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ABSTRACT

We studied depolarization mechanisms of polarized proton acceleration in
high energy accelerators with snakes and found that the perturbed spin tune
due to the imperfection resonance plays an important role in beam depolar-
ization at snake resonances. We also found that even order snake resonances
exist in the overlapping intrinsic and imperfection resonances. Due to the per-
turbed spin tune of imperfection resonances, each snake resonance splits into
two. Thus the available betatron tune space becomes smaller. Some constraints
on polarized beam colliders were also examined.

1. Introduction

The spin equation of motion for a spin particle, governed by the magnetic
interaction between the magnetic dipole moment of the particle and the static
magnetic field in a synchrotron, is given by the Thomas-BMT equation [1],

d$ _ _ _ X [(I+ GT)B± + (I+ G)BII+ (G7 + _+,/-V-]d t -- "fm

where/_± and "BIIare the transverse and longitudinal components of the mag-
netic fields with respect to the velocity vector, _. In a planar synchrotron, ver-
tical magnetic fields are needed to guide the orbiting particle around a closed
path. Thus the spin vector is precessing with respect to the vertical axis at a
frequency GTfo, where f0 is the revolution frequency, G = 2l - 1 is the anoma-
lous magnetic g-factor and 3' is the relativistic Lorentz factor. The quantity,
G3", representing the number of spin precessions per revolution, is called the
spin tune.

In synchrotrons, strong quadrupole fields are needed to focus the beam
to a small size. Particles moving off-center vertically in quadrupoles will ex-
perience horizontal fields, which kick the spin vector away from the vertical
axis. Since quadrupole magnets and particle closed orbits are periodic in a cir-
culm: accelerator and the betatron and synchrotron motions are quasiperiodic
[2], perturbing kicks to the spin vector can be decomposed into harmon/cs, K,
given by K = n + rnvz + _v_ + kv,y,, where uz, us and us,,_ are respectively
the vertical betatron, the horizontal betatron and the synchrotron tunes, and
k, £, m, n are integers. The imperfection resonances, due to the vertical closed
orbit errors, are located at integer harmonics, K = n. The intrinsic resonances,
due to the vertical betatron motion, are located at K = nP + v,, where P is
the superperiodicity of the accelerator. Other depolarizing resonances arise
from linear or nonlinear betatron coupling, vertical dispersion, synchro-beta
coupling and random field errors.

When the spin tune equals to a harmonic of perturbing kicks, GA/ = K,
these spin perturbing kicks add up coherently. Beam depolarization may occur.
To avoid a spin resonance condition, Derbenev and Kondratenko [3] proposed
to use a local spin rotator, which rotates the spin vector 180 ° about an axis in
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the horizontal plane. These spin rotators are called snakes. Using snakes in an
1 and independent of energy. Theaccelerator, the spin tune, v,, can become 7

resonance condition can be avoided.
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Fig.1. The final vertical spin vector after passing through an intrinsic d<mnlar-
ization resonance with strength eint -- 0.5 of an accelerator with ".'.'<_:,::._i,,'_ i:s
plotted as a function of the fractional part of the vertical betatron tune.

However, subsequent studies show that when the resonance strength is
large, new spin depolarizing resonances occur at some fractional betatron tunes.
These resonances, located at,

us + gK = integer, (1)

are called snake resonances [4], where us is the spin tune, K is the spin depolar-
izing resonant harmonic and g = 1, 3, 5, 7,... ,. For us = ½, we expect that snake

5 1 3 7resonances occur at fractionalbetatron tunes, vz = , 1, _, 10, 10, T'6, 1_," "',
where the lowest order snake resonance has been observed [5]. Higher order
snake resonances have been identified in numerical simulation shown in Fig. 1,
where the final vertical spin vector, after passing through an isolated intrinsic
resonance, is plotted as a function of the vertical betatron tune vz.

From Fig. 1, we note that numerical simulations show no apparent even
order snake resonances at £ = 2,4, 6, 8,.... Several reasons for the nonexis-
tence of even order snake resonances were given in the past [4,6]. However,
the situation has never been tested in the case of overlapping resonances. With
overlapping resonances, cancellation of depolarization perturbation is not guar-
anteed and the coherent kicks due to the imperfection resonance may induce
strong perturbation to the spin vector. This may lead to beam depolarization
at even order snake resonances. Therefore careful studies are needed.

