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ABSTRACT

This is a synopsis and extension of Phys. Rev. D49 5408 (1994). The Pseudodual
Chiral Model illustrates 2-dimensional field theories which possess an infinite
number of conservation laws but also allow particle production, at variance with
naive expectations—a folk theorem of integrable models. We monitor the sym-
metries of the pseudodual model, both local and nonlocal, as transmutations of
the symmetries of the (very different) usual Chiral Model. We refine the con-
ventional algorithm to more efficiently produce the nonlocal symmetries of the
model. We further find the canonical transformation which connects the usual
chiral model to its fully equivalent dual model, thus contradistinguishing the
pseudodual theory.

1. Introduction of the PCM and Outline of its Properties

Many integrable models in two-dimensions evince the limiting feature of no particle
production, i.e. complete elasticity. There is a variant of the o-model for which this is
not so, however (at least in perturbation theory), the so-called Pseudodual Chiral Model of
Zakharov and Mikhailov?, for which all interactions are distilled into a simple, constant
torsion term in the lagrangean; it amounts to a delicate Wigner-Indnii contraction of the
target manifold in the WZW model in which the “pion decay constant” is taken to infinity
in tandem with the topological integer coupling. The essential quantum features of the
model were first identified by Nappi®, who calculated the nonvanishing 2 — 3 production
amplitude for this model, and who moreover demonstrated that the model was inequivalent
to the usual Chiral Model in its behavior under the renormalization group: the Pseudodual
Model is not asymptotically free. The physics of the pseudodual model is very different
from that of the usual chiral model.

The models were previously compared within the framework of covariant path integral
quantization by Fridling and Jevicki, and similarly by Fradkin and Tseytlin®. However,
the focus of those earlier comparisons was to exhibit (nonabelian-) dualized o-models with
torsion, which were completely equivalent to the usual o-model. Indeed, it was shown that
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a mode] fully equivalent but dual to the usual Chiral Model could be constructed, provided
both nontrivial torsion and metric interactions were included in the lagrangean.

Here, we focus on the differences between the Pseudodual Model and the usual Chiral
Model without enforcing equivalence. We investigate the Pseudodual Model at the classical
level and within the framework of canonical quantization, with emphasis on the symmetry
structure of the theory. We consider both local and nonlocal symmetries, and compare with
corresponding structures in the usual Chiral Model. We present a canonical transformation
we have found, which connects the usual Chiral Model with its fully equivalent (nonabelian)
dual version, further clarifying the inequivalence of the pseudodual theory! We provide a
technically refined algorithm for constructing the conserved nonlocal currents of the pseu-
dodual theory, an algorithm which is particularly well-suited to models with topological
currents for which the usual recursive algorithm temporarily stalls at the lowest steps in
the recursion before finally producing genuine nonlocals at the third step and beyond. In the
published paper, we also have considered in detail the current algebra for the full set of
local currents in the pseudodual theory, which we omit here. Other, related, more recent
investigations can be found in %%,

The two-dimensional chiral model (CM) for matrix-valued fields g is defined by

£y = Tr 8,98"g7",
with equations of motion which are conservation laws
0J'=0 << g, l'=0.

J, = ¢g718,9 are the right-, and L, = ¢8,97! the left-rotation Noether currents of Gles: x
Giright, respectively. The pure-gauge form of these currents dictates that the non-abelian
field-strength vanishes identically:

B“J., - 6,,J“ + [Jm J,,] =0 = 6‘“’6‘“],, + 6“”.]“.],, =0,

and likewise for L,. Such curbature—free local currents underlie usual nonlocal-symmetry-
generating algorithms”®910,

The roles of current conservation and vanishing field strength may be interchanged. A
“pseudodual”* transformation?? leads to a different model for an antisymmetric matrix field

¢. Define
Ju =€,,0"9,

conserved identically. But now the curvature-free condition above serves instead as the
equation of motion

0"0,¢ - %Euu[a“(ﬁa auﬁﬁ] =0, (1)
which follows from the lagrangean of the Pseudodual Chiral Model (PCM):

Lo=—1Tr (000,06 + 14¢,,(0"9,6"9)).

tAn abelian penumbrance of this type of canonical transformation has appeared recently in the CERN preprint
hepth/9406206 by Alvarez, Alvarez-Gaumé, and Lozano.



