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Resonant Tunneling in
Small Current-Biased Josephson Junctions

by
John Mark Schmidt

ABSTRACT

The effects of resonant tunneling between bound quantum states of a macroscopic
system is studied both theoretically and experimentally. The macroscopic system studied
theoretically is the current-biased Josephson tunnel junction. Several novel effects are
predicted to arise as a result of resonant tunneling, including a series of voltage peaks
along the supercurrent branch of the current-voltage characteristic, and the enhancement
of the rate of escape from the zero voltage state to the voltage state at particular values of
bias current. A theoretical model is developed which is used to estimate the magnitude
and duration of the voltage peaks, and to estimate the enhancement of the escape rate,
which appears as peaks in the rate as a function of bias current.

An experimental investigation was carried out in an attempt to observe these
predicted peaks in the escape rate distribution. The device used in this study was the
current-biased DC SQUID, which is shown to be in the appropriate limit dynamically
equivalent to a Josephson junction with an adjustable critical current. DC SQUIDs with
capacitances of 15 to 37 fF and critical currents of 160 to 300 nA were fabricated from
aluminum using electron-beam lithography and bilayer resist shadow mask techniques.
Electrical contact to each SQUID was made through high resistance thin film leads
located on the substrate. These resistors provided a high impedance at the plasma

frequency which is shown to be necessary for the isolation of the SQUID from its



electromagnetic environment. Measurements were carried out on a dilution refrigerator
at temperatures as low as 19 mK. No evidence was found for resonant tunneling. This is
attributed to effective temperatures of hundreds of millikelvin, as indicated by the
observed SQUID behavior. The behavior is well explained by a heating model where the
high effective temperatures are generated by the ohmic heating of the electron gas of the
isolation resistors, which decouples from the phonon system in an effect known as the hot
electron cffect. The prospects for further theoretical and experimental research are

discussed.
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CHAPTER 1

Introduction

In exploring the validity of the application of quantumn mechanics to macroscopic
systems (1, 2], one often chooses the current-biased Josephson junction as a system to
study, both theoretically and experimentally. The phase difference ¢ between the
superconducting condensates in the electrodes obeys an equation of motion identical to
that of a particle moving in a cosine potential that is tilted in proportion to the bias current
[3, 4). The kinetic energy of the particle is characterized by the charging energy
Ec = €2/2C of the junction capacitance C, while the amplitude of the cosine potential is
characterized by the Josephson coupling energy Ej = fil/2e, where I is the critical
current of the junction. For bias currents below I¢, this "tilted washboard" potential
consists of a set of wells in which the particle can be trapped, whereas above the critical
current the particle can move freely down the potential. Treating this macroscopic
system quantum mechanically, one expects to find distinctly non-classical features. Two
such features occur in junctions having Ey >> Ec and have been verified experimentally.
One is the existence of quasi-bound states in the wells with discrete energy levels [5],
demonstrated with microwave spectroscopy techniques. The other is the macroscopic

quantum tunneling of the particle from one of these bound states into the continuous




spectrum of free running states [6-10]. In this limit, the phase ¢ is localized and can be
treated semi-classically.

In the past several years a great deal of both theoretical and experimental research
[11-13] has been focused on the opposite low-capacitance (femtofarad) limit Ec >> Ej
where the barriers are reduced to the point where the particle is free except for a weak
periodic potential. Here the charging energy becomes the dominant energy scale, and the
charge transfer process dominates the dynamics. In the quantum mechanical description,
the charge on the junction capacitor which is the variable conjugate to ¢ becomes a highly
localized semi-classical variable, whiie the phase wavefunction becomes extended, as
dictated by the uncertainty principle. One of the novel quantum mechanical effects
predicted for such a system is coherent Bloch wave oscillations [11].

In the intermediate regime Ec = Ej each well contains only a few states. These
states are still quasi-bound, but the coupling between states in other wells is greatly
increased. The possibility of another quantum-mechanical process occurring in this
regime has been suggested [14, 15], namely the quantum tunneling from one of the bound
states of a potential well into another bound state in an adjacent well. This process,
called resonant tunneling, occurs when the bias current is such that the ground state
energy of one well is equal to the energy of an excited state in the adjacent well. The
tunneling between the two states is coherent; when the system is prepared in one of the
states, which are not eigenstates of the Hamiltonian, it will oscillate in time between the
two. This is analogous to the well-known ammonia molecule resonance, and to the
predicted macroscopic quantum coherent superposition of states of an rf-SQUID [1, 2].
One important distinction between the case of the SQUID and the problem at hand is that
in the former case the resonance studied is between two local ground states, whereas in
the latter case one of the states is excited.

Once the system has undergone a resonant tunneling transition to an excited state,

it can either decay to a lower state, or continue to tunnel. These competing processes



each lead to observably distinct results in the behavior of the junction. If, after tunneling
to the excited state, the system decays to the local ground state, the entire process may
repeat, resulting in the movement of the particle from well to well down the potential
(path A in Fig. 1-1). Because this motion corresponds to a nonzero voltage across the
junction, we expect that the resonant tunneling process will be reflected in the
supercurrent portion of the current-voltage characteristic as a series of voltage spikes
(Fig. 1-2 (a)), each spike corresponding to an aligned pair of states. This structure is
unusual in that it can occur for bias currents which are much less chan the critical current.
This macroscopic process is similar to that occurring in semiconductor superlattices at the
microscopic level [16, 17], where increases in conductivity are observed when a strong
electric field brings electronic energy levels of adjacent wells into alignment. In contrast
to the process of sequential tunneling and decay, additional resonant tunneling events
occurring before the decay to the ground state could lead eventually to the transition of
the system to the free running state (path B in Fig. 1-1), thereby destroying the spike
structure. Here one should instead observe a switching of the junction from the
supercurrent branch to the quasiparticle branch at a value of bias current below the
thermodynamic critical current (Fig. 1-2 (b)).

Resonant tunneling in a Josephson junction is of interest not only as a novel
phenomenon in its own right, but also because of its possible effect on the coherent Bloch
oscillations. It has been suggested [18] that for values of bias current in the vicinity of
the resonances the resonant tunneling transition to excited states will break the coherence
of the Bloch oscillations. The importance of the resonant tunneling transition was also
noted by Kondo [19], who, in order to examine the suppression of Bloch oscillations by
Zener tunneling, numerically integrated the Schrodinger equation for this system. The
wavefunctions he obtained explicitly show the resonance, although the dynamics of the

resonant transition were not investigated in that work.



FIGURE 1-1. Two possible transition paths for the particle started in a ground state.
Motion along path A, an-aliernating sequence of resonant tunneling and decay transitions,
results in steady phase slips. Motion along path B, which is a sequence of successive
resonant tunneling transitions, results in escape to the free-running state.




FIGURE 1-2. Schematic representations of the current-voltage characteristic: (a) steady
phase slips (path A in Fig. 1-1) result in voltage peaks along the supercurrent branch
which correspond to the alignment of energy levels; (b)escape (path B in Fig. 1-1)
results in a switching current greatly reduced from the thermodynamic critical current L.

These features are indicated by arrows.



The study of resonant tunneling could also shed light on a long-standing debate
over whether the potential described above should be defined over the extended interval
[-00,00] or merely over the finite interval [0, 2x]. Classically these two descriptions are
identical, but in a quantum mechanical description differences arise when the
wavefunction extends over lengths greater than 2x. A gedanken experiment, which treats
a single junction as the limiting case of an rf SQUID with an infinitely large
superconducting loop, argues in favor of the infinite interval [11]. However, many hold
that the phase defined over an interval greater than a 2n is physically meaningless.
Resonant tunneling implicitly requires an infinite interval because it is essentially the
coherent superposition of wavefunctions which are offset from each other by 2r. An
experimental verification of its existence would support the validity of the infinite
interval, although some authors have shown [20] using a finite interval approach that
certain resonances can appear at the same values of bias current that the infinite interval
treatment predicts resonances to occur.

In this thesis, I present my studies of the phenomenon of resonant tunneling, both
theoretical and experimental. The theoretical studies were undertaken first in order to
develop the framework necessary to design an experiment intended to demonstrate the
existence of the effect. Although other authors had undertaken theoretical studies of the
resonant tunneling phenomenon in Josephson junctions, these early studies [15, 21] had
not taken into account all the features of the problem which we believe to be important.
Most notable among these are the coherence of the tunneling, and the competition
between decay and successive tunneling. The coherence of the transition from one bound
state to another must be included because the probability of return tunneling is not
necessarily negligible, implying that Fermi's Golden Rule may be invalid in some
situations. Although decay and successive tunneling rates are directly compared in ref.
[21], I suspected that these quantities require a more detailed consideration within the

context of the dynamics of the system. Zhuravlev and Zorin [22] concurrently developed



a theory employing a similar approach to mine which includes the coherence of the
resonant tunneling transition. However, they did not estimate the energies of the states in
the wells beyond a harmonic approximation. The anharmonicity of the potential has
important implications for the dynamics, for it creates a misalignment of levels at
resonance which acts to suppress subsequent tunneling once an initial resonant tunneling
event occurs, and thus suppresses escape to the free-running state. To what extent this
misalignment would act to suppress escape, and to what extent damping would tend to
oppose this suppression through lifetime broadening was an open question when I
undertook this research. Because of these weaknesses in the existing theory, I developed
the model which is presented in Chapter 2. This theory takes into account in a
comprehensive manner all of the aspects of the problem mentioned above. However,
many important additional considerations were left out of my model as well, because of
the relative difficulty involved in including them. Because these are important for an
experimental study of the effect, I have included a survey of these topics in Chapters 3.
To my knowledge no previous experimental work had been performed on
Josephson junctions in this limit as a primary focus of the research. One investigation
[13] which focused on the charging limit included a few junctions in the intermediate
limit, but these devices did not have well characterized measuring circuitry. The external
loading of junctions has been demonstrated to be of primary importance in determining
the dynamics of tunnel junctions both in the large capacitance [9, 10, 23] (Ej >> Ec) and
small capacitance [24, 25] (Ec >> Ej) limits, so it was most certainly a necessary
consideration in the intermediate regime as well. This is substantiated by the
experimental work which most closely paralleled my research, completed by Kautz and
Martinis [26] at about the time I had completed my theoretical work. Their
measurements were performed on devices in a parameter range similar to mine and also
utilized a measuring setup similar to mine. Their results could be explained by models

which were entirely classical and relied heavily on the accurate modeling of the




measuring circuitry. Although their measurements were carried out at temperatures too
great to observe resonant tunneling and the observed behavior was adequately described
by classical mechanics, their results form a very important basis for understanding
Josephson junctions in this limit as one makes the transition to the quantum-dominated
behavior where resonant tunneling is predicted to occur. For this reason their results
which are most relevant to my work are discussed in Chapter 3.

This background of experimental and theoretical work allowed me to design and
carry out an experiment to search for a signature of resonant tunneling. The strategy of
my approach is discussed in Chapter 4, and details of my experimental technique are
given in Chapter 5.

The results of these measurements are presented in Chapter 6. Although I had
long anticipated it as a potential problem, my results clearly demonstrate that ohmic
heating problematically increased the temperature of the devices I tested to well above
the temperatures where resonant tunneling is expected to occur. These devices were
constructed according to the requirements dictated by the models outlined in
Chapters 2-4, used in conjunction with the approach I chose to demonstrate the effect.
Unfortunately, the model which best explains the heating behavior also implies there is
little one can do to avoid this problem by using variants of my approach. A discussion of
some possible minor improvements is given in Chapter 7.

Although these experimental results are discouraging as far as demonstrating the
resonant tunneling phenomenon, they serve to identify some of the important features of
devices operating in this regime, and verify the validity of several of the results obtained
in the theoretical discussion. Thus, these results will be important in directing any further

experimental work toward identifying the effect.



CHAPTER 2

A Model Theory of Resonant Tunneling

In this chapter I present my model theory for the resonant tunneling effect. As
noted in the introduction, it is by no means a complete theory, but provides a significant
advance over theories existing at the time of its development, and using its results I can
conclude which effects due to resonant tunneling are observable experimentally. Most of
the results in this chapter were presented previously [27].

I estimate the magnitude, width, and duration of the voltage peak developed
before the junction switches to the normal state, and the rate at which this switching
occurs. These quantities are computed for a range of junction parameters. My approach
is as follows: The analysis is for zero temperature, and I consider the effects of
dissipation only to supply a decay mechanism, neglecting its effect on tunneling rates [28,
29]. Using a perturbative technique, I calculate the energy levels of the quasi-bound
states, starting with a harmonic approximation in each well. I use the WKB method to
estimate the coupling between states in adjacent wells and the tunneling rate to the free
running states. I then use a density matrix approach to investigate the motion of the
system when the junction is biased at or near resonance. In this way I am able to include

both coherent and incoherent transitions in a comprehensive manner.
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The results of this theory imply that the most readily observable signature of
resonant tunneling in a Josephson junction is not the voltage peaks, but rather the unique
distribution of rates at which the junction switches to the normal state. This distribution
is non-monotonic in the bias current, exhibiting peaks at values of current corresponding

to resonances.




2.1 The Resistively Shunted Junction Model

Many of the essential features of Josephson junction behavior can be understood
by using the resistively shunted junction (RSJ) model [3, 4], which describes the
junction's electrical characteristics through the classical dynamics of the coordinate ¢,
which is the phase difference between the superconducting condensates of the electrodes.
This model is consequently the logical starting point for understanding macroscopic
quantum behavior exhibited by the junction as well. In this model, the junction is
described by the circuit illustrated in Fig. 2-1. It consists of an ideal Josephson element
with critical current I; in paraliel with a capacitance C and a shunt resistance R. The

Josephson element obeys the current and voltage relationships

I=Isin¢ 2-1)
and
L 2-2)
2’

and its critical current at temperature T is given by the Ambegaokar and Baratoff [30]

relation

_TAM AT

1. =
©” 2eRy  2kgT

(2-3)

in the weak-coupling limit. Here Ry is the normal tunnel resistance of the junction, and
A(T) is the superconducting gap parameter for the electrode material, which I assume is
the same for both electrodes for simplicity, and kp is Boltzmann's constant. Strictly
speaking, the shunt resistance R is a constant in the RSJ model, but a common extension

of the model is to replace this element with a more general element, possibly nonlinear,

11
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FIGURE 2-1. Circuit diagram for the Resistively Shunted Junction (RSJ) model.




which more accurately represents the circuit in parallel with the junction, including the
effects of quasiparticle and leakage currents in the junction and other external circuitry
attached to the junction. This type of model will be considered in greater detail in
Chapter 3. For the present I will assume a simple ohmic shunt, although I have allowed
the value of R to possibly differ from the tunnel resistance RN. When the junction is
biased with a constant current Igj,s, Kirchoff's law may be applied along with Egs. (2-1)

and (2-2) to yield the equation of motion
BV A (h)%. (n) : (h)
— C + — — + —— I = .—.—I . . 2-4
(2e) $*(2¢) RO (26 losin®=| 3¢ Jlmias @4

This is the equation of motion for a particle with mass proportional to the capacitance
which experiences viscous damping inversely proportional to the resistance, subject to a

force which can be derived from the potential

V(¢) = -Ejcos¢ - Ej -I—’-‘i—i% (2-5)
Cc

where Ej = fil/2¢ is the Josephson coupling energy.

To quantize this system, I must obtain the Hamiltonian. To do so, I must drop the
damping term in Eq. (2-4). The damping will be reintroduced later as a perturbation to
the system. The Hamiltonian is given by

2
H=—4ECh-daf—EJcos¢--I-!—EJ¢ (2-6)
C

where Ec = €2/2C is the charging energy for the junction capacitance. This Hamiltonian

is the starting point for the quantum mechanical description of this macroscopic system.

13
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2.2 Harmonic Oscillator Approximation and Perturbative Solutions

Multiple Harmonic Wells Approximation
I will now obtain approximate solutions to the time independent Schrédinger
cquation obtained using the Hamiltonian given in Eq. (2-6). Focusing on the well located

at the origin, one can separate H into harmonic and anharmonic parts by writing
A= I:I(S)HO + AI:I , 2-7

where I:I(S)HO is the Hamiltonian for the simple harmonic oscillator,

~ E
Aduo = -4Ec FYe] + —2L¢2 -E;, (2-8)

and AH contains the term linear in ¢ together with quartic and higher order terms. If the

eigenfunctions of ﬁgﬂo are sufficiently localized, the harmonic Hamiltonian will allow

me to obtain approximate solutions for the energies of the states localized in this well of

the washboard potential, and I may consider AH as a perturbationto Ay .

For ease of algebraic manipulation I define the parameter v = \Ej /2Ec and let
¢ =x+/2/Vv. Physically, v corresponds roughly to the number of levels in the well. In

addition, I choose the energy unit to be the zero point energy of the oscillator
N/ZECE ] =hop /2 (wp is 21 times the plasma frequency). I thus obtain (dropping the

tilde in these units)

2
0 d 2

HSuo =-—7+x° -V , (2-9)
SHO dx2

which has the energy spectrum
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E =-v+2m+]1, (m=0,1,2,..) . (2-10)
In these units, the full Hamiltonian (2-6) is given by

2
d

H=-——%+V() , 2-11
—5+ V(x) (2-11)

where V(x) is the potential
V(x) = vcos(xy/2/ V) —sx2v (2-12)

and s is the reduced current s = Igjas/Ic. The energy spectrum of H forms a Wannier-
Stark ladder. Thus, given the levels Ep, located in a particular well, I can generate the full

set of levels

where n is the integer which labels the nth well. If I take E?n as an approximation to the

actual levels Ep, I find that at particular values of bias current Ig;,s = I'S® the ground

state of the nth well is degenerate with the mth state of the (n + 1)th well, that is

l:n,o =F n+lm (2-14)
when
m e
Ir,ﬁs = c;v'=m;(°p . (2-15)
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This is the condition for resonance obtained previously [14, 15, 18]. Note that in
this approximation the resonance peaks will be equally spaced along the current axis.
Also, note that the degeneracies which occur at resonance are multiple. For example, at
I=I58, Fn+1,m = Fps2,2m in addition to the degeneracy given by Eq. (2-14), and so on.
This implies that successive resonant tunneling events may be an important transition

sequence. Therefore, I next investigate to what extent these additional degeneracies are

removed by the inclusion of corrections to Fp m.

Energy Level Corrections

I wish to calculate the corrections AEp, =E, - Eg for the energy levels which
appear upon inclusion of the anharmonic perturbation AH. These corrections can be
obtained using time-independent perturbation theory with harmonic oscillator
eigenfunctions as a basis, and the results expanded as a power series in 1/v. This assumes
that the coupling to the states in adjacent wells is negligible, which I will show later is
justified.

To obtain corrections of order v-2 one must carry the linear term in AH to fourth
order in a perturbation expansion, noting that s is of order v-! at resonance. This is

unnecessarily tedious; instead I can expand the potential about the minimum of the Oth

well, which is located at xg =+/v /2 sin”!s. Letting x = xp + Ax, I can write Eq. (2-11)

as
H =H3yo +H, +H, (2-16)
where
2
Hio =£—2-+\/1—s2 (v+Ax?)—svsinls | 2-17)
X
Hy =V1-5%[v- Ax® - veos(Axy27 V)| , (2-18)

and
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H, = sV[sin(Axv27V) - Axy2/ V] . (2-19)

Since Hg is of order V'l, it must be carried to second order. On the other hand, Hj is of
order v-3/2 and need only be retained to first order, and its contribution vanishes by

parity. I can now recombine HZS’HO and Hg; the resulting Schrodinger equation takes the

form of Mathieu's differential equation. Using the asymptotic expansion for the

characteristic values of this equation [31], I obtain to second order in 1/v:

vs2 ws2 _w2+1 w3+3w

AE., = - -
m= 2 4 16v  256v2

(2-20)

where w=2m+ 1.

The dependence of AEp, on m shows the levels Ep, are not evenly spaced, which
means degeneracies only occur in pairs for a given bias current. This will have important
consequences for the dynamics for it will tend to suppress sequential resonant tunneling
events. By including this correction to the energy levels and using Eq. (2-14) I obtain the

value of the bias current at resonance to second orderin 1/v:

2 2
Irnﬁs =m-§mp[1~ m+1 m 2m“ +3m+ 3] @2-21)

8n 4mevZ:  128v2

Note that because of the anharmonicity of the potential the resonance peaks are not

evenly spaced along the current axis.

Coupling Between Wells
Next I consider the coupling between states of different wells. I estimate the

matrix elements Hpmn'm' When the states are degenerate, that is, Fnm = Fp',m. We
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assume nearest neighbor coupling only, so that Hymn'm'=0 for In-n'l> 1. For
n'-n=1, I use the WKB method to extend the harmonic oscillator wavefunctions into
the region under the barrier. With these semiclassical wavefunctions I obtain estimates of

the matrix elements, which are independent of n and are given by

Hom L = = VGO ) exp(-Im) - @22)
where
Xm
In= [(V(x)-Epl"?dx . (2-23)
Xm

The limits of the integral are the classical turning points where the integrand is zero, and
V and Ep, are evaluated at the bias current where Fom = F1 . The dimensionless

parameter G(m) is of order unity and depends weakly on the level index m:

O = il e

(2-24)

Note that the coupling decreases exponentially with the barrier height. The coupling is

quite small for values of v of interest (v > 2), which justifies the earlier assumption that

the inter-well coupling is weak.



2.3 Dynamics

General Considerations

Having determined the matrix elements of the Hamiltonian in the basis of states
localized in the wells, I am now equipped to study the motion of the system. In
particular, I wish to answer two questions: What is the average rate of motion of the
particle down the washboard, and how long will this motion persist before the particle
undergoes a transition to a free running state? The average rate of motion determines the
voltage across the junction before it switches to the normal state, and the lifetime of the
process determines the time during which one has to measure this voltage and the
distribution of rates at which the junction switches.

I restrict my analysis to the case of the bias current Igjas set at or near its first
resonance value Ij™S, Here the system consists of a set of bound states which can be
subdivided into groups of {max degenerate or nearly degenerate states, where £max is the
number of bound states in a well, and each state in a group is from a different well. For
convenience, I label states in the kth group, or subsystem, as Wy, where k =n—m and
f=m+1withk=..-2,-1,0,1,2,...and £ =1, 2, ..., /max (see Fig. 2-2). Within one
of these subsystems the states Wy, are no longer eigenstates, but are mixed because of the
nonzero coupling between them. This results in coherent motion among states Wi, with
the same k when the subsystem is started in one of them. In addition to this coherent
motion within a subsystem, two types of incoherent transitions out of the subsystem are
possible. One is the decay to a state in a lower subsystem, leading to motion down the
washboard, and the other is the tunneling from a state Wi ¢, t0 the continuum of free
running states, resulting in the junction switching into the normal state. As I perform this
calculation in the zero temperature limit, I do not consider thermally induced transitions.

