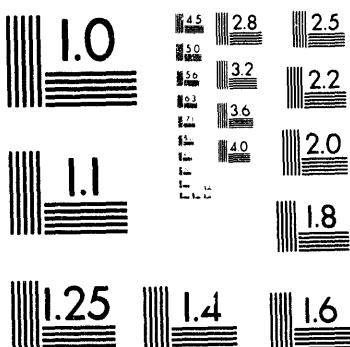


AIIM


Association for Information and Image Management

1100 Wayne Avenue, Suite 1100
Silver Spring, Maryland 20910
301/587-8202

Centimeter

Inches

MANUFACTURED TO AIIM STANDARDS
BY APPLIED IMAGE, INC.

1 of 1

THE CARNOL PROCESS FOR METHANOL PRODUCTION AND UTILIZATION WITH REDUCED CO₂ EMISSIONS

By

Meyer Steinberg and Yuanji Dong

October 1993

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

ED
DO NOT CITE OR QUOTE FROM THIS DOCUMENT. IT IS UNCLASSIFIED

THE CARNOL PROCESS FOR METHANOL PRODUCTION AND
UTILIZATION WITH REDUCED CO₂ EMISSIONS

By

Meyer Steinberg and Yuanji Dong
Brookhaven National Laboratory
Upton, NY

October 1993

ABSTRACT

A first order comparative mass and energy analysis is made of alternative processes for the production and utilization of methanol. Conventional reforming of natural gas with steam and CO₂ indicates a yield of approximately 1 mol of methanol per mol of methane and a net emission of 1 mol of CO₂ per mol of methanol. Three new processes called Carnol I, Carnol II and Carnol III utilize CO₂ as a feedstock in conjunction with hydrogen produced from the thermal decomposition of methane can reduce CO₂ emission compared to the conventional process by 35%, 88%, and 100% respectively while reducing methanol production by 11%, 35%, and 39% respectively. The carbon from methane decomposition can be sequestered or sold as a commodity. The methanol can be used in the transportation sector as an alternative efficient fuel. A preliminary economic estimate indicates the equivalent cost for reduction of CO₂ to be less than estimates for removal, recovery, and disposal of CO₂ from power plant stack gas. The Carnol process leverages the CO₂ reduction both from central fossil fuel fired power plants and the transportation sector. The Carnol process assists in the reduction of CO₂ emission from an otherwise impossible collection of CO₂ from highly dispersed heat engine and small scale fuel users.

INTRODUCTION

Methanol is an environmentally preferred alternative transportation fuel and also can serve as a clean stationary power plant fuel. It can be produced from a number of carbonaceous feedstocks including natural gas, oil, coal, biomass (wood), and other agricultural products as well as municipal solid waste (MSW). Because of its abundance, relatively low cost, and processability, the preferred feedstock currently is natural gas (methane). There is also presently great interest in the direct utilization of CO₂ for purposes of reducing CO₂ emissions in order to mitigate the global greenhouse warming problem. One possibility is the utilization of large quantities of CO₂ for the production of such potentially large scale fuel and chemical commodities as methanol.

The following first reviews the conventional methods of reforming natural gas in Parts I, II, and III, and then the new Carnol processes are developed in Parts IV, V, and VI.

I. Conventional Method for Methanol Production - Steam Reforming

The conventional method for methanol production essentially consists of the steam reforming of natural gas to form carbon monoxide and hydrogen synthesis gas.¹ The synthesis gas is then sent to a methanol catalytic synthesis reactor for conversion to methanol. The excess hydrogen can be used in the reformer to provide the endothermic heat of the reforming operation. The reaction sequence is as follows:

1. Steam reforming: $H_2O + CH_4 = CO + 3H_2$
2. Methanol Synthesis: $CO + 2H_2 = CH_3OH$

The endothermic heat of reaction²

$$\Delta H = -26 + 0 - (-68) - (-18) = + 60 \text{ Kcal/mol}$$

The excess mol of hydrogen after the methanol synthesis can supply the energy for the steam reforming by combustion with air.

Additional methane for generating the steam must be used.

1 mol steam requires 10 Kcal/mol.

$$\text{Moles } CH_4 \text{ required by combustion} = \frac{10}{212} = 0.05 \text{ moles}$$

The total CO_2 emissions per mol of CH_3OH produced and used as fuel =

$$\frac{1.0 (CH_4) + 0.05 (CH_4)}{1.0 (CH_3OH)} = 1.05 \text{ moles } CO_2/\text{mol } CH_3OH$$

$$\text{Moles } CH_3OH \text{ per mol of } CH_4 = \frac{1.00}{1.05} = 0.952$$

A simplified block flow diagram of the conventional process is shown in Figure 1.

II. Gasification with CO₂ Reforming

The conventional method of reforming methane with steam can also be conducted instead with CO₂. The resulting synthesis gas can be shifted and the CO and H₂ can then be converted to methanol.

The reaction sequence is represented by the following reactions:

1. Reforming: $\text{CO}_2 + \text{CH}_4 = 2\text{CO} + 2\text{H}_2$
2. Shift: $0.67 \text{CO} + 0.67 \text{H}_2\text{O} = 0.67 \text{CO}_2 + 0.67 \text{H}_2$
3. Removal and Release of CO₂: -0.67CO_2
4. Methanol Synthesis: $1.33 \text{CO} + 2.67 \text{H}_2 = 1.33 \text{CH}_3\text{OH}$

Overall Net Reaction: $0.33 \text{CO}_2 + 0.67 \text{H}_2\text{O} + \text{CH}_4 = 1.33 \text{CH}_3\text{OH}$

The reforming reaction requires the following amount of energy:

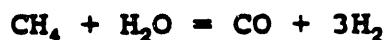
in Kcal/mol, $\Delta H = 2(-26) + 2(0) + 94 + 18 = + 60 \text{ kcal/mol}$

CH₄ required for combustion to provide the energy to the reformer =

$$= \frac{60}{212} = 0.28 \text{ moles CH}_4$$

The CO₂ emissions per mol CH₃OH when burned as fuel

$$= \frac{-0.33(\text{CO}_2) + 1.33(\text{CH}_3\text{OH}) + 0.28(\text{CH}_4)}{1.33(\text{CH}_3\text{OH})}$$


$$= \frac{1.28}{1.33} = 0.962 \text{ moles CO}_2 \text{ per mol CH}_3\text{OH}$$

$$\text{Moles CH}_3\text{OH produced per mol CH}_4 = \frac{1.33}{1.28} = 1.039$$

A simplified block flow diagram of the conventional process with CO₂ reforming is shown in Figure 2.

