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EXECUTIVE SUMMARY

The International Atomic Energy Agency's Safeguards Analytical Laboratory has performed
calibration experiments to measure the different efficiencies among multi-Faraday detectors for
a Finnigan-MAT 261 mass spectrometer. Two types of calibration experiments were performed:
(1) peak-shift experiments and (2) peak-jump experiments. For peak-shift experiments, the ion
intensities were measured for all isotopes of an element in different Faraday detectors. Repeated
measurements were made by shifting the isotopes to various Faraday detectors. Two different
peak-shifting schemes were used to measure plutonium (UK Pu5/92138) samples. For peak-
jump experiments, ion intensities were measured in a reference Faraday detector for a single
isotope and compared with those measured in the other Faraday detectors. Repeated
measurements were made by switching back-and-forth between the reference Faraday detector
and a selected Faraday detector. This switching procedure is repeated for all Faraday detectors.
Peak-jump experiments were performed with replicate measurements of **Pu, '*'Re, and **U.

Detector efficiency factors were estimated for both peak-jump and peak-shift experiments
using a flexible calibration model to statistically analyze both types of multidetector calibration
experiments. Calculated detector efficiency factors were shown to depend on both the material
analyzed and the experimental conditions. A single detector efficiency factor is not
recommended for each detector that would be used to correct routine sample analyses. An
alternative three-run peak-shift sample analysis should be considered. A statistical analysis of
the data from this peak-shift experiment can adjust the isotopic ratio estimates for detector
differences due to each sample analysis.

Key words: Multidetector calibration, Peak-jump experiments, Peak-shift experiments,
Detector efficiency factors.
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1. INTRODUCTION

Single detector systems for thermal ionization mass spectrometers sequentially measure the
ion intensity of each isotope. All ion-intensity measurements are made with the same detector,
but a correction is needed because there is a time lag between different mass measurements. The
arrival of multidetector systems for mass spectrometers eliminated the need for time-lag
corrections because all ion-intensity measurements are made simultaneously with an array of
detectors. The amplification systems are adjusted electronically for any gain differences among
the detectors. But, ion-intensity measurements may not be equivalent in different detectors
because detectors may vary with respect to their geometry, construction, component materials,
etc.

Fiedler and Donohue [1] developed a methnd to estimate the detector efficiency factors
(DEFs) by shifting the mass spectrum one or two mass units on each side of its normal position.
Fiedler and Donohue's method can estimate the DEFs, but it has some drawbacks: (1) the "true
values" of the isotopic ratios are required for estimating DEFs, (2) no straightforward method
exists which can estimate error limits on the calculated DEFs, and (3) no standard statistical
method is available to test the equality of DEFs or if they are significantly different than 1. In
addition, ion-intensity measurements are assumed to decrease linearly within different runs.
Investigation of this assumption suggests that a more complex decay function may be required to
approximate decreasing ion intensities.

This reports attempts to correct these drawbacks by modeling the ion-intensity measurements
with a multiplicative function of experimental factors. This calibration model includes effects
caused by mass variations, run variations, and detector variations. The calibration model is
assumed to be intrinsically linear so that the logarithms (base e) of the ion-intensity
measurements can be used to estimate model parameters. By using this modeling approach,
estimating DEFs, testing for the significance of their differences and calculating error limits can
be done by standard linear regression methodology [2,3]. In addition, the accuracy of the
calibration model fitted to experimental data is examined by comparing estimated isotopic ratio
values with their reference values and by inspecting the residuals (i.e., residual = observed
measurement - predicted model value).



2. CALIBRATION EXPERIMENTS

The International Atomic Energy Agency's Safeguards Analytical Laboratory (SAL) at
Seibersdorf, Austria, has performed calibration experiments to measure the different efficiencies
among multi-Faraday detectors. All measurements were made on a Finnigan-MAT 261 mass
spectrometer that has nine fixed collectors set up for the isotopes of U from 233 to 238 and for
Pu from 238 to 244. The mass spectrometer is controlled by a personal computer running SAL
custom-written software. The ionization source utilizes the standard Finnigan-MAT 2 filament
geometry, with a Re ionizing filament and a Re evaporation filament. Typical sample loadings
are 1 ug of U and 50 ng of Pu. Two types of calibration experiments — peak-shift and peak-
jump — were performed to estimate DEFs .

2.1 PEAK-SHIFT EXPERIMENTS

The Finnigan-MAT 261 mass spectrometer has nine Faraday detectors (labeled No. 10 to
No. 2) separated by one mass unit (except detector No. 2, which has a two mass unit separation
from No. 3). During normal measurements of Pu, detector No. 6 measures isotope **Pu, and
during normal measurements of U, detector No. 8 measures ?°U. Different isotopes can be
placed into different detectors by moving the mass spectrum to the high- or low-mass side in
increments of one mass. This procedure assumes that moving the ion beams will not change
significantly the dispersion or the ion incidence angle in the detectors, which would affect the
DEFs. In practice, it is only feasible to move the spectrum by 2 masses in either direction.
Table 1 illustrates two peak-shift experimental schemes for Pu — each with ten runs that have
this restriction. These schemes are not the only ones possible, and Section 4 examines other
methods of measurement. Different schemes measure an unequal number of isotopes in each
detector. This inequality affects the error limits on the DEFs.