In light of the above, I adopt the following general method of solution: I associate

with each subsystem k its density matrix pk, which is of dimension £maxX€max, and
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FIGURE 2-2. Subsystems for L max = 3 (three states per subsystem). The subsystems for
k =0 and k = 1 are each enclosed by the dashed oval.



examine the equations of motion for the entire set of density matrices. Each of these
contains terms associated with the coherent motion within that subsystem, and terms
representing the incoherent coupling to other subsystems and the set of free running

states.

Resonant Tunneling Peak Magnitude and Shape
First I investigate the motion of the system which leads to peak structure on the
supercurrent branch of the current-voltage characteristic, shown as path A in Fig. 1-1.

The states involved in this motion are Wy and Wxp withk =0, 1, 2, ... . Here I exclude
the effects of additional states Wy, with £ > 2, and ignore the possibility of escape. I shall
show later that in the cases where the peak structure has a significant lifetime these result
only in a small perturbation to the overall motion down the potential; in addition the
general method is most clearly illustrated in this simple case and can be extended to
include escape in a straightforward way.

Coherent motion within the kth subsystem is described by the matrix
representation Hg of the Hamiltonian in the basis {¥kj, Wk2}. Before being coupled,
these states differ in energy by an amount &, which to lowest order in 1/v depends on the

bias current Igjag as

6 =2nV(Igjas — 11N/ 1 . (2-25)

Taking the reference energy to be halfway between these energies, I have

s A
= 2 2 -
Ho=|§ % (2-26)
2 2
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where I have defined -ézl = Hy g1, for brevity in notation.

The decay of a state Wk2 to Wg41,1 is induced by damping in the system. The
term which represents damping in the classical system cannot be represented in the
Hamiltonian formulation used here. However, damping can be added as a perturbation
by coupling the system to a large set of harmonic oscillators which receive the energy lost
through damping [28, 29]. These oscillators replace the resistive shunt R of the RSJ
model and therefore represent the electromagnetic environment coupled to the junction.
In my model of resonant tunneling, I include the decay phenomenologically by adding an
imaginary term -il'g/2 (again in units of ficop/2) to the energy of state ¥ko; this results in
a characteristic decay rate of f‘d = wpl'a/2 expressed in actual inverse time units. By
using the harmonic oscillator bath model of the damping, Esteve, Devoret, and Martinis
(32] calculated the complex energy shifts for a macroscopic system subject to damping.
In Chapter 3 I will review their results, and show that for the RSJ model their analysis
yields a decay rate I'q = 2/Q, where Q = RCuwy is the classical quality factor. This result
is obtained using a harmonic oscillator approximation for the well of the washboard
potential and assuming an ohmic shunt resistor R which provides sufficiently small
damping such that Q >> 1. This provides me with a rough estimate for I'g. The

imaginary terms representing decay can be added to the representation of the Hamiltonian

as the matrix —iI'/2, where

r={2 ° 2-27
|0 rd]' 2-27)

Now suppose that the particle is localized in state Wq; at time t = 0. The usual
equation of motion for the density matrix p0 of dimension 2x2 of the k = 0 subsystem is

modified by the presence of imaginary energy terms; it is now



d . 1
P° = -ilHo.p"1-2ITp%), (2-:28)

where the differentiation is carried out with respect to the dimensionless time variable
T= wpt/2. Equation (2-28) can be solved analytically. The result shows the trace of p0is
not conserved: probability density leaves the k = 0 subsystem because of the imaginary
energy terms.

Consider next the subsystems with k > 0. The probability density leaving a

particular subsystem k-1 enters the subsystem k incoherently in the state Wiy, where it
again begins coherent motion and further decay. I thus include a source term in each of

the equations of motion for these subsystems, which become

L T SN Lod AP . 5] IR
at 27" 70 ojar| &

with
pX(t=0)=0 (k>0) .

These equations can be written in a much simpler form by replacing each of the
2x2 density matrices pk by a vector p¥ = (pi‘l, p}‘z, plfl,plﬁz)’r, where T indicates the

transpose. The system of Egs. (2-28) and (2-29) then becomes

and
%5“ =Ap*+BpX!  (k>0) (2-31)
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with
;’él. Z_I:d....ic 0 ._..L"iA
A=| 3 2 T N, (2-32)
= 0 Styie S
-iA iA
0 —1 -1 -
I 2 2 d
and
0 0 0 Iy
000 O
B=10 00 o0 (2-33)
000 0

These equations can be solved for any finite number of subsystems since a given
subsystem is coupled only to subsystems above it. The result for eight subsystems with
o =0 (on resonance) and A = I'4, computed numerically, is shown in Fig. 2-3. Plotting
the trace of the density matrix for each subsystem, one can follow the propagation of
probability density down the washboard, noting that there is a distribution of rates of
motion due to the stochastic nature of the decay process. This distribution appears as a
spreading of the quantities Tr pK(t) in T as k increases.

I am now in a position to estimate the expectation value of the rate of motion

down the potential. The expectation value for the phase <¢> is given by

—<2¢ 2 = Tkpk +p%) - (2-34)
T k=1

I find that, after an initial transient on the order of the transition time out of the k =0
subsystem, <¢> is linear in 1. I define vy as the slope of <¢>/2x in this region, that is,

(d/dt) <¢>/2r — yas T — oo. I take 7y to be the rate of steady motion down the potential,



FIGURE 2-3. Propagation of probability density through the first eight subsystems (k =0
through k =7). Shown is the time dependence of the traces of the density matrix in each
subsystem for Aj=I'q. The time dependence scales inversely with Aj and is thus plotted
as a function of AjT.
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as the initial deviation from this steady motion is simply an artifact of the somewhat

artificial initial conditions. The time derivative of <¢>/2x is

420> ZkTr pk+ 2 -—p22

dt 2=n

= S ke as + B3+ ): o) (2-35)
k=1

= iFdP§2+ p) 55952 ,

k=0 k=0

where the inner product £+p of € = (1, 0, 0, 1) and a vector p produces the trace of the
associated matrix p.

Rather than solve the entire system of Egs. (2-30) through (2-33) to evaluate this
expression, I find that the quantity given in Eq. (2-35) can be extracted from the

following simple construction: Defining

=Y p*, (2-36)

which is the sum of all the subsystem density matrices (in vector form), and summing the

system of Egs. (2-30) through (2-33) over all k, I can write

A=A+B . (2-37)
p'*(0) = (1,0,0,0)T .

This system, which I refer to as the reduced system, is shown schematically in Fig. 2-4.
Physically it corresponds to taking the probability density as it leaves a subsystem and
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FIGURE 2-4. Schematic representation of the reduced system for £max = 2. The reduced
system consists of states A and B, which are coupled by the coherent transition (1).
Probability density leaves state B by decay (2) to state C of the full system. In the
reduced system this density is incoherently reintroduced at state A, as shown by the

dotted arrow (3).
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returning it incoherently to the ground state of the same subsystem. It is in fact the linear
superposition of the subsystems, which obey the same equation of motion with the
exception of the source terms. Because &+ A = 0, the trace is conserved in the reduced
system; the constraint that the particle remain within the set of ground states and first
excited states corresponds to probability density remaining in the two states of the
reduced system.

The reduced system has the steady state solution (in matrix form)

2 2 2 :
lim tot _ ’ 12 . I‘d + Al +40 Al @a '; 20) (2-38)
T—o0 g +2A1+40°| Ay(-i+20) Al
giving
IyA3
= . (2-39
v 5 +24% + 40° )

This result for the overall rate vy is plotted at resonance (¢ = 0) as a function of I'g
in Fig. 2-5. This expression can be explained intuitively for I'3/A| much less than or
much greater than unity. When I'9/A| << 1, the limiting process is the decay, and the
subsystem will undergo many oscillations between its two states before decaying,
spending half its time in the excited state. As the decay rate of this excited state is I'g, we
obtain y = I'¢/2 in this limit. In the opposite limit, '4/A} >> 1, the resonant tunneling is
the limiting process. Decay occurs shortly after the particle tunnels into the excited state,
which 1is lifetime broadened into a continuous density of states
D(0) = (Tg/2m)/(c2 + [42/4), and the possibility of tunneling back to the ground state is
negligible. Fermi's Golden Rule then applies, giving y= 27 1A1/212 D(0) = A12/T .

The voltage developed across the junction at or near resonance due to this steady

motion is then simply
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FIGURE 2-5. Rate of motion y down the washboard at resonance as a function of the
decay rate I'q for typical inter-well couplings of Aj = 10-2, 10-3, and 10-4.
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V=dyopy/2 (2-40)

where ®g = h/2e = 2.07 x 10-15 Wb is the flux quantum. Using the dependence of G on
bias current Igjas given in Eq. (2-25) and treating A as a constant, I find that V is

Lorentzian-shaped as a function of Igjas, With half-width at half-maximum

1/2
e (T3+243)
AIPeak = ;mp-———z——— . (2-41)

Note that Alpegk scales with the lifetime broadening width I'g/2 of the excited state when
I'q >> A, and with the coupling A1/2 when I’y << A;. Ican evaluate the voltage given in
Eq. (2-41) at resonance in terms of the junction parameters ®p, v, and R. Using the
expression I'q = 2/(RCwp) and writing the capacitance as C = nv/wpRqQ, where
RQ = nh/2e? = 6.45 kQ is the quantum of resistance, I obtain I'y = 2Rg/nVR. Taking this
result along with my estimate for A and wp/27 = 1010 Hz, I obtain the peak voltage as a

function of v for several ratios of R/Rq, plotted in Fig. 2-6.

Lifetime of the Peak and Switching Distributions

Next I consider the consequences of additional states in the subsystem and the
escape to the free running states. The mixing of the states within a subsystem implies
that there is a nonzero probability of finding the particle in one of the states other than
Wk1 and Wk, and in particular, in one of the states Wyymax Which are separated from the
set of free running states by a single barrier, allowing escape of the particle to these states
via tunneling. These additional states and the tunneling process can be included by a
simple extension of the method used above. The additional states are included in the

basis for the subsystem. The tunneling, which is an incoherent process characterized by a



10°°

e 10 RRq -
& 1000
E
100
g 10710 -
[a W)
10
-12 | | | ]1
10 2.0 25 3.0 35

FIGURE 2-6. Maximum voltage developed across the junction by resonant tunneling on
the first resonance, plotted as a function of v for several values of R/Rq and a plasma
frequency wp/21 = 1010 Hz. The curves for R/RQ = 100 and 1000 are cut off where

Ytife = 1 (see text).
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constant rate, is added as an imaginary energy term in the energy of the states Wysmax,
analogous to the treatment of decay.

This treatment, unfortunately, cannot be continuously applied over the entire
range of v, as it is based on the assumption of the existence of an integral number of
distinct bound states in a subsystem, and this is not always a very sharply defined
quantity. Using Eqgs. (2-10), (2-13), and (2-20) for the energy levels, I find that near
resonance there are two bound states in a subsystem for v roughly between 1.7 and 2.6,
and three states for v between 2.6 and 3.5. More realistically, however, for v = 2.6 the
"third state" is actually a continuous density of states which are hybrids combining a
localized state and the free running states. In this region of v the present treatment is not
applicable. However, I may apply the method with confidence for the intermediate
values of v in the two ranges 1.7 <v < 2.6 and 2.6 < v < 3.5 and extrapolate these results
into the intermediate region v = 2.6.

In each of these two ranges of v I estimate the tunneling rate from the state Wk smax

into the continuum of free states using the WKB method. The expression for this rate,
expressed in units of wp/2 and denoted by FX,? , i8

KB

1
e ;G(é’max)exp(—ZIemu) , (2-42)
where I and G are given by Eqs. (2-23) and (2-24), respectively.
The terms representing coherence in the equations of motion (2-28) and (2-29)
remain unchanged in form. However, the matrices Hg and I" appearing in these terms

must be modified to include the additional states and tunneling rates. For the case of two

states per subsystem (1.7 < v < 2.6), Hg is as before, while I" becomes

0 0 .
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In the case of three states per subsystem (2.6 < v < 3.5), I include in the subsystem basis

the state Wy3, which has energy € relative to the average of the energies of states Wk and

Wo,. This energy is given by

2
3s 5 15
v 4 4v 32v7 @49

_ A . -
& % A
Hn = 21 2 22 s 2-45
0={3 X‘ 5 (2-45)
0 =2 ¢
i 2 i
and
0 0 0
=10 Iy 0 . (2-46)

0 0 TIg+IYXB

Note that Iol + lel >> Aj, Az, which implies that at most two of the states are strongly
mixed at a given bias current. This tends to suppress the escape rate by reducing the
probability of several resonant tunneling events occurring in succession. Also note that I
have taken the decay from W3 to Wk+1,2 to have twice the rate as that from Wg2 to
Wk+1,1. This is exactly true in the case of the harmonic oscillator [32], as I will show in
Chapter 3, and I expect it to be a reasonable approximation in the present case.

The source terms in Eq. (2-29) must be modified to include only the contributions
of the decay process. This is most easily done after the transformation from matrices to
column vectors has been performed. For example, in the case of two states per well, the

source matrix B given in Eq. (2-33) remains unchanged, whereas in matrix A, given by
Eq. (2-32), Tq is replaced by [g + Ty o
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Again I can transform the coupled equations of motion for the entire set of

subsystems to the equation of motion

d ~tot _ 7 xtot
—_ =A 2-47
an P P ( )

for a single reduced system, which is identical in form to Eq. (2-36) except that now A is
either a 4x4 or 9x9 matrix.

The reduced system (2-47) can be solved numerically. As asserted previously, I
find that the motion of the two state system is only weakly perturbed by the inclusion of
escape, except when v is small and the resistance R is large. For short times the elements
of the density matrix reach approximately the same steady state values as they had before
the inclusion of escape. For longer times, however, I find that each of the elements
undergoes a slow exponential decay, and the trace is no longer conserved. This decay of
the trace corresponds to the escape of probability density via tunneling into the free
running states.

The full solution of Eq. (2-47) is a linear combination of solutions, each
containing a factor exp(At) in the time dependence, where A is one of the eigenvalues of
A. When escape is not included p'ot has a steady state solution, which corresponds to the
eigenvalue 0. When escape is included, this eigenvalue is shifted slightly in the negative
direction along the real axis, and is associated with the slow exponential decay of the
trace. Itis the negative value of this eigenvalue that I take as the overall escape rate, and
the reciprocal of this rate Tjife gives the (dimensionless) lifetime of the resonant peak
structure. Note that one obtains meaningful results from this method only when the
product ATjife is greater than unity. This quantity is an estimate of the number of inter-
well transitions the particle makes before escaping, and when this number is less than one
the coupling to the continuum is so strong that the bound state approximation becomes

invalid and an alternative approach must be used.



I have calculated both the lifetime tjife = 2Tife/0p at the resonance Igjag = 11768
and the escape rate tjife-! as a function of bias current near the resonance, in each case
using the same set of parameters I used in calculating the magnitude of the voltage peak.
The lifetimes are shown in Fig. 2-7, and the escape rates are shown in Figs. 2-8 and 2-9.
In both the lifetime and the escape rates I find small discontinuities at v = 2.6 which arise
between the two and three state treatments. This is not alarming considering the

discontinuity inherent in the two methods. The match is in fact remarkably good when

VKB

one considers that small changes in A1, A2, I5" ™%, and F?;VKB can greatly increase or

decrease the discontinuities, and perhaps better estimates of these quantities would further

smooth the transition.
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FIGURE 2-7. Lifetime tjjfe of the first voltage peak on resonance Igjas = I17¢S before
escape occurs, computed with the same set of junction parameters as in Fig. 2-6.




2.4 Prospects for Experimental Observation

The theory presented above identifies two principal candidates for effects which
would provide experimental evidence of resonant tunneling, namely voltage peaks on the
supercurrent branch of the current-voltage characteristic and the distinctive distribution of
rates at which the junction switches to the normal state. In this section I wish to examine
the prospects of observing these primary signatures of resonant tunneling.

I focus my attention first on the voltage peaks. Figure 2-6 shows that the
magnitude of the voltage is on the order of 1 uV for v = 1.7 and decreases exponentially
with increasing v, becoming rather small (10-12 to 10-9 V) for v = 3.5. On the other hand,
the lifetime of the voltage peak ranges from 10-3 to 104 sec, as shown in Fig. 2-7.
Evidently, in choosing values of v and R one must balance between measuring an
extremely small signal of lengthy duration and a larger signal of extremely short duration.
In order to analyze this apparent trade-off, I construct a figure of merit which is the
estimated voltage signal at resonance divided by the square root of a measurement
bandwidth which I take to be the inverse of the estimated lifetime. Using this approach I
obtain values between 10-12 and 10-10 V Hz-1/2 for the entire range 1.7 <v < 3.5 and
1 £R/RQ <1000. Since the quietest semiconductor amplifiers have a typical voltage
noise of 10-9 V Hz-1/2, this result implies that the use of such amplifiers for the direct
observation of the voltage peaks is most certainly ruled out. However, a more
sophisticated method exploiting signal averaging techniques may reveal this structure.

Thus, it appears that the most readily observable effect arising from resonant
tunneling is the distribution of rates at which the junction switches to the normal state,
shown in Figs. 2-8 and 2-9. The most unusual feature of these distributions is that they
are non-monotonic in the bias current, in contrast to those where switching is caused by
thermal activation or macroscopic quantum tunneling. Peaks occur in the escape rate for

bias currents at the resonance values. In the case of two states per well (Fig. 2-8) a single
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FIGURE 2-8. Distribution of rates at which the junction switches to the normal state as a
function of bias current for the case of two states per well, plotted for v = 1.7, 2.0, 2.3,

and 2.6, and R/RQ = 1 and 10.
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FIGURE 2-9. Distribution of rates at which the junction switches to the normal state as a
function of bias current for the case of three states per well, plotted for v = 2.6, 2.9, 3.2,

and 3.5, and R/Rq = 1 and 1000.




peak appears, corresponding to resonance between states Wi and Wia. In the case of
three states per well (Fig. 2-9), additional smaller peaks appear for slightly smaller bias
currents, corresponding to resonances between states Wy and Wi3 and states Wy, and
¥x3. The former is almost as pronounced as the primary resonance peak, while the latter
is very small and cannot be seen on the scale of Fig. 2-9. With the exception of this small
peak, which is largest for R/Rq = 100, I find in general these peaks are most pronounced
for the cases of low damping (high resistance) because the particle spends more time in
the excited states Wkemax and therefore has a higher probability of escaping through the
final barrier to the free states. The observation of these peaks in the distribution of
switching rates would be a direct confirmation of the existence of resonant tunneling in
Josephson junction dynamics.

Finally, I note that my results have implications for the Bloch oscillations
predicted to occur in the v << 1 limit. It is apparent that in the region where v is small
and the resistance is large the escape rate is rather high and the particle makes no more
than a few transitions to lower subsystems before escaping. Thus, as one reduces the
value of v, for bias currents corresponding to the resonance condition one should expect

the Bloch oscillations to be suppressed because of escape to the voltage state.




CHAPTER 3

Beyond the Model Theory

Having presented the quantum theory for resonant tunneling in the previous
chapter, which addresses several specific aspects of behavior predicted for a junction in
this parameter range, I must now examine some other aspects of small junction behavior
which have been theoretically studied and experimentally observed.

The theory of Chapter 2 describes only the motion within the set of potential
wells, and the transition out of the wells. It does not address motion of the system which
occurs just after a transition out of the wells, specifically whether the free running state
will be obtained and sustained. The model examines the relatively simple quantum
behavior of a noise-free system at zero temperature, with ohmic damping included only
phenomenologically. While providing much useful information about resonant tunneling
dynamics, the model is far from a complete picture with regards to representing an actual
junction operating in a realistic measurement environment.

The experimental results of Kautz and Martinis (KM) [26] show there is much
that one can learn from a completely classical description of a Josephson junction. One
can expect that many of the effects which govern the observed classical behavior will

carry over into the quantum limit where resonant tunneling is likely to be observed, and
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thus a classical description should be a good starting point for identifying behavior that
will be influence the design of an experiment to observe resonant tunneling.

The treatment of dissipation in my model was phenomenological. A more
rigorous treatment requires the inclusion of the dissipation directly as a part of the
quantum system. The proper treatment of dissipation is important, because dissipation
not only supplies a decay mechanism, but also breaks coherent superpositions of
eigenstates and provides an additional means of coupling between these macroscopic
states.

First I will present some classical results obtained from the RSJ model in the
T >0 limit. Then I will give a brief description of the KM model and their results,
focusing on the aspects which have bearing on a resonant tunneling experiment. In the
next section I will present a brief summary of the quantum treatment of dissipation,
including a derivation of the phenomenological decay rate I used in Chapter 2, and

discuss the correspondence between the quantum limit and the classical limit.




3.1 Classical Models of Small Capacitance Josephson Junctions

Thermal Effects in the RSJ] Model

The RSJ model is well studied, and there exist several good references for it [14,
33]. In particular, I found the article by KM [26] gives a very enlightening description of
noise-affected dynamics in the RSJ model, primarily because it provides an appropriate
background for the discussion of how these dynamics are modified by the addition of a
shunt element which is frequency-dependent.

The equation of motion given in Eq. (2-4) for the phase variable ¢ governs
classical, fluctuation free (zero temperature) behavior. In this case, the dynamics of the
system are straightforward to work out. When the particle is trapped in a well, it remains
there until the bias current Igjag is increased to a value greater than the critical current I.
Only then does it switch to the free-running state, where it remains until the current is
reduced to the zero temperature retrapping current Iro. Stewart [3] found that, for low

damping

4
Iro =Ic-1—ta , (3-1)

where the reader is reminded that Q = RCawy is the classical quality factor, which is equal
to Bc}/2 in Stewart's notation. Here "low damping" means Q >> 1, and when Q > 3, the
expression given by Eq. (3-1) is accurate to better than a few percent. It is useful to adopt
the terminology of KM and define the state where the particle is trapped in a well as the
0O-state, and the free running state as the 1-state.

To include the action of fluctuations present in the system when it is in thermal
equilibrium at temperature T, a current noise source Iy is added to the bias current, giving

the equation of motion
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(:—Z-c-)c o+ (-2—0)-R—¢ +1.sinp =Igjas +IN - (3-2)

The noise source IN, which has autocorrelation

(IN(t’)IN(t))=2-%IS(t’—t) : 3-3)

repfesents the Nyquist noise of the shunt resistor.

