are vulnerable to abuse and penetration by both
legitimate users who abuse their authority and individuals who
are not authorized to use the computers [1]. Intrusion Detection
Systems (IDSs) [2,34,5,6,7] and many host-based security
applications [8,9,10] are designed to detect unauthorized use and
enable system administrators to better protect their computer
systems.

The ever expanding networking capabilities of computer
systems have influenced computer security. Networking has re-
directed general security concerns from unauthorized
reproduction of files by authorized system users towardconcern
with remote intrusion attempts that may result in loss of:

1) secrecy or confidentiality (unauthorized disclosure of
information), 2) integrity, (unauthorized alteration), and

3) availability, (as in denial-of-service attacks), (11, 12].

The development of IDSs have been motivated by four main
factors: 1) most existing systems are vulnerable to security
breaches due to security flaws, 2) replacing systems with more
secure systems is expensive due to the dependence on existing
systems, 3) developing an absolutely secure system is not
possible, and 4) even the most secure systems are vulnerable to
insiders [1].

2.0 Current Solutions

To determine if a system has been breached, current host-based
IDS technology scans audit data generated by the system looking
for suspicious activity. This vast amount of data can be collected
at each level of abstraction and analyzed by tools to examine for
both suspicious user behavior and unexpected system behavior
[1]. IDS research is identifying what level of audit log detail and
method of detection will reduce false negatives and false
positives. Most IDSs require additional auditing and accounting
capabilities to be installed and enabled on each system.

The objectives of many IDSs are to: 1) present to a system
security officer (SS0) a brief report on suspicious activities,

2) generate few false alarms (i.e., false positives), and 3) miss few
attacks (i.e., false negatives). It may happen that legitimate
actions of legitimate users are incorrectly flagged by signature
analysis programs. Therefore, additional automated, or human,
analysis may be required to decide whether or not an event is
suspicious and, if so, whether it is indicative of an intrusion [13].

30 Signature Analysis Technique

Attack signature analysis attempts to define attack-type behavior
and recognize sequences of events that match (or closely match)
predefined signatures. Snapp [13] identifies four comporeents for
each event being considered as an attack signature. These
components are:

Subject: owner of the event record

Object: target of the event record

Action: that which caused the event record
Context: conditions preceeding the event record.

All four components of the representation can be used to define
the signature. However, the context is the main factor in
deciding the severity of the attack.

An attack is not homogeneous over time. The intruders
objectives and behavior will change as the attack progresses.
Dias [14] identifies three phases of an attack which are:

1) Preparation: the intruder gathers information about

the target
2) Execution: when the attack actually takes place
3) Aftermath: the intruder is no longer active, but the

system may show signs of the incident.

Aftermath of an incident may be: (1) passive, such as logs in an
audit file, (2) static, such as modified file permissions or changed
passwords, or (3) active, such as a running process sending
information to the intruder.

4,0 Problems with IDSs

Although IDSs have been used for the past few years, none have
been formally validated or certified by an authorized agency.
Researchers have made claims about each and have reported
success, but the inherent nature of IDSs is subject to numerous
limitations. There are several caveats, therefore, which should
accompany any discussion of IDSs [1]:

1) IDSs cannot prevent intruders from breaching system
and network security

2) IDSs cannot replace the SSO

3) IDSs do not make the target system more secure

4) 1DSs may not be effective when the target system is
untrusted.

Not only is there a large investment in the development of IDSs,
but there is an investment in the daily operation. IDSs require
computer resources to generate, collect, and analyze audit data.
Audit data must be stored for analysis by approved personnel,
but must be protected from unauthorized disclosure or release.
Personnel must be trained in the operation of IDSs, particularly

in the relationship between IDS output and the computer audit
data (i.e., how to install and enable auditing capabilities) as well
as the legal/social aspects of IDSs. Computer users regard their
use of the computer as a personal matter and a system that
monitors their activity could be seen as a violation of privacy (1].

Automated routines do not have the intellegince to infer the
obvious. Because IDSs are automated programs looking for
specific events, knowledgeable intruders can circumvent
detection [15]. For example, network monitors are usually
searching for string patterns that are suspicious or that have
been used in prior attacks. By transmitting compressed data, the
network monitor cannot match plain text strings with
compressed text.