Overlapping resonances are important in high energy accelerators. Impor-
tant intrinsic resonances are located at K = nP + v,, _ mPM 4- ve, where n
and m are integers, P is the superperiodicity, M is the number of FODO cells
per superperiod and uB is the total accumulated betatron tune of those FODO
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cells,which "ontaindipolemagnets. The correspondingresonancestrengths
are given by

f V#,(D)

where 3z(F) and /3:(D) axe vertical betatron amplitude functions at the
location of focusing and defocusing quadrupoles, f is the focal length of
quadrupoles, eN is the normalized emittance, and 3' is the Lorentz factor. The
maximum resonance strength is about 0.45 at 250 GeV for RHIC, and is about
5 at 2 TeV at the SSC. These important intrinsic resonances axe well separated.

On the other hand, important imperfection resonances will occur at inte-
gers near to an important intrinsic resonance. Thus overlapping intrinsic and
imperfection resonances constitute the most important problem in the spin
dynamics during polarized proton acceleration. The maximum imperfection
resonance strengths are given by

.eK,imP _ C2@P M _ (1 + V _-7"(N
where a, is the rms vertical closed orbit in the arc, u, is the vertical betatron
tune. We expect that the imperfection resonance strength to be less than 0.05
for RHIC after a closed orbit correction with ct, _ 0.2 mm.

Previous studies [7] of overlapping resonances indicated that when the be-
tatron tune is chosen properly, i.e. fax away from low order snake resonances,
the tolerable or critical intrinsic resonance strength is given by ei,t,c < _Ns,
where N_ is number of snakes. However there axe many open questions remain-
ing, such as where is the proper tune? what is the depolarization mechanism for
overlapping resonances? what are essential effects of imperfection resonances?
etc. This paper is intended to investigate spin depolarization mechanisms of
overlapping intrinsic and imperfection resonances. SEction 2 studies depolax-
ization mechanisms. Section 3 reviews progresses of snake experiments. Section
4 gives the conclusion and requirements for a polarized collider.

2. Spin Depolarization Mechanisms in a Synchrotron

In a synchrotron, the Thomas-.BMT equation can be cast into the equation
for the two-component spinor [8], _, as

dtII--i-(G7-_ )_ (2)dO -- 2 -{* -aT '

where 0 is the orbital bending angle, and _ arises from nonvertical magnetic
fields in a synchrotron and is the main source for beam depolarization. The

- _,[_l_}, where _ is the e_ulispin vector is given by the ensemble average, - <
matrices. Because of periodic structure of a circular accelerator and the quasi-
periodicity of betatron and synchrotron motions, one obtains _ = _-_K eKe-iK°,
where et¢ is the resonance strength, and K is the resonance tune.

The spinor equation of motion can be solved analytically for a single res-
onance by transforming the reference frame to the resonance precessing frame
with _tc(O) = e_KO_"¢_(O), i.e.

, . ._(Oz_O,)e_KO,.a_(Oi) _ t(Ol,Oi)_(Oi)_(Of ) = e-½K°¢_e_ _"°°
where h_o = ½15_n+ aael - az_2] is the spin closed orbit in the resonance pre-
cessing frame, and (ct, _2, _s) are orthonormal bases corresponding to radially
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outwaxd, longitudinal, and vertically upward axes, and i = (6 2+ Irl2) 1/2, 6 =
K- GT. The matrix elements of the spin transfer matrix are given by,
til = ae i[c-A'(#f-e_)12], t12 - ibe -i[d+K(eI+°_)/2], t21 = -t12,* t22 = til,* with

parameters, b = _ sin[A_] = (1 - a2) 1/2, c = arctan[-_ tan(A_)], and
• d = arg(e*). The paxaxaeter b is the effective resonance strength with a maxi-

mum amplitude _A"

2.1 Basic Requirements of Snake Configurations in Accelerators
Snakes are local spin rotators, which rotate particle spin by 7r radians

about a horizontal axis locally without perturbing particle orbits outside a
snake region. Thus a snake is characterized by the spin rotation angle, ¢,
and the snake azi., angle, Cs, with respect to et. The spinor is transformed

as, ,I,(a+) = e-_i_._(a -) = T_(Cs),I,(a-), where a+ depict azimuthal orbit
rotation angles just before and after the snake. At ¢ = Tr, or the 100% snake,
we have T,(¢s) = -iizs • _.