The noise source affects the transitions between the O and 1-states by supplying
thermal energy, thereby allowing escape events from the 0-state to occur at bias currents
IBias < Ic and retrapping events to occur at bias currents Igjas > Irp. These thermally
activated escape and retrap processes have been studied theoretically. The escape process
has been studied by several authors [34-37] using the theory of Kramers [38]). The

lifetime of the O-state is given by

12 1
2n 7 1 1 (Au) 2nAu
= — 1- + — — . < ——=—+~ ’ 34
" wp[( : 4Q7) ZQI "N Tqa-aE o 0P

r Au 2nAu
t, =RC— — r
M Au CXP( r )

Here I" = 2ekgT/R1; is the reduced temperature, the reduced energy barrier Au is
Au=2(1- sz)l/ 2 +2scos1s , (3-6)
where s = IBjag/Ic is the reduced bias current. The subscript of t; indicates a transition in

the positive ¢ direction for Igjas > 0. A similar expression for transitions in the negative

direction exists, but I will neglect these transitions for they are infrequent compared to the



positive transitions at temperatures and bias currents of interest. Also, in the present
work I will only encounter parameters for which the expression given by Eq. (3-4) is
appropriate, so henceforth I will only use this expression. The rate of escape I';. from the

O-state is given by the inverse of Eq. (3-4):

1/2
1 | YO 2 T R (i&) g
I, Zn[( 1-s +:62-) :‘exp . 3-7

2Q r

Note that the form of this equation for Q >> 1 is an attempt frequency (1-s2)/4wp/2x,
which is equal to the frequency of small oscillations in the well, times an Arrhenius
factor.

The analogous analytic resuits for the retrapping problem were only more recently
obtained, primarily because the 1-state represents a dynamic non-equilibrium state, in

contrast to the O-state. Ben-Jacob has found that the lifetime of the 1-state is given

approximately by
nl Aw
t; = RC,— -1, 3-8
1= ROy exp 5 39
where
1
AW=EQ2(s-—s,O)2 . (3-9)

Here sy = I;¢/Ic. Note that Aw has the form of an activation energy and is approximately
equal to the kinetic energy of the particle, which is the energy which must be dissipated

in order to trap the particle in a well. The inverse of Eq. (3-8) gives the rate of thermally

activated retrapping I'j:

1 JAw (—Aw) (3-10)

I =
1=ReVar OPUT
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Note that as T — 0, the current at which retrapping is likely to take place approaches the
zero temperature value given by Eq. (3-1).

The barrier Au depends only on the bias current, whereas the barrier Aw also
depends on the damping of the system through the parameter Q. These functions are
plotted in Fig. (3-1) for several values of Q. The barriers Au and Aw appear as the
activation energy in Arrhenius factors in the expressions for I';. and I'y. Thus, the relative
values of Au and Aw indicate whether escape or retrapping will dominate at a particular
value of s in the thermal limit. In addition, the available thermal energy may be
schematically drawn as a horizontal line on this plot, such that when the value of one of
these barriers drops below this line, the associated transition becomes active. In
particular, one can understand the current-voltage trace which results by slowly
increasing and then decreasing the current bias. While a detailed statistical study of the
problem of slowly changing the current bias until a transition occurs is undertaken in
Chapter 4, for now it is sufficient to note that as the temperature is raised from zero
temperature, the average escape current will be reduced from I, while the average retrap
current will be increased from Irg.

One final note completes my discussion of the RSJ model with a simple ohmic
shunt. One might wonder whether a forward transition out of a well is quickly followed
by a retrapment on occasion, or if an escape always results in transition to the 1-state.
Silvestrini and Cristiano [39] have found that for low temperatures and Q >> 1, escape
from a well almost always leads to a complete transition to the 1-state when the current
bias is well above the value I;g. When Igj;s is just greater than I, this is also the case
because whenever there is sufficient thermal energy for a thermal transition out of a well
in the positive direction, there is also enough thermal energy to activate a retrapping
process, and this retrapping rate is always much greater than the escape rate for bias

currents near Ig.
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FIGURE 3-1. Reduced activation energies Au and Aw plotted as a function of reduced
bias current s. The activation energy Au for escape from the O-state is indicated with an
arrow. The activation energy Aw for retrapping is shown for five values of Q as indicated
in the figure.
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Augmenting the RSJ Model with a Frequency-Dependent Shunt Impedance

Experimental tests performed by KM on small capacitance junctions in the
parameter regime where resonant tunneling is likely to occur clearly demonstrate that a
complete model for the circuit which shunts the ideal Josephson element, including
circuit elements external to the device, must be included in a model for the junction. The
simple ohmic resistor of the standard RSJ model was found inadequate to explain
quantitatively or even qualitatively their measured current-voltage characteristics. For a
detailed discussion, I refer the reader to the work of KM directly. Although their
experiments were performed on junctions operating at temperatures too great to observe
resonant tunneling, their findings have implications for the present subject matter. I will
summarize their results which distinguish the observed behavior from that predicted by
the RSJ model and which are relevant to the resonant tunneling problem.

The extension of the RSJ model made by KM was to replace the simple ohmic
resistor R by a more complex circuit, as shown in Fig. 3-2. As a first step this was simply
an additional resistor and capacitor, as shown in Fig. 3-2 (b). While this modification
qualitatively reproduced some features found in their experimental results, to represent
the data with quantitative accuracy required an accurate model of the shunt impedance,
shown as the lumped impedance Z(w) in Fig. 3-2 (c). This impedance included the
measured quasiparticle current of the junction, which is both temperature and voltage
dependent, the on-chip thin film resistors which serve as current and voltage leads (which
are a similar feature to my own experimental setup, as I will describe in Chapter 4), and
the current bias circuitry.

The primary distinguishing feature of this model over the simple RSJ model is the
inclusion of reduced damping at high frequencies, primarily near the plasma frequency.
As a result, dynamic processes which occur at different characteristic frequencies are
subject to different values of damping. Here I will give an example of this sort of effect

which also has ramifications for a resonant tunneling experiment. KM define the
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cC—— X1, Z(w)

FIGURE 3-2. Shunted junction models studied by Kautz and Martinis [26]. (a) The
standard resistively and capacitively shunted junction model (RSJ). (b) Junction with

simple frequency dependent shunt composed of the resistor R in parallel with capacitor
C; and resistor Ry in series. (c) Junction with realistic model of the impedance Z(w)

which shunts the ideal junction elements.
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minimum escape current Iy, as the bias current such that, when a particle is initiated at a
potential maximum with an infinitesimal positive velocity, it will arrive at the next
potential maximum, also with an infinitesimal velocity. This is an important cutoff
current for the escape process at low temperatures, for at bias currents less than I a
particle moving near the top of a barrier is unlikely to get the boost of thermal energy
necessary to clear the next barrier, while for bias currents greater than Iy, the particle will
probably make it over the next barrier and continue to accelerate toward the 1-state.
Meanwhile, the zero-temperature retrapping current Ir9, whose value for the RSJ model is
given by Eq. (3-1), is defined as the minimum bias current which will support the 1-state.
In the RSJ model the currents I, and Ig will be equal because the motion of the particle
which defines Iy, will be identical to the motion defining Iy, where the particle just skirts
the tops of the barriers of the washboard potential. Now consider a model where the
damping is dependent on frequency such that the effective quality factor Q(w) (which I
will define more explicitly later) is equal to Q(0) at low frequencies, and equal to Q(wp)
at the plasma frequency. Here, the motion involved in escape is dominated by damping
at the plasma frequency because the oscillations in a well which build in amplitude before
an escape are essentially plasma oscillations. Thus, one expects the minimum escape

current to be given by

4
I, =1, 0@

(3-11)

By contrast, I is defined as the limiting case of the 1-state motion, which produces a DC
voltage component. This implies the damping at zero frequency is important to the

retrapping process, and thus

4

=IC-TE—Q—(-(B . (3'12)

Ir0




Although this analysis is an oversimplification of the problem, it illustrates how two
processes, in this case escape and retrapment, can sample the damping at different
characteristic frequencies. Its importance with regards to resonant tunneling is to help
answer the question: If a resonant tunneling event leads to the transmission of the
particle through a barrier, will the particle continue to move toward the free-running state,
or will it simply become trapped in a nearby well shortly thereafter? I expect from the
preceding argument that I, as defined above is the relevant parameter here, that is to say
the damping at the plasma frequency must be sufficiently small that I, as given by
Eq. (3-11) must satisfy Im < IS in order to observe the mth tunneling resonance
manifested as an escape event.

Another feature which distinguishes a frequency-dependent shunt impedance from
a simple ohmic shunt is that it can store energy which may come into play in the
dynamics. For example, performing Monte Carlo simulations based on the model shown
in Fig. 3-2 (b), KM found that the bias current for which the junction switched to the
1-state was affected by the value of the average voltage on the additional shunt capacitor
C;. In this case the energy stored in this capacitor gave the extra boost needed for an
escape.

The conclusion drawn from these results is that the exact form of the shunt
impedance has an important, even dominant, effect on the junction. While it facilitates an
accurate simulation of the observed junction behavior, the drawback of a model such as
that given by KM is that it is cumbersome to the point where many of the results of
interest cannot be extracted without performing detailed numerical analysis or Monte
Carlo simulations. The unfortunate implication is that any quantum-mechanical

treatment of this model will most certainly be even more involved.
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3.2 The Quantum Mechanical Treatment of Dissipation

The General Approach to Quantum Dissipation

Whereas replacing the resistance R in the RSJ model with a frequency dependent
shunt greatly increased the complexity of the classical model, merely including the
resistive shunt R itself, makes conventional quantum treatment of the problem impossible
because a Hamiltonian for the system does not exist. However, a method has been
developed to circumvent this difficulty which is readily generalized to arbitrary shunt
impedances. While I am particularly interested in its application to the RSJ model, the
problem of adding damping to a quantum system is quite general and was pioneered by
Caldeira and Leggett (CL) [28, 29]. In this section I will present the Hamiltonian used by
CL which represents a macroscopic system with dissipation, and review the results of a
perturbative treatment of the terms in this Hamiltonian which represent the damping, as
obtained by Esteve, Devoret, and Martinis (EDM) [32]. I will then give the results of this
treatment for the case of a harmonic oscillator, from which comes the rate of decay I'q
which I used in Chapter 2.

Consider a macroscopic classical system, or particle (with unit mass), with one

degree of freedom described by the coordinate X which obeys the equation of motion

X +K{X(t)} = —%V(X) , (3-13)

where K is a linear operator and V(X) is a potential. The dynamics of this system can be

treated using the Hamiltonian formulation with the Hamiltonian Hmacro + HeL, where

Hmacro = %Pz +V(X) (3-14)



and

2
Heo =Z% pf+(0f()&j*£§-)(] . (3-15)
i

The term Hpyacro represents the macroscopic system without damping, while the term
Hcy represents the environment and its coupling to the macroscopic system. The effects
of dissipation are included in HcL, which represents a set of harmonic oscillators with the
jth oscillator coordinate, momentum, and frequency denoted by x;, p;, and w;j,
respectively. These oscillators are each coupled with strength c; to the coordinate X, in
analogy to attaching springs with masses to the particle. These oscillators and their
couplings are chosen so that together they reproduce the action of the operator K. Thisis

accomplished when the spectral density of the oscillators

2359 s0-o; .
J(w) 22;«0,- (0 - o)) (3-16)
satisfies
__22% o J(@)do’
K@) =-=—] TR (3-17)
such that
K)=_ lim K(z) (3-18)
Imz—0-

where K(m) is the Fourier transform of K. Asan example, in the case where the
damping is proportional to velocity, K =Ad/dt and K(w) = iAw. The damping provided
by the resistor R in the RSJ model falls under this category, which is known as viscous or
ohmic damping.

CL have argued the equivalence of these two classical representations. The
advantage of the Hamiltonian representation is that it can be quantized, while its

disadvantage is its infinite number of additional degrees of freedom. The original study
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by CL determined the effects of damping on quantum tunneling, but since then this
Hamiltonian has been used to study the motion of a quantum particle in a double well
[40], a periodic potential {41-43], and a flat potential [44].

While one approach is to treat this full Hamiltonian immediately, EDM have
started with the states |n) with energies E;, of the Hamiltonian Hpacro, and treated the
coupling between the set of oscillators and the macroscopic system as a perturbation to
these systems. Using standard time-independent perturbation theory, they obtained
energy level shifts AE,, which in the limit of an infinite number of oscillators may be
complex. The real part of the energy shift of a state is the actual change in energy of the
level, whereas the imaginary part corresponds to the decay rate associated with the finite
lifetime imparted to the state through its coupling to the dissipative ~..ronment. EDM

found the real and imaginary parts of AE, are given by

Re(AE,)=Re(L,)+G, ., (3-19)
and

Im(AE,) =Im(L,) . (3-20)
where

Ly =h 3 MpnK (@pm) (3-21)

m<n
and
- Opm (= Im(K(0))dw i

Cn h?n:'M“m n -[0 o(lwpy +®) 22

with

Mpm =|(n]X|m)[? (3-23)
and Wpy = (Ep — Ep)/M. Note that Ly, whose imaginary part is proportional to the decay

rate of the nth state, depends only on the states below the nth state through matrix

elements M, of X and the damping at the Bohr angular frequencies Wnm. The physical




interpretation of this is that the finite lifetime of the nth state results from damping-

induced decay of the nth state to states lower in energy.

The Damped Harmonic Oscillator

As an example of the use of these expressions, I will find the decay rate of the
states of a harmonic oscillator which is subject to ohmic damping of viscosity A, that is,
K(w) = iAw. Let the potential of the oscillator be V(X) = wg2X2/2. The square of the

matrix element between the states n and m is

’ (3"24)

Mn'n_l = Mn_l’n = ln - m'= 1

2(!)0 !

and thus only the state immediately below |n) contributes to the sum Ly, giving

Im(AE,) = Im(L,) = -nh-’zi . (3-25)

The real part of the energy level shift is given by Gy, because Ly, is purely imaginary and
does not contribute. Evaluating Eq. (3-22) yields

h = Ao
Gn =on '[0 Wy +® (3-26)

Since this expression diverges, one could replace the upper limit of the integral of infinity
with a cutoff frequency. A physical choice for the cutoft is unimportant, because Gy, does
not depend on n and the energy shift will be the same for all levels. Thus there will be no

change in the energy level differences, which are the physical observables.
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Decay Rates in the RSJ Model

By applying the above results to the RSJ model, I can obtain the decay rates I

used in Chapter 2. The equation of motion given by Eq. (2-4) can be cast in the form of
Eq. (3-13) be setting X = C(fi/2¢)2¢. Then A = 1/RC and

—c(2Y X X :
VX)) = C(ze) [Ic COS[W)+ IB‘”(W)] . (3-27)

When Igjas = 0, the harmonic potential given above approximates a well of the
washboard potential, with wg = wp. Thus, the imaginary part of the energy level shift is
given by Im(AE;) = —n£i/2RC. The relationship between the imaginary energy shift and

the rate of decay is fd =-2Im(AE, )/ A, so the decay rate from the nth energy level to

the (n-1)th level is given by

fy=— , (3-28)

which is the expression for the decay rate I used in the model theory presented in
Chapter 2. This result is obtained using the harmonic oscillator approximation, and
although the tilted washboard well is anharmonic, the corrections arising from the

anharmonicity are well within the expected validity range of the RSJ model itself.

Correspondence of Quantum and Classical Behavior

While I have used quantum mechanical analysis for the dynamics occurring
within the wells, I used classical analysis of the RSJ model in Section 3.1 to try to
understand the motion of the particle after escape. One might wonder how the quantum

theory of damping presented above carries over into the classical limit, and vice versa.




To help answer this question, I present two examples of the correspondence between
quantum and classical treatments of damped macroscopic systems.

First, in the harmonic oscillator approximation for the RSJ model given above, 1
can estimate the rate of energy loss by multiplying the rate of decay of state {n) given by
Eq. (3-28) by the amount of energy lost fiy in a decay event to state |n ~1) (the only
transition allowed by the selection rule An = 1). Multiplying this rate of energy loss,
nfiwp/RC, by 2n/wp gives the expected energy lost during a plasma oscillation. The
resulting energy loss is equal to the energy of the nth state times 2r/Q. This corresponds
to the behavior of a classical underdamped oscillator with an energy E, which will lose an
amount of energy 2rE/Q over one period of oscillation.

Second, Hakim and Ambegaokar [44] have used the CLL Hamiltonian to solve the
problem of a quantum free particle subject to ohmic damping. They found that the center
of a Gaussian wave packet follows the classical trajectory, and the mean value of the
momentum also follows the corresponding classical equation. Their results lend support
to the CL treatment of dissipation. These results also support the use of classical
equations of motion as an estimate of the actual behavior of a nearly free particle in the

quantum limit, such as is the case for the free-running state of the quantized RSJ model.
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CHAPTER 4

Experimental Strategy

The preceding chapters give some indication of the complexities involved in
theoretically modeling the dynamics of Josephson junctions operated in the limit where
resonant tunneling is likely to occur. Clearly, the subject is by no means a completed
topic. However, the theory as I have developed it so far is at the point where I have
enough of a framework to design an experiment to search for a signature of resonant
tunneling, the hope being that preliminary experimental resuits could then be used to
guide further theoretical work on the phenomenon. The conclusion drawn from the
model theory was that the effect which lends itself most readily to observation is
resonance-enhanced escape from the O-state. The goal of this chapter is to develop an
experimental strategy to measure the escape rate and to choose a design of a device such
that the resonant enhancement of the escape rate should be clear and convincing.

First I will describe the current-ramping approach one uses to measure the escape
rate as a function of bias current. Next I will show how a DC SQUID with a small self-
inductance can be used as a substitute for a single Josephson junction because the
dynamic behavior of these two devices should be identical under the appropriate

conditions. The advantage of the DC SQUID over the single junction is that it provides a



critical current which is adjustable in situ by the application of a magnetic field, allowing
tuning of the coupling between states in resonance and consequently the tuning of the
overall escape rate. Finally, I will show how I derived practical design parameters for a

SQUID and a measuring circuit which minimizes the electromagnetic loading of the

device.
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4.1 Measuring the Escape Rate

In Chapter 2 I obtained the rate of escape I'esc(IBias) from a state of steady motion
down the washboard potential to the 1-state. This escape rate was determined as a
function of DC bias current Igjas, assuming the system is prepared in the steady motion
state while the junction is biased at that particular current. This condition is difficult to
achieve in practice, for one cannot start with zero bias current and then quickly (on the
scale of the characteristic time for escape) apply a non-zero bias current. In addition to
the practical difficulties, this method would introduce an impulse to the system which
cannot be described by a model which assumes a quasi-static bias current.

Rather than measure the rate I'gsc(IBijas) directly, the standard approach [45] is to
use the following technique: The bias current is ramped up from zero current and one
records the value of current at which the junction switches. Repeating this many
(typically 103 to 104) times, one builds up a histogram which approaches the statistical
dictribution P(IBj,s) for the probability that the junction will switch at the current IBias.
The distribution P(Igjas) will in general depend on both the rate of the current ramp and
its functional form. For ease of both application and analysis, I will assume the ramping
is linear in time with constant rate dIjas/dt = Ip;,;. Expressions describing how the
quantities P(Ijas) and I'gsc(IBjas) depend on each other can be derived as follows:
Suppose one performs a single current ramp starting with Igjas =0 and the junction
definitely in the O-state. Let R(IBjas) be defined as the probability that at the current Igijas
the junction has not yet switched to the 1-state. In a small increment of bias current
AlBjas which occurs over a time At = AlBjas/ iBiasv the change in R is given by
R(Ipjas+AlBias) — R(IBias) = -R(IBijas)] Esc(IBias)At, assuming the rate of retrapping is

negligible. This may be expressed in differential form as

dR _ RFE§_C_
dIpias IBias

; (4-1)




which has the solution

IBjas NAT?
R(IBias) = cxpl:- I EE_SIESMI_} (4—2)
0 Bias

where I have used the boundary condition R(0) = 1. The probability P is given by
P = —dR/dIpiss, so I obtain the result

IBias ’ ’
r §£I ias Ipge (INdI
P(IBm) = EIB( Bi )exp[- J IB( ) :| (4-3)
1as 0 1as

The inverse of Eq. (4-3) is obtained by substituting the identity R(Igjas) = j;o P(I")dl’
Bias

into Eq. (4-2), taking the natural logarithm of both sides and differentiating with respect
to Igjas. The resultis
. P(Ig;
IEsc(IBias) = IBias'j‘;;—(‘Bﬂs'L- 4-4)

P)dl’
IBins

As noted above, the distribution P of the continuous variable Igj,s is not obtained directly
in practice. Rather, a histogram is obtained by assigning the recorded switching events to
bins along the current scale which are of equal width. Let N(Ix) be the number of
switching events observed in the current range of width Al centered at the bias current I,
where k is an index. In the limit AI — 0, and as the total number of events approaches
infinity, the histogram, normalized by the number of events, approaches P(Igjas). Thus

Eq. (4-4) has the discrete approximation
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_ Ipias NUy) )
rEsc(Ik) Al ZN(IJ) . 4-5)

2k

Let us now turn our attention to the inverse expression, Eq. (4-3). It can be seen

that, for a particular escape rate function, the ramping rate iBias determines both the

width and center of the P(Igijas) distribution, with P broadening and shifting to larger
currents as Ig;,, is increased. A histogram composed of a finite number of switching
events will have a minimum and maximum observed switching current. This determines
the current range over which the measurement probes the escape rate function. Because
of limitations resulting from both noise minimization and other practical considerations
(these I will address in Section 5-4), the ramp rate can be varied over values covering
only about two orders of magnitude. This implies that the range of escape rate values
probed is fixed for all practical purposes. In fact, the relationship between P and I'ggc is
such that if the escape rate is changed, the range of escape rate values probed remains
relatively unchanged, while the current range shifts accordingly. This fixed range of
probed escape rate values has the following implication for an experiment designed to
observe peaks in the escape rate caused by resonant tunneling: The overall magnitude of
the escape rate depends strongly on the amount of coupling between the states in
resonance, which varies exponentially with the barrier height determined by the critical
current of the junction. If the resonant tunneling peak has a magnitude which is greater
than or less than the probed range of escape rate values, the junction will tend to switch
before or after the resonance, respectively, and the peak shape will not be observed. This
is illustrated schematically in Fig. 4-1. This presents a difficulty for the experimenter,
who is then challenged to produce a junction with a critical current which falls within a

narrow range of acceptable values.