50 Decision Aiding

Although IDSs represent an important development in detecting
intrusions, the IDS approach is not the only logical approach. For
instance, virtually every operating system (including Unix) has
auditing capabilities. Auditing is very useful when there is a
suspected breach in security. Since Unix already has auditing
capabilities, experienced Unix system administrators can detect
suspicious or abnormal activities via audit logs. Unfortunately,
Unix auditing data resides in a number of different audit logs,
making these data difficult to physically access and conceptually
integrate to determine whether or not an attack has occurred.
The information available in Unix audit logs is conducive to a
new approach to the problem of intrusion detection—decision
aiding.

This paper introduces a decision aiding approach embodied in a
tool named IDAT (Intrusion Detection Aiding Tool). The
decision aiding approach does not fully automate intrusion
detection, but is designed to automate certain parts of data
collection and aggregation. Determining attack activity by
matching attack signatures with audit data may not be possible
in all cases because of lack of some audit data. Instead of
implementing expert system techniques to resolve the available
audit data, system users must use their own discretion.

6.0 Intrusion Decision Aiding Tool (IDAT)

The Intrusion Decision Aiding Tool (IDAT) is a decision aiding
tool that can be operated by any Unix user. IDAT gathers,
auaiyzes, and displays the appropriate data which allows the
user to detect suspicious behavior. For users not versed in Unix
who wish to detect suspicious behavior, IDAT is designed to
answer typical questions which an experienced system
administrator would ask when trying to determine if a system
has been compromised. Along with displaying appropriate data,
IDAT includes a decision tree for each type of attack with
additional help text that can be displayed on demand. In IDAT,
the user must scan the audit logs and use a decision tree to make

decisions. The decision aiding approach circumvents many of
the limitations of IDSs, yet it can capitalize on the attack models
on which some IDSs are based. As with any IDS, IDAT does not
stop intruders, but alerts users to their presence.

A requirement of IDAT is that it run on a generic Unix system as
delivered from the vendor with its standard auditing capabilites.
Current IDSs require modification to the kernel, daemons, or
configuration files to allow for additional auditing capabilities
that must then be maintained. IDAT uses the default auditing
capabilities of SunOS along with standard SunOS commands.

Five attack types are recognized in the current prototype of
IDAT [16]. The attacks involve exploitation of five Unix services
and utilities:

1) tftp: trivial file transfer protocol

2) doorknob: attempt to guess username and password

3) sw super user

4) sendmail: the program that sends and receives e-
mail

5) rsh: remote shell.

These attacks were selected because of the activity observed on
the Internet by members of the Department of Energy's
Computer Incident Advisory Capability (CIAC) team. Many
system administrators are familiar with all of these attacks, but
many are still occasional victims to intruders who launch attacks
against them. IDAT was designed specifically to help system
administrators and system users detect these types of attacks.

Due to the limited length of this article, only the doorknob attack
will be covered (refer to [16] for a full description).

7.0 Doorknob Attack Description

One of the most notorious types of network attacks is the
doorknob attack. An attacker, or process, on the remote system
attempts to login to the target system by simply guessing a valid
user's username and password. The doorknob attack is not
limited to intruders. It was used successfully by the internet
(RTM) worm [17] and WANK/OILZ worms [18]. For discussion
purposes in this paper, the doorknob attack is limited to an
intruder using telnet(1C) to attack a system.

Default accounts and active accounts are common ways by
which an intruder can gain access to a system. Passwords are
used to authenticate users, and they are usually the only
authentication process on Unix systems. If someone presents a
valid username and password combination, the system assumes
that the user is valid and grants the user access. Direct logins to
privileged accounts are serious security concerns and are
considered part of a doorknob attack.

8.0 Doorknob Attack Characteristics

The key to detecting the doorknob attack is failed login attempts.
This approach assumes that the intruder is unlikely to guess the
correct username and password combination on the first
attempt. Typically, if a valid user fails once, they try again, more
carefully pressing the correct keys. Also, if a user has changed a
password, the login failure message gives relevant feedback so
that the user can try again with the new passv' .d. However,
repeated failed login attempts are a good ind .ition that a
doorknob attack has occurred.