Let us consider Ns snakes with snake axes, (¢1, ¢2,"', SN.), and let ai,i+1
be the azimuthal orbit rotation angle between the i-th, and (i + 1)-th snakes.

N. N,
The condition, _-'_k=odd0k,k+l = _'_l,=ever_ak:,k+l = Tr, is needed to provide
an energy independent spin tune [6,10]. If the odd (or even) orbital angl_e

1
deviates from Tr, the spin tune is ,dzifted away from _ by an amount, Aus =

GT(1 - _). Similarly, the spin tune is obtained from the trace of the one
1 N, )kturn tranffer matrix, or the one turn map (OTM), i.e. us = _ _]k=l(-1 ¢k.

The spin tune can be adjusted to the most f_vorable number in avoiding spin
depo!arizing resonances. For accelerators with two snakes, those two snakes
should be located at 7r orbital angle apart and the snake axes of these two
snakes should be orthogonal to each other to obtain a spin tune of ½. For
accelerators with a large number of snakes, proper snake superperiodicity and
proper spin tune can be arranged.

2.2 Spin Tracking Hierarchy Equation
Let us consider an accelerator with N, equally spaced snakes. The spin

transfer matrix after passing through a pair' of (¢2, ¢1) snakes is given by
4,_ a0 + 2,)T,(¢l)t(ao + 2,_ ao). (0o+ 00) =T,(¢2)t(0o+

The spin motion can be obtained iteratively by using the spin tracking equation
through pairs of snakes, i.e. T(a,+l) = v(an+l,a,)T(a,,) , where a,+l =
8, +4_r Ns. The resonance strength parameter b becomes smaller due to a small
orbital angle difference, af - ai, between snap,es. The spin tracking equation
can be solved iteratively using a power series e:_:pansion in strength parameter
b2, i.e.

._ rf,(2 ) _. ,-p(2)7'11 T}_)+T_ )+'Ii +'", T12 T}_)+',2 +T}J )+''', (3)

where T_ ) = O(b 2') and T_ ) = O(ab2'-'). The final vertical spin vector is
given by, (S) = ITlll 2 -17'1212 = 1 - 2[T12[2.

2.3 The Perturbed Spin Tune and Snake Resonances
Without loss of generality, we discuss an accelerator with two snakes ¢1, ¢2,

located at a _r orbital angle from each other. The OTM is given by til =



-e-i""'(1-2bae i'_ cosO), ria =-2iabe -i(c-K'r+e2) cosO, where 7rvs = ¢2-¢1
and q - K80 + KTr + d- ¢I is the characteristic betatron phase of the orbital
motion, b U sin .A= z-, = V + = =

The perturbed spin tune, Q_, defined as the trace of OTM, is given by
cosTrQj = b2 sin(2O). Because of the betatron phase, the perturbed spin tune

x
for an intrinsic resonance, Q,, is oscillating around $ up to the maximum and

111. rrcthe minimum given by Q,,,n,._/,-,,i,-, = $ -_arcsin[ sin2 N-7]
Thus if the resonance strength of a spin resonance is [el _ mN,/2,

m = 1,3,..., the perturbed spin tune, Q,, will cover a whole integer unit
during the acceleration and cross the intrinsic resonance many times. The
polarization may be lost. The final polarization isplotted as a function of
the intrinsic resonance strength at uz = 0.81 on the left side of Fig. 2, where
the maximum and minimum perturbed spin tunes cover the entire tune space
around e = 1 and 3 and where beazn depolarization occurs. At the right side
of Fig.2, the perturbed spin tune shift is shown as a function of GO' for an
imperfection resonance. The polarization after passing througth the resonance
is independent of the vertical betatron tune.