SAL measured four samples labeled 10, 11, 12, and 13 of UK Pu5/92138 [4] to demonstrate
peak-shift experiments. Harwell Laboratory prepared the plutonium reference samples to
contain plutonium isotopes *°Pu, *°Pu, **Py and ““Pu in the approximate ratios of 3:3:3:1.
Reported isotopic ratios that are decay corrected to 30 January 1986 with their 95% confidence
intervals are: *°Pu/”*Pu = 0.9662 (£0.0011), *?Pu/**Pu = 1.0253 (x0.0019) and **Pu/*Pu =
0.3358 (+0.0008).

SAL measured samples 10 and 11 by peak-shift scheme 1, and samples 12 and 13 by peak-
shift scheme 2. The time between runs within each scheme was constant, and the runs were
symmetric about the mid-time between runs 5 and 6 (i.e., 5.5). Each sample was measured in
three replicates, or blocks, of the ten-run scheme. Time between each block of measurements
was used to reset the computer program for the next ten measurements,




Table 1.

Plutonium peak-shift experiments for schemes 1 and 2

e —— e
Scheme 1 : - Faraday Detectors No. of
Runs No.8 No.7 No.6 No. 5 No. 4 No. 3 No.2 Measure.
1 239 240 242 244 4
2 239 240 242 3
3 239 240 242 244 4
4 239 240 2
S 239 240 242 3
6 239 240 242 3
7 239 240 2
8 239 240 242 244 4
9 239 240 242 3
10 239 240 242 244 4
No. of
Measure. 2 4 4 6 6 6 4 32
e e —
Scheme 2 L ... Faraday:Detectors No. of
Runs No. 8 No.7 No.6 - No:.S No.4 No. 3 No.2 Measure
1 239 240 242 3
2 239 240 2
3 239 240 242 244 4
4 239 240 242 3
5 240 242 244 3
6 240 242 244 3
7 239 240 242 3
8 239 240 242 244 4
9 239 240 2
10 239 240 242 3
No. of
Measure. 2 2 6 4 8 4 4 30




SAL recorded both baseline and ion-signal measurements for each detector. The statistical
analysis uses net ion signal (i.e., net ion signal = ion signal - baseline), corrected by a gain-
calibration factor, to estimate DEFs and their precision. The net ion signals for detectors
measuring the *'Pu position show small but significant values. Most net ion-signal values are
less than 1.0 mv (1 x 10" A) in absolute value for those detectors not measuring any isotopes of
a plutonium sample.

2.2 PEAK-JUMP EXPERIMENTS

Peak-jump experiments select a single isotope to measure ion intensities in each Faraday
detector. These measurements are compared to a reference detector.  Ion-intensity
measurements are first made on a reference detector, then the ion beam is switched to a selected
detector. This switching back-and-forth is repeated a number of times until another detector is
selected. Figure 1 shows the peak-jump experimental design. SAL performed peak-jump
experiments on two samples for each of the three elemental isotopes *Pu '*/Re, and **U. For
example, a sample of *Pu was first measured in reference detector No. 6 then twice in detector
No. 10 then back to detector No. 6 (No. 6, No. 10, No. 10, No. 6). This sequence was followed
by the sequence (No. 10, No. 6, No. 6, No. 10). These sequences of 4 runs were repeated for 6
cycles for a total of 24 measurements. The time delays between measurements in different
detectors were 8 s and between measurements in the same detector were 2.5 s.

Faraday Detectors

@@@@@@

Fig. 1. Measurement scheme for peak-jump experiments.



Advantages of peak-jump experiments are (1) no fractionation is involved for a single
isotope, (2) there is no dependency on different isotopes, (3) there is a direct comparison
between detectors, (4) they are applicable to any detector configuration, (5) the same magnitude
of ion intensities is measured in each detector, and (6) peak-jump experiments are easily
performed. Disadvantages of peak-jump experiments are (1) they depend on the element being
measured, (2) they involve larger shifts in mass (magnetic field) compared to peak-shift
experiments, and (3) they require more experimental time than peak-shift experiments.




3. CALIBRATION MODEL

A flexible calibration model was developed to represent net ion-intensity measurements for
both peak-shift and peak-jump experiments. Independent factors in this calibration model
account for the major sources of variation that influence the measurement of net ion intensities.
These major variation sources are different. isotopic masses, different experimental runs (i.e,
differences in time) and different Faraday detectors. Other sources of variation that are
unknown and cannot be identified are attributed to random variations that are represented by
experimental errors. Experimental errors should have a relatively small variance, and an
estimate of this variance can be used to judge the adequacy of the fitted calibration model. The
variance of the experimental errors is also used to establish uncertainty limits on the calculated
DEFs.

A net ion-intensity measurement, Y, can be represented by a function of the sources of
variation and experimental error ( €):

Y = F(Mass, Run, Detector, €). 1)

A major problem with approximating the net ion-intensity measurements is to account for
the interaction among the sources of variation. For example, if the net ion intensities for each
isotopic mass are considerably different, the DEF of an individual detector may change with the
magnitude of the ion-intensity values. The rate of change between measurement runs may also
depend on the magnitude of the ion intensities. Although some of these interactions can be
modeled, Fiedler and Donohue [1] have suggested using samples with relatively equal isotopic
ratios to minimize interaction effects.

