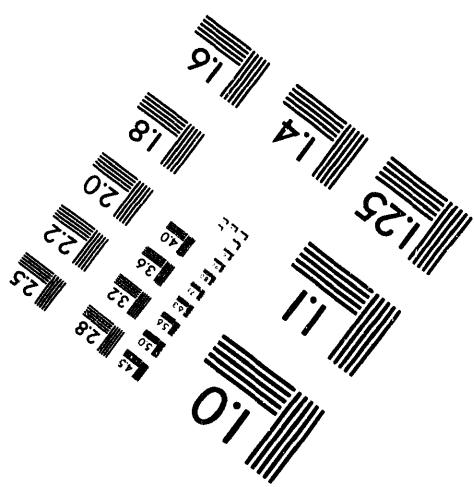
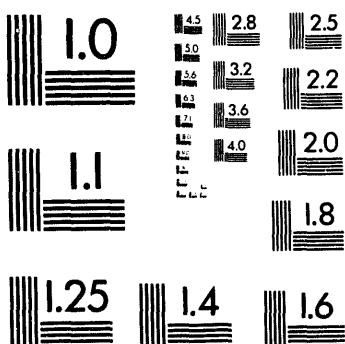
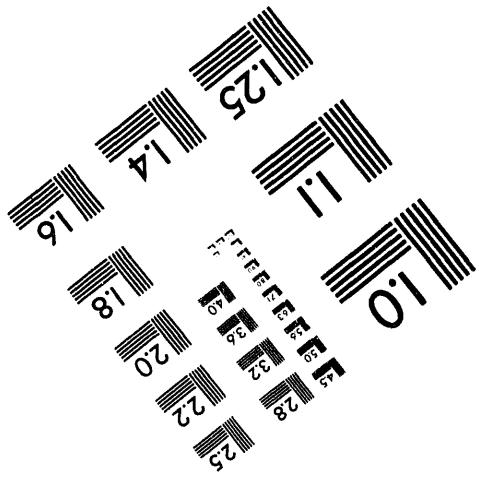

AIIM

Association for Information and Image Management



1100 Wayne Avenue, Suite 1100
Silver Spring, Maryland 20910
301/587-8202


Centimeter

Inches

MANUFACTURED TO AIIM STANDARDS
BY APPLIED IMAGE, INC.

1 of 1

Conf-941102 --16

LA-UR 94-2644

Los Alamos National Laboratory is operated by the University of California for the United States Department of Energy under contract W-7405-ENG-36

TITLE: THE NONLINEAR CHARACTERISTIC SCHEME IN X-Y GEOMETRIES

AUTHOR(S): Wallace F. Walters
Todd A. Wareing

SUBMITTED TO: American Nuclear Society 1994 Winter Meeting
November 13-17, 1994
Washington, DC

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive royalty-free license to publish or reproduce the published form of this contribution or to allow others to do so, for U.S. Government purposes.

The Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy.

Los Alamos

Los Alamos National Laboratory
Los Alamos New Mexico 87545
MASTER

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

THE NONLINEAR CHARACTERISTIC SCHEME IN X-Y GEOMETRIES

Wallace F. Walters and Todd A. Wareing

University of California
Los Alamos National Laboratory
Los Alamos, New Mexico 87545

The Nonlinear Characteristic (NC) scheme for solving the discrete-ordinates form of the transport equation has recently been introduced and used to analyze one-dimensional slab transport problems.^{1,2} The purpose of this paper is to determine the accuracy and positivity of the NC scheme as extended to solve two-dimensional X-Y problems. We compare the results obtained using the NC scheme to those obtained using the Bilinear Discontinuous³ (BLD) scheme, the Bilinear Nodal⁴ (BLN) scheme, Linear Characteristic⁵ scheme, and the Diamond Difference with Fixup⁶ (DD/F) scheme. As was found in one-dimensional applications, the NC scheme is strictly positive and as accurate or more accurate than the other schemes for all meshes examined. The accuracy of the NC scheme for coarse meshes is particularly outstanding compared to that of the other schemes.

The discrete ordinate equations,

$$\mu_m \frac{\partial \psi_m}{\partial x} + \eta_m \frac{\partial \psi_m}{\partial y} + \sigma_t \psi_m = S_m(x, y), \quad (1)$$

are solved for each discrete ordinate m in each cell. From this point on we assume that $\mu_m, \eta_m > 0$. Now if the source $S_m(x, y) \geq 0$ for all x and y in the cell then the analytic solution of Eq.(1) obtained by the method of characteristics will be positive if the data on the inflow faces of the cell are greater than or equal to zero.