III. Reforming with Steam and CO₂ Reforming

Reforming of CH₄ can take place both with steam and with CO₂ to produce a 2:1 mixture of H₂ and CO which is required by methanol synthesis. The reactions in the reformer are as follows:

The energy requirement for reforming can be calculated as follows:

$$\Delta H = 1.5(18) + 68 + 0.5(94) + 2(-26) = 90 \text{ kcal}$$

This energy is provided by burning additional CH₄. The CH₄ required for combustion is:

$$\frac{90}{212} = 0.42 \text{ moles CH}_4$$

Additional methane is required to raise the steam for use in gasifier.

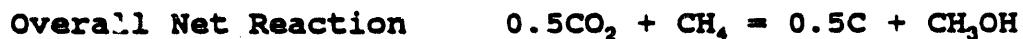
$$= 0.05 \text{ CH}_4/\text{CH}_3\text{OH}$$

$$\begin{aligned} \text{CO}_2 \text{ emission} &= \frac{-0.5(\text{CO}_2) + 2(\text{CH}_3\text{OH}) + 0.42(\text{CH}_4) + 0.05(\text{CH}_4)}{2(\text{CH}_3\text{OH})} \\ &= 0.99 \text{ moles CO}_2 \text{ per mol CH}_3\text{OH used as fuel} \end{aligned}$$

The methane required per unit methanol.

$$\text{CH}_4/\text{MeOH} = (1.5 + 0.42 + 0.05) / 2 = 0.99 \text{ mol/mol}$$

$$\text{Moles of MeOH produced per mol CH}_4 \text{ consumed} = \frac{1}{0.99} = 1.01 \text{ mol/mol}$$


A simplified block diagram is shown in Figure 3.

IV. The CARNOL I Process for Methanol Synthesis for Reducing CO₂ Emission

There is, however, another method of utilizing CO₂ and CH₄ for the production of methanol which could reduce CO₂ emissions significantly but with a small reduction in methanol production per unit of methane. This process involves the gasification of carbon

with CO_2 to produce CO and the production of carbon and hydrogen by the thermal decomposition of methane. Half of the carbon is then sequestered or sold and not burned and half is used in the gasification with CO_2 . Finally, the CO from the gasification reaction is combined with the hydrogen from the decomposition of methane reaction to form methanol. The reaction sequence is as follows:

1. Gasification	$0.5 \text{CO}_2 + 0.5\text{C} = \text{CO}$
2. Methane Decomposition	$\text{CH}_4 = \text{C} + 2\text{H}_2$
3. Remove and Sequester or sell as Carbon	-0.5C
4. Methanol Synthesis	$\text{CO} + 2\text{H}_2 = \text{CH}_3\text{OH}$

Energy requirements for gasifications and methane decomposition:

Gasification: $\Delta H = (-26) - 0.5(-94) = + 21 \text{ Kcal/mole}$

Methane : $\Delta H = -(-18) = +18$
Decomposition

Total methane required for combustion to provide the endothermic energy for the above energy requirement:

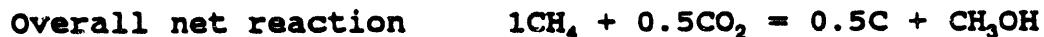
$$= \frac{21 + 18}{212} = 0.184 \text{ moles CH}_4 \text{ per mol of CH}_3\text{OH}$$

$$\text{CO}_2 \text{ emission per mol CH}_3\text{OH} = \frac{-0.5(\text{CO}_2) + 1.0 (\text{CH}_3\text{OH}) + 0.184 (\text{CH}_4)}{1.00 (\text{CH}_3\text{OH})}$$

$$= 0.684 \text{ moles CO}_2 \text{ per mole CH}_3\text{OH used as fuel}$$

Moles CH_3OH produced per mol CH_4 utilized

$$= \frac{1.00}{1.00 + 0.184} = 0.845$$


A simplified block flow diagram of the CARNOL I process is shown in Figure 4.

Alternate Carnol IA Process for Methanol Synthesis

An alternate Carnol I process is also possible which yields very similar results to the above Carnol I process, deals with the reforming of methane with CO_2 instead of the gasification of part of the carbon from methane decomposition. The reaction sequence then is as follows:

1. Thermal decomposition $0.5 \text{CH}_4 = 0.5 \text{C} + \text{H}_2$
2. Remove, store, or sell carbon -0.5C
3. Reform methane with CO_2 $0.5\text{CH}_4 + 0.5\text{CO}_2 = \text{CO} + \text{H}_2$
4. Methanol synthesis $\text{CO} + 2 \text{H}_2 = \text{CH}_3\text{OH}$

Energy requires for methane decomposition and reforming is as follows:

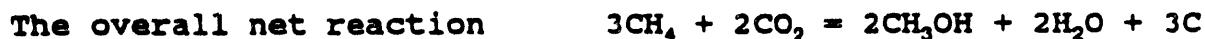
$$\begin{array}{ll} \text{Methane decomposition} & \Delta H = -0.5 (-18) = + 9 \\ \text{Methane reforming} & \Delta H = (-26) - 0.5(-94) - 0.5(-18) \\ & = + 30 \text{ Kcal} \end{array}$$

Total methane required for combustion to provide endothermic energy for above energy requirements is:

$$\frac{30+9}{212} = 0.184 \text{ moles CH}_4 \text{ per mol CH}_3\text{OH}$$

CO_2 emission per mol CH_3OH

$$\begin{aligned} &= \frac{-0.5(\text{CO}_2) + 1.0(\text{CH}_3\text{OH}) + 0.184(\text{CH}_4)}{1.0(\text{CH}_3\text{OH})} \\ &= 0.684 \text{ moles CO}_2 \text{ per mole CH}_3\text{OH} \end{aligned}$$


A simplified field block diagram of the Carnol IA process is shown in Figure 5.