Nappi® first observed that this model, in contrast to the Chiral Model, is anti-
asymptotically free. Actually, thi~ is now possible to establish by inspection, given its
subsumption in the general analysis of o-models with torsion'!. Introducing a (field-scale)
coupling 5 in the relative normalization of the interaction term, one needs note the com-
plete triviality of the metric (just the kinetic term), g5 = 6°; the torsion S, = 7 faber/G
of the interaction term has now collapsed to a constant, merely the structure constant
times the coupling, Sae = nfabe = 7N0€sq, for torsion potential e = 7fopcd®. This
is, in fact, a limiting WZW model—a Wigner-Inonii contraction!? of the group manifold
such that the radius of the target hypersphere (the “pion decay constant”) diverges in
tandem with the integer WZW-term coefficient. To one loop, Braaten, Curtright, and
Zachos'! have shown that e, evolves by the antisymmetric part of the generalized Ricci
tensor, vanishing in this case of constant torsion, so e,;, does not renormalize. In con-
trast, M 4:gap = —SacaSy /27 = —n* facaf, /27 = —n?6,4C /27, where C is the quadratic
adjoint (dual-Coxeter/Casimir) index, e.g. N — 2 for O(N). Rescaling the kinetic term to
canonical normalization amounts to simply increasing the interaction coupling as

dn _39Cnp* _ 3
dM "2 21 ar!

in agreement with the original direct calculation®.
How do the fundamental symmetries generated by these and other currents transmutate?
Consider the conserved charge

Q= / dz Jo(z).

For the CM, the time variation of @ vanishes for field configurations which extremize £; by
Noether’s theorem; while for the PCM, Q@ = ¢(o0) — ¢(—00), are time-independent for any
configurations with fixed boundary conditions (¢ is temporally constant at spatial infinity):
Q is a topological “winding” of the field onto the spatial line and hence invariant under the
continuous flow of time.

The ¢ — OT¢0O Gright-transformation invariance of £, yields the (on-shell conserved)
Noether currents

R, = [¢,J] + 118, [V, 8]) = [, 0,9) + Len (4,09, 4],

where J, = €,, J*. In contrast to the CM, it is these currents, and not J,, which generate
(adjoint) right-rotations in the PCM.

The PCM is also invariant under the nonlinear symmetries® ¢ — ¢ + ¢ with Noether
currents

Z,=J,+ U, ¢ = 0,0 + Le[0"9, 4.

The conservation law for these currents amounts to the equations of motion Eq.() for
the PCM (introduced as a null-curvature condition for the topological J, currents of the
model). The equations of motion have been transmuted from conservation of J, for the CM
to conservation of Z, for the PCM. These Z, currents are not curvature-free, however, but
are instead J-covariant-curl-free ¢*8,72, + ¢**[J,, Z,] = 0. The currents Z, are contracted
vestiges of the axial currents of the WZW model, and we term them “pseudoabelian” since
their charges commute among themselves (more precicely, they close into the topological
charge, vanishing only for topologically trivial configurations), even though this is not so for
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the entire current algebra!. (Correspondingly, J, — R, are vestiges of the vector currents of
the WZW model.)

These “new” local conserved currents, Z, and R,, are actually transmutations of the
usual first and second nonlocal currents of the CM, respectively. All three sets of currents,
Juy Zyy Ry, transform in the adjoint representation of O(V)ign: (the charge of R,). The
left-invariance Gi.s: has degenerated: for the field ¢, left transformations are iner:, and
thus right, or axial, or vector transformations are all indistinguishable. The Gi.st X Grigns
symmetry of the chiral model, the axial generators of which are realized nonlinearly, has
thus mutated in the PCM. On the one hand it has been reduced by the loss of Gi.4:, but on
the other hand it has been augmented by the nonlinearly realized pseudoabelian @z charges.