I“Esc

IBias

FIGURE 4-1. Schematic representation of the results of measuring the escape rates of
three devices with critical currents 11 < I < I3. The escape rate functions are shown by
the fine lines with peaks indicative of resonant tunneling. The values of escape rate
actually measured in a typical experiment fall within the fixed range indicated by the
arrow, and are shown as bold lines.
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4.2 The "Tunable" Josephson Junction

Producing a junction with the correct critical current would be a challenging task
involving a great amount of trial and error. Fortunately, an alternative approach can be
taken by substituting a current-biased DC SQUID with a small self-inductance for the
single current-biased Josephson junction studied in the theory. For the purposes of
observing resonant tunneling an appropriately designed SQUID behaves in a manner
identical to its single junction counterpart, with the important advantage that it has a
critical current that can be varied by the application of a static magnetic field. This
allows the tuning of the critical current in situ, and thus the adjustment of the escape rate
so that a peak in the escape rate can be made to fall within the range of values probed by
a measurement of the escape rate. This technique, brought to my attention by Andrew
Cleland, has been applied in other studies of superconducting devices both in the classical
and quantum limits [46, 47]. In this section I will study the DC SQUID and argue how
both in classical and quantum limits it can substitute for a single junction.

In order to facilitate a detailed understanding of the connection between the DC
SQUID and the single junction, I will derive the equations of motion governing the
dynamics of the SQUID, which has two degrees of freedom arising from the two
Josephson junctions. In this analysis I will assume the device is symmetric, which is both
adequate for the purposes of discussion and representative of the actual experiment.
Analogous results for an asymmetric SQUID can be found elsewhere [48, 49]. A lumped
circuit element model of the DC SQUID is shown in Fig. 4-2. Currents I and I5 flow in
the left and right arms, respectively, and sum to the steady bias current Igjas = I1 + Ip.
The symmetry of the device implies that the total self-inductance L can be divided in half
such that I couples a flux LI»/2 through the SQUID loop, and similarly I; couples a flux

-LI;/2. Each junction is described by the RSJ model and has resistance R, capacitance C,
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FIGURE 4-2. Lumped circuit element model of a symmetric DC SQUID.
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and ideal critical current Ic. The current Ij through arm i is given in terms of the

junction's phase variable ¢; by
A1\, . h
I =1.sin¢; + —| — |¢; + —Co; , 4-6
i Icsm¢l+ze(R)¢l e ] (4-6)

and the voltage Vj across junction i is

Vi==—0 . @&-7)

Because the bias current is held constant, the inductance divides the voltages Vy and V2

so that the voltage V across the entire device is

V= Y-!—f'i-‘il . (4-8)

Defining the average phase difference ¢ as

o=, 9

I obtain the Josephson relation in its single junction form
V=—~{ . 4-10
> ¢ (4-10)
The total flux & linking the SQUID is given by

d=b,+L 4-11)



which is the sum of the applied flux ®, and the flux due to the circulating current J

defined by

J—-l’-’-z'-'—‘l- . 4-12)

Because the SQUID obeys fluxoid quantization the total flux & linking the SQUID is

related to the phases of the junctions by

01 -92 =21tg:-=26 (4-13)

. where I have defined 8 = nd/®g. The relations given by Eq. (4-9) and Eq. (4-13) are
equivalent to changing coordinates from ¢; and ¢; to ¢ and 0, which are the coordinates
of choice for relating SQUID dynamics to single junction dynamics. I can obtain the bias
current Igjas by adding I and Ip. Written in terms of the variables ¢ and 0, the result is

the first equation of motion for the system, which is

%(2(3)& + %(—é)(@ +2[.cos® sin¢ - Igjas =0 . (4-14)

Note that this expression is formally identical to the equation of motion for a single
junction with resistance R/2 and capacitance 2C, which are the equivalent parallel
elements of the SQUID. The significant distinction is that the critical current is replaced
by 2Iccos0: Instead of a constant critical current, the effective critical current depends on
the variable 6. The second equation of motion is obtained by combining Egs. (4-6), (4-

11), and (4-12). The result is

h s h(2), . 20 20
5;(2C)9+-2;(E)9—21ccosesm¢--—I-:-+—-L—3-=0 . (4~15)
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The two equations of motion given by Eqgs. (4-14) and (4-15) can be viewed as
describing the motion of a particle of mass proportional to 2C moving in a potential
U(¢,0) with damping parameter proportional to 2/R, where the potential is given (in

actual energy units) by

2E o, ) 1
U($.0)===L|9+n—2 | —E;-Bifi¢-2E;cosOcos¢ . (4-16)
np @y I

Here the parameter P = 2LI./®g is the reduced inductance, and Ej = ®plc/2x is the
Josephson energy for one of the SQUID junctions. The potential, which is identical to
the washboard potential for motion strictly in the ¢ direction (also called the longitudinal
direction), has a strong parabolic dependence in the  direction (also called the transverse
direction) when f << 1. Thus it becomes clear how a small f device behaves classically
as a single junction with critical current 2Ic.cos@: Transverse motion is restricted because
it is energetically unfavorable, so the particle moves along the washboard-shaped floor of
a valley with very steep walls.

The effective critical current 2Iccos® of this quasi-one-dimensional device is

controlled by applying the external flux ®,. The local minima of the potential given by

Eq. (4-16) to a very good approximation fall on the line 6 = u%a- in the limit B << 1.
0

Thus the applied flux is almost exactly equal to the total flux through the SQUID.

Defining the maximum value of the SQUID critical current IcMa% = 2] and the parameter

n= 2%’4—, I have the simple relation for the modulation of the critical current Icdevice of
0

the "tunable" Josephson junction in the limit § — 0:

device Ig““"lcos(-’zin)' : 4-17)




Note the parameter n varies linearly with applied magnetic field and takes on values from
0 to 1 as the device modulates from maximum to minimum critical current.

As a specific, more rigorous example of this quasi-one dimensional behavior in
the classical regime, consider a particle which is in thermal equilibrium with a heat bath
at temperature T as it moves in the two dimensional SQUID potential. This is shown
schematically in Fig. 4-3. The transition from the local minimum A to the adjacent local
minimum B via the saddie point S is made by thermal activation over the barrier AU4s,
which is the energy difference between the saddle S and the minimum A. The transition

rate is given in the moderate to low damping limit by [46, 49, 50]

%

WHa®

e L LY | YN S exp(—égﬁi. (4-18)
2nw, g 4Qzp 2Q3p kgT

Here the frequencies wjjs and @) 4 are the small oscillation frequencies at the minimum
A for motion parallel and perpendicular to the direction of motion from A to S, and
similarly wys and wg are the small oscillation frequencies at the saddle S. The
parameter Qzp is defined as Q;p = wyaARC, which is the quality factor for small
oscillations in the bottom of the well A in the parallel direction. As B — O, the parallel
and perpendicular directions approach the ¢ and 6 directions, respectively, and wjia
approaches the plasma frequency of a single junction with capacitance 2C and critical
current 2Iccos(nn/2). The ratio wy A /1§ approaches unity approximately as 1+ wf3/2.
Thus, in the very low P limit, the escape rate I'zp for the two dimensional potential

approaches the escape rate for a single junction, given by Eq. (3-7).

69



70

U(9.9)

b)
S W s

A Oys o

FIGURE 4-3. (a) Schematic representation of the two-dimensional SQUID potential
U(¢,0). Points A and B are local minima, and S is a saddle point. Thermal transitions
from A to B are made via the saddle at S. (b) The points A, S, and B in the ¢-0 plane.
Symbols and directions for staall oscillation frequencies about the points A and S are
shown (see text).



Does this classical quasi-one-dimensional behavior carry over into the quantum
limit? I expect that to a good approximation the solutions to the Schrédinger equation
will separate into transverse and longitudinal modes, and the transverse modes will have
such large energy spacing that excitations of transverse modes will rarely occur.
Unfortunately, because of the term 2I.cosBcos¢ the Schriodinger equation is unseparable
and the above assertion cannot be explicitly proven in a straightforward manner.
However, because this term is small compared to the parabolic term which dominates
motion in the 6 direction, I may drop it as a first approximation and write down the

transverse portion of the now separable Schrodinger equation:

2
d> 2E o
[—2EC 362-+-@L(9+ u-ai-) ]\Pn(e) =E%w (0), (4-19)

where Ec = €2/2C is charging energy of one of the SQUID junction capacitors. The
solutions ¥;(0) of Eq. (4-19) are harmonic oscillator wavefunctions with energy

eigenvalues Eg with spacing

1/8E E hw
ES, -Ed= _«Tffrj- = 71;-;— : (4-20)

where wp is the plasma frequency of one of the SQUID junctions. It is clear that for
B << 1, this energy spacing is much greater than the level spacing associated with the
longitudinal ¢ direction, which is of order fiwp. Replacing the Josephson coupling term
as a perturbation to the separable system, I can view the motion in the ¢ direction as an
effective time dependent perturbation to the transverse problem. The characteristic
frequency of this perturbation will be the plasma frequency which, according to

Eq. (4-20), is much less than the Bohr angular frequency connecting transverse states.
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Thus I can expect that system will remain in its transverse ground state, and it will behave

quasi-one-dimensionally in the quantum limit.




4.3 Choice of Parameters for a SQUID

The next step in developing an experimental strategy is to choose target
parameters for a SQUID. The starting point is to choose values for the number of levels
in the well and the time scale for the dynamics, characterized by v and wp respectively.
These can be varied experimentally through the capacitance C and the critical current L,
as the parameter Vv is proportional toI.C, while Wp is proportional to VI/C. (Unless
explicitly noted, my notation henceforth will refer to the effective junction, so that I will
denote twice the critical current of each SQUID junction times the modulation factor
given by Eq. (4-17), and C will denote twice the capacitance of each SQUID junction.)
The general strategy is to pick v and wp so that the device switches to the 1-state for bias
currents larger than the resonance value when 1 = 0, but the resonance subsequently
"turns on" when the critical current is reduced by increasing . The onset of the
resonance peak would be the signature of resonant tunneling. This strategy has the
additional aanntage over measuring a set of single junctions which cover a range of
critical current values in that it rules out the possibility of any peculiarities of a particular
device causing the peak, and eliminates the variation of other parameters from device to
device.

Of course, there are experimental constraints in making the choice of I¢ and C.
The material of choice for making submicron (I'm giving away part of the answer here
unavoidably) tunnel junctions is aluminum because of fabrication issues which I will
discuss in Chapter 5. For a particular oxide barrier thickness d, the specific capacitance
of the tunnel junction is proportional to 1/d, while the tunneling resistance decreases
exponentially as d increases {14]. This means that for a large range of tunneling
resistances, the specific capacitance will be relatively constant. Although there is some

disagreement as to its value [51], there is some consensus that the specific capacitance is

about 45 fF/um? for native grown AlpOx barriers [52], which is the value I will adopt.
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Typical specific resistances obtained via thermal oxidation range from 102 to 104 Q-pm2.
Assuming a superconducting gap of 370 to 400 WV, this implies critical current densities
ranging from 3 x 103 to 3 x 106 A/m2,

I will present the parameters I obtained in the last device I fabricated and tested
during the course of this research, which I refer to as device A. The parameters are given
in Table 4-1. Parameters that vary with 1 through the modulation of the critical current
have their corresponding values listed for the values of n =0, 0.8, and 0.95. Although
this set of parameters is by no means optimized, it is in the range of appropriate values
and will serve me for the purposes of discussion. Following the analysis of the results of
measurements performed on this device, presented in Chapter 6, it will also serve as a
starting point for a discussion in Chapter 7 concerning possible improvements on the
experiment.

Several of the items listed in Table 4-1 warrant discussion. Note that the energy
level spacing in temperature units are larger than temperatures that can be readily
obtained by dilution refrigeration, which is nominally 20 mK. This ordinarily implies
that the low temperature limit can be experimentally achieved, that is, the T = 0
approximation should be accurate. I will argue in Chapter 6 that for unforeseen reasons
this condition was not actually realized in the experiment. For the present, however, I
will proceed with the assumption of a 20 mK bath temperature, for it will serve to
illustrate my intended design of the experiment. The lowest order (m = 1) resonance is
listed as Ij7és and is calculated using Eq. (2-15), which assumes even level spacing in
each well. Note that in this approximation, good to order 1/v, the resonances will occur
at currents which are integer multiples of I;es.

In order to observe the resonant tunneling effect, the escape rate must be
dominated by resonant tunneling. Other mechanisms, such as "conventional” MQT
(tunneling through a single barrier directly to the 1-state) and escape by thermal

activation, must be negligible. Because the escape rates associated with each of these two



Critical Current I 226 nA 69.8 nA 17.7 nA
Capacitance C 37 fF " "
Normal RN 1.39 kQ " "
Resistance
Total Junction ATot 0.82 um? " "
Area
Plasma Wp 1.4x1011 | 75x1010 | 3.8x 1010
Frequency rad/s rad/s rad/s
Quantum v 104 5.8 29
Levels
Parameter
Energylevel | #@p/ks 10K 0.57K 029K
spacing
(Temperature
units)
Resonance Ijres 6.9 nA 3.8nA 1.9nA
Current
Thermal Dhen | 2259nA | 69.5nA 16.6 nA
Activation
Switch Current
. MQT
Conventional Lswitch 219 nA 62.6 nA 10.6 nA
MQT Switch
Current
Minimum Qmin 41 23 12
Allowable
Quality Factor
Minimum Rmin 11 kQ 13kQ 17 kQ
Allowable
Shunt
Impedance
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TABLE 4-1. Parameters of device A, for three values of 1. Critical current under 1 =0,
total junction area, and normal resistance are measured quantities; other quantities are
obtained from theoretical models by using these values, as described in the text.
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mechanisms increase exponentially as the bias current is increased, quantitative estimates
of whether these mechanisms are negligible can be obtained by estimating the bias
currents at which each mechanism, acting alone, would cause the junction to switch to the
1-state while operating with a nominal bath temperature of 20 mK. If these switching
currents are much greater than the resonance current IS, the resonant tunneling, which
depends sensitively on Q in contrast to the other mechanisms, can be made to dominate
at the resonance current by choosing a sufficiently large Q. These two switching

currents, which 1 define as the currents at which the escape rates are equal to 102s-1, 1

denote by Iva?gh and I'sl;‘fﬁwh for MQT and thermal activation, respectively. I choose the

rate 102 s-! because it is a rate which typically falls in the middle of the values probed by

MQT TA

an escape rate measurement experiment. Values of I 5. and Igyicn for device A

determined using Eqgs. (2-42) and (3-7) respectively are listed in Table 4-1. They are not
only well above the resonance current values, but in fact fall within the single energy
barrier regime in which these escape rate formulas are valid.

The resonant tunneling escape rate requirements for Q could be determined at this
point, but it turns out that a greater constraint on the minimum acceptable Q is imposed
by retrapping effects, as discussed in Chapter 3. Following the lead of Kautz and
Martinis (KM) [26], I will generalize the constant quality factor Q = wpRC of the RSJ
model to a frequency-dependent quality factor defined by Q(w) = wpR(w)C, wi:ere R(w)
is taken to be the inverse of the the real part of the admittance shunting the ideal junction
clement and the junction capacitance. In order for the effect to be observable in a
current-ramping experiment, I must ensure that the quality factor at the plasma frequency,
Q(wp), is large enough so that retrapping occurs for a current less than IS, thus allowing
the particle to complete the transition to the 1-state and remain in that state long enough
for this state to be detected as a non-zero voltage across the device. According to the

MQT

analysis given in Chapter 3, and in analogy with the definitions for I <. and Igﬁmh, I

define the current I};ﬁap as the current at which the retrapping rate given by Eq. (3-10)



with Q = Q(wp) is equal to 102 s-1 at 20 mK. Using Q = Q(wp) effectively replaces the
RSJ parameter I;o of Eq. (3-1) by the appropriate parameter I, of the frequency-
dependent damping model, given by Eq. (3-11). Although it was derived for the RSJ
model, the retrapping rate of Eq. (3-10), when evaluated using Q(cp) gives a more strict
upper bound on the damping since Q(wyp) is usually bounded from above by Q(0). The

minimum allowable values of Q(p) for device A, determined by setting I;‘;f‘rap equal to

Iires, are listed in Table 4-1 as Qmin. Note that in a practical experiment the value of
Q(wp) should be chosen tf;uch greater than Qmip to ensure that I;reﬁap is actually well
below Ij7¢s, The minimum shunt impedances Rpjp corresponding to the values of Qmin
are also given in Table 4-1.

Finally, the value of the self-inductance of the SQUID must be chosen. A SQUID
loop with an inner diameter of a few micrometers is quite readily fabricated using the
techniques described in Chapter 5. The area AgQuip of the loop of device A was

AsqQuip = 120 um2. Estimating the inductance L by using the formula

L= 1'25u0\’ASQUID 4-21)

gives L = 17 pH. For the critical current of device A, this gives a reduced inductance of
B =19 x 10-3. This value is small enough to ensure quasi-one-dimensional behavior.
According to Eq. (4-20), the transverse mode has level spacing about 13 times greater

than the level spacing associated with the wells of the longitudinal washboard potential.
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4.4 Designing a High Impedance Shunt

The minimum requirements for the isolation of the device from its
electromagnetic environment were determined in the previous section. The experimental
challenge is to come up with a tractable scheme for accomplishing this goal. The primary
difficulty arises when one connects conventional leads to the device for the purposes of
supplying the current bias and measuring the voltage. Typical stray capacitances of
conventional leads are hundreds of picofarads, which would present unacceptably low
impedances at high frequencies. To avoid the inevitable capacitive loading from using
lengthy (lengthy here may mean only millimeters!) pieces of wire, highly resistive thin-
film leads can be fabricated on the Si chip as close to the device as is practical.
Resistances per unit length of about 20 kQ can be fabricated by using a metallic SiCr
alloy formed into a strip with a cross section which is nominally 100 nm in width and
5 nm in thickness. I will model the impedance Zjeaq(®) presented by one of these thin
film leads in order to obtain a quantitative estimate of the quality factor
Q(w) = wpC/Re(1/Zjeag(w)) at all frequencies from zero frequency to just beyond the
plasma frequency. Details of the actual fabrication of these leads will be given in
Chapter 5.

The lead is modeled as a metal strip of width w, thickness t, and length A lying on
a Si substrate. For the nominal cross section of w = 100 nm and t = 5 nm, the total self-
capacitance C, of the strip is estimated [26] to be CL = (2.8 x 10-17 F/um)A, and the total
inductance Ly is given by [53] LL = (1 x 10-12 H/um)A. The total resistance of the lead
RL depends on the resistivity of the material and the exact geometry of the lead. For
device A, which had A = 27 um, it was R, = 770 kQ = (28 kQ/um)A. The distributed
elements of resistance, capacitance, and inductance form a transmission line of finite
length. A detailed analysis of this system may be found in Andrew Cleland's thesis [54].

The most important results, however, can be understood by the following relatively



simple analysis: A short length dA of the transmission line can be modeled by the
lumped circuit elements dRy, dLj, and dCy, as shown in Fig. 4-4 (a). The entire line is
then represented by a large number of these segments. I can ignore the inductive
elements because their impedance is much smaller than that of the resistive elements for
frequencies below 1016 Hz, which is much greater than the plasma frequency. At low
frequencies, the resistive elements dominate, and the impedance of the line is simply
Zjine = RL. As the frequency increases, the capacitors begin to short the line to ground,
and only a length of the line less than A contributes to the impedance. The frequency
Wcross at which this crossover occurs is Wcrogs = (RLCLY' L. Above tross, the line can be
represented as an infinite ladder of circuit elements as depicted in Fig. 4-4 (b). The
impedance Zjaqger of this network can be found by first noting that an additional rung
added to the ladder will not change this impedance. Writing the equivalent impedance of
this circuit, shown in Fig. 4-4 (c), I can solve for Zja4der, and by taking the limit as dRy,
dCL — 0 while holding the ratio Ry ,/Cy constant, I recover the result of the full
transmission line analysis in the high frequency limit. The real part of the admittance

1/Zjine is

= |2RL i
R@)= [ Z5e (4-22)

Thus I have the important result that at frequencies above Wcross, the quality factor Q(w)
drops off as w172,

I can now use these results to estimate the quality factor for device A. First of all,
note that attaching four identical leads, two at each terminal of the SQUID, presents the
same shunt impedance as one lead. The crossover frequency for this lead was
Ocross = 1.7 x 109 rad/s, meaning that for frequencies below this value the impedance was

770 kQ and the quality factor for n = 0 was 8.6 x 106, However, at the plasma frequency,
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b) d d

Zladder (0)) Zladder(m)

FIGURE 4-4. (a) Circuit model of junction, bias circuitry, and on-chip thin film resistive
leads. The junction with critical current Ic and capacitance C is shown at the right of the
figure, and the bias circuitry consisting of an ideal current source IBias with stray
capacitance Cgtray is shown at the left of the figure. The thin film lead of length A is
shown in the middle, modeled as segments of length dA, with each segment containing
the lumped circuit elements dRr, dLr, and dCL. (b) The high frequency model of the
lead, which is a semi-infinite ladder of segments with elements dRp and dCL and
equivalent impedance Zjadder(%)- (c) An equivalent circuit to (b) which aids in solving
for Zadder(®).
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R(wp) = 120 kQ, and the quality factor was Q(wp) = 620. Similarly, for n = 0.95,

R(wp) = 230 k€2, and Q(wp) =320. Thus, within the RSJ model augmented by
frequency-dependent damping, these values are large enough to ensure that retrapping
should not occur immediately following an escape event at the resonance current when

operating at a bath temperature of 20 mK.
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CHAPTER 5§

Experimental Technique

In this chapter I describe the process I used to fabricate devices representative of
the parameters I outlined in Chapter 4, and the experimental setup and measurement
techniques I used in obtaining data, with a discussion of the noise effects which are

involved in measuring the switching current.




5.1 Fabrication of the SQUIDs

Shadow Evaporation Lithography Technique

From a lithography viewpoint, the device parameters outlined in Chapter 4 call for
generally small features. The junction size should be submicron (~0.5 um? each), the
SQUID loop must be smaller than about 10 um in diameter, and to obtain sufficient
resistance per unit length using manageable materials and deposition techniques, the on-
chip resistors need to be about 0.1 pm in width and about 30 tm long. Although these
are generally not state-of-the art with regard to minimum attainable dimensions, they call
for techniques beyond standard optical lithography.