V. Carnol II Process for Methanol Synthesis for Reducing CO_2 Emission

A more efficient process for CO_2 emission reduction and production of methanol is devised as follows. Methane is first decomposed to carbon and hydrogen. The carbon is not burned; it can be stored or sold as a commodity like carbon black. The

hydrogen is then reacted with CO₂ to form methanol. The CO₂ can come from scrubbing and recovery CO₂ from power plant stacks, wells, and ammonia plants. Methane is used to provide the endothermic energy for the thermal decomposition of methane for hydrogen production.

The reaction sequence is as follows:

It should be noted that the methanol synthesis from CO₂ and 3H₂ instead of the conventional CO and 2H₂ is not unusual. There are catalysts available to accomplish this and indeed there are several commercial plants operating with CO₂ currently¹.

The energy requirements for methane decomposition:

$$\Delta H = -3(-18) = +54 \text{ Kcal}$$

The methane required for combustion to provide the endothermic energy for the decomposition of methane is as follows:

$$= \frac{54}{212} = 0.254 \text{ moles CH}_4 \text{ per mol CH}_3\text{OH}$$

$$\text{CO}_2 \text{ emission} = \frac{-2.0(\text{CO}_2) + 2.0(\text{CH}_3\text{OH}) + 0.254(\text{CH}_4)}{2.0 \text{ CH}_3\text{OH}}$$

$$= 0.127 \text{ moles CO}_2 \text{ per mole CH}_3\text{OH when used as fuel.}$$

Moles CH₃OH produced per mole CH₄ utilized:

$$= \frac{2.0}{3.0 + 0.254} = 0.615$$

A simplified block flow diagram of the CARNOL II process is shown in Figure 5.

VI. Carnol III Process for Methanol Synthesis for Zero CO₂ Emission

A final version of the Carnol process with zero CO₂ emission is designed as follows. Methane is decomposed to carbon and hydrogen. Part of the hydrogen is used to provide the endothermic energy for decomposition of methane. Thus, there is no generation and emission of CO₂. The larger remaining part of the hydrogen is reacted with CO₂ from external sources to produce the methanol. The reaction sequence for Carnol III is the same as for Carnol II as follows:

The energy requirement for methane decomposition:

$$\Delta H = -3(-18) = +54 \text{ Kcal}$$

The methane decomposition required to produce the hydrogen used for combustion to provide the endothermic heat of decomposition of the methane is calculated as follows:

Heat of combustion of hydrogen

$$\Delta H = -68 \text{ Kcal/mol H}_2$$

Since 1 mol of CH₄ produces 2 mols of hydrogen, the amount of methane needed to provide the hydrogen for its own decomposition is:

$$\text{moles CH}_4 \text{ decomposition for hydrogen energy} = \frac{18}{68 \times 2} = 0.132 \frac{\text{mol CH}_4}{\text{mol CH}_4 \text{ decomposition}}$$

Since by the above overall reaction it is necessary to decompose 3 moles of methane to produce 2 moles of methanol, the methane required to produce the combustion hydrogen is calculated and iterated because each time methane is decomposed for hydrogen energy, additional methane must be decomposed to provide additional hydrogen.

Methane to provide hydrogen to decompose process methane

$$= 3 \times 0.132 = 0.396$$

Additional methane = $0.396 \times 0.132 = 0.052$
Additional methane = $0.052 \times 0.132 = \underline{0.007}$

Total methane for H_2 combustion = 0.455
Methane for process H_2 = 3.000
TOTAL METHANE = 3.455

The methanol produced per mol of total methane

$$= \frac{2}{3.455} = 0.579 \frac{\text{moles } CH_3OH}{\text{mol } CH_4}$$

The carbon yield per mol of methanol which can be either sold as a commodity or sequestered:

$$= \frac{3.455}{2} = 1.728$$

A simplified block flow diagram of the Carnol III process is shown in Figure 6.

Comparative Analysis

A comparative analysis can now be made of the six systems described above and summarized in Table 1 and Table 2. The three conventional reforming systems: (I) steam, (II) CO_2 , and, (III) steam and CO_2 reforming yield approximately 1 mol methanol produced per mol of methane consumed and each emits a net of approximately 1 mol CO_2 per mol of methanol produced and eventually consumed as fuel.

In the new CARNOL I or IA processes, when the methanol is used as fuel, the CO_2 emission can be reduced by 35% from that produced by the conventional reforming processes. This CO_2 reduction, however, is obtained with an 11% decrease in methanol production per unit of methane compared to the reforming processes. The CO_2 fixed for Carnol I is only 0.42 mol CO_2 per mole of CH_4 feedstock and the carbon yield is 0.5 mole per mol of methanol produced.

In the new CARNOL II process the CO_2 emission can be reduced by as much as 88%. However, this larger reduction is obtained at the expense of reducing methanol production per unit of natural gas by 35%, compared to conventional reforming. The amount of CO_2 feedstock for Carnol II is 0.61 moles CO_2 per mol CH_4 feedstock and the carbon yield is increased to 1.5 moles per mol of methanol produced.