Detector efficiency factors are ratios relative to a selected detector. These DEFs are used to
adjust net ion-intensity measurements relative to the selected or reference detector. Any detector
may be selected as the reference detector (in the Results and discussion section, we see that the
standard deviations of DEFs depend on the selected reference detector). Detector No. 6 was
selected as the reference detector to compare the results of peak-shift experiments with the
results of peak-jump experiments.

The experimental-error variance for net ion-intensity measurements is assumed to be
proportional to the magnitude of the true net ion-intensity values. As the magnitude of net ion
intensities increaves, the magnitude of experimental-error variance increases, but the relative
error of the measurements is constant. This assumption is equivalent to the condition that the net
ion intensities have equal variances on a logarithm scale [5]. Considering this model
assumption, the calibration model is formulated as a multiple of exponential functions of the
experimental factors




where

8(Run)

exp(Mass)

exp(Detector)

]

Y = K exp(Mass) explg(Run)] exp(Detector) ¢, (2)

a multiplying constant.

a continuous function of run time. Usually this decay function is assumed
to be a linear decreasing function. Additional decay functions will be
examined in the fitting process to account for effects due to
fractionation and to nonlinear behavior. '

the effect of the isotopic mass. Note, if M, and M, are two different
isotopes, the isotopic ratio of M,, relative to M, is exp(M,, — M,). This
factor is used for peak-shift experiments but not peak-jump
experiments that only use single elemental isotopes.

the effect of the Faraday detector. The DEF for detector D, relative to
detector D, is exp(Dy — D).

the experimental error. For establishing error limits and testing
significance, we assume the errors have a log-normal probability
distribution. This assumption means that the logarithms of the errors
have a normal probability distribution. In addition, normal errors are
assumed to be symmetric about zero with a constant variance.
Experimental errors are also assumed to be independent, that is, an
error for one measurement is not influenced by an error from another
measurement.

For the peak-shift experiment, all factors in the calibration model are estimated. For the
peak-jump experiment, factors for isotopic masses [i.e., exp(Mass)] are constant because only a
single elemental isotope is measured in each experimental run. Two methods can be used to
estimate the parameters in Eq. (2). Nonlinear least squares can be used to estimate the
parameters by an iterative method that is computationally intense. However, modern computers
make this a minor drawback. A more important limitation is that the estimation of error limits is
only approximate. A second method uses the fact that the calibration model is intrinsically
linear. This means the calibration model can be linearized by taking logarithms (base €) of both
sides of the equation. The parameters in the linearized calibration model can then be estimated
by the ordinary method of linear least squares. This standard approach gives us direct methods
for calculating error limits and for testing significance differences among model parameters. For
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example, the linear calibration model for a net ion-intensity measurement for the m-th plutonium
isotopic mass, at the -tk run time, in the d-th detector is

In(Y, ) = 1n(K) + M + g(R) + Dy + §_,, 3)

withm=1,2,3,4,r=1,2, .., 10;and d=2, 3, ..., 8. The logarithms of the experimental errors
(8,,,4) are assumed to be independent random variables and identically distributed as a normal
probability distribution with zero mean and a constant variance. Calibration model parameters
and their standard deviations are estimated by an analysis-of-covariance model [3], computed by
PROC GLM in the SAS computer program [6].

Detector efficiency factors are estimated from net ion-intensity measurements on a sample
by using the calibration model in Eq. (3). Initially, the statistical analysis selects a decay
function that best represents net ion-intensity change with run time. Next, the calculated isotopic
ratios are compared with certified reference values for a validity check on the mass
spectrometric analysis of the sample. Finally, the detector efficiency factors are estimated and
their uncertainties calculated.

3.1 DECAY FUNCTION g(Run)

The decay function represents the change in net ion intensities as a function of run time.
Initially, linear decay functions with a constant slope for each isotope [i.e., g(Run) = R, R = run
time] were fitted to the peak-shift experimental data, and quadratic decay functions [i.e., g(Run)
= BR + yR?] were fitted to the peak-jump experimental data. For peak-shift experiments, a decay
function with different slopes for each isotope can be used to detect fractionation. Comparison
of decay functions with different slopes to those with constant slopes indicated no detectable
fractionation.

Inadequacies of fitting selected decay functions were examined by plotting the residuals (i.e.,
residual = observed measurement - predicted measurement). These residuals were scaled [e.g.,
studentized residuals, (2)] so that 99% of the values should fall between -3 and +3. An
examination of these residual plots shows that the ion intensities occasionally skip like a step
function for both types of calibration experiments. Figure 2 shows a single skip for the peak-
shift measurements of plutonium sample = 12-2 (i.e., sample 12 in replicate block = 2). No
patterns or physical causes, such as resistance changes in filament contacts, for these skips have
been identified. Figure 2 shows the studentized residuals decrease from runs 1 to 5, when a skip
occurs between runs 5 and 6, followed by another decrease. Some sample and block studentized
residual patterns indicate as many as three skips in the signal response. This decay behavior can
be approximated by using a different linear decay function for each set of signal responses where
no skips occur [i.e., g(R) = a + B,R, where a indicates different skip intervals].