The "industry standard" technique for producing submicron tunnel junctions is to
use electron-beam lithography with a bi-layer resist to create a bridge of suspe.ded resist
which then can be used as a shadow mask for thermal evaporations at oblique angles.
This technique, called the shadow evaporation lithography technique, was developed
primarily at Bell laboratories [55, 56]. The basic concept of how this technique is used to
form a submicron junction is illustrated in Fig. 5-1 and described below. A substrate
(shown in Fig. 5-1 (a)) is covered with two layers of resist, where the layer closest to the
substrate is a resist chosen to be more sensitive to the exposure/development process than
the upper layer. A beam of electrons, accelerated by a voltage between 5 and 30 kV and
focused to a spot size of about 20 nm, is used to write a straight line on the resist, except
for a short interruption. In this exposure process, the energetic electrons break bonds in
the long chain of the resist polymer. A solvent for the polymer is used to develop the
resist by dissolving away the shorter segments of the polymer. The developed pattern is
shown in Fig. 5-1 (b). The upper layer develops in such a way that it forms an open
channel except where the line exposure was interrupted. The more sensitive lower layer
develops into a wide channel, undercutting the upper layer including underneath the

unexposed segment of the line. This creates a bridge composed of the upper resist which

83




84

<&— Upper layer resist
' -&— Lower layer resist

<& Substrate

Suspended upper resist layer

- Open substrate

- Both resist layers present

Electrode

Junction §-e—Resist bridge

Sentesconcotuiasosonssotises - V- 1 Counterelectrode

One layer of Al

d)

Two layers of Al

- Open substrate

FIGURE 5-1. The shadow evaporation lithography technique. (a) Side view of the
bilayer of two resists on a substrate. (b) Top view of the exposed and developed resist.
The top resist layer forms an open channel interrupted by a suspended bridge, and the
bottom resist layer forms a wide channel. (c) Side view. Evaporations from the
directions indicated, labeled 1 and 2, form the electrode and counterelectrode,
respectively, of the junction as indicated in the figure. (d) Top view of the completed

device after lift-off. The junction lies-where the two "fingers" overlap.
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spans the lower channel, suspended above the bare substrate. The first electrode material
is deposited by thermal evaporation in a direction which is in the plane of the exposed
line, but at an angle from the normal to the substrate (typically between 0 and 45 degrees,
depending on the application). This forms a metal line on the substrate surface except for
an interruption where the bridge has cast a shadow. An oxide layer is formed on the
surface of the first electrode by bleeding oxygen into the vacuum deposition chamber.
The second electrode material is then deposited by thermal evaporation in a direction
which is also in the plane of the exposed line, but at an angle opposite the angle used for
the first evaporation and chosen so that the second electrode pattern overlaps the first
electrode pattern and forms the junction. The evaporation steps, which have the
advantage that they can be carried out without breaking vacuum, are illustrated in
Fig. 5-1 (c). A subsequent liftoff of the remaining resist leaves the pattern illustrated in
Fig. 5-1 (d). Linewidths on the order of 0.1 um are readily attainable with e-beam
lithography, and the evaporation angles can be adjusted to give an overlap of 0.1 pm or
less. As a result, junctions with areas less than 0.01 um? are readily obtained using this
technique, and larger area junctions may be formed by increasing either the linewidth or

the overlap length.

Choice of Electrode Material

Typically Al is chosen as the electrode material because it is simple to evaporate
and forms a controllable oxide barrier by mere exposure to oxygen. It also forms
continuous superconducting films without any extra precautions, in contrast to Sn which
was used in early submicron junction research [12]. Junctions made of Al in this manner
have also been found to have remarkably stable tunnel resistance through multiple
thermal cycling and long (weeks to months) exposure to air. The disadvantage of Al is
that its critical temperature is only 1.2 K, which is smaller than that of Sn or Pb and is

below liquid He temperatures. This is not a problem for my application, which already
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calls for millikelvin temperatures. In addition, the critical temperature of the material
will only enter into the resonant tunneling dynamics as a parameter via its relation to the
damping provided by the quasiparticle tunnel current, and this current is negligible at

these temperatures.

Scanning Electron Microscope Lithography Apparatus

Lithographic exposures and device inspections were performed on an Etec
Autoscan scanning electron microscope (SEM) owned by Prof. Van Duzer of the U. C.
Berkeley Electrical Engineering Department and located in room 144 Cory Hall.
Historically, this machine was originally designed to be used in standard SEM mode, but
was adapted for e-beam lithography in the 1970's by Maurice Bales and others by the
inclusion of a computer drive for the beam deflection system and the necessary electronic
interface hardware. Further minor modifications of the SEM column and sample stage
were made by Andrew Cleland and myself for submicron tunnel junction research carried
out prior to this work. The complexities of the exposure pattern required by the present
experiment warranted my development of a new pattern generation system, consisting of
a Macintosh IIx computer, interface boards from National Instruments, additional
hardware to interface this new computer to the existing interface unit, and original
software for designing exposure patterns and carrying out exposures.

The resulting e-beam lithography system had the following specifications:
Available beam currents ranged from 0.1 pA to 500 pA as measured by a Faraday cup in
a custom sample stage. Resolution was about 20 nm, corresponding to the minimum spot
size. Exposures could be carried out over a field of view which depended on the
magnification setting of the microscope. Typically the fine details of the pattern were

exposed at either 200 X or 400 x magnification, giving either a 150 pm or 75 pm wide
square field of view, respectively. Contact pads were exposed at the lowest (10 x )

magnification, which gave a 3 mm field of view. The pattern generator had 12-bit



resolution in the x and y directions, so that the fieid of view was covered by 4096 x 4096
pixels. Available pixel exposure times ranged from 10 pus to 32,000 s, although typical
exposure times were on the order of 1 ms. Patterns could contain a total number of
exposure pixels limited only by the computer memory of 4 MB, and were composed of
lines and blocks of pixels where the density of exposed pixels could be varied. No beam
blanking was available for the system. However, the computer drive I designed allowed
fast (~8 ms) switching between the lithography mode and the SEM mode. For beam
currents of use the latter mode would not expose the resist over times of less than several

hours, and thus a beam blanking option was effectively supplied by this feature.

Geometry of the Exposure Pattern

The shadow mask evaporation technique described above is readily adaptable to
more complex devices containing multiple connections and additional materials. I
devised a technique by which one can fabricate a DC SQUID with four thin-film resistive
isolation leads complete with contact pads that employs only one lithographic step and
three thermal evaporations which are performed in a single pump down. (Compare this
to a conventional Clarke group DC SQUID which requires at least five lithography
steps!) In order of deposition, the three evaporations are: First, the resistor material,
which was a SiCr alloy in the case of device A (Most of the devices I fabricated used a
NiCr alloy instead of SiCr for the resistor material, but unless specifically noted I will
refer to device A in this section.); second, the Al electrode denoted by Al-1; and third, the
Al counterelectrode denoted by Al-2.

The fine exposure pattern used to make device A is shown in Fig. 5-2, and details
of one of its junction regions and one of the joints between the SQUID body and a
resistor are shown in Fig. 5-3. The coarse pattern used to define large contact pads is not
shown. For clarity in discussion, I will refer the pattern and angle evaporations to a

Cartesian coordinate system with the origin located on the substrate surface at the center
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FIGURE 5-2. Exposure pattern used for device A. The scale is shown at the bottom of
the figure, and the coordinate system referred to in the text is shown in the center of the
SQUID loop. The pattern is symmetric about the x axis, and extends beyond the
boundaries of the figure. Inset at top: Angles used for evaporations of SiCr, Al-1, and
Al-2,
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FIGURE 5-3. Details of the exposure pattern and completed device near a junction and a

resistor/SQUID body joint. (a) Junction pattern. (b) Completed junction, with the three

thin film layers shaded according to the key in the corner of the figure. (c) Completed

with the SiCr layer in black, and the Al-1 and Al-2 layers outlined for clarity.

junction,

tion is the overlapping region indicated. (d) Joint pattern. (e) Completed joint,

with the three thin film layers shaded according to the key.

The junc
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of the SQUID loop. The directions x and y are in the plane of the substrate as indicated
in the figures, and the normal to the substrate is the z direction. As shown in the inset of
Fig. 5-2, the angles of the thermal evaporations SiCr, Al-1, and Al-2, which were 0.3,
—27.6, and 45.5 degrees from normal, respectively, all lie in the x-z plane.

To understand this pattern and how the junctions and interconnections are formed
as a result of the three angled evaporations, it is useful to think in terms of three
reproductions of the pattern which are translated the following distances in the
x direction: The SiCr pattern is at the center, the Al-1 pattern is translated 0.59 um in the
x direction, and the Al-2 pattern is translated 1.1 um in the —x direction. These lengths
are given by the height of the upper resist layer above the substrate, which is 1.1 um for
my bilayer recipe (given below), multiplied by the tangent of the angle of the
evaporation. These superimposed translated patterns are illustrated for the details shown
in Fig. §-3.

Each resist bridge used to form a junction (see Fig. 5-3) was 1.1 um wide (in the
x direction) and 0.75 um long (in the y direction) for this pattern. The latter dimension
determines the width (in the y direction) of the junction ovcrlép, while the junction
overlap length (in the x direction) is determined by the former bridge dimension and the
translation distances given earlier. The resulting overlap was 0.44 um. While the
junction area could be varied by changing the evaporation angles, I found changing the
bridge dimensions was preferable because it allowed me to avoid affecting other parts of
the device fabrication which depended on the evaporation angles. The exposed boxes
located just outside the SQUID loop near the resist bridges served as aids to the
undercutting process beneath the bridges both by giving an additional exposure dose to
that region and by creating an additional path for the developer to get in and for the
developed resist to rinse away. Note in Fig. 5-3 (¢) that the bridge shadowed the resistive
material deposited in the first evaporation in such a way that this material was away from

the junction overlap, which thus occurred over bare substrate.




The resistors were formed by the SiCr evaporation. Since the resistor channels
ran in the y direction, the Al-1 and Al-2 evaporations produced superconducting lines
running parallel to and on both sides of each resistive strip. These Al strips were
connected to the contact pad. In order that these Al strips would not short out the resistor,
I devised a scheme so that only the SiCr connected to the SQUID body, specifically to the
layer Al-1. The geometry of one of these resistor/SQUID body joints, which were all
identical, is illustrated in Fig. 5-3. The resulting contact was made over an area of
approximately 0.1 um X 1.8 um. The fact that this small area was sufficient to make
good contact between the SiCr and the Al-1 illustrates one of the advantages of the
shadow mask lithography technique: Because these evaporations were performed in a
single pump down and there were no intervening lithography steps, the surfaces remained
clean and oxide free. By contrast, getting good contact between different layers was a
problem resulting from combined optical and e-beam lithography in my previous research
effort [25].

At all four joints, the SiCr resistors connected to the Al-1 layer. On the x > 0 side
of the device, contact between the Al-1 layer and the Al-2 layer was made over the la~ge
area overlap of these layers which constituted the body of the SQUID on the x > 0 side of
the junctions. Because the Al-1 surface was oxidized before deposition of the Al-2 layer,
this contact actually formed a large area Josephson junction in series with the SQUID.
Because this junction had an area much greater than the combined areas of the SQUID
junctions while its oxide barrier had the same thickness, its critical current was much
greater than the maximum critical current of the SQUID.

Finally, note in the geometry of the pattern that the SQUID loop was defined by
arms which were at angles about 45 degrees from the x direction. This shape of the loop,
which I call the "diamond" shaped loop, was an important feature of the design. Many
devices which I fabricated employed NiCr for the resistor material and had a loop which

was rectangular in shape with sides parallel to the x and y directions. These devices did
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not show the modulation of critical current with applied magnetic field which is
characteristic of a DC SQUID. I discovered this was probably the result of the absence of
a coherent superconducting path around the loop of the SQUID. In the rectangular loop
case, the Al-1 layer laid directly on top of the NiCr layer for distance of about S um on
each side of the SQUID loop. I believe the NiCr layer caused the coherence of the
superconducting order parameter to be broken along these paths either by magnetic
scattering or by proximity effects. By contrast, the geometry of the diamond shaped loop
was designed so that a width of at least 0.4 um of the inner edge of the loop was
composed of Al on top of bare substrate. This was sufficient to provide a coherent
superconducting path around the loop to give fluxoid quantization. Additional evidence
in support of this hypothesis is provided by two test devices I made with rectangular
loops, one with Al substituted for the NiCr, the other with a CuAu alloy (which has no
magnetic component) substituted. Both of these devices showed critical current
modulation.

Finally, as a general strategy for pattern design, the order in which the various
parts of the pattern were exposed was chosen so that adverse effects of defocusing, lateral
(x or y directional) beam drift, and beam current variations would be minimized. For
example, the resistors were exposed first, since they were the features most sensitive to
defocusing and dosage variation, and the exposures defining the junction resist bridges

were performed in immediate succession because their positioning was critical.

Device Processing Techniques and Recipes

Because lithography in general, and e-beam lithography in particular, is
something of an art as well as a science (some may even call it black magic), I will try to
describe in some explicit detail the complete process 1 developed for fabricating a device.
While all the parameters are not necessarily optimized, the recipe presented reflects a

great deal of development and improvement over the techniques reported previously [54]




which I used for previous research projects. Following the recipe, I will present
additional discussion about some of the discoveries 1 made during the course of my
research conceming the exposure/development process.

The devices were fabricated on individual 11 mm X 11 mm Si chips, cut from 2"
diameter (100) orientation wafers with resistivities of 1 to 10 Q-cm and with 1000 nm of
oxide grown on their surface as an insulating layer. Resists were spun on chips
individually to avoid bilayer resist thickness variations resulting from the spin-coating
process, which tends to produce a thinner coating at the edge of a large wafer than in the
middle. The preparation of the substrates with bilayer resist was carried out in the U. C.
Berkeley Microfabrication Facility. Before dicing, the wafer was coated with Shipley
1400-31 photoresist spun at 6000 rpm for 30 seconds and baked on a 70 C hotplate for 2
minutes to give a clean protective covering in anticipation of the relatively dirty dicing
process. The wafer was diced using the Disco diamond saw, and rinsed with water. The
photoresist wes removed with acetone, then the chips were left in clean acetone for 5
more minutes. The chips were placed in an ultrasonic bath of concentrated RBS-35
detergent (Pierce Chemical Co.) for 5-10 minutes, then rinsed with deionized water and
blown dry.

The e-beam resists were obtained from OCG Microelectronics. The lower layer
of resist was the copolymer Poly(methylmethacrylate/methacrylic acid)
(P(MMA/MAA)), type I, 9% in cellosolve. The upper resist was the polymer
Polymethylmethacrylate (PMMA), 950K weight, 4% in chlorobenzene, which I thinned
to 2% with chlorobenzene. The P(MMA/MAA) was spun on each chip at 2000 RPM for
30 seconds, and then the chips were placed on a glass slide and baked in a hotplate oven
for 15 minutes at 150 C. A second layer of POMMA/MAA) was spun on, also at 2000
RPM for 30 seconds, and baked in the same manner for 45 minutes. This layer was
added to give additional thickness to the copolymer layer. The PMMA was spun at 3000
RPM for 30 seconds and baked at 150 C for 60 minutes. During this procedure I allowed
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sufficient time to ensure that the chips were at room temperature before applying each
additional layer of resist. Measurements of the thickness of PMMA resist applied in the
manner described above, performed by Cleland, indicate that the upper layer resist
thickness was about 100 nm. From angle evaporation tests I inferred that the upper resist
layer was at a height of 1.1 um above the substrate. Chips prepared by this procedure
were found to give good results even after months of storage.

The exposure depended critically on sharp focusing of the e-beam. To facilitate
this, I placed a small (~1/2 mm) patch of submicron sized Ag particles which were rough
in shape at a point near the center of the chip using a sharpened wooden applicator which
had been dipped in a mixture of the Ag particles and methanol. This provided an
excellent subject at the surface of the resist on which to focus. The chip was then placed

in the SEM chamber on the sample mount. The accelerating voltage was set to 18 kV.

~ After allowing the beam a minimum warm-up time of 10 minutes, the condenser current

was adjusted to give a beam current of 1.0 pA. The beam current was found to be stable
to within about five percent over the time required for a typical exposure (a few minutes).
The beam was then focused on a Ag particle near the edge of the patch to the best
possible resolution, at least to about S0 nm (the focusing was performed at 40,000 X or
greater magnification).. The magnification was then set to 400 X, and the stage was
moved a distance of about 50 tm away from the Ag patch, which placed the entire patch
outside the field of view to ensure that the pattern would not coincide with any of the
particles. I found it was important not to move the stage too far, however, for a small tilt
of the stage away from normal to the beam would result in the chip surface falling outside
the focal plane. (I found the depth of field was about + 2 um, so a tilt of up to 1 degree
would be acceptable for a translation of 50 um.) The fine pattern described above was
then exposed using pixel dosages which I will discuss later. Upon completion of the fine

pattern exposure, the magnification was set to 10 X, the condenser was set to give



maximum beam current (about 300-500 pA), and the coarse pattern was exposed to
define contact pads.

The exposed chip was blown with dry N3 io remove the bulk of the Ag particles.
The remainder were removed by spraying the chip with distilled water, and in difficult
cases, by an ultrasonic distilled water bath. I discovered this step was important for
increasing yield, for on several occasions during the wet development process a single Ag
particle lodged in a newly developed resistor channel and could not be cleared. (Using an
ultrasonic bath at that point was found to destroy the delicate bridges and overhangs.)

The chip was developed in a 1:1 mixture of cellosolve (CS) and methanol
(MeOH), and rinsed in a stop bath of isopropyl alcohol (IPA). The cellosolve I used is
also known as 2-ethoxyethanol, ethyl cellosolve, or ethylene glycol monoethyl ether (The
Saclay group is rumored to have experienced difficulties for a few weeks by unknowingly
using a different type of cellosolve, so I have taken care to be very specific here!). The
development procedure, which I will discuss later in greater detail, was a repeating

sequence of dipping the chip in CS/MeOH, then IPA, then blowing it dry with Na,

performed as follows:

1. CS/MeOH, 4 seconds;

2. IPA, 15 seconds;
3. Blow dry;

4. CS/MeOH, 4 seconds;

5. IPA, 15 seconds;
6. Blow dry;

7. CS/MeOH, 3 seconds;

8. IPA, 15 seconds;
9. Blow dry.

The chemicals were held at a temperature of 21 + 0.05 C by placing their containers in a

water bath.
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Thin-film deposition was performed in an evaporator for which I had constructed
an apparatus which allowed tilting of the substrate without breaking vacuum. This
allowed thermal svaporation at angles up to 50 degrees from the normal to the substrate.
The evaporator was diffusion-pumped with a liquid nitrogen cold trap, and had a base
pressure of about 2 x 10-6 Torr. Material thicknesses were monitored using a quartz
oscillator. Although the calibration for this monitor was not known to better than a factor
of abeat 1.5 for most materials evaporated, this system provided excellent reproducibility
in thickness measurement, which was much more important for this experiment than
exact knowledge of film thicknesses.

The thin films were deposited in the following procedure: The resistive film (of
either SiCr or NiCr) was deposited first. Then the evaporation angle was adjusted, and
the electrode Al-1 was evaporated. The oxidation procedure was performed, during
which the evaporation angle was again adjusted. Finally, the counterelectrode Al-2 was
evaporated.

The NiCr films were made by placing three to four 100 mm pieces of #20 gauge
Nichrome wire (of exact composition which remains a mystery, for it was obtained from
a poorly labeled spool in the electronics shop, and the so-called Nichrome alloy comes in
a myriad of compositions) wrapped into tight balls, into a conical-shaped 3-stranded-wire
W basket (from the R. D. Mathis Co.). Thicknesses of 5 to 30 nm were obtained at
deposition rates of 0.05 to 0.2 nm/s. These films had resistivities of about 120 uQ-cm.

The SiCr films were obtained by placing three small pieces (about 1 mm in
diameter each) of a SiO-Cr sinter into a W evaporation boat. This sinter, which was 65%
Cr by weight, was prepared by Andrew Cleland, who mixed Cr powder and SiO powder
together and had the mixture pressed and fired in an oven at LBL. The boat was heated
to just below the evaporation point, then quickly heated using highest power. In this
manner, an effective "flash" evaporation took place, which was done to avoid an

inhomogeneous film resulting from the differing evaporation rates of Si and Cr. The total



volume of sinter evaporated was consistent with the thickness of the films obtained
(~6 nm). The resistivity of this material was about 2600 p€2-cm, more than twenty times
the resistivity of the NiCr.

The Al films were deposited by placing a 150 mm length of 1/16" diameter
0.9999 purity Al wire into the same style 3-stranded-wire W basket used in the NiCr
evaporations. Fast deposition rates of 5 to 15 nm/s were used to avoid oxidation during
deposition caused by residual gas in the chamber. Film thicknesses were usually 25 to 35
nm.

The electrode was oxidized by introducing 3 Torr of 30% O2/Ar into the chamber
for 5 minutes. By varying the pressure by a few Torr or the oxidation time by a few
minutes, junction resistances could be varied in a reasonably controlled manner.

Liftoff of the resist and films was accomplished by placing the chip in a boiling
acetone bath for about 15 minutes. (A liftoff in room temperature acetone usually
requires several hours). The chip was rinsed in clean acetone and blown dry. This step

completed the device fabrication.

Details of the Exposure/Development Process

The exposure and development processes are of course central to electron beam
lithography. These two processes are very sensitive to an endless number of parameters,
and recipes for these must be developed concurrently, for each is intricately related to the
other. Although a great deal of research has been done in this area, applications and
equipment vary so widely and the process is sufficiently complex that in practice each
researcher must develop his own particular recipe. I have listed some of the references
which I have found most useful in developing my recipe: These are refs. [57-64].

The classic challenge of e-beam lithography is to achieve minimal linewidth.
This was of course the case in my experiment, specifically because I needed to achieve as

large a resistance per unit length as possible for the lead resistors. A constraint added
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when performing shadow mask lithography is that one also has certain minimal
requirements for undercut, and the upper and lower layers of resist are exposed and
developed in the same process. Finally, the height of the upper resist above the substrate
needs to be of a similar length scale as the pattern translations. In my particular
application most of the device features were relatively large from an electron beam
lithography viewpoint, so the thickness of the lower layer had to be scaled up
accordingly. This meant a large amount of the copolymer had to be removed in the
exposure/development process, which was difficult to achieve while keeping the
linewidth defined in the upper resist small.