In the new Carnol III process the CO₂ emission is completely eliminated. The penalty for achieving zero CO₂ emission is the reduction of methanol production per unit of natural gas by 39% compared to conventional reforming. The amount of CO₂ fixed for Carnol III is 0.58 moles CO₂ per mole CH₄ feedstock and the carbon yield is increased to 1.73 moles C per mole of methanol product.

It should be pointed out that in this first order analysis the additional energy due to inefficiency of energy recovery in the reformer and decomposer combustors and the energy for compression is not accounted for in the above estimates. These energy requirements in terms of fuel methane relative to the methane requirement for the process gas are relatively small and should not alter the general comparative conclusions of this fundamental first order assessment.

ECONOMIC CONSIDERATIONS

A preliminary economic evaluation of the new Carnol III process in terms of the cost of eliminating, reducing CO₂ emissions can be made with the following assumptions:

1. Real market U.S. selling price (SP) of Methanol = \$0.45/gal⁽³⁾
2. Capital cost of a conventional natural gas - steam reforming methanol production plant is calculated from current selling price and fixed charges.
3. Fixed charges including return on investment = 21%
4. Natural gas cost (gulf cost) = \$2.00/MSCF
5. Labor, maintenance and supplies included in above charges
6. Plant life 20 years. Plant on-line factor = 90%
7. Assume cost of CO₂ recovery from flue gas is charged to the power plant so there is zero cost to the Carnol process. Later on we will show the effect of CO₂ if it is charged to the Carnol III process

For Conventional Plant:

Cost of Natural gas/gal CH₃OH =

$$\frac{\text{mol CH}_4 \times 380 \text{ ft}^3 \times 6.6 \text{ Lbs} \times \$2.00}{0.95 \text{ mol CH}_3\text{OH} \times \text{mol CH}_4 \times 32 \text{ Lbs/gal} \times 1000 \text{ ft}^3} = \$0.165/\text{gal CH}_3\text{OH}$$

$$\text{Fixed charges/gal CH}_3\text{OH} = \frac{0.21 \times \text{U.C.}}{365 \times 0.9} = \$2.1 \times 10^{-4} \text{ U.C.}$$

Where U.C. = Unit Capital Investment

Thus,

S.P. of methanol = natural gas cost + fixed charges

$$\$0.45 = \$0.165 + 2.1 \times 10^{-4} \text{ U.C.}$$

The Unit Capital Investment, U.C. = \$136,700/ton/day.

Actually, the unit capital cost in 1991 was quoted (Reference 4) at \$100,000/ton/day and this unit value is assumed in this report. This unit capital investment is applied to the Carnol Process III (zero CO₂ emission) where the methanol yield is 0.579 moles CH₃OH/mol CH₄ compared to the conventional steam reforming it is 0.95. The natural gas cost per unit methanol increases to:

$$\text{Cost natural gas/gal CH}_3\text{OH} = \$0.165 \times \frac{0.95}{0.579} = \$0.271$$

It is assumed that the unit capital investment of the Carnol III plant is similar to the conventional plant because each has basically two units, however, because of the lower production the unit capital investment must be increased by the 0.66 power rule for the lower capacity CARNOL III plant.

$$\text{U.C.} = \$100,000 \times \left(\frac{0.95}{0.579} \right)^{0.66} = \$139,000/\text{ton/day}$$

The cost of the methanol for the Carnol III process:

$$\begin{aligned} \text{Methanol cost} &= 0.271 + 2.1 \times 10^{-4} \times 139,000 \\ &= \$0.56/\text{gal-CH}_3\text{OH} \end{aligned}$$

To this must be added the cost of sequestering the carbon which we estimate at \$15/ton (based on coal mining cost) and converting to per gallon MeOH cost.

$$\begin{aligned} \text{Total methanol production and selling price} &= \\ 0.56 + 0.03 &= \$0.59/\text{gal CH}_3\text{OH} \end{aligned}$$

Thus, the incremental cost of producing methanol by Carnol III is (0.59 - 0.45) = \$0.14 gal/CH₃OH.

If the natural gas cost increases to \$3.00/MSCF the production cost increases to \$0.73/gallon and the incremental cost increases to \$0.28/gal CH₃OH.

Translating this to the cost of CO₂ emission reduction for Carnol III, using the \$2.00/MSCF natural gas, the following calculation can be made.

The total CO₂ reduction from Carnol III^{'s} equivalent to the carbon sequestered.

Gallons of CH₃OH per ton of CO₂ reduction =

$$\frac{\text{moles CH}_3\text{OH} \times 32 \text{Lb} \times 2000 \text{ Lbs}}{1.73 \text{ mol CO}_2 \times 44 \text{ Lbs} \times 6.6 \text{ Lbs/gal}} \\ = 127 \text{ gal CH}_3\text{OH/ton CO}_2 \text{ reduction}$$

Thus, the incremental cost due to reducing CO₂ for the \$2.00/MSCF case,

$$= \frac{\$0.14}{\text{gal CH}_3\text{OH}} \times 127 = \$18/\text{ton CO}_2$$

To put this cost of reducing CO₂ in perspective, the minimum estimated cost for CO₂ emission reduction by removal, recovery and disposal in depleted gas wells and the ocean, from stationary sources such as power plants is estimated to be in the range of \$18 to \$45/ton of CO₂ (References 5, 6). Thus, at an average cost of CO₂ reduction of \$32/ton CO₂ the above Carnol III CO₂ reduction cost of \$18/ton CO₂, is 44% lower.

