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Studies of Polarized Beam Acceleration and Siberian Snakes!

S.Y. LEE
Department of Physics, Indiana University, Bloomington, IN 47405, USA

ABSTRACT

We studied depolarization mechanisms of polarized proton acceleration in
high energy accelerators with snakes and found that the perturbed spin tune
due to the imperfection resonance plays an important role in beam depolar-
ization at snake resonances. We also found that even order snake resonances
exist in the overlapping intrinsic and imperfection resonances. Due to the per-
turbed spin tune of imperfection resonances, each snake resonance splits into
two. Thus the available betatron tune space becomes smaller. Some constraints
on polarized beam colliders were also examined.

1. Introduction

The spin equation of motion for a spin particle, governed by the magnetic
interaction between the magnetic dipole moment of the particle and the static
magnetic field in a synchrotron, is given by the Thomas-BMT equation (1},

S‘ - re ~—t —
® =551 1+ GNBL+ 1+ 6By +(Gr+ 75 Exy),
where B, and Bj are the transverse and longitudinal components of the mag-

netic fields with respect to the velocity vector, 3. In a planar synchrotron, ver-
tical magnetic fields are needed to guide the orbiting particle around a closed
path. Thus the spin vector is precessing with respect to the vertical axis at a
frequency G fo, where fj is the revolution frequency, G = £ —1 is the anoma-

lous magnetic g-factor and v is the relativistic Lorentz factor. The quantity,
G+, representing the number of spin precessions per revolution, is called the
spin tune.

In synchrotrons, strong quadrupole fields are needed to focus the beam
to a small size. Particles moving off-center vertically in quadrupoles will ex-
perience horizontal fields, which kick the spin vector away from the vertical
axis. Since quadrupole magnets and particle closed orbits are periodic in a cir-
cular accelerator and the betatron and synchrotron motions are quasiperiodic
[2], perturbing kicks to the spin vector can be decomposed into harmonics, K,
given by K = n + mv, + v + kv,y,, where v,,v, and v,y, are respectively
the vertical betatron, the horizontal betatron and the synclvu'otron tunes, and
k,¢,m,n are integers. The imperfection resonances, due to the vertical closed
orbit errors, are located at integer harmonics, K = n. The intrinsic resonances,
due to the vertical betatron motion, are located at K = nP + v,, where P is
the superperiodicity of the accelerator. Other depolarizing resonances arise
from linear or nonlinear betatron coupling, vertical dispersion, synchro-beta
coupling and random field errors.

When the spin tune equals to a harmonic of perturbing kicks, Gy = K,
these spin perturbing kicks add up coherently. Beam depolarization may occur.
To avoid a spin resonance condition, Derbenev and Kondratenko [3] proposed
to use a local spin rotator, which rotates the spin vector 180° about an axis in

tWork supported in part by a grant from the DoE DE-FG02-92ER40747

R e
1 p‘" PR g}f
el P A T\
Lol B 6 L E

e

LN VIR SEENT S (Y VL S ] [ RGN |



the horizontal plane. These spin rotators are called snakes. Using snakes in an

accelerator, the spin tune, v,, can become % and independent of energy. The
resonance condition can be avoided.
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Fig.1. The final vertical spin vector after passing through an intrinsic depolar-
ization resonance with strength €;n: = 0.5 of an accelerator with o sunkos s
plotted as a function of the fractional part of the vertical betatron tune.

However, subsequent studies show that when the resonance strength is

large, new spin depolarizing resonances occur at some fractional betatron tunes.
These resonances, located at,

vs + £K = integer, (1)

are called snake resonances [4], where v, is the spin tune, K is the spin depolar-
izing resonant harmonicand ¢ = 1,3,5,7,---,. Forv, = %, we expect that snake

resonances occur at fractional betatron tunes, v, = %, é, %, 11—0, 13’—0, -115, 13_0’ ey
where the lowest order snake resonance has been observed [5]. Higher order
snake resonances have been identified in numerical simulation shown in Fig. 1,
where the final vertical spin vector, after passing through an isolated intrinsic
resonance, is plotted as a function of the vertical betatron tune v,.