Run Number

Fig. 2. The ranges of studentized residuals for peak-shift runs on plutonium sample =12-2.

Table 2 shows the changes in estimated standard deviations for experimental errors using
either a single linear decay function for each peak-jump experiment or several linear decay
functions, depending on the number of skips in an experiment. A good fit of the calibration
model to the logarithms of the ion-intensity measurements should have an estimated standard
deviation less than 10 x 10*. This absolute standard deviation for the log-model in Eq. (3)
represents for the calibration model in Eq. (2) a percent relative error [YoRE = 100% x (St. Dev
of Eq. (2j/(Mean of Eq. (2)] of %RE = 0.1%. These precision measurements are approximately
the precisions for fitting the calibration model to background counts in the peak-shift
experiments.

Table 2. Estimated standard deviations (x 10*) for peak-shift experimental errors with
corresponding error degrees of freedom in parentheses

Decay  Table 2 shows the changes in estimated standard deviations for experimental errors
' ' using Sample-Block
‘fanetion®  10-1 _10-2  10-3  11-1_ 112 11-3 12-1  12-2 _ 12-3 _ 13-1 132 13-3

BR 92 211 43 133 153 112 188 1026 42 143 167 494
@) @n @n @y @) @y ay a9 a9 a9 A1) 19

o+ BR 26 19 24 19 23 12 713 47 1.1 23 20 25
a7 15y an (s as) a5 as)  an  @q3)  @3) (13 (13

*The index o represents different sets of linear signal decay.



Studentized residuals for peak-jump experiments showed skips in eight cases. Figure 3 shows
studentized residuals for the first plutonium peak-jump experiment that compares detector No. 7 with
reference detector No. 6 (i.e., 7:6). This figure indicates there are two skips. One skip occurs at about 50
s and another occurs at about 115 s.

B e e oo S St A B S A A SN A BRI B o o
0O 20 4 @60 80 100 120 140 180
Time (s)

Fig. 3. Studentized residuals for the first **°Pu sample in the peak-jump
experiment comparing detector No. 7 (M, square) with detector No. 6 (¢, solid circle).

The calibration model can be adjusted for these skips by using a different quadratic decay function
for each set of signal responses where no skips occur [i.e., g(R) = a + B,R + y,R? where a indicates
different skip intervals). These adjustments for the skip intervals provide good fits to the peak-jump data
with estimated standard deviations for experimental errors that are less than 10 x 10“. The calibration
model in Eq. (3), used to fit both the peak-shift and the peak-jump data, gives equivalent standard
deviations for the experimental errors.

3.2 ESTIMATED ISOTOPIC RATIOS

Another evaluation criteria for the peak-shift experiments is the comparison of isotopic ratio
estimates to those reported by Harwell Laboratory. Isotopic ratios of UK/Pu5/92138 are estimated from
the mass factor [i.e., exp(M,, - My)] in the calibration model. The isotopic ratios from three blocks of
measurements for a sample should be consistent. The isotopic ratios may not have the same value as the
standard reference material because the ion-intensity measurements are not fractionation bias corrected.
Figure 4 shows the 12 estimated isotopic ratios for *°Pu/*’Pu. The isotopic ratio estimated for sample
13-3 is larger than other isotopic ratios. Similar results occur for estimates of *?Pu/***Pu, and **‘Pu/**Pu

10




isotopic ratios. These larger isotopic ratios in sample 13-3 may indicate a sample preparation problem or
an emission anomaly during measurements. The width of the 95% confidence limits for all the isotopic
ratios in every sample and block are about the same width as those for the certified values. The
combined estimate of the isotopic ratios with their 95% confidence intervals for the four samples with
results for sample 13-3 omitted are the following: *°Pu/"*Pu = 0.9644 (+0.0002), **Pu/*°Pu = 1.0248
(20.0005), and **Pw/*°Pu = 0.3354 (+0.0002).

0.9690
0.9880 - 240Pu / 239PU
g o.oero.-} ................................. .

Sample - Block

Fig. 4. Plutonium isotopic ratios ’Pu/*°Pu with their 95% confidence intervals estimated from
peak-shift experiments. Dash lines (—) represent lower and upper 95% confidence intervals reported for
the UK/Pu5/92138 reference material.

3.3 DETECTOR EFFICIENCY FACTORS (DEFs)

Detector efficiency factors for detector "d" relative to detector "h" are estimated from the
detector factors [i.e., exp(D, - D,)] in the calibration model. For peak-shift experiments, DEFs
are estimated after the data have been adjusted for different masses, linear decay functions, and
skips. For the peak-jump experimenis, DEFs are estimated after the data are adjusted for
quadratic decay functions and skips.