If a value can be placed on the carbon black to be sold as a marketable commodity not only can the cost of avoiding emission of CO₂ be reduced, but also a credit can be applied to the methanol cost to reduce its selling price. This is not unreasonable. For example, carbon black demands anywhere from \$0.10/lb (\$200/ton) to \$0.50/lb (\$1000/ton) depending on the use and grade. The large markets for carbon are for rubber tire vulcanization, pigments in paints and for, water purification. For Carnol III the carbon production per unit of methanol is:

$$\text{Lbs. C/gal CH}_3\text{OH} = \frac{1.73 \text{ mol C} \times 12 \times 6.6}{\text{mol CH}_3\text{OH} \times 32} \\ = 4.28 \text{ Lb. C/gal CH}_3\text{OH}$$

If the carbon can be sold at \$0.10/lb, then the income from the carbon = \$0.10 x 4.28 = \$0.43/gal CH₃OH. Since the cost of methanol from Carnol III was found to be \$0.59/gal. and applying this credit of carbon sales to methanol, the selling price of methanol becomes \$0.16/gal., which is 65% lower than the current selling price of \$0.45/gal. By selling the carbon at \$0.05/lb.

(which is the fuel oil equivalent energy value at \$20/bbl oil) then the income from carbon is $0.05 \times 4.28 = \$0.21/\text{gal CH}_3\text{OH}$ and the methanol can sell \$0.38/gal. Furthermore, if the efficiency of methanol claimed by EPA is 30% greater for methanol cars than for gasoline cars (i.e., 1.54 gallons methanol is equivalent to 1 gallon gasoline)⁽⁷⁾, at a selling price of \$0.45/gal the equivalent gasoline cost for methanol is \$0.73/gal. The 1992 refining price for gasoline with oil at \$20/bbl amounted to about \$0.73/gal. The conclusion is that not only can Carnol III reduce CO₂ emission at an equivalent competitive price compared to other means of CO₂ avoidance, but can supply the transportation market at a price competitive with petroleum based fuel. Table 3 summarizes the above economic arguments for Carnol III.

It is interesting to note that a coal fired power plant can remove and recover CO₂ for supply to a Carnol III plant to produce methanol which in turn can be used in the transportation sector, as well as other dispersed smaller users of fuel. One mol of natural gas (CH₄) in the Carnol III plant removes one mol of CO₂ produced from 1 mol of coal (CH_{0.8}O_{0.1}) from a coal fired power plant which is sequestered or sold as carbon. The methanol can then be used as a fuel in the automotive industry which gains another 39% reduction in CO₂ emissions. Furthermore, this is obtained from a highly dispersed source for which there is no other easy means of removal and recovery. Thus, natural gas with Carnol, leverages the coal fired power plant and the automotive industry in obtaining a significant reduction in CO₂ emission.

An interesting question arises as to which sector should bear the cost of CO₂ reduction; the power plant, the methanol Carnol plant or the automotive methanol or smaller user? The answer to this question depends on whether there will be an environmental government regulation or taxation applied to CO₂ emissions from fossil fuel plants. If there is no regulation, then (1) the cost of CO₂ recovered from the power plant can be charged to the Carnol methanol plant, and (2) the carbon coproduct from the Carnol plant can be used or sold as fuel or as a material commodity.

If regulation or taxation becomes an economic requirement imposed by government rule, the Carnol process application will come about more quickly and then, (1) the Carnol plant can actually charge the power plant disposal costs because the Carnol plant will provide a service for the power plant in getting rid of the CO₂, and (2) the carbon will either be sequestered or sold as a commodity but prohibited as a fuel.

By the same token, the automotive industry should pay the Carnol plant for reducing the CO₂ emissions from vehicles by supplying more efficient CO₂ reducing methanol.

One possible accounting can be made as follows and illustrated in Figure 8. As mentioned earlier, the CO₂ sequestering cost for

the power plant is estimated to be \$32/ton CO₂ and the cost of recovery of CO₂ is estimated to be \$25/ton CO₂⁽⁶⁾. Therefore, the power plant can pay the Carnol plant up to the sequestering cost of \$7/ton CO₂ or in terms of per unit of methanol (7/127) or \$0.06/gal methanol. Since the total cost of methanol by the Carnol process with \$2.00/MSCF methane is \$0.59/gal in order to bring it to conventional methane cost of \$0.45/gal, \$0.14/gal must be made up. Since the power plant has paid \$0.06 already, the automotive industry should pay the difference or \$0.08/gal, which is only \$10/ton of CO₂ avoided, which is fairly reasonable. Thus, the automotive industry will pay (0.45 + 0.08) or \$0.53/gal or the equivalent of \$0.82/gal of gasoline which is 11% higher than the 1990 refining price of \$0.73/gal, which is not too unreasonable. In the meantime, if the carbon can be sold for \$0.05/lb then the credit to the Carnol plant amounts to \$0.21/gal and an additional \$0.03/gal is credited since sequestering is avoided and the net methanol cost is reduced (0.45-0.24) to \$0.21/gal. Some of the savings can be returned to both the power plant and the automotive industry to reduce the cost. Furthermore, serious development work is progressing on the use of methanol in fuel cells in automobiles which is aimed at improving the efficiency of the use of methanol by more than a factor of 2. This would significantly reduce CO₂ emissions and make the use of methanol much more economical.

An important final point can be made concerning the Carnol process, and that is, it avoids the need for growing rapid rotational crop biomass in energy farms in order to capture CO₂. On the other hand, the addition of biomass can further reduce CO₂ emissions if it substitutes as an alternative fuel to fossil fuels in power plants.

Conclusion

The conclusion of this first order evaluation of alternative processes, appears to be that there is a decided benefit in pursuing the development of the CARNOL processes for purposes of utilizing CO₂ recovered from power plants and significantly reducing the net CO₂ emissions in the production and utilization of methanol as an alternative liquid fuel for the transportation fuel market, as well as, the stationary fuel user market.