The actual cross-sectional profile of the developed region depends in a
complicated manner on the spatial dependence of the energy deposition and the rate of
solubility of the exposed resist. A number of simulations of this process have been
carried out [61-64]. Greeneich has given the relationship for the amount of energy a
given number of electrons accelerated by a particular voltage will deposit in the resist as a
function of depth [61]. Where this function peaks, the development rate will be greatest,
and this peak moves to greater depth as the energy is increased. I performed a series of
exposures using different accelerating voltages, adjusting each dose for minimal upper
resist linewidth. The effect of varying the accelerating voltage on bilayer development is
schematically illustrated in Fig. 5-4. Using a smaller accelerating voltage results in resist
removal near the top of the lower layer, as shown in Fig. 5-4 (a), while using a larger
accelerating voltage results in a more columnar profile, as shown in Fig. 5-4 (b). Neither
of these profiles is acceptable for they do not have an appropriate undercut. The ideal
profile is illustrated in Fig. 5-4 (¢): Using an appropriately chosen accelerating voltage
results in most of the electron beam energy being deposited near the middle of the lower
resist layer. In my experiment, I found that profiles similar to the cases shown in

Fig. 5-4 (a) and (b) resulted when I used accelerating voltages of 16 kV and 20 kV,
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FIGURE 5-4. Side view of bilayer, schematically illustrating the result of exposure with

three different accelerating voltages. (a) Low voltage (~16 kV). (b) High voltage
(~20 kV). (c) Optimal voltage choice (~18 kV).
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respectively, while the optimal behavior illustrated in Fig. 5-4 (¢) was achieved using

18 kV.

I obtained the best results by using a beam current of 1.0 pA and operating at
400 x magnification, which gave a pixel spacing of 0.018 um. For large regions such as
the body of the SQUID I used a pixel density such that every pixel in the region was
exposed for a time of 0.56 ms (corresponding to an average area dosage of about 1.7
Coulombs/m?2). The resistors were exposed as a strip two pixels wide, with each pixel
exposed for 1.1 ms.

I experimented with several developing processes before settling on the process
described above. In addition to mixtures of CS and MeOH, I tried combinations using
Methylisobutylketone (MIBK), also a commonly used developer. I found that MIBK,
while having the advantage of acting on a much longer time scale, did not in general give
the extent of undercut I required, although others have obtained good results using MIBK
with thinner bilayer systems. In my earlier work [25] I had used a 1:2 ratio of CS/MeOH
as a developer with MeOH as a stop rinse. However, I found that MeOH by itself acts as
a developer (although weaker than pure CS) and was creating some of the undercut
during the "stop" process. For this reason I switched to IPA, which seemed to behave
effectively as a true stop rinse. Also, I found pure CS did not give sufficient undercut,
and I concluded that CS and MeOH must be used together to obtain the best results for
my application. This behavior is not unusual; the improvement of developers by mixing
different types has been studied previously in similar processes [60]. My development
process also takes advantage of my discovery that more undercut was obtained by using
several develop/rinse/dry steps than by using a single step having the same total
development time. I attribute this effect to the saturation of the developer chemicals near
the developing regions when the single step approach is used. Multiple steps allow the
developer to "refresh”. Finally, I found that good temperature control of the developer

chemicals was paramount to a reproducible process. While I did not search for an
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optimal temperature, I found that even a few degrees of temperature variation would

change development times quite a bit and in extreme cases of elevated temperature would

ruin the process altogether.
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5.2 Sample Mount and Measurement Environment

Dilution Refrigerator Setup

The low temperature measurements were carried out using the Oxford Model 75
dilution unit and cryostat (built in-house) that was used for the MQT experiments [5].
The 3He/4He circulation system used with this refrigerator was designed by myself and
constructed with the help of Mark Ferrari.

Since the time that the MQT experiments were completed, I performed a great
deal of rewiring of the cryostat's experiment leads and replaced several of the heat sinks
included with this wiring.

In total, I provided the refrigerator with sixteen wires dedicatec for experimental
measurements. These wires are arranged as four sets of wires, where each set of four
wires was intended for a four point measurement of a sample. Each set of four wires,
shielded from the other sets, was twisted together whenever possible, and kept as closely
together as possible otherwise, to reduce interference. In the He bath shielded 4
conductor cable was used because I found it generated the least amount of microphonic
current noise, which was an important consideration because of the high impedance
(~1 MQ) of my devices. Removable low-pass RC filters were installed just }above the
vacuum can top in the He bath. These filters, potted in Stycast 2850 FT mixed with
stainless steel powder to attenuate microwave frequency transmission around the filters,
have their 3 dB point at 16 kHz. Inside the vacuum can, the wiring consists of 0.003"
diameter manganin wires, and each set of four wires is shielded from the other sets. The
wires are heat sunk at the heat exchanger plate (which is at a temperature of about 120
mK) as described below. More 0.003" manganin wire was used to make the final
connection to the sample mount at the mixing chamber. In total each lead has a
capacitance of about 1 nF, which is dominated by the capacitance of the filter . Without

the RC filter installed, the capacitance is about 300 pF.




My heat sinks were made by making a laminate of 0.002" BeCu sheet (chosen
primarily because it is a resistive alloy), a Kim-wipe tissue, and a 1/8" Cu plate (to be
clamped to the sinking point) bonded together with Stycast 2850 FT epoxy. The BeCu
was then patterned into 1 mm X 20 mm strips using standard printed circuit board
lithography techniques. The porous Kim-wipe aided in avoiding electrical shorting
between the BeCu strips and the Cu plate while providing no effective additional material
interfaces presenting Kapitza thermal resistance. A simple model by Andrew Cleland
shows that this system forms an effective heat sink when used at the heat exchanger plate
or the mixing chamber.

A carbon resistor, made by the Matsushita Corp., was used for the mixing
chamber thermometry. Its resistance was measured using a Rochlin [65] bridge which
also had a feedback system to provide temperature regulation of the mixing chamber by
heating a metal film resistor also mounted on the mixing chamber. Unfortunately, the
calibration of a carbon resistance thermometer tends to drift in time, and this particular
thermometer has not been calibrated in five years. For this reason, the temperatures noted
in this work are probably at best nominal temperatures.

The refrigerator can (but not necessarily on demand!) attain temperatures below
20 mK. Typical cooling power is about 1 pW at 25 mK.

The dilution refrigerator is suspended by bungee cords to reduce vibration, and is
housed within a Cu screen room to shield radio frequency interference. Mu metal shields
can be placed around the cryostat to reduce magnetic field noise. The gas manipulation
system is located outside of the screened room, and care was taken to avoid mechanically

coupling vibrations produced by the pumps to the refrigerator.

Sample Mount
Leads made of 0.003" manganin wire were attached to the Al contact pads with

pressed-on pieces of In. The chip was mounted with silicone grease to a chip carrier
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consisting of another piece of Si which was epoxied to a Cu plate with Stycast 2850 FT.

Also epoxied to the chip carrier was a metal film resistor for current sensing which had a
resistance of 1.00 MQ at room temperature. Three of the wires attached to the device
contact pads directly connected to the wires which ran up the cryostat as described above.
The other pad was connected to the current-sensing resistor, which had wires connected
to its ends which also ran up the cryostat. (See section 5-3 for the full circuit
description.) The chip carrier was clamped to a Cu body which attached to the mixing
chamber with a tapered Cu thread joint. This setup ensured good thermal contact
between the chip and the mixing chamber. An estimate of the current noise induced in
the SQUID by the Johnson noise produced by normal metal in close proximity to the
device [66] indicated this noise wouid not be a problem, primarily because of the very
small loop size of my SQUID and the very low temperature of the normal metal found in
the device mount. The SQUID was enclosed in superconducting shield made of an
aluminum tube of square cross section. This tube, which was open at both ends, was
sufficiently long to attenuate external magnetic fields [67] by a factor of greater than 104.
To modulate the critical current of the SQUID, a 30-turn persistent current magnet was
placed inside the shield near the sample. This magnet was operated in persistent current
mode while data was taken to ensure no current noise would be coupled into the SQUID.
Because the heat switch for this magnet dissipated too much power for it to be rﬁountcd
on the mixing chamber, it was instead mounted on the 1 K pot. The superconducting
leads of the magnet were run up to the heat switch inside CuNi tubing tinned with Pb/Sn
solder to make a superconducting shield, and the switch itself was located inside a Pb
shield. This was to ensure that these leads would not act as the pickup loop of a flux

transformer and inject noise into the shielded sample mount.




5.3 Measurement Setup

The bulk of the measurements performed were either of current-voltage
characteristics or of switching current distributions to determine the escape rate. The
circuit used to obtain the current voltage characteristics is schematically illustrated in
Fig. 5-5, and the circuit used to obtain the switching current distributions is shown in
Fig. 5-6.

Each circuit contains several common features. A linear voltage sweep was
provided by a Hewlett-Packard 3325A function generator, located outside the screened
room. To check for the effects of noise generated by this source, I often substituted either
a simple battery and potentiometer voltage drive or an analog battery-powered linear
voltage ramp generator for the digital function generator, placing them within the
screened room. I found no difference in the data obtained by these methods and the data
obtained using the function generator. The voltage drive was fed into a voltage splitter,
which consisted of an op-amp follower ((+) output) and an op-amp inverter with
adjustable amplitude ((-) output). The splitter was necessary to avoid problems caused
by limited common mode rejection of the voltage sensing amplifier employed to measure
differential signals which were very small compared to the voltages developed across the
high resistance (~750 kQ) current lead resistors. The amplitude of the (-) output was
adjusted so that the voltages of the junction voltage sensing leads remained as close to
ground as possible during the voltage sweep. The wires leading out of the cryostat were
double shielded and connected to the inputs of EG&G PARC model 113 low-noise
amplifiers, which were powered by batteries and could be placed inside a mu-metal
shield.

The current sensing resistor for the current-voltage characteristic measurements
was typically a room temperature 1.00 MQ metal film resistor. By contrast, the current

sensing resistor for the switching current measurements was the metal film resistor
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located on the chip carrier as described in the previous section. At low temperatures this

resistor both increased in resistance by a factor of about 1.3 and also developed minor
nonlinear behavior. This nonlinearity was taken into account in the analysis of the escape
rate data. Although burdensome, this arrangement was necessary to increase current
measurement sensitivity by reducing stray capacitance and the Johnson noise produced
by the resistor, as I will discuss in further detail in the next section.

Current-voltage characteristics were digitally recorded on a Hewlett-Packard
7090A x-y measurement system, and data were transferred to a Macintosh IIfx computer
using a IEEE-488 interface bus diiven by a National Instruments NB-GPIB board. No
change in the data was observed when an analog oscilloscope was substituted for the
digital x-y recorder.

To obtain switching current distributions, a sawtooth voltage ramp at frequencies
between 5 and 50 Hz was applied so that the device was certain to switch to the 1-state on
the positive-going portion of the cycle and retrap in the 0-state on the return. The current
output was connected to a battery-powered A/D converter located within the screened
room which was triggered by the voltage output signal when the device switched from
the zero voltage O-state to the 1-state, with the trigger level adjusted to as small a value as
possible such that the noise in the voltage signal would not trip the circuit. The digitized
signal was sent via fiber optic cables to the computer to ensure that the computer was
electrically isolated from the circuit. These electronics were the same as those used for
previous MQT experiments, except for some minor modifications I made which were
necessary to interface the existing electronics to the Macintosh computer which replaced
the antiquated original PDP-LSI-11 computer.

In addition to the 4K RC filters described above, in several instances I tried other
filters to test for noise effects. These included microwave frequency filters at the mixing

chamber constructed in a similar manner to those used in the MQT experiments [5], and
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RF filters used at room temperature at the top of the cryostat. No change in device

behavior was ever noted in these tests.
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5.4 Noise Considerations for an Escape Rate Measurement

Measuring the escape rate as a function of current is a process which is sensitive
to noise over a wide range of time scales, from the time it takes to accumulate a
histogram (which is on the order of one hour), to times up to the lifetime of the zero-
voltage state. In this section I will explore some of the sources of the noise associated
with this measurement, and estimate the current resolution I obtained with my setup.

Ideally, the measurement is performed by increasing the bias current linearly in
time. As the voltage V across the device switches in value from zero to the gap voltage
Vgap, the amplified output voltage GV (G is the gain of the amplifier) is compared to an
external reference voltage Vig. The measurement of the current by the A/D circuit is
triggered when GV reaches the value Virjg. This ideal situation is shown schematically in
Fig. 5-7 (a). A more realistic description is shown in Fig. 5-7 (b) which illustrates the
following points: Not only is the bias current noisy, the current measured by the resistor
Rsense may differ from the current which actually passes through the device because of
the capacitive loading from the line connected between the current sense resistor and the
device. The voltage actually observed is rolled off at the characteristic frequency
1/RL.Cw, where Ry is the thin-film lead resistance, and Cw is the cryostat lead
capacitance. This voltage signal is also noisy, containing both high frequency noise and
low frequency drift. The trigger reference voltage itself is also noisy. Because of the
finite R} Cw charging time, there is a time delay At between the time the junction
switches and the time the output voltage reaches the value Virig. In this time, the current
bias continues to increase and fluctuates, so the current measured when the A/D converter
circuit is triggered is different from the value of bias current at the time the device
actually switched. Some of these effects produce constant offsets which can be taken into
acconunt threugh additional calibration procedures. However, some act to reduce the

current resolution of the measurement.
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FIGURE 5-7. Schematic diagram of current and voltage signals involved in a switching
current measurement. (a) Ideal, noise-free signals. Top, current bias IB;ag is a linear
ramp. Bottom, output voltage GV switches instantaneously, crossing the trigger
reference voltage Virig. (b) Realistic signals. Top, currents through sensing resistor
(Isense) and through device (Igevice) are noisy and may differ. Bottom, output voltage GV
is noisy and has the characteristic charging time RL.Cw. The trigger reference voltage
Virig is also noisy. (c) Zero crossing problem. The noisy voltage output signal tends to
trigger a time Atyrig before the noise-free signal would.
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The RL.Cw product for my setup was about 8 x 104 s. Although a large time

constant contributes to error in the current measurement, this rolloff was unavoidable
since the thin film lead resistances of about 750 kQ were required, and it would be
difficult to substantially reduce the approximately 1 nF capacitance of each cryostat wire.
(The capacitance Cw might be reduced by the use of JFET amplifiers located as near the
device as possible (probably at the 1 K pot) and by using guarded lead wires which are
kept as short as possible. These steps could reduce the capacitance of each lead to 10 to
30 pF. However, I did not undertake these steps.)

I chose the current-sensing resistance Rgense to be 1 MQ because it is nearly the
optimal value based on the noise characteristics of the PAR 113 amplifier. When this
resistor is cooled to 20 mK, the RMS voltage fluctuation of this resistor has a spectral
density of about 1 nV/Hz-12, about an order of magnitude smaller than the input noise
spectral density of the PAR 113 which is about 10 nV/Hz-1/2, I minimized the
contribution of the amplifier noise by choosing a 3 kHz bandwidth, which was only
slightly wider than the bandwidth of the measuring circuit. The resulting amplifier noise
fluctuations corresponded to about 0.5 pA RMS. I found the low frequency drift of the
PAR 113 to be about 40 uV (referred to the input) over a time period of an hour, which
translates to 4 pA of drift. In order to minimize the difference between the current
passing through the sensing resistor and the current passing through the SQUID, I placed
the sensing resistor on the chip carrier close to the device. In this configuration, external
current noise such as that produced by microphonics in the cryostat leads should also be
rolled off at 1/R Cw. If the trigger delay At is chosen so that At << R Cw, then these
currents should be correlated. In this limit the trigger delay is given approximately by At
= RLCWVrig/GVgap. The delay At can be minimized by choosing Vyrig as close to zero
voltage as possible without allowing the fluctuations of the amplified voltage output to
trigger the A/D converter, and this noise of the voltage output can be reduced by

choosing the voltage amplifier bandwidth as near as 1/RL.Cw as possible without



contributing further to the existing rolloff. I chose 3 kHz, which resulted in RMS voltage
fluctuations of about 0.5 uV, referred to the amplifier input. With this choice of
bandwidth, the output voltage was dominated by low frequency noise and drift, which
was about 40 iV over an hour, also referred to the input. I used the maximum gain of
G = 104 to minimize the effects of a noisy trigger reference voltage and additional
interference picked up by the circuit after amplification. The minimum trigger voltages I
was able to use typically ranged from 50 mV to 100 mV, giving a trigger delay At on the
order of 10 us. This was much less than the characteristic R; Cw time.

One should note that drift in the voltage output signal not only increases At, but
also directly causes uncertainty in the switching current measurement. A drift of 40 Vv
over an hour corresponds to a variation 8t in At of about &t = 10 us. Assuming a typical
ramp rate of 2 pA/s (which corresponds to a 100 nA sweep at 20 Hz), this drift of the
voltage amplifier creates a loss in resolution of about 20 pA. This is an order of
magnitude larger than the contributions of the other sources to the uncertainty in the
current. To avoid this drift, one might consider filtering the voltage signal with a simple
high-pass filter having a low frequency rolloff. While this approach removes the drift, it
actually creates an additional error stemming from the retrapping event which occurred in
the previous cycle. Because the retrapping is stochastic it precedes the escape event by a
length of time which varies from cycle to cycle. Because this is the time period over
which the filter capacitance discharges following the retrapping event (with a
characteristic time equal to the inverse of the rolloff frequency of the filter), this results
in the variation of the value of the voltage signal at the time of the escape event, and thus
in the time between the escape event and the triggering of the A/D converter. A more
complex scheme for removing the drift of the voltage signal involving active elements
could be used, but I did not pursue this.

One additional source of error in the switching current measurement arises

because the high frequency noise of the voltage signal causes a triggering error. This
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type of situation is studied in the literature and is sometimes called the "zero-crossing

problem" [68]. As the amplified output voltage GV, which has noise fluctuations of root
mean square amplitude 8VRpMs, increases toward the trigger threshold, positive
fluctuations on the average will trigger the current measurement at a time Atpretrig before
the equivalent noise-free signal would. These fluctuations also create an uncertainty
8tpmﬁg in the time at which the triggering occurred. This is illustrated in Fig. 5-7 (c).
The values of Atpretrig and Stpretrig are roughly equal for the case of Gaussian noise and
have the value Atpretrig = Otpretrig = SVRMSRLCW/(GVgqp). This time was about 1 ps in
my setup. Again assuming a 2 LA/s current ramping rate, this created an approximately 2
PA loss in resolution.

Note that in each of the cases where noise was associated with the voltage signal
an uncertainty in trigger time produced an uncertainty in the current which was
proportional to the current ramp rate. Errors of this nature thus will tend to scale with the
critical current of the device because the ramping rate scales with the critical current,
because typically the repetition rate is kept roughly the same order of magnitude.

In conclusion, the drift of the voltage amplifier caused the greatest loss of current
resolution in the switching current measurements I performed. The resolution I obtained
was approximately 20 pA. Because the recorded switching currents for device A ranged
over values of about 10 to 20 nA, this corresponded to a resolution of about one part in
103. This was about one-fourth the resolution of the 12-bit A/D converter, but I typically
combined channels of the A/D converter in groups, or bins, of 16 channels in order to
provide enough events in each bin for good statistics, that is, to reduce scatter in the
resulting escape rate distributions. Thus, this setup provided adequate resolution for my

purposes.



CHAPTER 6

Results, Analysis, and Discussion

During the course of this research, about two dozen devices of the hundreds
started as e-beam exposures were actually run on the dilution refrigerator. Of these, I will
report on various measurements performed on three different devices as they are relevant
to this chapter's analysis. Parameters for these devices are given in Table 6-1. Many
were preliminary or diagnostic and for this reason the devices cover a range of parameters
and are not necessarily of the ideal design described in the previous chapters. The benefit
of this is, of course, the resulting wide variety of behavior in current-voltage
characteristics and switching dynamics. This afforded a great deal of insight into
understanding the processes which are important in determining the behavior of devices
in this parameter range.

In this chapter I show that in spite of this variety in the devices measured, the
most important common thread is that their behavior can be described by a general model
in which the effective temperature of the device is not determined by the mixing chamber
temperature, but rather by the power being dissipated in the thin-film leads of the device.
I will present evidence that this temperature is much greater than the typical mixing

chamber temperature of 20mK, and is in fact several hundreds of millikelvin for bias
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Device A B C
RN 1.39 kQ 987 Q 1.80 kQ
2A/e 400 puVv 375uvV 379 uv
Jomax 226 nA 298 nA 165 nA
C 37 fF 15 fF 20 fF
Lead SiCr NiCr NiCr
Material
Lead 770 kQ 8 kQ 13.3kQ
Resistance
Lead length 27 um 30 um 62 um
Lead width 150 nm 220 nm 220 nm
Lead 6.1 nm 21 nm 20 nm
thickness

TABLE 6-1. Parameters of devices A through C.



currents where switching events typically occur. I believe that only the electron gas is at
this high temperature, while the phonons remain at a temperature near that of the mixing
chamber. This happens because of an energy flow bottleneck which occurs at the
interaction between the electrons and phonons at low temperatures. This effect, which
was studied by Fred Wellstood in connection with heating in the normal metal shunts of a
DC SQUID operated at low temperatures [69, 70], is referred to as the "hot electron
effect”, and was previously sudied in thin film systems by Roukes et al. [71]. During the
preparation of this thesis , I became aware of the recent results of Kautz et al. [72], who
found self-heating in a Coulomb-blockade electrometer and successfully explained their
data using the same model. All these results indicate a fact of universal importance: One
must be keenly aware of hot-electron effects when operating thin-film devices at

millikelvin temperatures.
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6.1 General Features Observed in the Devices

In order to be specific, I will focus on device A in this section, although many of
the features noted were common to all devices tested. A current-voltage characteristic of
device A is shown in Fig. 6-1, which illustrates some of the typical features of all the
devices measured. Here the temperature of the mixing chamber, denoted by Tpix, was
Tmix = 40 mK and the applied magnetic field was such that the critical current was at a
maximum, which corresponds to 1 = 0 in Eq. (4-17). The quasiparticle branch of the
current-voltage characteristic was well pronounced, and had a gap voltage 2A/e of about
400 uV. Gap voltages typically ranged from 370 uV to 400 LV in the devices measured.
These values are consistent with gap voltages of Al-AlpO3-Al tunnel junctions reported
in the literature [73]. The normal resistancz Ry of this particular device was 1.39 kQ as
measured by the slope of the I-V at voliages approximately 3 to 5 times the gap voltage.
Unfortunately this resistance included in series the normal resistance of the parasitic
junction formed during the fabrication of the device. However, because of the large ratio
of this junction's area to the total area of the SQUID junctions, this resistance is assumed
to be small. A small "glitch" can be seen in the quasiparticle branch which I attribute to
the switching of the parasitic junction. This fortunately occured at values of bias current
higher than those of interest in the experiment, again because of the relative difference in
junction areas. Using the measured gap voltage and normal resistance, I found the
predicted maximum thermodynamic critical current I;MaX = tA/2eR\ for this device was
226 nA. However, the value of bias current for which switching events typically
occurred during a current-ramp was about 13 nA, which corresponded to a reduced
current of s =0.06. Although device A in particular demonstrated switching at very low
values of s, all devices investigated switched at values of s << 1, with the greatest

demonstrated by device B with s = 0.35.
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FIGURE 6-1. Current-voltage characteristic of device A taken at Tpmix =40 mK. The
critical current was at a modulation maximum (n = 0), and the current ramping rate for

this sweep was about + 60 nA/s.
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Device A showed a modulation of the switching current which was periodic as a
function of the applied magnetic field. This modulation, characteristic of a DC SQUID,
was seen in all devices reported here. Because the switching to the 1-state occured over a

wide range of bias current values when modulated to the maximum critical current

(n = 0), the period was best measured by finding the modulation minima (n = 1), where
the switching occurred over a narrow range. The values of | could then be determined
by assuming a linear variation with the magnet current. The period of modulation for all
devices was found to be consistent with the estimated area of the SQUID loop. The
symmetry of the two junctions of SQUID A was tested by taking time-averaged current-
voltage characteristics at applied fields of By + 0.18AB, where B; was the field
corresponding to a modulation minimum and AB was the period of modulation. These
current-voltage characteristics were found to be identical to within limits set by the
uncertainty in finding B}, which was approximately + 0.004 AB. The value 0.18 was
chosen because it was near the point where the switching currents varied the most as the
applied magnetic field was varied, and thus gave this test the greatest possible sensitivity.
Another indication of both the symmetry of the junctions and the low inductance of
device A was the fact that the switching currents at 1| = 1 were found to be less than
0.6 % of those measured at 1 =0. This degree of modulation was typical of all the
devices measured and it implies that the model described in Section 4.2 is reasonably
accurate for these devices.