Figure 5 shows the DEFs estimated for the peak-shift experiments. This plot shows that the
magnitudes of the DEFs for most sample-block data are ordered as 2:6 23:6 24:6 25:6 27:6
8:6 except for the DEFs from sample = 13-3. For sample 13-3, the order of the DEF magnitudes
is reversed. In addition, there is a much larger spread of DEF values in sample 13-3. The
estimated DEFs for sample = 13-3 were not included in the final overall estimates of the DEFs
because of the unusual behavior of the estimates for both the isotopic ratios and the DEFs.
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Figure 5 also shows large differences among DEF values for sample = 11-1 and 11-2. Also,
there is a general increase in the differences for the DEF values from 11-3 to 13-2,

1.0100

Sample - Blook

Fig. 5. Detector efficiency factors estimated using peak-shift experiments. Detector ratios
are 2:6 (*, circle), 3:6 (%, star), 4.6 (M, square), 5:6 (A, triangle), 7:6 (x), and 8:6 (¢, diamond).

Figure 6 shows estimated DEFs from the peak-jump experiments for both replicate samples
of the three isotopes (i.e., ®’Pu, ""Re, and ?*U). Estimated DEFs are reproducible for the
rhenium and plutonium replicate experiments. Rhenium DEFs are always larger than plutonium
DEFs and uranium DEFs. This result implies that DEF values may depend on either the element
or the magnitude of the ion intensities (e.g., SpA for "*"Re vs 40pA for ®°Pu and #*U) associated
with each sample. Dips are apparent in the DEF values for the ratio 5:6 for all three elements.
These dips may be related to the fact that these measurements were the last ones made and the
samples were more depleted. Uranium DEFs vary substantially for the different peak-jump
experimental runs. Two uranium experimental runs (i.e., ratio 2:6 for run 1, and ratio 5:6 for
run 2) have been omitted from the elemental estimates of uranium DEFs. Uranium DEFs for
ratio 5:6 in experiment 2 could not be estimated because the ion intensities were lower than the
background.

The uranium DEF value (0.9873) for ratio 2:6 in run 1 was unusually low. An inspection of
the studentized residuals in Fig. 7 shows that a skip in the net ion intensities occurred in both
detectors. Further investigation indicated that both skips were due to increases in net ion
intensities, but the increase for detector No. 2 was larger than the increase for detector No. 6.
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Variances for the DEFs from each multidetector calibration experiment can be estimated
directly from the method of least squares [2,3]. Combining these variance estimates, confidence
intervals can be calculated for the DEFs for each element measured in the multidetector
calibration experiments. Table 3 shows the estimated DEFs and their 95% confidence interval
estimated from samples of the three elements: plutonium, rhenium, and uranium. The 95%
confidence interval on the DEF values for the combined experiments are small, ranging from
+0.0002 to £0.0010. These confidence intervals for a specific DEF (e.g., 2:6) don't necessarily
overlap for peak-shift and peak-jump experiments or for different elements. These results
indicate that DEF values are sensitive to the experimental conditions (e.g., temperature
fluctuations, signals stability, etc.) and to the type of sample analyzed.

Table 3. DEF estimates and 95% confidence intervals for each element in the

) multidetector calibration experiments
Peak-Shift Peak-Jump

DEF Plutonium® " Plutonium Rhenium Uranjum

2:6 1.0034 + 0,0008 0.9997 £ 0.0006 1.0007¢ 0.0003 0.9964 + 0.00IOb
3:6 1.0020 + 0.0005 0.9999 + 0.0006 1.0010 £ 0.0009 0.9996 + 0.0010
4:6 1.0017 £ 0.0003 1.0001 £ 0.0007 1.0009 * 0.0006 0.9990 # 0.0005
5:6 1.0003 £ 0.0002 0.9994 + 0.0010 1.0000 £ 0.0003 0.9996 + 0.0008°
7:6 1.0000 £ 0.0003 1.0006 = 0.0010 1.0012 £ 0.0005 1.0006 + 0.0009
8:6 0.9991 + 0.0003 1.0003 £ 0.0005 1.0008 = 0.0002 1.0005 + 0.0008
9:6 1.0004 £ 0.0007 1.0009 x 0.0002 1.0005 % 0.0010
10:6 1.0004 + 0.0009 1.0012 £ 0.0002 1.0008 £ 0.0009

*Omitted results from peak-shift experiment for sample = 13-3.

Omitted results from first uranium peak-jump experiment for DEF = 2:6.
*Omitted results from second uranium peak-jump experiment for DEF = 5:6.
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4. PEAK-SHIFT EXPERIMENTAL DESIGNS

Faraday detectors No. 6, No. 5, No. 3, and No. 2 measure 2*Pu, *°Pu, **?Pu, and ***Pu, respectively,
during the normal operation of mass spectrometric analyses. Two peak-shift experimental designs
labeled scheme 1 and scheme 2 were used to estimate DEFs for the four detectors. Both schemes can
be used to estimate DEFs, but the variances of the estimated DEFs depend on the chosen scheme.
Comparisons of the two schemes will be made by examining their effect on the precision of the
estimated DEFs.