References:

1. Faith, Keyes, Clarke, "Industrial Chemicals, 4th Edition John Corley and Sons, New York, (1975).
2. Thermodynamic values taken from JANAF Thermodynamic Tables, 2nd Edition, NSRD-NBS 37, National Bureau of Standards, Washington, DC (1971).
3. Chemical Week 153, NO. 4, p. 42 (August 4, 1993).
4. J. Korchnak, J. Brown Engineers, Inc., private communication, (1991).
5. W.C. Turkenburg, "CO₂ Removal, Some Conclusions", Proceedings of the First International Conference on Carbon Dioxide Removal p. 821, Pergamon Press, Oxford, U.K. (1992).
6. Greenhouse Issues, No. 7, IEA Greenhouse Gas R&D Programs, Chiltenham, U.K. (March 1993).
7. Office of Mobil Sources, "An Analysis of the Economic and Environmental Effects of Methanol as an Automotive Fuel," EPA Report No. 0730 (NTIS PB90-225806), Motor Vehicle Emissions Laboratory, Ann Arbor, MI, (1989).

TABLE 1
COMPARATIVE ANALYSIS FOR METHANOL PRODUCTION

PROCESS	I. CONV. STEAM REF.	II. CONV. CO ₂ REF.	III. CONV. STEAM AND CO ₂ REF.	IV. & IVA. CARNOL I & IA PROCESS	V. CARNOL II PROCESS	IV. CARNOL III PROCESS
Energy for process (Kcal/mol MeOH)	60	45	45	39	27	31
Yield MeOH MeOH/CH ₄ (mol/mol)	0.95	1.04	1.01	0.85	0.62	0.58
CO ₂ Emission (mol CO ₂ / mol MeOH)	1.05	0.96	0.99	0.68	0.13	0.00
Gasifier Shift or Reformer Reactor	YES	YES	NO	YES	NO	NO
Acid gas removal	NO	YES	NO	NO	NO	NO
Carbon yield Mol C/Mol MeOH	0	0	0	0.5	1.5	1.73
No. of Reactors	2	4	2	3	2	2
Percent CO ₂ reduction from base †	BASE	-9	-6	35	88	100

TABLE 2

CARNOL PROCESSES FOR METHANOL PRODUCTION
AND UTILIZATION
FOR REDUCING CO₂ EMISSION REDUCTION

FEEDSTOCK - NATURAL GAS		
CO ₂ FROM POWER PLANT STACKS SEQUESTER OR SELL CARBON -		
PROCESS	% REL.* MeOH PRODUCTION	REL.* CO ₂ EMISSION REDUCTION
CARNOL I OR IA C GASIF. OR CH ₄ REFORMING	89%	35%
CARNOL II CH ₄ FOR REFORMING AND COMBUSTION	65%	88%
CARNOL III H ₂ COMBUSTION	61%	-100%

*REL. means relative to a conventional natural gas to methanol plant

TABLE 3
ECONOMICS OF CO₂ REDUCTION FROM THE
CARNOL III PROCESS

Current Selling Price MeOH	=	\$0.45/gal
Natural Gas Cost	=	\$2.00/MSCF
CO ₂ Cost from Power Plant	=	\$0.00
Cost of Sequestering Carbon	=	\$15/ton
Plant Factor	=	90% on line
Unit Capital Cost	=	\$139,000/t day-methanol
Fixed Charges	=	21%
MeOH Production Cost at 3.00/MSCF NG	=	\$0.59/gal
	=	\$0.73/gal
Cost of Reducing CO ₂ based on Increased MeOH Cost	=	\$18/ton CO ₂ (44% lower than \$32/ton CO ₂)
Cost of Removal, Recover, & Disposal in Ocean Aquifer From PC Power Plants	=	\$32/ton CO ₂
Taking Credit for 38% Reduction CO ₂ Emission in MeOH Fueled Vehicles - S.P. MeOH	=	\$0.45/gal
If Carbon is sold, MeOH cost: with <u>no</u> MeOH vehicle credit:		
@ \$0.10/Lb C Credit	=	\$0.16/gal
@ \$0.05/Lb C Credit	=	\$0.38/gal
Equivalent Cost of Gasoline (1.54 gal MeOH = 1 gal Gasoline)	=	\$0.73/gal (at \$0.45/Gal Methanol)

*\$0.73/gal is current (1992) refining price of gasoline based on \$20/bbl of oil.

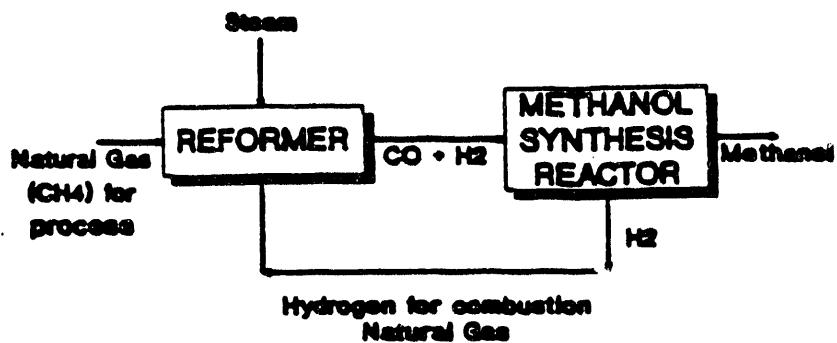


Figure 1. Conventional process for producing methanol by steam reforming of natural gas.

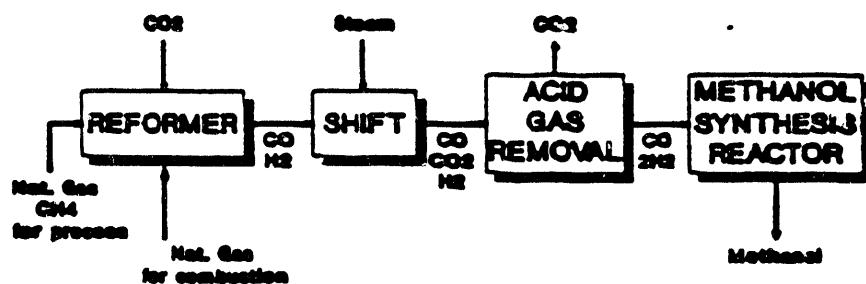


Figure 2. Conventional process for reforming natural gas to produce methanol using CO₂ for reforming.