Solving the spin tracking Eq. 3 to the first order in parameter b, the spin
transfer matrix is given by,

T_)(_,,+x) =iab(-1)'_e -i(_-g'_+_') {ei('_+"K'O(,_+,(K + u,)+

+ - ..)} (4)

where the enhancement function, (,.,(q), is given by, (n(q) = sip ,.,q,_ At the firstmn q_" "

order snake resonance condition, gs :t: K - integer, the off-diagonal kicks add
up coherently each turn through snake pairs. The beam can be depolarized
easily as shown in Fig. 1 at uz = ½. Since betatron tunes of an accelerator
are not half integers, the first order snake resonance condition can easily be
avoided. A few useful observations is given below:

1. At an imperfection resonance, K = integer, T_)(On=even) = 0. This means
that imperfection kicks cancel each other every two revolutions. Thus snakes
are effective in overcoming imperfection resonances.
2. When the betatron tune equals to a low order rational number, the linear

terms in Eq. 4 cancel each other in the tracking equation. For K = _, we found
that

T_)(0,_) = 0 {m=p if p is even,m = 2p ifpisodd.
One might guess that the spin will be more stable against perturbation at a
rational nmber betatron tune. At low order rational numbers, such as 1/3,
2/3, 1/4, 3/4, 1/5, 2/5, etc., the spin vectors behave characteris, tically different
from that shown on the left side of Fig. 2. When K is a low order rational
number, the polarization is not much affected by the perturbed spin tune at
e = 1 or 3 due to cancellation in perturbing kicks.
3. Avoiding snake resonances, the vertical spin vector across the resonance

regionwill fallwithintheenvelopeof((S))= I - Sa2b2, b = _ sin-_.The
envelopefunction<<.S})hasmany nodalpoints,where thedepolarizationdriv-
ingterm vanishes,i.e.b = 0 or I. These nodal pointscorrespondsto the
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"_ = integer. Thus these nodal locationsspin matching condition [10] where zr--7
are separated approximately by N, units of GT. These nodal points plays
an essential role in spin restoration during the passage through a depolariza-
tion resonance. Away from the central resonance location, the depolarization
driving parameter b is usually small. Therefore after passing through the res-
onance, if the spin vector is not restored to the vertical position at the first
nodal location, the spin is depolarized.
4. The width of envelope function is about 12le I for 95% polaxization. However,
one can choose a nodal point to obtain 100% polarization.
5. Based on the linear response theory of Eq. 4, we expect that depolarization
occurs when the betatron tune equals to a half integer shown clearly in Fig. 1.
The snake resonance at u, = ½ had been observed [5].

From the above discussions, we might expect that the spin vector would
be more stable when the betatron tune equals to a low order rational num-
ber. However, Figure 1 shows that there are many higher order depolarization
resonances at a rational number betatron tune, e.g. 1/6, 5/6, 1/10, 3/10, etc.
Solving the spin tracking equation beyond linear order in b gives rise to snake
resonance conditions given by Eq. 1 [4].
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Fig.2 On the left side, the vertical spin vector and the per_mrbed spin tunes
O,_,m,,x/mi, obtained from a numerical tracking calculation at intrinsic reso-
nance vz = 0.81 are plotted as a function of the resonance strength. Note that
the perturbod spin tune cover the entire tune space at e = l, 3. On the right,
the perturbed spin tune is plotted as a function of G7

2.4 Overlapping Resonances and Even Order Snake Resonances

Basic accelerator theory [2] indicates that a closed orbit distortion has
largest amplitude at a harmonic nearest to betatron tune. We thus expect a
large imperfection resonance, located at an integer nearest to the important
intrinsic resonance. The correlation remains important even after closed orbit
corrections, which minimizes error harmonics nearest to betatron tunes.