A DEF (say, D, relative to D,) is estimated by exp(D; — D,). For the calibration model in Eq. (3),
this DEF estimate is equivalent to the difference between the two detector effects. The variance of this
difference can be calculated from the individual variances and their covariance by [3]

Var(Dj - D)

) = Var(D,) +Var(D,) -2Cov(D;,D,) , (4)

a

Var(D, - D,) o?+a,,0?-2a,0% = h(X)o? . (5)

i3

The variance of a DEF is a product of two numbers, a design multiplying factor and a variance
factor. The variance factor (6°) depends only on the variation of the mass spectrometric measurements.
The design multiplying factor h(X) is a weighting factor that doesn't depend on any measurement data
but only on the peak-shift calibration experiment (X) and the calibration model. Values of h(X) are
calculated from the variance-covariance matrix [3] by using the elements corresponding to the variance
of the two detectors (a; and a,,) and to the covariance between the two detector (a,). Different peak-
shift experiments can be compared for estimating a DEF by examining the associated h(X) values for
the same calibration model. The smallest variance for an estimated DEF would correspond to the
peak-shift experiment with the smallest h( X) value.

Each DEF has a different h(X) value for a peak-shift experiment. The average h(X) over those
DEFs used in the normal operating mode represents an overall precision measure of DEFs associated
with a peak-shift experiment. Table 4 shows h(X) values corresponding to DEFs 2:6, 3:6, and 5:6
using peak-shift experiments for schemes 1 and 2. These h(X) values are calculated for the calibration
model in Eq. (3) using a linear decay function with no skips.
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Table 4. Design multiplying factors h( X) for peak-shift experiments using schemes 1 and 2*

Detector Efficiency Factor .
Peak-Shift
‘Experiment 2:6 3:6 5:6 Average .
Scheme 1 0.810 0.571 0.446 0.609
Scheme 2 0.441 0.424 0.441 0.436

*The calibration model uses a linear decay function.

The average h(X) value for scheme 2 (0.436) is smaller than the average h(X) value for scheme 1
(0.609). This result indicates that the average variance of the DEFs estimated from scheme 2 would be
smaller than average variance of those DEFs estimated from scheme 1 for the same value of o .
Design multiplying factors also depend on which detector is used as the reference detector in the
denominator of DEF ratios because the number of measurements is not equal for all detectors.

Average h(X)

o.‘ v ]
No. 2 No. 8 No. 8 No. 8

Detector In the Denominator

Fig. 8. Average design multiplying factors h(X) for peak-shift experiments using different
detectors in the denominator of the DEFs. DEFs for scheme 1 (8, square) and scheme 2 (o,
circle) are based on a calibration model with a linear decay function.
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Figure 8 shows the average h(X) values associated with DEFs with different reference detectors in
the denominator. Scheme 2 produces the minimum average h(X) value (0.436) for DEFs relative to
reference detector No. 6. For DEFs relative to reference detector No. 3, scheme 1 has a smaller
average h(X) value (0.478) than the h(X) value for scheme 2 (0.552). This example shows that the
precision of the DEFs depends not only on the type of peak-shift experiment but also on the reference
detector used in the denominator of the DEFs.

4.1 BEST PEAK-SHIFT EXPERIMENTS
Peak-shift experimental designs for estimating DEFs should have the following properties:

1. The peak-shift experiment should estimate the DEFs that are relative to a detector used for the
normal operating mode (e.g., No. 2, No. 3, No. 5, and No. 6 for plutonium). A minimum
number of runs is required to estimate all the calibration model parameters.

2. The peak-shift experiment should have the most isotopic measurements in the detectors used in
the normal operating mode.

3. A peak-shift experiment with properties 1 and 2 is an optimal DEF peak-shift experiment if it
has the smallest average design multiplying factor for those DEFs associated with the normal
operating mode.

Table 5 shows the ten possible measurements for plutonium that can be made in a peak-shift
experiment. The rows (3 through 8) are identified by letters (A through F), with the number of
isotopes being measured in detector Nos. 2 through 6 in parentheses. Rows 1, 2, 9, and 10 can be
eliminated from consideration because they provide only a single measurement in detector Nos. 2
through 6. Row 5, identified by C(4), is the normal operating position, which contributes four isotopic
measurements in detector Nos. 2 through 6. Row 3, identified by A(3), provides the next largest
number of isotopes in detector Nos. 2 through 6. The seven measurements from the combined rows of
C(4) + A(3) cannot estimate all DEFs. An additional row must be selected from rows B(2), D(2), E(2),
and F(2) to estimate all DEFs. Any of the four designs A+C+B, A+C+D, A+C+E, and A+C+F can
estimate the DEFs. These peak-shift experiments were checked for the estimability [3] of the DEFs by
using a calibration model in Eq. (3) with no decay function.
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Table S. Possible measurements for peak-shift experiments. Measurements in bold-type (row 5)
represent mass spectrometric analyses during normal operation

Faraday Detectors

Row No.10 No.9 No.8 No.7 No.6 No.5 No.4 No.3 No.2 ID
1 239
2 239
3 239 240 242 AQ3)
4 239 240 B(2)
5 239 240 242 244 C“4)
6 239 240 242 D(2)
7 239 240 242 244 E(2)
8 239 240 242 244 F(2)
9 239 240 242 244
10 240 242 244

Peak-shift experiment (A,C,D) has the smallest average h(X) (1.667) for DEFs relative to detector
No. 3. This calibration experiment requires the fewest runs for a peak-shift experiment that can be
used for a multidetector calibration experiment for plutonium. The best peak-shift experiment with
four rows started with the best peak-shift experiment with three rows (A,C,D) and added another row
from rows A, B, C, D, E, and F. The best four-row peak-shift =xperiment is (A,C,D,E), with an
average h(X) of 1.020 for DEFs relative to detector No. 3.