Using the methods of information theory^{7,8}, we can construct the least biased distribution $S_m(x, y) \geq 0$ such that the average value and two spatial moments of $S_m(x, y)$ are preserved. This distribution is given by:

$$S_m(x, y) = S_{A,m} \left[\frac{\lambda_x e^{\lambda_x P_1(x)}}{\sinh(\lambda_x)} \right] * \left[\frac{\lambda_y e^{\lambda_y P_1(x)}}{\sinh(\lambda_y)} \right]. \quad (2)$$

Here $S_{A,m}$ is the average source in the cell and $P_1(x) = \frac{2x}{\Delta x} - 1$ and $P_1(y) = \frac{2y}{\Delta y} - 1$ are the

Legendre polynomials on the cell. The following equation, which ensures that the first spatial moments of the source are preserved, is satisfied by λ_x and λ_y :

$$\frac{S_m^J}{S_{A,m}} = 3 * \left[\coth(\lambda_J) - \frac{1}{\lambda_J} \right] \quad J = x, y. \quad (3)$$

Here S_m^J is the J th coordinate moment of the source.

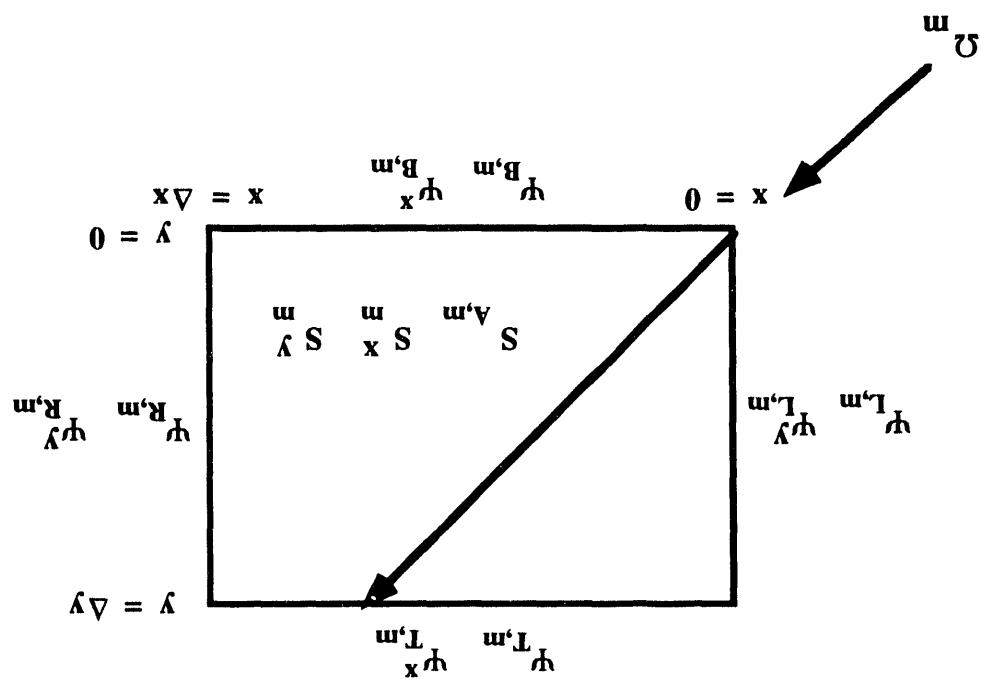
In Fig.1 we show the singular characteristic associated with $\mu_m, \eta_m > 0$. In order to ensure positive inflow to the adjacent cells, we use information theory to construct edge distributions that preserve the zeroth and first spatial moments on each outflow edge of the cell in Fig.1. The equations for $\psi_{T,m}(x)$ and $\psi_{R,m}(y)$ are similar and so only the equations relating to $\psi_m^T(x)$ are included. These are:

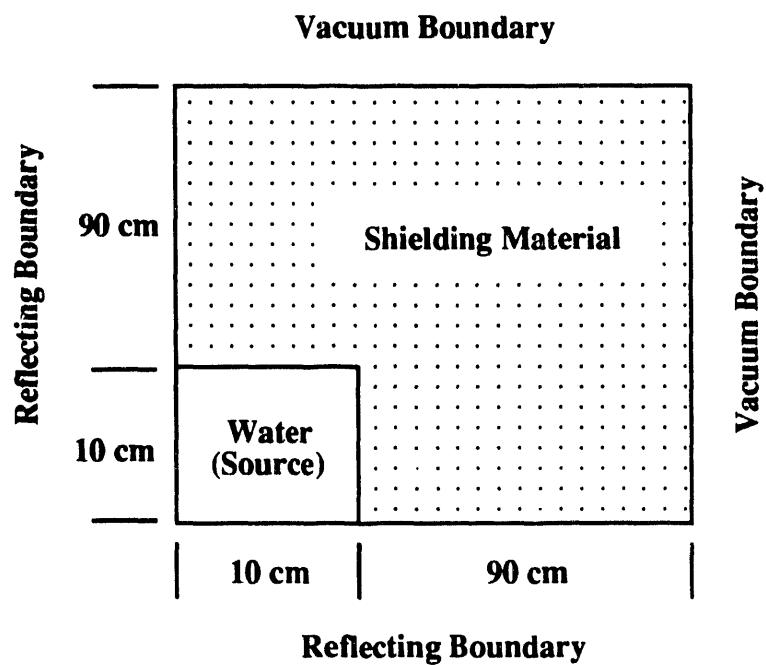
$$\psi_{T,m}(x) = \psi_{T,m} \left[\frac{\lambda_T e^{\lambda_T P_1(x)}}{\sinh(\lambda_T)} \right] \text{ and ,} \quad (4)$$

$$\frac{\psi_{T,m}^x}{\psi_{T,m}} = 3 * \left[\coth(\lambda_T) - \frac{1}{\lambda_T} \right]. \quad (5)$$

Here $\psi_{T,m}$ is the average angular flux in direction m on the top edge, and $\psi_{T,m}^x$ is the first Legendre moment with respect to x of the angular flux in direction m on the top edge. The transcendental equations (3) and (5) are well represented by a polynomial fit and an asymptotic expansion so that the computation of the parameter λ is not time consuming.

To compare the NC scheme with the other difference schemes already mentioned, we examine a difficult three group shielding problem with P_0 scattering using an S_4 quadrature set. The problem layout is seen in Fig.2. Both the total neutron leakage and the neutron absorption rate in the upper right corner of the problem are computed and displayed for several schemes in Table 1.


After examining Table 1 we see that the NC scheme is as accurate as any scheme examined for all mesh refinements. The NC results are even accurate and well-behaved in the limit of extremely coarse mesh where other high order schemes (LC, BLN, and BLD) fail badly. The inner iteration process does not even converge for the second order DD/F scheme at the coarsest (5x5) mesh!


There are several rather obvious conclusions. The behavior of the NC scheme is as impressive in two-dimensional x-y geometries as it is in one-dimensional slab geometries. The NC scheme is strictly positive and more accurate than other commonly used schemes for this and all other test problems examined. This new NC scheme does not require modification of the sweeping algorithm used in most discrete ordinate codes. Since this is true this scheme can be inserted in current production codes with minor modification.

References

- 1.) W. F. Walters, and T. A. Wareing, " A Nonlinear Positive Method for Solving the Transport Equation on Coarse Meshes, " Proceedings Eighth International Conference on Radiation Shielding, Vol 1, Arlington, Texas (1994).
- 2.) W. F. Walters and T. A. Wareing, " An Accurate, Strictly-Positive, Nonlinear Chacteristic Scheme for the Discrete-Ordinates Equations," *Transport Theory and Statistical Physics*, submitted (1994)
- 3.) M. Mordant, " Some Efficient Lagrangian Mesh Finite Elements Encoded in ZEPHR for Two-Dimensional Transport Calculations," *Ann. Nucl. Eng.*, **8** , 657 (1981).
- 4.) Y.Y. Azmy, "Comparison of Three Approximations to the Linear-Linear Nodal Transport Method in Weighted Diamond Difference Form", *Nucl. Sci. Eng.*, **100**, 190 (1988).
- 5.) R. Vaidyanathan, "A Finite Moments Algorithm for Particle Transport Problems", *Nucl. Sci. Eng.*, **71**, 46 (1979).
- 6.) B.G. Carlson and K.D. Lathrop, Computing Methods in Reactor Physics, Chapter 3: "Transport Theory: the Method of Discrete Ordinates", Gordon and Beach, New York (1968)
- 7.) E.T. Jaynes, "Information Theory and Statistical Mechanics", *Phys. Rev.*, **106**, 620, (1957).
- 8.) R.W. Roussin, "BUGLE-80 Coupled 47-Neutron, 20 Gamma-Ray P3 Cross-Section Library," DLC-75, Radiation Shielding Information Center