From Fig. 1, we note that numerical simulations show no apparent even
order snake resonances at ¢ = 2,4,6,8,.-.. Several reasons for the nonexis-
tence of even order snake resonances were given in the past [4,6]. However,
the situation has never been tested in the case of overlapping resonances. With
overlapping resonances, cancellation of depolarization perturbation is not guar-
anteed and the coherent kicks due to the imperfection resonance may induce
strong perturbation to the spin vector. This may lead to beam depolarization
at even order snake resonances. Therefore careful studies are needed.

Overlapping resonances are important in high energy accelerators. Impor-
tant intrinsic resonances are located at K = nP + v, ® mPM + v,, wheren
and m are integers, P is the superperiodicity, M is the number of FODO cells
per superperiod and v, is the total accumulated betatron tune of those FODO
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cells, which ~ontain dipole magnets. The corresponding resonance strengths
are given by

- € M z D ;! )

€ int = 4_G; ‘Y—".MPM ﬁf( )(1 + gx(g)),
where 3.(F) and B.(D) are vertical betatron amplitude functions at the
location of focusing and defocusing quadrupoles, f is the focal length of
quadrupoles, €, is the normalized emittance, and 7 is the Lorentz factor. The
maximum resonance strength is about 0.45 at 250 GeV for RHIC, and is about
5 at 2 TeV at the SSC. These important intrinsic resonances are well separated.

On the other hand, important imperfection resonances will occur at inte-

gers near to an important intrinsic resonance. Thus overlapping intrinsic and
imperfection resonances constitute the most important problem in the spin

dynamics during polarized proton acceleration. The maximum imperfection
resonance strengths are given by

ércamp ~ STPM 75 (14 /Gy,
where o, is the rms vertical closed orbit in the arc, v, is the vertical betatron
tune. We expect that the imperfection resonance strength to be less than 0.05
for RHIC after a closed orbit correction with o, ~ 0.2 mm.

Previous studies [7] of overlapping resonances indicated that when the be-
tatron tune is chosen properly, i.e. far away from low order snake resonances,
the tolerable or critical intrinsic resonance strength is given by €jnt,c < iN,,
where N, is number of snakes. However there are many open questions remain-
ing, such as where is the proper tune? what is the depolarization mechanism for
overlapping resonances? what are essential effects of imperfection resonances?
etc. This paper is intended to investigate spin depolarization mechanisms of
overlapping intrinsic and imperfection resonances. SEction 2 studies: depolar-
ization mechanisms. Section 3 reviews progresses of snake experiments. Section
4 gives the conclusion and requirements for a polarized collider. .

2. Spin Depolarization Mechanisms in a Synchrotron

In a synchrotron, the Thomas-BMT equation can be cast into the equation
for the two-component spinor [8], ¥, as

av _ 1 ( Gy ¢
d@ - 2 (_6* _G,Y) \Ila (2)

where 8 is the orbital bending angle, and £ arises from nonvertical magnetic
fields in a synchrotron and is the main source for beam depolarization. The
spin vector is given by the ensemble average, S = (¥|5|¥), where & is the Pauli
matrices. Because of periodic structure of a circular accelerator and the quasi-
periodicity of betatron and synchrotron motions, one obtains § = 3_ € e K
where €, is the resonance strength, and K is the resonance tune.

The spinor equation of motion can be solved analytically for a single res-
onance by transforming the reference frame to the resonance precessing frame
with U (8) = e3 K093 9(9), i.e. ‘

\I/(Of) = e-%KO,daegAﬁ¢°'E(9,—Og)eiz-KO;aa\I,(gi) = t(Gf,O,-)\I’(G,-)
where fi,, = %[6&3 + eré; — €1€,] is the spin closed orbit in the resonance pre-
cessing frame, and (€1, €2, €3) are orthonormal bases corresponding to radially

'
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outward, longitudinal, and vertically upward axes, and A = (§2+|¢[*)/%, § =
K — G~. The matrix elements of the spin transfer matrix are given by,

tn = ae‘[c K(8, -6 )/2] t12 = ibe_i[d+K(G/+e")/2], t21 = —t;z, t22 = tTls with
parameters, b = Lxlsm[/\ff—-zﬁ] = (1 -a?)'/?, ¢ = arctan[$ ta,n(/\e%e—"-)], and

d = arg(e*). The parameter b is the effective resonance strength with a maxi-
mum amplitude lf\l