Similarly, the best peak-shift experiment with five rows was found by adding a row to the best
four-row peak-shift experiment. The best peak-shift experiment with five rows is (A,C,D,E, F), with
an average h(X) value of 0.761 for DEFs relative to detector No. 6. Peak-shift experiments using
scheme 1 duplicate the five rows (C,D,E,B,A). This five-row peak-shift experiment has an average
h(X) of 0.956 for DEFs relative to detector No. 3.

A peak-shift experiment using scheme 2 replicate the five rows (A,B,C,D,F), with an average h(X)
of 0.871 relative to detector No. 6, which was not examined by this design selection method. Scheme
2 illustrates that the searching method for good peak-shift experiments does not examine all possible
combinations (6° = 7776) of the six possible rows. This limited search method constructs good
experiments even if they must be terminated early. For example, if a chemist plans to do a five-run
experiment, but the last two runs have invalid results, then the first three runs still make a good peak-
shift experiment (A,C,D).
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The best ten-row peak-shift experiment was constructed by duplicating the best five-row peak-shift
. experiment. Table 6 compares this best peak-shift experiment with peak-shift experiments for schemes
1 and 2 using a constant decay function [g(R,) = constant], a linear decay function [g(R)) = BR,], and a
quadratic decay function [g(R,) = BR, + YR?]. For the linear decay function, the rows of the best peak-
shift experiment were symmetrically ordered about the middle rows. The rows were ordered so that
the largest number of measurements in detector Nos. 2 and 6 are in the first and last experimental rows
[i.e.,, C(4), A(3), D(2), E(2), F(2), F(2), E(2), D(2), A(3), C(4)].

Table 6. Average design multiplying factors for calibration models with either a constant, a linear or
a quadratic decay function

Decay Peak-Shift Faraday Detector in the Denominator of the DEFs
Function Experiment No. 2 No.3 No. 5 No. 6
No Decay Best 0.529 0.426 0.498 0.454
Scheme 1 0.621 0.478 0.486 0.609
Scheme 2 0.615 0.552 0.601 0.436
Linear Best 0.486 0.399 0.482 0.381
Scheme 1 0.621 0.478 0.486 0.609
Scheme 2 0.615 0.552 0.601 0.436
Quadratic Best 0.666 0.455 0.544 0.529
Scheme 1 0.683 0.528 0.519 0.726
Scheme 2 1.166 0817 0.940 0.861
Table 6 shows that the average h(X) values are the same for peak-shift experiments using both
scheme 1 and scheme 2 for either a constant decay function or a linear decay function. For quadratic

decay functions, these average h(X) are different. For the three decay functions, the best peak-shift
experiment gives the lowest average h(X) value and would be the peak-shift experiment of choice for
multidetector calibration experiments.
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4.2 ESTIMATING PLUTONIUM ISOTOPIC RATIOS FRCM THREE RUNS

In Sect. 4.1, we determined that the best three-run calibration experiment was the one with rows
(A,C,D) in Table 5. This minimum peak-shift experiment can be used to estimate isotopic ratios that
are adjusted for variations among the different detectors. In addition, a three-run measurement sample
analysis would minimize the influence of fractionation because of the reduced measurement time.

The purpose of using a minimum peak-shift experiment for a sample analysis is to adjust the
estimated isotopic ratios for DEFs during each sample analysis rather than estimating overall DEFs for
all sample runs in a calibration experiment. For a peak-shift sample analysis, the chemist would
assume that the decay function, g(R,), is constant over the three runs. The linear model in Eq. (3) for a
plutonium sample analysis would be

Z ,=1n(Y,) = 1n(K) + M, + D, +5,,, (6)

m,

with index m =9, 0, 2, 4 for 2°Pu, **Pu, **?Pu, and **Pu, respectively. The indexd =7, 6, 5, 4, 3, and
2 for the corresponding detectors. No index for rows (i.e., r) is needed because the decay function is
assumed to be constant. Table 7 shows the three-run peak-shift measurements of the logarithm of the
ion-intensities.

Table 7. Logarithm measurements from a three-run peak-shlft sample analy81s

. FaradayDetectors NEE T R S
A O N4 N3 Nz
1 29,4 Zy; Z,, AQ3)
Zys Zys Z,; Z, C4)
3 Zy, Zy, Z,, D(2)

Isotopic ratios relative to *Pu are estimated by exp(M,, - M,), for m = 0, 2, 4. A least-squares
analysis [5] of the data in Table 7 will give estimates of the differences between the mass effects.
These estimates are based on summing the Z-values in Table 7 either over each mass or over each
detector. A "dot" notation in the index will represent sums over all Z-values for the specified index.
For example, the sum over all detectors for mass = 239 is
and the sum over all masses for detector 2 is

Z9,. =2y Y2yt 2y ,, @)
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Z.' = 2 + Z' . (8)

The sum Z_ represents the total sum of the measurements in Table 7.