Figure 1: Cell Characteristic \mathcal{Q}_m - Inflow, Outflow and Source

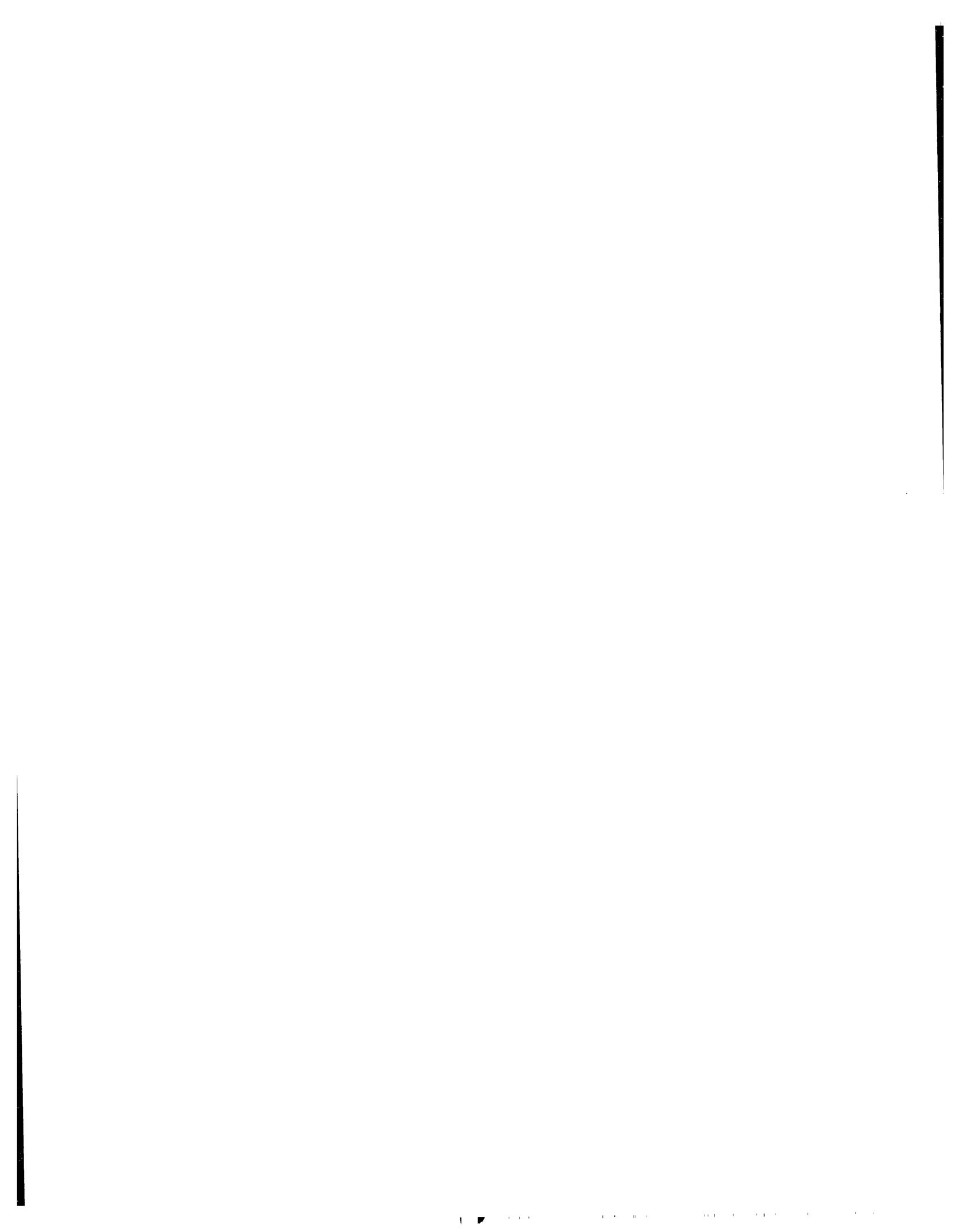

Figure 2 Shielding Test Problem

Table 1

Mesh	Total Leakage / Absorption Rate in Top, Right 22.5 cm x 22.5 cm				
	NC	LC	BLN	BLD	DD/F
5x5	9.10 / 0.85	60.2 / 20.9	359. / -5.98	2166 / -54.7	No Conv.
10x10	8.33 / 1.17	5.46 / 0.35	5.21 / 0.91	1.95 / 0.64	78.9 / 81.4
20x20	8.04 / 1.22	7.53 / 1.09	7.66 / 1.20	6.56 / 1.13	10.8 / 4.43
40x40	7.96 / 1.23	7.90 / 1.22	7.73 / 1.23	7.74 / 1.21	8.73 / 2.35

10/11/94

FILED
MAY 11 1994
U.S. GOVERNMENT PRINTING OFFICE: 1994 O-1000-1000