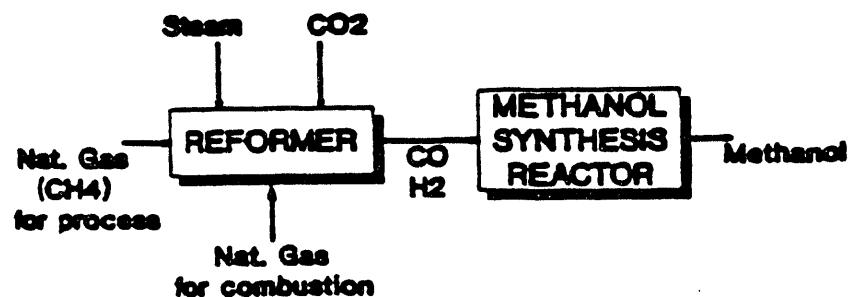


Figure 3. Conventional process for producing methanol by steam and CO₂ reforming combined.

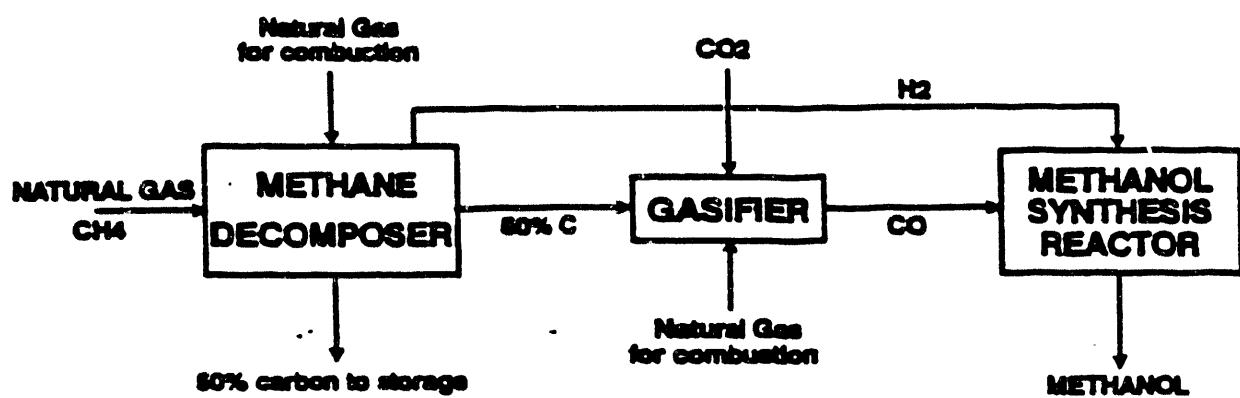


Figure 4. Carnol I process for producing methanol from natural gas and CO₂ for reducing CO₂ emission.

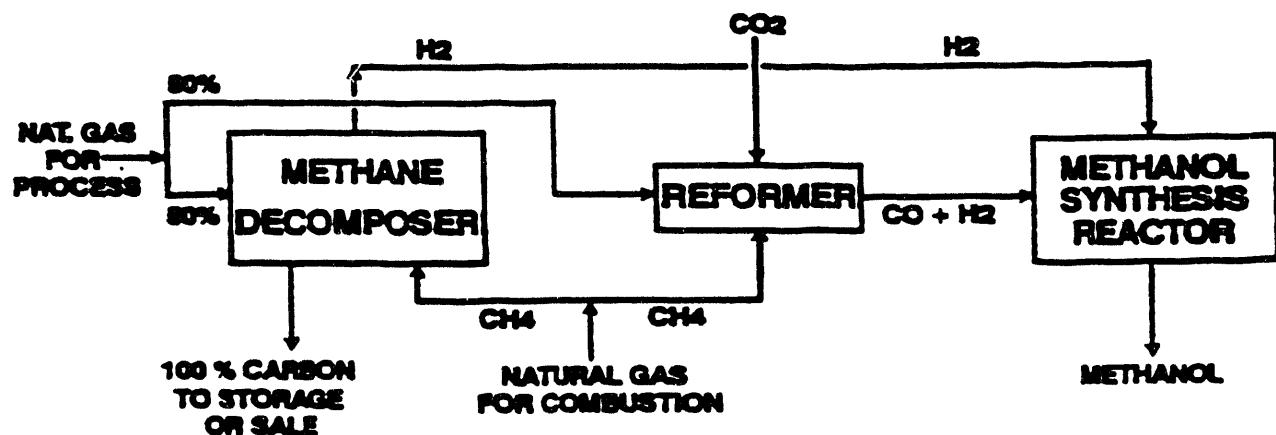


Figure 5. Carnol IA process for producing methanol from natural gas and CO₂ for reducing CO₂ emission.

Figure 7. Camel III process for producing methanol from natural gas and CO₂ for zero CO₂ emission.

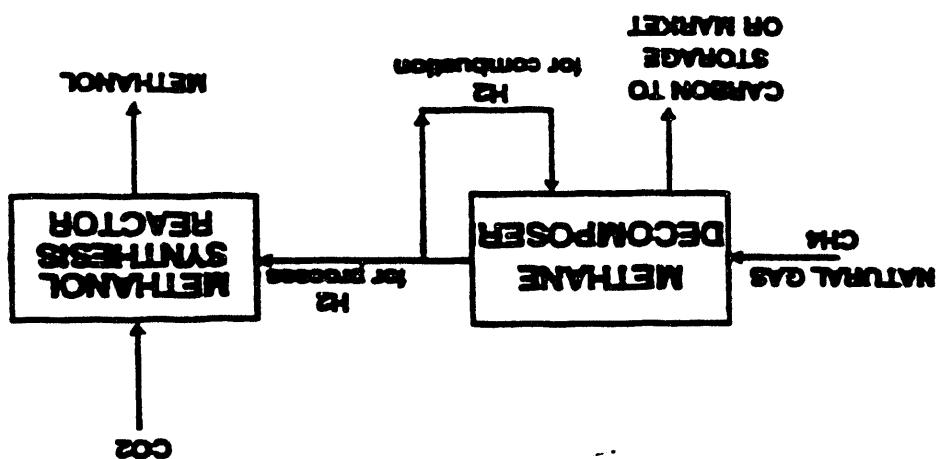


Figure 6. Camel II process for producing methanol from natural gas and CO₂ for reducing CO₂ emission.