The estimated differences (e.g., M,, - M,) are a linear combination of sums on the Z-values

1
Mo~ My = S22, - 225, +2Z0,. = 22,2 - 3Z,3 ~Z.,4-4Z ;s ~2Z2. 6], 9)
1
Mz - My = 7 [4z., - 420, - 220, - 422 - 32,3 -2Z.,4-2Z.5s -Z,¢] , (10)
Mg ~ My = -;—[wz.,. - 10Z9, - 820,. - 6Z32,, - 7Z.,2 - 3Z.,3-2Z.4 -2Z.,5s- Z.,6].(11)

Example Table 8 summaries a hypothetical data set from three runs of a peak-shift analysis of a
plutonium sample. The estimated differences are the following:

M, - M, = [ 2(152) - 2(58) + 2(49) — 2(20) - 3(26) — (30) — 4(17) - 2(38) /3,

M, - M; = -2,

M, - M, = [ 4(152) - 4(58) - 2(49) — 4(20) - 3(26) - 2(30) - 2(17) - (38) 1/3,

MZ—M9=_49

M, - M, = [ 10(152) — 10(58) ~ 8(49) — 6(36) — 7(20) — 3(26) — 2(30) — 2(17) - (38) 3,

M, - M, = -6.
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Table 8. Hypothetical data from three runs of a peak-shift analysis of a plutonium sample

Faraday Detectors
Mass Sum
No. 2 No.3 No. 4 No.5 No. 6 No. 7
239 17 20 21 58
240 14 17 18 49
242 11 12 13 36
244 9 9
Sum 20 26 30 17 38 21 152

The data for this example were generated by the model Z_,, = 10 + M, + D, , with M, =8 M, = 6,
M;=4 M,=2,D,=-3,D,=-2,D,=-1, D, =+1, D, = +2, and D, = +3. No experimental error was
added to the hypothetical data in order to simplify the calculations for the example. The example
shows that unbiased estimates of the mass effect differences (e.g., M., - M) can be obtained to
calculate the isotopic ratios [e.g., exp( M,, — My)].

Experimental error does contribute to measured ion-intensities during spectrometric analyses of
samples. The standard deviation of the mass effect differences can be related to the standard deviation
of the Z-values (logarithm of the ion-intensity measurements). These standard deviations are
calculated for the three-run (A,C,D) peak-shift analysis by

St. Dev. of (Mgyg = M339 ) = —;—3: c, (12)
St. Dev. of ( Magy — Myyg ) = % G, (13)
and
10
St. Dev. Of( M2“ - M239 ) = —'3- o. (14)

The standard deviation of the Z-values are denoted by o.
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The three-run peak-shift analysis would only have one degree of freedom to estimate the value of ¢

. by the square root of the mean square error from a statistical regression analysis. The standard
deviation from many sample analyses (220) could be pooled for an overall estimate of the standard
. deviation of the Z-values. From this well-known estimate, two-sided 95% confidence intervals can be

calculated for the isotopic ratios based on the 0.025 percentile point (i.e., 1.96) of the normal
distribution. A standard deviation estimate based on a smaller number of sample analyses would use
percentiles of a Student's t-distribution.

Py 240
95% C.1. Puzsg : exp(M240 - M239 t+ 2.2630) , (15)
242
95% C.I T2 exp (Mae - Myyy & 2.2635) (16)
Pu
and
Pn244
95% C.1. Py cexp( Moy -~ Ma3e £ 3.5790) . (17)
- . . 2 10
- The multipliers of o in the exponentials are 2.263 = 1.96 x ﬁ and 3.579 = 1.96 x A [~
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5. CONCLUSIONS

A flexible calibration model is used to statistically analyze data from both peak-shift and
peak-jump experiments using standard linear regression methodology. Analysis of the residuals
from the fitted calibration model reveals that skips occur in the ion intensities for both types of
calibration experiments. Although the causes for these skips have not been identified, a shift
term was added to the decay function to adjust the calibration model.

The DEF values estimated from the peak-shift experiments show a similar ordering of all
DEF magnitudes except for sample = 13-3. This ordering indicates the DEF values are
proportional to the distance from the reference detector. Residual analysis for sample = 13-3
indicates that the DEF values can reverse the ordering of their magnitudes. For peak-jump
experiments, the first uranium sample for the ratio 2:6 demonstrates a non-uniform skip for net
ion intensities for the two detectors. Additional investigation is needed to reveal the causes of
these anomalies before any DEF values can be recommended to adjust mass spectrometric
analyses on unknown samples.

The rhenium DEF values estimated for the peak-jump are all greater than 1. These DEF
values are significantly larger than the calculated DEF values for both plutonium and uranium
samples. These differences may be due to the magnitude of the net ion intensities measured for
each element.

Peak-shift experiments and peak-jump experiments do not give unique DEF values that can
be used for all elements or for all replicate mass spectrometric analyses. This variability is a
major problem for estimating DEF values. Additional multidetector calibration experiments
may be required to detect the underlying causes for inconsistent DEF values.

An investigation of the best peak-shift experiments showed that a minimum of three runs are
required to estimate both the isotopic ratios and the detector efficiency factors. This
investigation suggests that isotopic ratios be calculated from a three-run peak-shift sample
analysis. A statistical analysis of this minimum peak-shift sample analysis can adjust the
isotopic ratios for any effects due to different detectors during the sample analysis.
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