2.1 Basic Requirements of Snake Configurations in Accelerators

Snakes are local spin rotators, which rotate particle spin by = radians
about a horizontal axis locally without perturbing particle orbits outside a
snake region. Thus a snake is characterized by the spin rotation angle, ¢,
and the snake azis angle, ¢,, with respect to é;. The spinor is transformed
as, (%) = emiEne FY(97) = T,(4,)¥(6~), where % depict azimuthal orbit

rotation angles just before and after the snake. At ¢ = 7, or the 100% snake,
we have T,($,) = —in, - 7.

Let us consider N, snakes with snake axes, (¢, ¢2, -+, dn, ), and let 6; 4,
be the azimuthal orbit rotation angle between the i-th, and (z 4+ 1)-th snakes.

The condition, 3 6 k1 = St ven Ok k1 = T, is needed to provide
an energy independent spin tune [6,10]. If the odd (or even) orbital angle
deviates from w, the spin tune is shifted away from 1 5 Dy an amount, Av, =

Gy(1 - Q‘f}‘*) Similarly, the spin tune is obtained frorn the trace of the one

turn transfer matriz, or the one turn map (OTM), L.e. v, = I;Z‘},:j;'_l(—l)kok.
The spin tune can be adjusted to the most favorable number in avoiding spin
depolarizing resonances. For accelerators with two snakes, those two snakes
should be located at m orbital angle apart and the snake axes of these two
snakes should be orthogonal to each other to obtain a spin tune of % For

accelerators with a large number of snakes, proper snake superperiodicity and
proper spin tune can be arranged.

2.2 Spin Tracking Hierarchy Equation

Let us consider an accelerator with N, equally spaced snakes. The spin
transfer matrix after passing through a pair of (¢2,#1) snakes is given by

(60 + §%,60) = Ts($2)t(80 + 45,00 + F5)T, (¢1)t(90 + 3, 60).

The spin motlon can be obtained 1teratxvely by usmg the spin trackmg equation
through pairs of snakes, i.e. T(0p+1) = 7(6n+1,0,)T(0,) , where 0,41 =
6,+4m/N,. The resonance strength parameter b becomes smaller due to a small
orbital angle difference, 85 — 0;, between snakes. The spin tracking equation

can be solved iteratively using a power series expansion in strength parameter
b?, i.e.
)

Tn=TY +TH +TD +-++, T=TQ +TF+T3 +---, (3

where T = O(b%) and T} = O(ab?~!). The final vertical spin vector is
given by, (S) = [Tu|? - |T12|2 =1-2|Ty,|%
2.3 The Perturbed Spin Tune and Snake Resonances

Without loss of generality, we discuss an accelerator with two snakes ¢, ¢2,
located at a 7 orbital angle from each other. The OTM is given by 7, =
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—e“‘””'(1—2b2e“’ cos @), 112 = —2iabe K™+ 2) co5s @ | where v, = dy—¢1
and ® = K6y + Km+ d— ¢, is the characteristic betatron phase of the orbital
motion, b = Ll sin 2 A = /67 1 e[, 6 = K — Gy and a = VI = I2.

The perturbed spin tune, @Q,, defined as the trace of OTM, is given by
cos 7@, = b?sin(29). Because of the betatron phase, the perturbed spin tune
for an intrinsic resonance, Q,, is oscillating around % up to the maximum and

the minimum given by Q, maz/min = § *  arcsin[sin® 7l

Thus if the resonance strength of a spin resonance is |¢] =& mN,/2,
m = 1,3,---, the perturbed spin tune, @,, will cover a whole integer unit
during the acceleration and cross the intrinsic resonance many times. The
polarization may be lost. The final polarization is plotted as a function of
the intrinsic resonance strength at v, = 0.81 on the left side of Fig. 2, where
the maximum and minimum perturbed spin tunes cover the entire tune space
around € = 1 and 3 and where beam depolarization occurs. At the right side
of Fig.2, the perturbed spin tune shift is shown as a function of Gy for an
imperfection resonance. The polarization after passing througth the resonance
is independent of the vertical betatron tune.