The left-currents L, of the CM don’t generate left-rotations on the PCM fields ¢, any
more than the J, generate right-rotations. In the PCM, L, are realized nonlocally: 0,9 =
g €,0°9, so O1g = g 0o , integrated at a fixed time,

o(e,t) = g0 Pexp( [ dy Bup(y,1) ,

assuming g(co,t) = go. Consequently,
L,=90,g7 ' =~g(97'0,9) 97 ' =~gJug ' =—€ug g =
= —€u0(9697")+g00 .49

These transform in the adjoint of Gi.y;, but these transformations only rotate the arbitrary
boundary conditions go, and do not affect ¢ at all. They thus commute with the right-
rotations. Discarding go then banishes Gi.s: from the theory altogether.

None of the above results hinges on the difference between left- and right-currents.
Left < Right-reflected identical results would have followed upon interchange of left with
right.

2. Canonically Equivalent Dual c—model

The above nonlocal, invertible, fixed-time map relating all g and ¢ field configurations
is, nevertheless, not a canonical transformation. The quantum theories for £, and L, are
thus inequivalent (e.g. perturbation theory assumes canonical variables). As an aside, we
find instead a canonical transformation which maps the usual CM onto an equivalent Dual
Sigma Model (DSM), with torsion, different from the PCM, in broad agreement with the
result of conventional nonabelian duality transformations?.

E.g. consider the standard 0(4) 0O(3)x0(3) ~ SU(2)><SU(2) CM, with g = @® 41/,
% ¢ (7 =1,2,3), and (¢°)? + ¢? = 1, where ¢ = T; (¢?)%. Resolve ¢° = +/1 = ¢?, to

get the CM,
1, o'
P LX) t QU
£1—2(6 +1_'p)“§03
This is canonically equivalent to the DSM:
1 1 { i i igu, i owv ik in ig ik
L= 17 (3 (67 + 49'9Y) Bup' 0¥y’ — e y'a,470,*) ,



which differs from the PCM, £;, but reduces to it in the weak 1 field limit, i.e. it contracts
to it similarly to the Wigner-Inénii contraction of the WZW model. However, no such
canonical transformation may lead to the PCM instead.

The generator for a canonical transformation relating ¢ and ¥ at any fixed time is

Fl, ] = [, dz ' J}¢], (where we choose? the right, V + A4, J,),

+00 . . 0
1"[1/«(.0]:/_0o dz ' ( 1—<p2-aa— + ""w’ggv")-

The conjugate momentum of *:
o OFlel 0 ji_ 9 (,/ 2) ik i O b
e e #os (V1-¢) +e%e 5ot =
T i ‘P‘PJ_ijkk_a_j=_l
(=7 s o) o = 2t

The conjugate of o'

§F[y, ) ( > i, P * k)
=B (1ot g B ekt ) g

2 . . .
J oot — 9tdk 1k
Substitute for 7; and w;, in terms of g;tpj and g;z/)j, as follows from £, and L3j:

1 ij i 0 ij . 0 | cis (Pi‘Pj d
™= e ((5"4‘4’([) 'l/JJ) 521/11'{'25 k’&[)”a'{bk), w; = ((5"-{-1—_—;3) -52301

The resulting covariant pair of first-order, nonlinear, partial differential equations for ¢ and

¥ constitute a Backlund transformation connecting the two theories. Consistency of this

Backlund transformation is equivalent to the classical equations of motion for ¢ and 3.
Moreover, the relations

o (5090’)2
T = c,o-|~————--1_(p2 )
PP =@ = (- @) A —d(n )P — 4/l — @? e*mipim —dp Y @ T+ T @Y,
ek Py = 2022 + 2(¥ - ) + 1 ~ e Fmyimi+ o YT w —p T Y- @,

may be combined to demonstrate the equivalence of the hamiltonian densities in the respec-
tive theories:

H3=4Euk‘¢),7l']’l/);+7r2+¢l¢l+41/)27l'2——4(1bW)zzwz—(sow +‘P (P+(;P (1:0) =H1

!N.B. Left-rotations on ¢ alone do nothing to this F'; 3* is a left-transformation singlet, just like its conjugate
quantity, J}[¢], and F[v, ] is left-invariant.