The resistances of the NiCr thin film leads used on devices B through E showed
virtually no change as the temperature was varied from room temperature to millikevin
temperatures. The SiCr leads used on device A showed only a small increase in
resistance upon cooling to millikelvin temperatures. In fact, the temperature dependence
of the SiCr was very consistent from lead to lead. Although room temperature resistances
of the four leads ranged from 480.3 kQ to 572.2 kQ, the resistance ratios upon cooling

from room temperature to 77 K were all equal to 1.125 to within a tenth of a percent.




Similarly, the resistance ratios for the leads upon cooling from room temperature to
42 mK were all equal to 1.275 to within three tenths of a percent. 1 interpret this uniform
fractional increase in the resistances as an indication that the SiCr alloy deposited was
very homogeneous, and the variation in resistance among leads was caused by differences
in dimensions only. Note also that this behavior indicates the alloy behaves as a metal

and not a semiconductor.
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6.2 Evidence for Joule Heating of the Leads

Curreni-voltage characteristics for device A taken with several values of applied
magnetic field are shown with the current axis expanded in Fig. 6-2. The mixing
chamber temperature was 19 mK. Each sweep shown in Fig. 6-2 (a) was taken with a
current ramp of 2.5 nA/s. Here one can see that as the bias current was increased, the
device did not make a single switch to the 1-state, but rather made several jumps back
and forth between the O and 1-state. Similarly, when the bias current was decreased,
several voltage jumps were made in the same range of bias currents before the device
stabilized in the O-state. The number of jumps observed during a sweep depended on the
time period over which the sweep was taken, with a longer sweep time resulting in more
jumps. In fact, I found that for each value of critical current there was a range of values
of DC bias current for which the device would switch between the 0 and 1-state,
indicating that the system was in a bi-stable configuration. As the critical current was
reduced, the number of jumps in a given time period increased, indicating that the
characteristic time of switching was decreasing.

This bi-stable behavior was at first perplexing. As discussed in earlier chapters,
this device was designed to have a very high shunt impedance to reduce the damping. In
a high-Q device such as this, a range of bias currents exists for which both the 0 and 1
states are stable at low temperatures because the energy barriers Au and Aw for transitions
between these states, defined in Section 3-1, are both large. This results in a hysteretic
current-voltage characteristic. However, if there is enough thermal energy available,
these barriers may be surmounted, and the states become unstable. In the RSJ model, this
thermal energy is included in the dynamics of the model as Nyquist current noise from
the shunt, as was discussed in Chapter 3. At temperatures of 19 mK, however, this
device should definitely be in the limit where it should have a hysteretic current-voltage

characteristic, as discussed in Section 4-3.
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FIGURE 6-2. Current-voltage characteristics of device A taken at Tpix = 19 mK for
several values of applied magnetic field. ()N = 0. (b)n = 0.375, 0.675, 0.750, and 1.00.
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Because external noise sources could mimic the thermal noise in supplying the

extra energy required to surmount the barriers, I took steps to eliminate as many of the
potential external noise sources as possible. All computers and 60 Hz line-powered
electronics except for an analog oscilloscope were shut off, and all power to the screened
room was dicconnected and the door was shut. Thermometry and heating wires were
disconnected at the top of the cryostat. Refrigerator pumps were stopped to eliminate any
vibration they might cause. The measuring circuit, containing one battery-powered
amplifier for sensing voltage, was driven by a simple battery and resistor source, and RF
filters were inserted into the lead lines at the top of the cryostat. Both the refrigerator and
the amplifier were shielded with mu metal. After all these precautions had been taken, no
change in the switching behavior was observed. Thus I was led to conclude that the
switching behavior was intrinsic to the device.

These results lead me to examine the transition from a hysteretic behavior to a bi-
stable switching behavior using the RSJ model. By examining Egs. (3-4) and (3-8),
which give the characteristic times t, and t; for the thermally activated escape and retrap
processes, I note that the arguinents of the dominant exponential term in each of these
expressions are of the same form, namely, a reduced energy barrier (Au or Aw) of
magnitude which depends on the bias current divided by the reduced temperature
I' = 2ekpT/hl;. Although these times might be extremely long for low temperatures or
high critical currents, there is a bias current for which the characteristic times t, and t; are
equal Following previous authors [26, 74] I define this reduced current as se, which is
found by setting Au and Aw equal. Referring back to Fig. 3-1, the current s, is at the

intersection of the curve Au(s) and the curve Aw(s), which depends on Q. An

approximate expression for se is given by [26]

Se = (21 +4)/Q + (2 + m)/Q2 . (6-1)



Now imagine a junction biased at se. As the reduced temperature I' is then increased,
either by an increase in the actual temperature T or a decrease in critical current I, both
characteristic times t, and t; decrease until a point is reached where the 0 and 1 states
both become unstable because of thermal activation. This is roughly where hysteretic
behavior crosses over to the bi-stable behavior with a characteristic switch time tgwitch
defined by t; =t} = tgwitch. A further increase in I' results in further reduction in tgwitch.
Since device A shows just such a reduction in switching time as L. is reduced by the
application of a magnetic field, I want to get a rough estimate of how I might expect
tswitch to vary with I.. I found that the bi-stable switching behavior observed in device A
would occur with a duty cycle of 50% (that is, the total time spent in the 0-state was equal
to the total time spent in the 1-state) when the device was biased at a reduced current of
about s =0.035. I will take this to be the value of se. Noting that Au(s) can be
approximated by Au = 2 — xts to better than 0.1% for s = 0.035 and that in Eqn. (6-1) for
se, Q varies weakly with I. (as discussed in Section 4-4, Q varies as I!/2 in the ohmic
shunt limit and I;1/ in the transmission line limit), I will approximate Au(s) by the
constant Au(se) = 1.89. Finally, assuming the vaiiation of I with the application of a
magnetic field follows the expression given in Eq. (4-17), I expect to find that the natural
logarithm of tgyitch varies roughly linearly with cos(rm/2) with slope 1.89 il;max/2ekgT.
In order to test this model, detailed measurements of the bi-stable switching were
carried out. The device was biased with a DC current chosen so that the duty cycle was
nearly 50%. A time trace for the voltage across the junction taken under the condition
N =0 is shown in Fig. 6-3 (a). It had the appearance of a random telegraph signal (RTS),
that is to say, jumps of magnitude AV (here AV corresponds to the gap voltage) were
made randomly at characteristic times t, and t; between the 1-state and O-state. The

noise power spectrum of such a signal is Lorentzian, given by
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FIGURE 6-3. (a) Voltage across device A measured as a function of time with a DC
current bias of 7.2 nA, at the critical current maximum 1 = 0. (b) Noise power spectrum

for the signal described in (a). The smooth line is a fit to this spectrum using Eq. (6-2)
for a Lorentzian with AV =319 uVand t, =t; =0.382s.
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Sv(f)= (6-2)

Here f is the frequency. A measurement of fhc noise power spectrum of this signal
revealed that it was in fact Lorentzian. By performing a fit of Eq. (6-2) to this power
spectrum and assuming that for duty cycles close to 50% (say within 10%) I could use the
approximation t;. + t] = 2tgwitch, I was able to obtain tswitch. This measured noise power
spectrum is shown in Fig. 6-3 (b) along with a fit using Eq. (6-2) with AV =319 uV and
tswitch = 0.382 s. Continuing in this manner for several values of applied magnetic field,
I was able to obtain tgwitch as a function of 1| over the range 1 =0 to0 0.44. (Forn > 0.44,
the frequency 1/tswitch Was approaching the RC rolloff of the device thin-film leads and
stray capacitance of the cryostat wires, resulting in a signal that was no longer a RTS.)
The measured values of tgwiich are plotted on a logarithmic scale versus cos(ntn/2) in
Fig. 6-4. Although there is some curvature at the higher values of n, the general trend is
linear over almost two decades. A line fitted to the upper six points, also shown in
Fig. 6-4, gives a slope indicating a temperature of T = 0.50 K, assuming Ic;MaX = 226 nA.
Because this temperature is so much higher than the mixing chamber temperature
of 19 mK, I cannot assume that the temperature T = 0.50 K is an actual temperature in the
sense of all macroscopic or even microscopic components of the system being in thermal
equilibrium at this temperature. For this reason, I will refer to a temperature inferred
from the junction behavior as an "effective temperature" and denote it by Tefr. However,
I am free to speculate that the high effective temperature is associated with the ohmic
heating of the thin film leads connected to the device, and more specifically, to the ohmic
heating of the conduction electrons in these leads. I will defer discussion of this topic,
and the mechanism by which bias currents of this magnitude might produce temperatures

this high, to Section 6-4.
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In order to make an independent and more direct test of this hypothesis regarding
the high temperature of the leads, a measurement technique was attempted based on
measuring the Johnson noise produced by the leads of the device. According to the
Nyquist theorem, the noise power Sy per unit bandwidth produced by a resistor R at
temperature T is given by Sy = 4kgTR. The thin film leads of device A each had a series
resistance of about 750 k2, so two in series measured about 1.5 MQ. Thus, at a
temperature of T = 0.5 K I expected to the leads to generate RMS voltage fluctuations of
spectral density Sy1/2 = 6.4 nV/Hz!/2, By contrast, at T = 20 mK, the noise should only
be Sy!/2 = 1.3 nV/Hz!2, Thus, by measuring the noise both with and without a DC bias
current applied, I expected to be able to tell whether the bias current was indeed heating
the leads. Unfortunately, because of the limited sensitivity of my amplifier and problems
with external noise pickup and microphonics, I was unable to get an accurate
measurement of the noise increase. However, the results I obtained were consistent with
the hypothesis of lead temperatures of hundreds of millikelvin. A detailed discussion of

this particular measurement and this approach in general can be found in Appendix A.
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6.3 Further Estimates of the Effective Temperature

In Section 6-2, I showed how the bi-stable switching behavior observed in device
A implied a high effective temperature, and obtained an estimate of the temperature using
the characteristic rate of switching. Next I would like to study device B, for it allows me
to obtain a better quantitative estimate of the effective temperature.

Current-voltage characteristics of device B, taken at Tpix = 36 mK for several
values of n, are shown in Fig. 6-5. The measured gap voltage was 375 UV, and the
normal resistance was Ry = 987 Q. Device B provides a marked contrast to device A for
several reasons. Most notably, the current-voltage characteristics were hysteretic except
near critical current minima. This may seem counter-intuitive considering the leads of
device B were lower in resistance than the leads of device A by a factor of nearly 100.
By presenting greater damping, a lower impedance shunt ordinarily would reduce the
amount of hysteresis. In this case, the opposite is true. From an analysis viewpoint, the
advantage of having a substantial hysteresis is that it implies the escape and retrapping
processes never compete, that is, for a bias current where one process is likely to occur,
the reverse process is highly unlikely to occur. A second distinction between devices A
and B is their values of reduced switching currents. The measured values of gap voltage
and normal resistance imply a critical current of I;™maX = 298 nA. When modulated to a
critical current maximum, switching events typically occurred at bias current values near
105 nA, corresponding to a reduced current of s = 0.35. This was much greater than the
corresponding value s = 0.06 observed in device A.

The escape rate as a function of bias current was measured for several values of
applied magnetic field and for temperatures of Tpix =26 mK, 200 mK, and 300 mK. The
results for Tpix =26 mK and 300 mK are shown in Fig. 6-6 plotted on a logarithmic
scale. Scatter in the data at the ends of an escape rate distribution is caused by poor

statistics since these data points represent very few escape events. Several features of the




131

140 —

120 —

2
!

80 —

i';: //’//

20 —

Bias Current Ig,,, (nA)

| | |
0 100 200 300 400 500
Voltage (LV)

FIGURE 6-5. Current-voltage characteristics of device B taken at Tmix = 36 mK for
several values of applied magnetic field: 1 =0, 0.25, 0.50, 0.75, and 1. For clarity, each
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FIGURE 6-6. Device B: Rate of escape to the 1-state as a function of bias current
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the corresponding 26 mK escape rate distribution, and an additional arrow points to the
300 mK distribution when these data are significantly different from the 26 mK data.




data may be noted, and I will focus on the 26 mK data first. The escape rate at any
particular value of Igjas increased smoothly as I was reduced by the application of a
magnetic field. For the case 1 = 0, the escape rate curve showed a slight curvature. This
curvature tended to increase slightly as 1} was increased. As 1 was increased to the value
0.750, a slight downward kink can be seen in the curve at Igjas = 17 nA. The curve
corresponding to 1 = 0.875 was nearly vertical; in this case the kink probably occurred at
an escape rate greater than that probed by the measurement. I attribute these kinks in the
escape rate curves and the greater slope of the curves to the left of the kinks to retrapping
effects. For low values of bias current, the tendency to retrap overwhelms the escape
rate, and so full escape events do not occur until the bias current is increased to a point
where the retrapping rate drops precipitously, allowing the observed fast onset of
switching events. The escape rate curves obtained for Tyix = 200 mK showed almost no
change compared to the 26 mK data. The exception was in the portions of the curves
dominated by retrapping, which were found to be translated to slightly higher current
values. By contrast, the data taken for Tyix = 300 mK showed a clear enhancement in
escape rate. This increase was small (only a factor of about 1.3) and relatively uniform
over the | = 0 distribution. Overall, the enhancement was increasingly larger for
increasingly larger values of 1, and for a fixed value of 1 a larger increase in the escape
rate was observed for smaller values of Igias.

The enhancement of the escape rate for Tyix = 300 mK is useful because it gives
me a chance to test the validity of the Eq. (3-7). Because the escape rate showed a
reasonably strong onset of temperature dependence somewhere between 200 mK and
300 mK, it is reasonable for me to assume that the effective temperature was dominated
by the refrigerator’s temperature of 300 mK. Taking the value I;MaX = 298 nA obtained
from the normal resistance, C = 15 fF from geometrical estimates, and assuming the
critical current modulates acording to Eq. (4-17), I obtain the theoretical prediction for

the escape rate using Eq. (3-7). I found that, while using T = Tpix = 300 mK gives
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results reasonably within range of the data, a better fit to the data is obtained by using

T =370 mK. This is plotted in Fig. 6-7. It should be noted that the theoretical curves
scale remarkably well with the data as 1| is varied, which supports my assumption for the
functional dependance of the critical current on 1.

Interpreting this success as an endorsement for the rough validity of Eq. (3-7), |
can proceed to attempt to fit the 26 mK data utilizing a single temperature between
26 mK and 370 mK. I find that, not only does using T = Tpix =26 mK produce rates
well below the measured the escape rate, but in fact no single temperature in that range
gives a good qualitative fit to the data. This leads me to hypothesize that the temperature
is not constant, but varies with the value of bias current. Thus, I ask conversely,
assuming Eq. (3-7) for the escape rate, and scaling I, with | according to Eq. (4-17) with
IcMax = 298 nA, what effective temperature Teff(IBias) would produce the data? The
result of "working backwards" in this manner, using the escape rate data obtained with
device A while the mixing chamber was at the temperatures of 26 mK and 300 mK, is
shown in Fig. 6-8. Remarkably, for each mixing chamber temperature, several curves
corresponding to a wide range of escape rate values map into roughly a single Teff(IBias)
profile. The Teff(IBias) profile corresponding to the 300 mK data is reasonably flat, as I
expect because of the dominant constant mixing chamber temperature. Meanwhile, the
profile corresponding to the 26 mK data shows a marked increase as the bias current is
increased. Note that no fitting parameters were used to obtain this plot. Only the critical
current, inferred from direct measurements of the normal resistance, and the capacitance,
obtained from geometrical estimates, were used. Although the result is not perfect, it
supports the hypothesis that there is an effective temperature which at the lower
temperatures depends primarily on the current bias. This analysis also shows why
virtually no change in the data was observed when the mixing chamber temperature was
raised from 26 mK to 200 mK: the device already was experiencing an effective

temperature greater than 200 mK. Finally, one should note that the data originating from
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FIGURE 6-7. Escape rate data taken at Tpyix = 300 mK, identical to those shown in
Fig. 6-6, are shown here as heavy lines. Smooth lines are a theoretical prediction using
Eq. (3-7) with T = 370 mK.
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FIGURE 6-8. Effective temperature Teff of device B plotted versus bias current. Data
obtained from escape ratc measurements are shown as symbols: open circles represent
data taken while the mixing chamber was at 300 mK, while solid squares represent data
taken while the mixing chamber was at 26 mK. The upper and lower smooth curves are
hot electron theory estimates of the effective temperature using phonon temperatures of
Tph = 300 mK and Tph = 26 mK, respectively.




portions of the escape rate distributions to the left of the so-called "kinks" deviate
strongly from the Teff profile that most of the other data map into. This is consistent with
the assumption that these data were dominated by retrapping and should not be governed
by Eq. (3-7).

Escape rate measurements were also performed on devices A and C. Although I
demonstrated in Section 6-2 that device A showed bistable behavior with a DC or very
low frequency current bias, by using sufficiently fast ramp rates and restricting my
measurements to low values of 1 I was able to obtain single-switch type behavior and
thus probe the escape rate for bias currents just greater than the bistable region. As with
all devices tested, the escape rate distributions were scrutinized for evidence of resonant
tunneling. Using I =226 nA and C = 37 fF, I expect to find peaks indicative of resonant
tunneling in the current range of 7 nA to 3 nA for 1| ranging from 0 to 0.875 for the first
resonance m = 1. Higher order resonances should occur in a current range which scales
with m according to Eq. (2-15). No peaks or unusual features of any sort were observed,
in spite of the fact that switching events for this device occurred in a range of bias
currents which included the values predicted for resonances.

Effective temperature profiles Teff(IBias) were obtained from the low-temperature
escape rate data for devices A and C by applying the same analysis as was applied to
device B. These are shown in Fig. 6-9. Excellent results were obtained for device A,
with all five escape rate curves for | =0, 0.125, 0.250, 0.375, and 0.500 falling closely
together. The results for device C are not as nice; the curves do not map as neatly into a
single Teff(IBias). However, the error is within the uncertainty which arises in
determining m. An accurate calibration of i as a function of the magnet current is

unavailable as measurements of device C were performed early in the research.
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FIGURE 6-9. Effective temperature Tesf of devices A and C plotted versus bias current.
Data obtained from escape rate measurements are shown as solid lines. (a) Device A,
data taken with the mixing chamber at 36 mK. (b) Device C, data taken with the mixing
chamber at 19 mK. Smooth dashed curves in (a) and (b) are hot-electron theory estimates
of the effective temperature using phonon temperatures equal to the mixing chamber
temperatures.




6.4 The Hot Electron Model for Heating

The analysis of the last section revealed that the devices behaved as if they were
operating at an effective temperature Tegf(IBias) Which was dependent on the magnitude
of the bias current. The implication is that the devices underwent self-heating. As the
current is increased, the observed effective temperature typically rises sharply at first, and
then more gradually at higher currents. The type of functional dependence of the
temperature on the bias current is somewhat unusual if one considers a simple model for
heating: Suppose the power P dissipated by one of the thin film leads carrying the bias
current is connected to the mixing chamber of the dilution refigerator, held at temperature
Tmix = 20 mK, by some constant thermal conductance G. Then I would expect a
temperature dependance of T = Tmix + P/G. The observed effective temperature is
certainly not linear in the power, however. One might suggest a particular thermal
conductance which is temperature dependent, such as the thermal conductance of the
superconducting aluminum. However, by the following argument I can rule out a large
class of such models which involve the actual superconducting device getting hot. By
examining the results of device A I note that the effective temperature is already 540 mK
at a bias current of 20 nA. However, for a bias current of 200 nA which represents an
increase in power by a factor of 100, the current-voltage characteristic revealed no
apparent reduction in the gap voltage. This implies that in some sense the device remains
at a temperature well below aluminum's critical temperature T¢ = 1.1 K, and therefore the
effective temperature Tegf(IBias) does not flatten out because the thermal conductivity
"turns on" near T.

One might attempt to construct a myriad of scenarios by which Teff(IBjas) might
be modeled. Instead, I will focus on a particular model which gives a reasonably good
and consistent quantitative prediction for the effective temperatures observed in the

various devices I measured. This model, the hot electron model for the heating of normal
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metals at low temperatures, has been studied theoretically by several authors [71, 75, 76],
and its predictions have been experimentally verified in several systems. The first
experimental investigation of the effect in thin films was done by Roukes et al [71]. Here
at Berkeley it was studied by Wellstood et al. because of its implications for the
performance of DC SQUID based amplifiers operating at millikelvin temperatures [69,
70].