Solving the spin tracking Eq. 3 to the first order in parameter b, the spin
transfer matrix is given by,

T(}) (Bnsr) miab(—1)re~He=Kmo2) (i @4nKm e (K 4 y)4

4
+ e‘i(¢+nK”)<n+l(K - Vs)} ( )

where the enhancement function, {,(g), is given by, (.(q) = 1;—:‘51‘595 At the first
order snake resonance condition, v, + K = integer, the off-diagonal kicks add
up coherently each turn through snake pairs. The beam can be depolarized
easily as shown in Fig. 1 at v, = % Since betatron tunes of an accelerator

are not half integers, the first order snake resonance condition can easily be
avoided. A few useful observations is given below:

1. At an imperfection resonance, K = integer, Tl(;)(Gn:wm) = 0. This means
that imperfection kicks cancel each other every two revolutions. Thus snakes
are effective in overcoming imperfection resonances.

2. When the betatron tune equals to a low order rational number, the linear
terms in Eq. 4 cancel each other in the tracking equation. For K = ;’;, we found
that

(1) _ m=p if pis even,
Tiz (9m) =0 m =2p if pis odd.
One might guess that the spin will be more stable against perturbation at a
rational nmber betatron tune. At low order rational numbers, such as 1/3,
2/3,1/4, 3/4,1/5, 2/5, etc., the spin vectors behave characteristically different
from that shown on the left side of Fig. 2. When K is a low order rational
number, the polarization is not much affected by the perturbed spin tune at
e =1 or 3 due to cancellation in perturbing kicks.

3. Avoiding snake resonances, the vertical spin vector across the resonance
region will fall within the envelope of ((S)) = 1 —8a%5?, b= lsinZ} The

envelope function ((S)) has many nodal points, where the depolarization driv-
ing term vanishes, i.e. b = 0 or 1. These nodal points corresponds to the
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spin matching condition [10] where Ni‘ = integer. Thus these nodal locations

are separated approximately by N, units of Gy. These nodal points plays
an essential role in spin restoration during the passage through a depolariza-
tion resonance. Away from the central resonance location, the depolarization
driving parameter b is usually small. Therefore after passing through the res-
onance, if the spin vector is not restored to the vertical position at the first
nodal location, the spin is depolarized.

4. The width of envelope function is about 12|e| for 95% polarization. However,
one can choose a nodal point to obtain 100% polarization.

5. Based on the linear response theory of Eq. 4, we expect that depolarization
occurs when the betatron tune equals to a half integer shown clearly in Fig. 1.
The snake resonance at v, = } had been observed (5].

From the above discussions, we might expect that the spin vector would
be more stable when the betatron tune equals to a low order rational num-
ber. However, Figure 1 shows that there are many higher order depolarization
resonances at a rational number betatron tune, e.g. 1/6, 5/6, 1/10, 3/10, etc.

Solving the spin tracking equation beyond linear order in b gives rise to snake
resonance conditions given by Eq. 1 [4].

1.0 r—ﬁ v T

03 I~

011839 AW/ 1
023679 :

035818

047258

.
-08 |~ — 059197 I hn
L <S> v,=1/2 i 071037 )
L ] i

480 485 490 95
€int Gy

Fig.2 On the left side, the vertical spin vector and the perturbed spin tunes
(s, maz/min Obtained from a numerical tracking calculation at intrinsic reso-
nance v, = 0.81 are plotted as a function of the resonance strength. Note that
the perturbed spin tune cover the entire tune space at € = 1,3. On the right,
the perturbed spin tune is plotted as a function of Gy

2.4 Overlapping Resonances and Even Order Snake Resonances

Basic accelerator theory [2] indicates that a closed orbit distortion has
largest amplitude at a harmonic nearest to betatron tune. We thus expect a
large imperfection resonance, located at an integer nearest to the important
intrinsic resonance. The correlation remains important even after closed orbit
corrections, which minimizes error harmonics nearest to betatron tunes.