For many Unix systems, only after five login failures does login
generate a login failure message. When re: cated attempts are
necessary, a common technique used to defeat the repeated login
failure action is to try three or four times, then break the
connection. By breaking the connection or letting the connection
time-out (typically 60 seconds), no login failure audit data is
generated.

Knowing the username and password combination for each
failed login attempt would help in determining if the system was
under attack. Given that intruders often guess passwords
derived from the username or system name, passwords that
differ from each other by only one or a few characters are
suspicious. Also, attempts using dictionary names (which are
known by intruders to be selected as passwords) are suspicious.

The doorknob attack can be identified by a number of
characteristics, including:

e information gathering

» failed login attempts

e prior connections

¢ username and password combinations
® remote system

¢ attempted local user account

¢ time of connection

Figure 1 Characteristics of a doorknob attack

One dimension that is difficult to define is time. Information
about the target system can be gathered over a long period of
time measured in seconds to years.

9.0 Audit Data Available on Unix? Systems

For every telnet(1C) session where the user is prompted for a
username and/or password, the telnet daemon telnetd(8C)
makes an entry in /var/log/syslog via the syslog daemon
syslogd(8C). The time of the connection, remote system, and
processes ID are listed for each entry. An example of a telnet
entry in /var/log/syslog is:

Jan 16 08:07:46 target in.telnetd[9352]: connect
from source.llnl.gov (128.115.19.45)

Figure 2 Telnet entry in /var/log/syslog

The telnet audit entry does not identify the remote user account,
local user account, or even if the telnet connection was successful
or not. To determine if the telnet connection was successful and
which local user account was used, wtmp(5V) file records all
logins and logouts. Output of the wtmp(5V) file can be listed
with the last(1) command. An example of the wtmp(5V) entry for
the previous telnet connection is:

christen ttypl source.llnl.gov Sat Jan 16 08:08
- 08:17 (00:09)

Figure 3 Wtmp(5V) entry via last(1) command

By searching wtmp(5V) for a successful login from the remote
system within the permitted login time (e.g., 60 seconds), a
correlation between telnet connections and possible local users
can be made.

Repeated failed login attempts will result in multiple telnet
connections with no successful logins. If the intruder is bold
enough to attempt five logins (which generates a repeated failed
login message) then searching /var/adm/messages for login
failures is adequate. The following is an example of repeated
login failures by a remote system attempting to login to the
target system.

Oct 13 17:32:55 target login: REPEATED LOGIN
FAILURES ON ttypa FROM source.llnl.gov, username

Figure 4 Repeated login failures

Default system configuration permits network logins to
privileged accounts in much the same way someone would log
into a normal account. Because network logins into privileged

2 Sun Microsystems SunOS 4.1.1. SunOS are trademarks of
Sun Microsystems, Inc.

accounts are privileged processes, there is additional auditing by
syslogd(8C). By default, the "ROOT LOGIN" messagesare
directed to /var/adm/messages. Logins can originate from the
local host or from a remote system. The messages for both local
and remote logins are:

Oct 15 08:23:40 target login: ROOT LOGIN console

Oct 15 08:57:51 target login: ROOT LOGIN ttyp7
FROM source.llnl.gov

Figure 5 Login to a.privileged account

One problem with the default configuration is that "RCOT
LOGIN™ audit entries are generated only when successful logins
occur to privileged accounts. If a doorknob attack were used,
these messages would only record such activity only after the
attacker successfully gained access as a privileged user.

Changing the configuration of ttytab(5) to deny direct network
logins to privileged accounts is highly recommended. By not
allowing network logins to privileged accounts, the user must
first login as a normal user and then su(1V) to a privileged
account. By editing ttytab(5), terminals can be identified as non-
secure, which will deny any network login into a privileged
account. Even if the correct password is provided, the connection
will be refused just as if they entered an incorrect password and
a syslogd(8C) message will be generated. The message is
directed to /var/adm/messages. Following are data from two
login attempts to privileged accounts where the terminal is
configured non-secure. In the first example a correct password
has been entered; in the second example an incorrect password
was used. ‘

Oct 17 09:33:29 target login:ROOT LOGIN REFUSED
ON ttyp6 FROM source.llnl.gov

Oct 1 08:57:51 target login:ROOT LOGIN REFUSED
ON ttyp7 FROM source.llnl.gov

Figure 6 Root login to an unsecure terminal
10.0 Detecting Doorknob Attacks with IDAT

A direct approach for detecting doorknob attacks is searching for
repeated login failures. These failure messages are located in
/var/adm/messages and are generated after five failed login
attempts. These entries identify the initiating host and the fifth
username tried. This approach is not foolproof since breaking the
connection before five failures will not produce a failure
message.