Now, in the DSM, tuhat is the conserved, curvature—free curvent? In contrast to the
PCM, where it was essentially forced to be a topological current, here a topological current
by itself will not suffice; neither will a conserved Noether current. (Under isospin transfor-
mations, §¢' = 7*iw*, the Noether current of L3 is I/ = §£3/6(8,w') so I? = e pimy,
but it is not curvature-free.)

Instead, the conserved, curvature-free current J/[¢, 7] = J¥[p, @] (identified with J! of
the CM) is a mizture of the Noether isocurrent and a topological current: J* = 2I¥—¢#*8,’,
so that J! = m;. Both conservation and curvature-freedom now hold on-shell.

-1
1+ 492

J¢ = ((69 + 4g'y?) e 0,9 + 267y mpt) .

1= .1 _ .2 & ‘Pi‘Pj__ijkk_a_'z'l
‘7'—-7“"(1 ‘p6+\/i':0§ € ‘P)ax(PJ—'JI,

J? = —-z%z/)‘ — 2 i, = —\/1 — p? w; — ekl = JP.

This last equation may also be integrated directly to yield 1 in terms of ¢, given the pure-
gauge (zero curvature) feature of J,[p] = ¢g718,9, on which the canonical transformation
was predicated:

;] 0
‘a;‘d’ =pJy — N —Jo = 5;(91/)9—1) = ~gJog™! = gdog™" .

The argument of the r.h.s. has reduced to a left current component. This equation readily
integrates to

¥(z) = g7 (z)g(0)(0)g ™ (0)g(z) + g™ (=) ( /: dyg(y)dog™ (v))9(z) .

N.B. Field-parity properties: under ¢ — —¢, the right current for the CM converts to
the left current, so that F[—1, —¢] generates a canonical transformation which projects onto
right-invariants, instead.

The connections among the four models discussed are summarized in the diagram:

contraction

WZw —_— PCM L,
null integer couplingl Icontractio‘n
canonical equivalence
CML, - ~ DSM L5 .

3. Nonlocal Currents and Charges for the Pseudodual Model

The full set of nonlocal conservation laws 7891913 fgllows from any conserved, curvature-
free currents such as J,,, irrespective of the specific model considered. Introduce a dual
boost!* spectral parameter & to define

K2 K s

Cu(, k) = —r——=Ju— = Ju ,

1 —k2°%  1—x2
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where J, = €,, J*. Given these properties of J,,, it follows that
@ +c*)C,=0.
This serves as the consistency condition for the two equations
dux"(z) = ~Ci* x*(=) ,

or, equivalently,
ewd x =6 (0u+ du) X,

which are solvable recursively® in k. Equivalently, the solution x can be expressed as a
path-ordered exponential (Polyakov’s path-independent disorder!? variable)

x(z, k) = Pexp / dy Ci(y,t )) =1+ E kx|
n=0
These ensure conservation of an antisymmetrize? nonlocal “master current”:
1
Ju(m’ K’) = ﬂ ", (X(z7 K:) - ‘T K’)) nz—;)n n)(m

The conserved master current acts as the generating functional of all currents J&) (sepa-
rately) conserved order-by-order in x. E.g. the lowest 4 orders yield:

u(z, k) = Julz) + x(~,‘(x)+ %[J“(a:), /_; dy Jg(y)]) +
+ w° (J”,‘,"(w) + 3(Ju@) X + X7 J#(x))) +

+ «° (jff"(x) + 3(Ju(2) X + X7 Ju(x)))
+ O(xY) .
This yields a conserved “master charge”
[+
=/ dr Jo(z,K) = Zn Qn) -
- n=0

Qo) is the conventional symmetry charge, while Q(1), Q(2), @(3), ... are the well-known nonlo-
cal charges, best studied for s—models”®?, the Gross-Neveu model'®, and supersymmetric
combinations of the two®.