At an even order snake resonance condition of Eq. 1, the spin vector is
not much affected by the perturbative spin tune and is not depolarized at
€ = 1,3 due to the cancellation of the linear spin kicks in Eq. 4. However,
when the imperfection resonance is included, the vertical spin vector is per-
turbed strongly so that the spin vector can not retain its full polarization at
the first nodal point. The memory on the vertical spin vector is lost. Including
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imperfection resonances in the spin tracking equation, the final vertical spin
vector after passing through overlapping intrinsic and imperfection resonances,

€int = 0.5, €imp = 0.05 is shown in Fig.3 as a function of v,, where beam depo-
larization occurs at all even order snake resonances.
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Fig.3 Beam polarization after passage through overlapping intrinsic and im-
perfection spin resonances is shown as a function of the fractional part of spin
resonance tune. In comparison with that of Fig. 1, even order snake reso-
nances appear while the odd order snake resonances are not much affected. At

€imp = 0.05 for two snakes, even order snake resonances are as important as
odtf order snake resonances.
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Fig.4 The effect of the imperfection resonance on the snake resonances is shown
for €imp = 0.13 (left) and €;mp = 0.25 (right). Note that even order snake
resonances appear and each snai(e resonance splits into two resonance condition
due to the unperturbed spin tune of the imperfection resonance.

To understand the effect of imperfection resonances on the spin motion,
the intrinsic resonance strength is reduced to €;,; = 0.137 so that only low
order snake resonances at v, = 1/2, 1/6, 5/6 are important. When an im-
perfection resonance at €;mp = 0.13 is included, even order snake resonances
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at v; = 3/4, 5/8, 7/8,--- appear shown in Fig.4. Furthermore, all snake res-
onances split into double dips. The distance between two dips increases with

the strength of the imperfection resonance. The snake resonance condition
becomes

1
3 + AQ,s £ v, = integer, ¢ = integer, (5)

where AQ, is the perturbed spin tune shift from the imperfection resonance
given by |AQ,| ~ & arcsinfsin® Ej\‘ﬁa] Because of spin tune shift, each snake

resonance will split into two snake resonances separated by Av, = :i:-lz-AQ .
The distance of splitting becomes smaller at higher order snake resonances.

Thus the spin depolarization mechanisms are due to the perturbed spin
tune shift of the imperfection resonance and the snake resonance conditions of
Eg. 1. Since betatron tunes of colliders, such as RHIC, SPS, Tevatron, and SSC,
have to avoid similar low order betatron resonances for orbital stability, snake
resonances do not impose further constraints to the operation of colliders. One
can generalize the discussion to multi-snake accelerators, where the resonance
condition of Eq.1 will be modified by snake superperiodicity, P,. At higher
snake superperiodicity, there are fewer snake resonances, yet resonance width
is also increased. Basic physics remains unchanged (7] .

Let us consider a model of overlapping intrinsic and imperfection reso-
nances with a small local spin precessing kick, x, about the é; axis. The OTM
becomes, 7 = e~i%1 7(6o + 27,6y ), The resonance strength of the imperfection
resonance is given by €;mp = x/27 at all integer harmonics. The off diagonal
matrix elements of the O%M is given by,

F12 = —2iabe (e~ K™¢2) co5 @ cos & + iei™ (1 — 2b%e*® cos ) sin &,
Note here that the off-diagonal matrix elements now contain a term oscillat-
ing at two times the betatron frequency with an amplitude proportional to
b? sin X£. Thus the tolerable even order snake resonance strength will decrease
inversely with respect to the imperfection resonance strength. Following the
same procedure in deriving Eq. 4, one obtains a snake resonance condition,
vs £ 2K = integer. By performing similar higher order analysis, one can obtain
all even order snake resonances. Since the first term of 71, depends on the
imperfection resonance in cos ¥, the odd order snake resonance is not much
affected by the overlapping imperfection resonance.