The essence of the model is to treat the electron gas and the phonon gas as
separate systems, connected by the electron-phonon interaction. The electron and phonon
systems each have their own distinct temperatures T and Tph, respectively. Consider
one of the thin-film resistive leads, which carries a current I. A voltage V develops
across the lead, and power P =1V is dissipated in the lead. The energy dissipated through
the ohmic resistance enters the electronic system first. Energy is then transferred to the
phonon systcm through the electron-phonon interaction. The phonon system, which is
strongly coupled to the mixing chamber [69], acts as a thermal reservoir at temperature
Tph = Tmix. For an electron gas at temperature Te, the rate of energy loss by emission of
phonons scales as Te3, as can be understood by the following argument: The
characteristic frequency wph of the emitted phonons is wph = kpTe/fi, and the energy of
the phonon is proportional to wpp. For sufficiently low temperatures (much less than the
Debye temperature), the number of available phonon states is proportional to wpp3.
Finally, in the deformation potential approximation, the electron-phonon coupling
constant is proportional to wpp. Using Fermi's Golden Rule one obtains an emission rate
proportional to coph5 and thus to Te3. This emission rate becomes sufficiently weak at
low temperatures that the electron gas heats up to a temperature Te >> Tph. The
expression for the relationship between the applied power P and the temperatures Te and

Tph in a bulk approximation is

—g z(T5 -T5 ) (6-3)



where Q is the volume of the metal, and X is a constant which is material dependant.
While Eq. (6-3) is valid for all bulk samples at low temperatures, typically the effect
becomes significant (Te >> Tph) in thin-film systems where P/Q is very large. Wellstood
[69] found T = 2 x 10% W/m3KS3 for the CuAu alloy commonly used in SQUID shunts,
while Kautz et al. [72] obtained the best modeling of their Al (driven normal by a
magnetic field) Coulomb-blockade electrometer by using X = 2 x 108 W/m3K3.

I can apply Eq. (6-3) to obtain T as an estimate of the effective temperature of
the thin-film normal-metal leads connected to my devices. Using measured lead
resistances and measured geometry of the leads (both found in Table 6-1), and using X as
an adjustable parameter, I obtain Teff(Igjas) for devices A, B, and C. Plotted in Fig. 6-8
are Te(Igias) curves obtained by using £ = 7.6 x 1010 W/m3K3 with Tph = 26 mK and
Tph = 300 mK, which were the temperatures of the mixing chamber when the
corresponding data were taken. I find that the theoretical curves reproduce the general
trends of the data but give a temperature which rises too fast as the bias current is
increased. Similarly, the Tph = 300 mK curve is not as flat as the corresponding data. I
obtained similar results for devices A and C, illustrated in Fig. 6-9. The data for device A
were best fit using T = 1.1 x 1011 W/m3K3, while the data for device C were best fit
using Z = 5 x 1010 W/m3K3. Although the values of T used to obtain fits for devices A,
B, and C were factors of 38, 55, and 25 larger than the value measured by Wellstood for
CuAu, respectively, one should note that these values represent factors of only 1.9 to 2.2
in Te. The values of T also show great consistency with each other considering that,
among these three devices, the ratios of resistance of the leads to their volume varies from
5.6 x 1022 Q/m3 to 3.1 x 1025 Q/m3. Comparison of the values of £ found
experimentally for Al and CuAu show that material variations could easily explain
differences in X of this magnitude.

What could account for the differences between the hot eleciron model prediction

Te(IBias) and the measured Tef(Igjas)? Perhaps it would be best to take a step backward
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to try first to understand more precisely what might define a so-called effective

temperature. Suppose, according to the hot electron model, that the conduction electrons
in the leads are hot, while the phonons are not. Because it is the electron gas which has
an associated ohmic resistance, it is the temperature T, which determines the magnitude
of the Johnson current noise produced in the leads. In the RSJ model of a Josephson
junction in thermal equilibrium at temperature T, the temperature parameter affects the
junction dynamics by the inclusion of a white noise term IN of magnitude given by the
Nyquist theorem which is added to the steady bias current Igjas, as described in
Chapter 3. Thus we can see that, even though the body of the device may be physically
at a temperature Tpp = Tpix Which is quite cold, it may behave dynamically as the RSJ
model predicts for a junction at temperature T = Te. This picture is supported by my
observation that there was no reduction in the superconducting energy gap at high bias
currents.

Given this picture of the effective temperature generation, one realizes that
differences between the prediction of the hot electron model and the effective temperature
inferred from the data may depend on several complex issues. First of all, one might
question how well the bulk model for the hot electron effect approximates the real system
from a geometrical point of view. Wellstood [69] has discussed in detail the results of
spatial effects in the hot electron model. Although they illustrate much of the physics of
the transport of the hot electrons, these models can only be quantitatively applied to
systems of simple geometry. Secondly, one must consider how much of the noise
produced in the leads is effectively coupled to the junction, and how much is shunted by
self-capacitance within the circuit. Finally, as discussed earlier, one can model devices in
this parameter range quantitatively only through elaborate extensions of the RSJ model,
therefore a simple scalar temperature is most likely insufficient to parameterize the

complex dynamics of this system. Since all of these issues are of great complexity, they




most likely cannot be resolved without a more detailed quantitative study of these and
related systems.

One final conclusion may be drawn by studying the effective temperature analysis
presented in this chapter. It seems that Eq. (3-7) for the escape rate retains its validity for
all three devices A, B and C. This is remarkable because the ranges of reduced current s
for which switching occurred were quite different for the devices. For example, device B
switched at approximately s = 0.36 while device A switched at the much smaller value
s =0.06. A look at the washboard potential reveals that for s > 0.216 there is a single
energy barrier for escape to the 1-state, while for s = 0.06 there are multiple barriers.
Initially I had suspected the downward curvature observed in the escape rates was caused
by the onset of multiple barrier effects as one went to smaller values of bias current and
thus to smaller values of s. However, I failed in all attempts to model this in a way that
reproduécd the trends in the data. Given the overall success of the thermal activation
formula used in conjunction with a hot electron model for providing a current-dependent
effective temperaure, I can conclude that the presence of multiple barriers does not play a

dominant role in determining the escape rate in the high temperature limit.
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CHAPTER 7

Conclusion

Although the experimental investigation presented in this thesis failed in its goal
of observing a signature of resonant tunneling, it did reveal some important general
features of superconducting devices of very small capacitance operating at low
temperatures, and served to identify specific problems which need to be addressed in
order to further pursue the goal of observing resonant tunneling.

In this chapter I wish to first explore the possibility of using minor variations of
the present approach in order to avoid the problem of the heating of the isolation resistor.
Then I will outline some experimental tests designed to obtain better quantitative
understanding of the resistor heating. Next I will describe theoretical work which needs
to be undertaken, first to put the results already obtained in this experiment on a firmer
quantitative ground, and secondly, to advance the quantum theory of resonant tunneling,

especially as it is affected by dissipation.



7.1 Can Hot Leads Be Avoided?

The primary roadblock to observing resonant tunneling using my adopted
approach is the heating of the on-chip thin film resistors by the bias current. The question
is, can this heating be avoided by making some minor change of either the parameters of
the device or the parameters or design of the resistor?

First, consider a change in the capacitance C or the critical current I.. Since the
resonant tunneling effect will only occur for v 2 1.7, and because inter-well coupling will
be suppressed in the large v limit, I conclude that the value of v is constrained to values
near those it assumed in the devices already tested, with v = 4 a good value to aim for
specifically. To avoid heating, one should reduce the value of the bias current required,
which is determined by the resonance current IS = [-m/ntv and which thus scales with
I¢ for fixed v. The hot electron theory for the heating of the resistors then predicts that
the effective temperature Tegr will scale roughly as Tegf ~ Ic2/5. However, since
v ~ (I.C)1/2 and is held fixed while I; and C are varied, the plasma frequency will vary in
proportion to I.. Because the plasma frequency determines the energy level spacing,
fiwp/kp must be kept larger than the effective temperature. By examining Table 4-1,
which displays the values of fiwp/kp for device A, and Fig. 6-9 (a), which displays the
observed effective temperature of this device, one can see that these quantities were
comparable. As I¢ is lowered, the level spacing will decrease much faster than the
effective temperature, and, perhaps contrary to intuition, the heating problem is actually
made worse. Thus, there is little advantage to be gained by changing I; or C.

Next, consider the possibility of changing the resistor itself, first by substituting a
material of higher resistivity for the SiCr alloy. For a resistor with a uniform cross
section of area A and length A carrying a fixed bias current, the hot electron model
predicts Tegr will depend on the resistivity p and the cross sectional area as

Teft ~ (p/A2)1/5. Meanwhile, in the high frequency limit, the impedance Zjeaq of the lead
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scales as Zjead ~ (RL/CL)!/2 ~ (p/A)1/2, assuming the capacitance does not vary much if

A is varied by v ‘ying the film thickness. It is clear from these scaling laws that it is
difficult to reduce the temperature Tegr without reducing the lead impedance as well. One
can only accomplish this by increasing both p and A while keeping the ratio p/A
constant. In this case the effective temperature is very weakly dependent on p as
Tefs ~ (1/p)1/5. Thus, a factor of 32 increase in resistivity results in only a factor of 2 in
the reduction of the effective temperature. Tests by Andrew Cleland indicate that flash
evaporating a SiO-Cr sinter which is 50% Cr by weight produces films with resistivities
which are about a factor of 3 to 4 larger than that produced by the SiO-Cr sinter I used,
which was 65% Cr by weight. This represents only a small increase in resistivity. For
metal/semiconductor alloys too rich in the semiconductor material, conduction is by
thermally activated carriers which freeze out at low temperatures, making these materials
unacceptable for this application. I do not know of any other materials which have
significantly higher resistivity which also satisfy the requirement of conduction at low
temperatures. Thus, changing the resistor material is an unlikely solution to the heating
problem.

The geometry I used for the resistor was a line of uniform cross section. There is
a possibility that a geometry where the cross section increases with the distance from the
SQUID could be used in such a way that a lower effective temperature is realized while
presenting the same impedance to the SQUID. This would not be possible if the resistor
were in thermal equilibrium at a uniform temperature, for the temperature and the
impedance seen by the SQUID would completely determine the current noise introduced
to the SQUID. However, in this case the effective temperature will vary as a function of
distance from the SQUID, and segments of the resistor with wider cross section will be
colder and will thus generate less Nyquist noise where the resistor connects to the
SQUID. It is conceivable that this increase of the cross section with distance from the

device could be accomplished without reducing the impedance Zjeaq significantly,



because at high frequencies only a small segment of the resistor contributes to the
impedance. For example, at the plasma frequency of device A, a 3 um segment of its
isolation resistor would present approximately the same impedance as the full length of
the resistor. A model to determine the impedance and effective temperature of a resistor
with increasing cross section could be devised and its treatment of the hot electron effects
should include the spatial effects described by Wellstood [69]. I have not yet pursued an
analysis of this sort.

Finally, one might consider a pulsed measurement of the switching current where
the current is very quickly increased from zero current so that the device switches before
the electron gas in the resistor heats up. However, because the volume of the resistor is
small, the heat capacity of the electron gas is also small, and the heating of the electrons
takes very little time. For the isolation resistors of device A, I have estimated that a bias
current pulse equal in magnitude to the typical switching currents observed in that device
would heat the resistor to half its final effective temperature in a few nanoseconds. This
is a time scale much shorter than the lifetime of the 0-state, and so a measurement of this

nature would not avoid heating.
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7.2 Suggestions For Further Research

In my analysis of my experimental data, the effective temperature was inferred
from the switching characteristics of the device. This method of obtaining the
temperature from measurements of the escape rate possesses some inherent inaccuracy,
because the thermal activation formula given by Eq. (3-7) is not necessarily exact and is
in fact probably oversimplified, and because the escape rate depends on the inverse
temperature exponentially, which serves to magnify any errors in the formula or
measurements. Thus, an important next experimental step would be to make careful
direct measurements of the temperature of the electron gas of the resistors using noise
thermometry. This would confirm the hot electron behavior, provide a more accurate
measurement of the effective temperature, and perhaps give a better understanding of the
geometrical effects involved in the heating, thereby allowing the possibility of intelligent
modifications to the resistor design. The process of carrying out a noise thermometry
measurement is the subject of Appendix A.

The primary need for further theoretical work at this point is to provide accurate
quantitative modeling of the device behavior as a support to further experimental
research. The first step would be to perform detailed modeling along the lines of the
Kautz and Martinis model in order to understand the complex classical behavior of the
devices I have tested, and devices proposed for testing in the future. 1 envision a Monte
Carlo simulation of the combined system of the SQUID, the isolation resistors, and the
measurement setup, which utilizes a more accurate model of the heating in the resistors
obtained through the noise thermometry experiment described above. The analysis of
Section 7.1 showed that it is unlikely that a major improvement could be made by any
single change in the design of the device or resistors. However, by using this simulation
as a tool one could explore the effccts of a combination of several minor variations in

device and resistor design, and perhaps an accurate simulation would also reveal that




some of the constraints imposed by the analysis presented in this thesis may be relaxed
enough that it is possible to move to within the limit where resonant tunneling could be
observed.

While the quantum theory presented in Chapter 2 gives an overview of what sort
of effects one could expect to observe which arise from resonant tunneling, some features
must be added to the theory before firm quantitative predictions can be made. I believe
the primary deficiency of the theory is the proper treatment of dissipation and the effects
of temperatures greater than zero. The most significant effect that dissipation and
nonzero temperature have on the system is to cause direct incoherent relaxation of the
system from the ground state of one well to the ground state of the adjacent well. These
effects have been thoroughly studied by several authors for the double well system which
is illustrated in Fig. 7-1 (a). A review of the theoretical studies of this system is given by
ref. (40]. The assumption made in these studies is that the excited states in each well can
be neglected because they are of energies which are much greater than the available
thermal energy, the energy difference between the two local ground states, and the tunnel
splitting between the states. While the analysis is quite complex, the qualitative result for
ohmic damping is that the coherent oscillations characteristic of resonance occur between
the two states only for very low damping and very low temperatures. Eventually, these
oscillations are damped out, and the systemn relaxes to a steady-state configuration which
also depends on the damping and temperature. While the behavior of the two well
system gives one some feeling for the effects of damping and nonzero temperature on
nearly degenerate states which are weakly coupled, the two well system is far enough
removed from the resonant tunneling system I have studied for these results to be applied.

For this reason, I propose a theoretical study of the asymmetric two well system
illustrated in Fig. 7-1 (b). In this model the first excited state B of the right well is nearly

degenerate with the ground state A of the left well. Solving the dynamics of this system
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b)

FIGURE 7-1. (a) Two state system studied in ref. [40], represented as a double well.
The excited states in each well are assumed to be of sufficiently high energy that they
may be ignored in the analysis. (b) Three state system proposed for theoretical study.
States A and B are nearly degenerate. Damping in the system creates a coupling which
induces direct transitions from state A to state C. This process competes with the process
which involves a resonant transition from A to B followed by a decay transition from B
to C.




should reveal the competing effects of the resonant coupling between A and B and the
incoherent coupling between the ground states A and C provided by dissipation.

To obtain a sense of the importance of this incoherent relaxation, I have estimated
the rate I'rejax Of relaxation of the system shown in Fig. 7-1 (b) from state A directly to
state C using the perturbation theory of damping described in Section 3.2. I wish to
compare this result to the rate F'RT/decay = Wp¥/2, where v is given by Eq. (2-39), which is
the rate of steady motion down the washboard potential achieved through resonant
tunneling and decay, shown as path A in Fig. 1-1. In order to make this comparison I
assume that the double well potential is equal to the washboard potential over the region
of the two wells, and define the parameters of the three state system in an fashion
analogous to the parameters for the RSJ model which were given in Chapter 2. In actual

inverse time units, I obtained the relaxation rate

=20 Ro 2 i
4 R @b

As usual, wp is the plasma frequency, R is the shunt resistance which provides the
damping, and RQ is the quantum of resistance. Here, however, A/2 is the matrix element
of the Hamiltonian between states A and C in units of imp/2, which is distinct from the
matrix element between states A and B, which I again denote as Aj/2 as in Chapter 2.
Values for the coupling A; and the decay rate I'g are typically in the limit Aj << Iy, so

the rate I'RT/decay is given by

T, R
T'RT/decay = “IRV"_AZI : (7-2)

Rq

The expressions for the rates I'relax and I'RT/decay are very similar. Apart from a factor

of v and differences in the couplings A and A}, the important distinction between these
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rates is that I'rejax is proportional to RQ/R, whereas I'RT/decay is proportional to R/Rq.

While my estimate for I'yejax is admittedly crude, the point to be made is that although
these rates may be comparable under some circumstances, I expect that by decreasing the
damping the incoherent relaxation may be suppressed while the resonant transition rate is
enhanced. A full theoretical analysis of the three state system is necessary to obtain
accurate predictions regarding these effects, which have important implications for the

observation of resonant tunneling.



7.3 Epilogue

The subject of resonant tunneling in a current biased Josephson junction remains
an interesting problem, primarily because it is simple in conception, yet as one looks at
the problem with greater scrutiny, its complexity does not cease to grow.

The research presented in this thesis is a good example of the complementary
development of theory and experiment. Although my experimental work failed to
produce a signature of resonant tunneling and thus provide a test of the theory I
developed, I did achieve my goals which were twofold: first, to perform a
straightforward test based on the predictions of my theory for whether the effect was
readily observable, and second, to direct future theoretical research toward the most
crucial areas of study.

The heating of the isolation resistors caused by the hot electron effect serves as an
important guide to any experimenter operating thin film devices at millikelvin
temperatures. Although this heating creates a substantial difficulty for advancing the
experiment to observe resonant tunneling using my approach, the possibility remains

open for taking other approaches to achieving this goal.

153




154

APPENDIX A

Noise Thermometry

According to the Nyquist theorem, the voltage across a resistor Ry, which is in
thermal equilibrium at temperature Tp randomly fluctuates. This is modeled as a
fluctuating voltage source VL in series with the resistor Ry.. The noise power spectrum of
these fluctuations is frequency independent, with mean square fluctuations per unit

bandwidth given by

Sy, =4kpT Ry . (A-1)

Thus, through a measurement of the noise power, the temperature T, can be obtained.
This method of measuring the temperature is referred to as noise thermometry,
and it is a technique of general usefulness. Specifically, it was used by Wellstood [{69]
for measurements of the hot electron effect in thin films of AuCu, the material commonly
used to form resistive shunts for SQUID magnetometers. This was also the method I
used in an attempt I made to directly measure the effective temperature Teff(IBjas) of the

isolation resistors as a function of the DC bias current Ipj,s they carried.



The switching behavior discussed in Chapter 6 implied that the effective
temperature was on the order of 0.5 K to 1 K. Assuming a temperature of T, = 1 K to be
definite, the noisc power produced by a resistor of value Ry = 1.5 MQ (which was
approximately the series resistance of two of the isolation resistors) should be
8.3 x 10-17 V2/Hz.

I experienced several difficulties while carrying out this noise measurement.
Some of these problems were associated with my particular setup, while others were
more fundamental. First of all, the PAR 113 amplifier I used had an input noise power of
about 5.6 x 10-17 V2/Hz, which was comparable to the noise level I expected to measure.
Through the use of signal averaging, this problem could conceivably be minimized. The
second main problem was more fundamental in nature, and that was the fact that a current
source had to be used to provide the DC bias current which was sufficiently quiet that it
did not overwhelm the noise of interest generated by Ry..

To understand this, consider the circuit illustrated in Fig. A-1 (a). The resistor R
and its associated noise source Vi is shown at the right of the circuit, and is at a
temperature Ty.. The current source supplying the current Igjas, shown at the left of the
Figure, is at the temperature T and has a finite impedance Rg. The current source also
obeys the Nyquist theorem, and can be modeled as having a fluctuating current source IN

which has the noise power spectrum

_ 4kgTp

S1g Ry

(A-2)

The fluctuating voltage measured at the terminals Vgy shown in the figure contains
contributions from both Vi and Ig. The total noise power which appears at the output

terminals is
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FIGURE A-1. (a) Circuit diagram for a noise thermometry measurement of the effective
temperature of the resistor Ry, shown at the right and assumed to be at a temperature Ty
A DC current bias Igijas is provided by the current source shown at the left of the Figure,
which has a finite impedance Rp and is at the temperature Tg. (b) Circuit diagram of an
actual circuit used in an attempt to measure the effective temperature of the isolation
resistors of device A.
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- 2y _Rp
Svout = (SVL + SIBRL)(RL +RB) ’

which can be written in terms of Sy as

TgR R 2
Sy = TR i(_Rp | 3
Vout SVL[1+TL RB:I(RL+RB) (A )

In order to avoid the detrimental effects of the current source noise, the second term in
the square brackets must be made negligible. This precludes the use of a room
temperature current source because the large ratio of Tg/TL forces a choice of source
impedance Rp >> 450 MQQ, which creates great experimental difficulty. The alternative
is to use a cold current source.

For this reason I attempted to use the circuit setup shown in Fig. A-1 (b) with the
bias resistor R, = 100 MQ located at the end of a long piece of coaxial cable so it could
be submerged in liquid He contained in a storage dewar separate from the dilution
refrigerator cryostat. Unfortunately, the problem with this setup was that the microphonic
current noise generated in the coaxial cable and the cryostat wires combined with the high
impedance of R|, creaied too much noise to observe the desired signal. Substitution of a
10 MQ resistor for Ry did not improve the situation much. Because these tests were
performed while the dilution refrigerator remained running with the device in situ, I was
not able to set up a circuit which avoided long cable lengths for the express purpose of
making this noise measurement.

Instead, I turned to the current-sense resistor already located on the chip carrier,
which was at a temperature of approximately 20 mK and had a resistance of 1.3 MQ. I
used this resistor as the bias resistor Rg. Unfortunately, the small value of Rg meant that

the term in the right parenthesis in Eq. (A-3) was equal to about 0.2, which made the
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signal at Vo even weaker compared to the amplifier noise. Also, some microphonics
generated by the cryostat leads remained to obscure the signal further.

In spite of these difficulties, the measured noise spectrum was found to display a
definite systematic increase when a bias current of about 15 nA was applied, compared to
the noise spectrum observed when zero bias current was applied. The noise power
increase was about 2.1 x 10-17 to 3.5 x 10-17 V2/Hz, starting with a base noise power of
about 1.6 x 10-16 V2/Hz, This increase is not inconsistent with the estimated noise power
increase of 1.7 x 10-17 V2/Hz based on an assumed effective temperature of 1 K for Ry..

A carefully designed measurement setup could be devised which avoids the
problems described above by using a larger bias resistance at low temperatures and a
quieter preamplifier, with the circuit designed to reduce the microphonic pickup as much

as possible.
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