At an even order snake resonance condition of Eq. 1, the spin vector is
not much affected by the perturbative spin tune and is not depolarized at

= 1, :3 due to the cancellation of the linear spin kicks in Eq. 4. However,
when the imperfection resonance is included, the vertical spin vector is per-
turbed strongly so that the spin vector can not retain its full polaxization at
the first nodal point. The memory on the vertical spin vector is lost. Including



imperfection resonances in the spin tl'acking equation, the final vertical spin
vector after passing through overlapping intrinsic and imperfection resonances,
_i,t = 0.5, eimv = 0.05 is shown in Fig.3 as a function of v=, where beam depo-
larization occurs at all even order snake resonances.
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Fig.3 Beam polarization after passage through overlapping intrinsic and im-
perfection spin resonances is shown as a function of the fractional part of spin
resonance tune. In comparison with that of Fig. 1, even order snake reso-
nances appear while the odd order snake resonances are not much affected. At

rnc_= 0.05 for two snakes, even order snake resonances are as important asorder snake resonances.
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Fig.4 The effect of the imperfection resonance on the snake resonances is shown
for e_mv - 0.13 (left) and e_,np = 0.25 (right). Note that even order snake
resonances appear and each snake resonance splits into two resonance condition
due to the unperturbed spin tune of the imperfection resonance.

To understand the effect of imperfection resonances on the spin motion,
the intrinsic resonance strength is reduced to ei,_t "- 0.137 so that only low
order snake resonances at vz = 1/2, 1/6, 5/6 are important. When an im-
perfection resonance at eimp = 0.13 is included, even order snake resonances
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at uz = 3/4, 5/8, 7/8,... appear shown in Fig.4: Furthermore, all snake res-
onances split into double dips. The distance between two dips increases with
the strength of the imperfection resonance. Thesnake resonance condition
becomes

1

+ AQs ±_uz = integer, e = integer, (5)

where A,Qs is the perturbed spin tune shift from the imperfection resonance
given by IAQ,] ._ -_arcsin[sin 2 _'--_-_] Because of spin tune shift, each snakeN, "

resonance will split into two snake resonances separated by Au_ = +-_AQ,.
The distance of splitting becomes smaller at higher order snake resonances.

Thus the spin depolarization mechanisms are due to the perturbed spin
tune shift of the imperfection resonance and the snake resonance conditions of
Eq. 1. Since betatron tunes of colliders, such as RHIC, SPS, Tevatron, and SSC,
have to avoid similar low order betatron resonances for orbital stability, snake
resonances do not impose further constraints to the operation of colliders. One
can generalize the discussion to multi-snake accelerators, where the resonance
condition of Eq.1 will be modified by snake superperiodicity, Pa. At higher
snake superperiodicity, there are fewer snake resonances, yet resonance width
is also increased. Basic physics remains unchanged [7] .

Let us consider a model of overlapping intrinsic and imperfection reso-
nances with a small local spin precessing kick, :_, about the el axis. The OTM
becomes, _ = e-i_at 7"(_0-4-27r,80), The resonance strength of the imperfection
resonance is given by eimp = X/27r at all integer harmonics. The off diagonal
matrix elements of the OTM is given by,

rl", = -2iabe -i(c-_c'_+¢*) cos _ cos _ + iei'_v"(1 - 262e-i_' cos _)sin x" 2'

Note here that the off-diagonal matrix elements now contain a term oscillat-
ing at two times the betatron frequency with an amplitude proportional to
b2 sin 2x. Thus the tolerable even order snake resonance strength will decrease
inversely with respect to the imperfection resonance strength. Following the
same procedure in deriving Eq. 4, one obtains a snake resonance condition,
us -4-2K = integer. By performing similar higher order analysis, one can obtain
all even order snake resonances. Since the first term of "_12depends on the
imperfection resonance in cos 2x, the odd order snake resonance is not much
affected by the overlapping imperfection resonance.

2.5 Critical Snake Resonance Strength

Let us define the critical resonance strength for the snake resonance of the
order g of Eq. 1 as the maximum resonance strength such that the final po-
larization is 98% or higher after passing through the resonance. The critical
resonance strength depends on the order of snake resonance, £, the acceleration
rate, the imperfection resonance strength. We will assume that the imperfection
resonance strength is small so that the spin tune is not substabtiaUy shifted,
e.g. eimt, < 0.05 for two snakes. Fig.5 shows the critical resonance strength
tolerable as a function of the order of the snake resonance at an acceleration
rate of Ap = 5 MeV/c per turn. Note here that the critical resonance strength
increases with the order of the snake resonance. The critical snake resonance
strengths for even order snake resonances follow a similar behavior. At a con-
stant imperfection resonance strength, the dependence of the critical resonance
strength on the accelration rate Ap in [MeV/c per turn] is shown in the mid-
dle of Fig.5. Finally, the dependence of the critical resonance strength for an