Hotever, for the PCM,

JO=J=endd, =  x9)=6(z)-¢(-), -~

J;(;l) =0u¢ + %ﬂwwud’v ¢] - %[J/u $(—o0)] = Z, - %[Jw ¢(—o0)].



Recall ¢(—o0) is taken to be time-independent, and thus each piece of this current is sepa-
rately conserved. So, the CM~PCM transmutation has yielded a local current for the first
nonlocal hopeful! Moreover,

(@) = [ dy (Bod(y) + B:6(y) #(1)) — $(e)é(~00) + $(~00)" .
Likewise, J{¥ =
=€, 0"0+ (0,0, 8] — 9 €,,0"0 o+ %%vav (¢ X(l) + X(I)T(ﬁ)

‘%[Zm ¢(—o0)] + %6,,,6"(¢2¢(—-oo) + ¢(—o0)4?) =
=J,- R, - %euvau(qsa) + %5;4”6”(45)((1) + X(I)T¢) - %[Zw ¢("‘°°)]
+ ;€ 0" (¢°(—00) + ¢(—00)¢?).

On-shell properties of the currents have been used. However, this second “nonlocal” current
is also effectively local: the skew-gradient term, which might appear to contribute a nonlocal
piece to the charge via x{!), only contributes [#(c0),Q2]/2, i.e. a trivial piece based on a
local current.

But the third step in the recursive algorithm is different:

JO = 12X +xV7Z,) + ...

(...) terms contribute only local pieces to the charge, whereas the term written contributes
ineluctable nonlocal pieces. Thus J‘(‘s) is genuinely nonlocal, like all higher currents. The
action of Q® (slightly improved to Qu, as detailed below) on the field changes the boundary
condition at £ = oo to a different one than at —oo, and thereby switches its topological
sector, which is quantified by Q(®:

1@, 8*(w)] = ~IM*, 8w, o)) +2 [ do e(y = 2)[Zo(z), M)

where (M®).4 = 8ac0pd — 6aa6bc, and [,] represents Poisson brackets, in contrast to matrix
commutators |, ].

In summary, for the pseudodual model, the charge Q© is topological, while Q)
generates pseudoabelian shifts, Q(?) generates right votations, and Q2% appear genuinely
nonlocal.

4. Refinements and Remarks

The above master current construction starts off with a non-Noether (topological) cur-
rent, then “stalls” twice at the first two steps before finally producing genuine non-locals
at the third step and beyond. Here is an improved algorithm which begins with the low-
est nontopological (Noether) current Z, to produce an alternate conserved master current
which only stalls once. Define!3

Wiz, k) =2, +kZ,,

8



which is C-covariantly conserved:
oW, +[C*,W,]=0.

This condition then empowers W, to serve as the seed for a new and improved conserved
master-current

Wo(z, ) = X" Wy x = Zu + £(Tu — [Z4, ¢(~00)]) +

+4% (N, = [Ty, $(—00)] + 312, §(—00)], #(—0)]) + O(%),

where we have introduced 3
T,.=J,~- %R,. =2, + (2,4,

and where now the terms of second order and higher are genuinely nonlocal; e.g.
Ny = (T8~ (20,81, 8] + (20, [ dy Zo(w)

This is a refined equivalent of J‘(f) above. The terms in 28, involving the constant matrices
@(—o0) are separately conserved.

In general, the seeds for such improved master currents only need be conserved currents,
such as Z, above, which also have a vanishing J-covariant-curl. E.g. the previous nonlocal
currents themselves may easily be fashioned to satisfy J-covariant-curl-free conditions and
thereby seed respective conserved master currents.

In summary, at tree level (and thus for massless excitations), it has been made evident
that particle production is not prevented by nonlocal conservation laws, as holds for the
CM’, but is often thought to automatically occur in general®. In our paper, we further
work out the current algebra of the currents discussed, and we moreover list the known
local sequence of conserved currents predicated on conserved, curvature-free currents such
as J,. But, in this case, elasticity theorems'® on the prevention of particle production as a
consequence of Lorentz tensor charges such as those are evaded, since they require massive
states, which are absent at the semiclassical level considered here.
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