The output format of IDAT identifies repeated failed login
attempts, telnet attempts where no user has logged in
successfully, and refused privileged login attempts. Following is
an example of the IDAT format for the doorknob attack:

Tue Nov 10 09:04:33 PST 1992

Doorknob Attack

Month Date Time Activity Source Username
Nov 9 08:12:20 REFUSED one.remote.system ?

Nov 9 08:12:10 TELNET one.remote.system ~no one-
Nov 8 08:12:39 FAILURE two.remote.system stan
Nov 8 08:12:09 TELNET two.remote.system -no one-
Nov 7 08:12:23 TELNET three.remote.system -no one-

Figure 8 IDAT output for doorknob attacks

In this example, IDAT output shows that system
"one.remote.system" tried to login to a privileged account and
was refused because the terminal was set to un-secure. A user
from system "two.remote.system" tried more than five times to
enter the correct username and password combination with
"stan" being the fifth username tried. Someone from
"three.remote.system" established a telnet(1C) connection and
then broke or dropped the connection.

11.0 Implementation

Implementation of IDAT is on a stand-alone Sun Microsystems
SPARCstation 2 running SunOS 4.1.1 [19], which is connected to
the Internet. IDAT assumes vendor default configurations for
auditing capabilities. Although the default configuration for the
development system within CIAC has been altered to a more
secure state, IDAT does not depend on any of these changes.

The first section of code written was the perl [20] scripts used to
demonstrate the feasibility of the concepts expressed in this
paper. The five perl scripts have been tested on two different
systems running SunOS 4.1 and SunOS 4.1.1 which both have
perl version 4 (patch 35) installed. The size of the raw (i.e.,
ASCII) perl scripts range from 80 lines to 350 lines (including
comment lines).

The last section of code written was the XView [21] source for the
windowing environment. A requirement for IDAT is that it must
support OpenLook, since OpenLook is Sun Microsystems user-
interface standard. The total number of lines for all six of the
XView modules is approximately 1800 lines.

120 Conclusion

This paper introduced decision aiding into the field of intrusion
detection. Decision aiding builds on the accepted signature
attack models and extends it to the understanding of Unix audit
data as it relates to known signature attacks.

The visual diagram of the decision tree, combined with the easy-
to-use graphical user-interface, provides a simple means of
viewing audit data that is otherwise complicated, time
consuming, and requires a near-expert level understanding of
Unix. IDAT allows any user on the system to quickly view the
current status of that system. '

Testing and validation of IDAT only requires Unix audit logs
and system files in their appropriate format. This also implies
that to defeat IDAT, Unix auditing capabilities must be defeated.
Although it is possible to defeat Unix auditing (evident by
intruders who cover their tracks), IDAT could still aid in the
decision that suspicious behavior has occurred, thus
accomplishing its original task.

As an aside, when a security tool is developed such as IDAT, one
of the many aspects to be considered is the "threat" level it in
itself may represent. Threat here is defined as "How useful
would it be if the tool fell into the hands of a perpetrator?” Many
security tools available today are considered "high threat tools.”
IDAT, on the other hand, is.considered a "low threat tool"
because IDAT does not provide intruders with a directly useful
tool for attacking systems.

IDAT raises the understanding of computer and network
security. IDAT is a tool available today that helps detect
intrusions that might have gone undetected and might otherwise
continue for days, weeks, or even months.

References

1. United States Air Force, Computer System Intrusion Detection,
E002: Fi.al Technical Report, TIS report #348., September 11,
19%0.