even order snake resonance is shown on the right as a function of the imper-
fection resonance resonance strength at a fixed acceleration rate of/Xp -- 0.3
[MeV/c/turn]. Here we observe that the critical even order snake resonance
strength depends inversely with respect to the imperfection resonance.
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Fig.5 The critical snake resonance strength vs the order _ of the snake resonance
at the acceleration rate of 5 MeV/turn is shown on the left. The dependence
of critical resonance strength on the acceleration rate is shown in the middle
for £ = 3, 8, 13. The dependence of the critical resonance strength for ari even
order snake resonance (£ = 8) on the imperfection resonance strength is shown
on the right. Because betatron tunes of KHIC are chosen to lie between 0.8

13
and 0.8333, therefore possible snake resonances are the 8rh order at uz = 1-_

and the 13rh order at uz - 2_

3. _nake Experiments at the IU CF Cooler Ring

Through a series of pioniering snake experiments at the IUCF Cooler Ring
led by A.D. Krisch, much of spin physics experiments have been performed,
where a superconducting solenoid sna_e and two pairs of skew quadrupoles a_ud
tuning quadrupoles, to achieve a local linear coupling corrections, are installed
in the S section of the Cooler Ring. The experiments starts with polarized
proton at 80% polarization kicked injected into the cooler. The polarized proton
is cooled and then the polarization is measured using a skimmer target. The
radial and vertical polarizations were measured in the polarimeter detector
with up-down and left-right symmetry. One can summarize results of these
experiments as follows:

1. The spin closed orbit vector in the present of snake and partial snal_e had
been verified. The electron beam confinement elements introduced a spin tune
shift, Au3, equal to the product of the spin precession angles due to the vertical
orbit bump and the mMn solenid field divided by 27r [5,11]. This gives rise to

an apparent GO'= 2 resonance energy shift of zkE - mc 2-_. The interference
between the longitudinal field error and the horizontal transverese field error
of the vertical closed orbit was used to determine the strength and phase of the
imperfection resonance strength.
2. The synchrotron sidebands around an imperfection resonamce was observed.
This indicate that the depolarization due to synchrotron motion is not neg-
ligible in storage rings. Fortunately, the synchrotron tune for proton storage



ring is of the order of 10-a. Therefore. they plays little role in depolarization
mechanism.
3. Using an rf solenoid, tile spin time of the orbiting proton was measured.
The first order snake resonance had been confirmed. At the full snake strength,
the synchrotron depolarization resonance did not exist. This confirms that the
spin tune is energy independent with a full snake.
4. By ramping the rf solenoid through the spin tune, the Froissart-Stora formula
was also confirmed. Operating the rf solenoid at the spin tune, the spin will
precess about the spin closed orbit rico at a rate determined by the strength
of the solenoid. The measured spin tune of partial snake agrees very well

with cos 7rvs = cos Tr(G7 - Aua) cos _, where Aua is the spin tune shift due to
magnetic fields in electron cooling region.

4. Conclusions and Requirements of a Polarized Collider
We find that even order snake resonances exist in the presence of overlap-

ping intrinsic and imperfection resonances, and the depolarization mechmfisms
arise essentially from the perturbed spin tune of imperfection resonmlces and
snake resonances. Because of the perturbed spin tune shift induced by the
imperfection resonance, each snake resonance is split into two resonances. The
available tune space becomes smaller. The depolarization mechanisms can be
used to derive requirements for polarized colliders. Possible depolarization
sources are (1) spin tune modulation so that the spin tune overlaps with snake
resonances, (2) betatron tune modulation so that snake resonances overlap with
the spin tune, (3) the effects of beam-beam interactions, higher order nonlinear
resonances, and synchrotron depolarization resonances, (4) an uncompensated
solenoid field at IP of experimental detectors and the effect of spin rotators for
helicity experiments, (5) effects of linear coupling, and (6) effects of rf noises.
Careful analysis of these effects on the spin in needed to obtain high energy
spin collision.
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