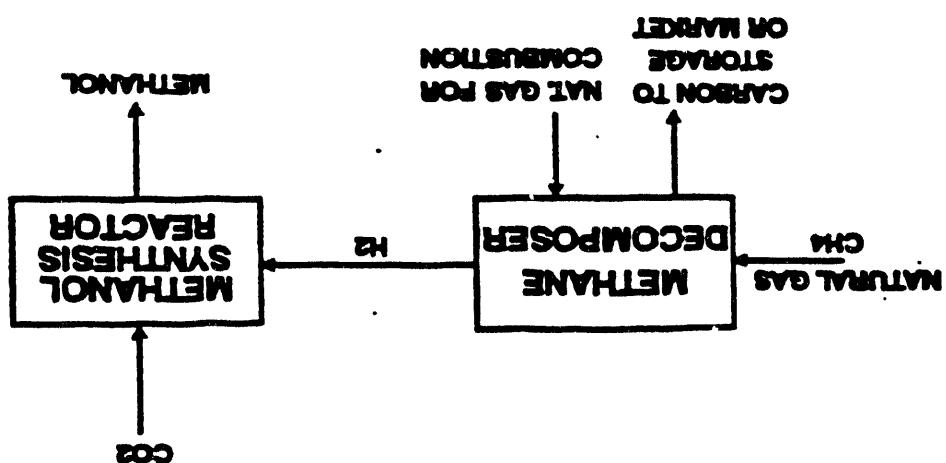
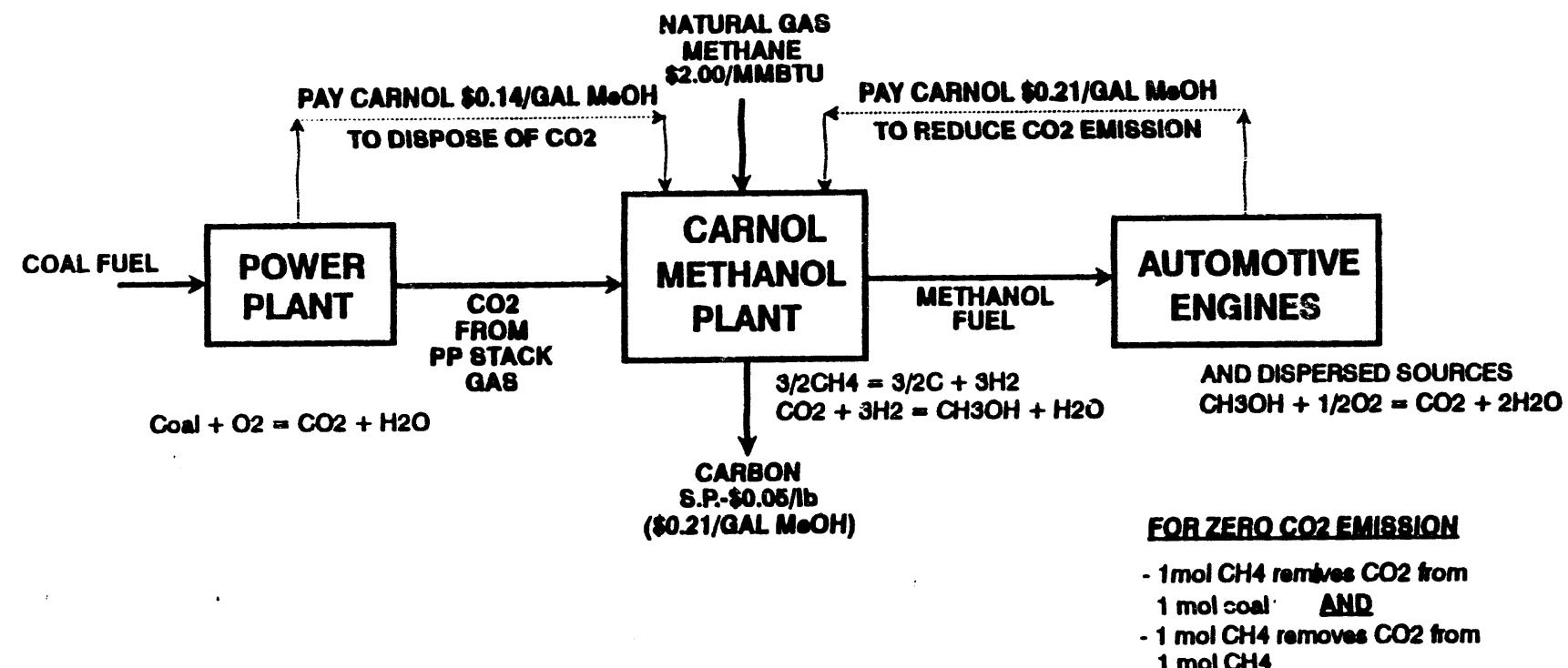



Figure 8

CARNOL PROCESS FOR METHANOL PRODUCTION

TO REDUCE CO₂ EMISSION FROM POWER PLANTS AND AUTOMOTIVE ENGINES

100
100
100
100
100

9/29/94
FILED
DATE