2. Javitz, Harold S., and Alfonso Valdes, "The SRI IDES
Statistical Anomaly Detector,” Proc. 1991 Symposium on
Research in Security and Privacy, Oakland, CA, May 1991.

3. Garvey, Thomas G., and Lunt, Teresa, "Model-based
Intrusion Detection,” Proc. 14th National Computer Security
Conference, pp. 372-385, Washington, D.C., October 1991.

4. Lunt, Teresa F., "IDES: An Intelligent System for Detecting
Intruders,” Proc. of the Symposium: Computer Security, Threat
and Countermeasures, Rome, Italy, November 1990.

10.

11.

12.

13.

14.

15.

Snapp, S. R., J. Brentano, G.V. Dias, T.L. Goan, L.T.
Heberlein, C. Ho, K.N. Levitt, B. Mukherjee, S.E. Smaha, T.
Grance, D.M. Teal, and D. Mansur, "DIDS (Distributed
Intrusion Detection System)- Motivation, Architecture, and
an Early Prototype,” Proc of the 14th National Computer
Security Conference, pp. 167-176, Washington, D.C., October
1991.

Heberlein, Todd L., Gihan V. Dias, Karl N. Levitt, Biswanath
Mukherjee, Jeff Wood, and David Wolber, "A Network
Security Monitor,” Proc. 1990 Symposium on Research in
Security and Privacy, pp.296-304, Oakland, CA, May 1990.

Lankewicz, Linda, and Mark Benard, Real-Time Anomaly
Detection Using a Nonparametric Pattern Recognition Approach,
Technical Report TUTR 91-106, Tulane University, New
Orleans, LA 70118, May 1991.

Venema, Wietse, "TCP Wrapper ~ Network Monitoring,
Access Control, and Booby Traps," Proc. of the Third USENIX
Unix Security Symposium, pp. 85-92, Baltimore, MD, '
September 1992.

Farmer, Daniel, and Eugene H. Spafford, The COPS Security
Checker System, Technical Report CSD-TR-993, Purdue
University, West Lafayette, IN 47907-1398, September 1991.

Bartoletti, Tony, User’s Guide for SPI/UNIX version 2.1.,
Department of Energy by Lawrence Livermore National
Laboratory. UCRL-MA-103440, Rev. 3., July 1992.

McLean, John, "The Specification and Modeling of Computer
Security,” Computer, v23, nl. pp. 9-17, January 1990.

Garfinkel, Simson, and Gene Spafford, Practical UNIX
Security. O'Reilly & Associates, Inc., 1991.

Snapp, Steven R., Biswanath Mukherjee, and Karl N. Levitt,
"Detecting Intrusions Through Attack Signature Analysis,"
Proc. Third Workshop on Computer Security Incident Handling,
Herndon, VA, August 1991.

Dias, Gihan V., Karl N. Levitt, and Biswanath Mukherjee,
Modeling Attacks on Computer Systems: Evaluating
Vulnerabilities and Forming a Basis for Attack Detection,
Technical Report CSE-90-41, University of California, Davis.,
July 1990.

Heberlein, Todd L., K. N. Levitt, and B. Mukherjee, "A
Method to Detect Intrusive Activity in a Networked
Environment,” Proc. 14th National Computer Security
Conference, pp.362-371, Washington, D.C., October 1991.

16.

17.

18.

19.

20.

21.

Christensen, Marvin, "A Unix System Decision Aiding Tool
for Detecting Network Intrusions,” Master ‘s Thesis,
University of California, Davis, March 1993.

Seeley, Donn, "Password Cracking: A Game of Wits,"
Communications of the ACM, 32(6):700-703, June 1989.

Longstaff, Thomas A., and E. Eugene Schultz, "Beyond
Preliminary Analysis of the WANK and OILZ Worms: A
Case Study of Malicious Code,” Computers and Security (to
appear).

Sun Microsystems, SunOS Reference Manual, Sun Release
4.1, PN: 800-3827-10, Revision A, March 1990.

Wall, Larry, and Randal L. Schwartz, Programming in perl,
O'Reilly & Associates, Inc., reprint March 1992.

Heller, Dan, XView Programming Manual, OReilly &
Associates, Inc., October 1990.