2.5 Critical Snake Resonance Strength

Let us define the critical resonance strength for the snake resonance of the
order { of Eq. 1 as the maximum resonance strength such that the final po-
larization is 98% or higher after passing through the resonance. The critical
resonance strength depends on the order of snake resonance, ¢, the acceleration
rate, the imperfection resonance strength. We will assume that the imperfection
resonance strength is small so that the spin tune is not substabtially shifted,
e.8. €imp < 0.05 for two snakes. Fig.5 shows the critical resonance strength
tolerable as a function of the order of the snake resonance at an acceleration
rate of Ap = 5 MeV /c per turn. Note here that the critical resonance strength
increases with the order of the snake resonance. The critical snake resonance
strengths for even order snake resonances follow a similar behavior. At a con-
stant imperfection resonance strength, the dependence of the critical resonance
strength on the accelration rate Ap in {MeV/c per turn] is shown in the mid-
dle of Fig.5. Finally, the dependence of the critical resonance strength for an
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even order snake resonance is shown on the right as a function of the imper-
fection resonance resonance strength at a fixed acceleration rate of Ap = 0.3
[MeV/c/turn]. Here we observe that the critical even order snake resonance
strength depends inversely with respect to the imperfection resonance.
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Fig.5 The critical snake resonance strength vs the order £ of the snake resonance
at the acceleration rate of 5 MeV/turn is shown on the left. The dependence
of critical resonance strength on the acceleration rate is shown in the middle
for £ = 3,8,13. The dependence of the critical resonance strength for an even
order snake resonance (£ = 8) on the imperfection resonance strength is shown
on the right. Because betatron tunes of RHIC are chosen to lie between 0.8
and 0.8333, therefore possible snake resonances are the 8th order at v, = %
and the 13th order at v; = %%

3. Snake Experiments at the IUCF Cooler Ring

Through a series of pioniering snake experiments at the IUCF Cooler Ring
led by A.D. Krisch, much of spin physics experiments have been performed,
where a superconducting solenoid snake and two pairs of skew quadrupoles and
tuning quadrupoles, to achieve a local linear coupling corrections, are installed
in the S section of the Cooler Ring. The experiments starts with polarized
proton at 80% polarization kicked injected into the cooler. The polarized proton
is cooled and then the polarization is measured using a skimmer target. The
radial and vertical polarizations were measured in the polarimeter detector

with up-down and left-right symmetry. One can summarize results of these
experiments as follows:

1. The spin closed orbit vector in the present of snake and partial snake had
been verified. The electron beam confinement elements introduced a spin tune
shift, Avs, equal to the product of the spin precession angles due to the vertical
orbit bump and the main solenid field divided by 27 {5,11]. This gives rise to
an apparent Gy = 2 resonance energy shift of AE = mczé—é’-‘*. The interference
between the longitudinal field error and the horizontal transverese field error
of the vertical closed orbit was used to determine the strength and phase of the
imperfection resonance strength.

2. The synchrotron sidebands around an imperfection resonance was observed.
This indicate that the depolarization due to synchrotron motion is not neg-
ligible in storage rings. Fortunately, the synchrotron tune for proton storage
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ring is of the order of 1073. Therefore, they plays little role in depolarization
mechanism.

3. Using an rf solenoid, the spin tune of the orbiting proton was measured.
The first order snake resonance had been confirmed. At the full snake strength,
the synchrotron depolarization resonance did not exist. This confirms that the
spin tune is energy independent with a full snake.

4. By ramping the rf solenoid through the spin tune, the Froissart-Stora formula
was also confirmed. Operating the rf solenoid at the spin tune, the spin will
precess about the spin closed orbit 7., at a rate determined by the strength
of the solenoid. The measured spin tune of partial snake agrees very well

with cosmvy = cosm(Gy — Avg) cos 323, where Avs is the spin tune shift due to
magnetic flelds in electron cooling region.

4. Conclusions and Requirements of a Polarized Collider

We find that even order snake resonances exist in the presence of overlap-
ping intrinsic and imperfection resonances. and the depolarization mechanisms
arise essentially from the perturbed spin tune of imperfection resonances and
snake resonances. Because of the perturbed spin tune shift induced by the
imperfection resonance, each snake resonance is split into two resonances. The
available tune space becomes smaller. The depolarization mechanisms can be
used to derive requirements for polarized colliders. Possible depolarization
sources are (1) spin tune modulation so that the spin tune overlaps with snake
resonances, (2) betatron tune modulation so that snake resonances overlap with
the spin tune, (3) the effects of beam-beam interactions, higher order nonlinear
resonances, and synchrotron depolarization resonances, (4) an uncompensated
solenoid field at IP of experimental detectors and the effect of spin rotators for
helicity experiments, (5) effects of linear coupling, and (6) effects of rf noises.

Careful analysis of these effects on the spin in needed to obtain high energy
spin collision.
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