

UNCLASSIFIED

**(CLASSIFICATION)**

DOCUMENT NO.

RL-SEP-180

**SERIES AND COPY NO.**

25

DATE

DATE December 18, 1964

**GENERAL  ELECTRIC**

**HANFORD ATOMIC PRODUCTS OPERATION - RICHLAND, WASHINGTON**

**X** RESTRICTED DATA  
THIS DOCUMENT CONTAINS RESTRICTED DATA AS  
DEFINED IN THE ATOMIC ENERGY ACT OF 1954.  
ITS TRANSMISSION OR THE DISCLOSURE OF ITS  
CONTENTS IN ANY MANNER TO AN UNAUTHORIZED  
PERSON IS PROHIBITED.

**TITLE**

## TENTATIVE U-233 AND THORIUM NITRATE SPECIFICATIONS

OTHER OFFICIAL CLASSIFIED INFORMATION  
THIS MATERIAL CONTAINS INFORMATION AFFECTING  
THE NATIONAL DEFENSE OF THE UNITED STATES  
WITHIN THE MEANING OF THE ESPIONAGE LAWS,  
TITLE 18, U. S. C., SECS. 793 AND 794, THE TRANS-  
MISSION OR REVELATION OF WHICH IN ANY MANNER  
TO AN UNAUTHORIZED PERSON IS PROHIBITED BY  
LAW.

**AUTHOR**

**ISSUING FILE**

**CIRCULATING COPY**  
**RECEIVED 300 AREA**

JAN 18 1965

RETURN TO

THIS DOCUMENT MUST NOT BE LEFT UNATTENDED OR WHERE AN UNAUTHORIZED PERSON MAY HAVE ACCESS TO IT. WHEN NOT IN USE, IT MUST BE STORED IN AN APPROVED LOCKER OR REPOSITORY. IT IS YOUR RESPONSIBILITY TO KEEP THIS DOCUMENT AND ITS CONTENTS WITHIN THE LIMITS OF THIS PROJECT AND FROM ANY UNAUTHORIZED PERSON. ITS TRANSMITTAL TO AND STORAGE AT YOUR PLACE OF RESIDENCE IS PROHIBITED. IT IS NOT TO BE DUPLICATED. IF ADDITIONAL COPIES ARE REQUIRED, OBTAIN THEM FROM THE RELATED ISSUING FILE. ALL PERSONS READING THIS DOCUMENT ARE REQUESTED TO SIGN IN THE SPACE PROVIDED BELOW.

| ROUTE TO:     | PAYROLL NO. | LOCATION | FILES ROUTE DATE | SIGNATURE AND DATE |
|---------------|-------------|----------|------------------|--------------------|
| M. J. Walling | 13172       | 326      | 1-19-65          |                    |
|               |             |          |                  |                    |
|               |             |          |                  |                    |
|               |             |          |                  |                    |

## DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

54-3000-340 (3-57) ABC-GE RICHLAND, WASH

~~UNCLASSIFIED~~

MASTER

**(CLASSIFICATION)**

DISTRIBUTION RESTRICTED TO U.S. ONLY

**UNCLASSIFIED**

This document consists of  
5 pages. Copy No. 23 of  
27 copies. Confidential.

December 18, 1964

DISTRIBUTION

1, 2, 3 - J. T. Christy, AEC-RLOO

4 - O. F. Beaulieu  
5 - T. Clark  
6 - R. A. Connell  
7 - W. J. Gartin  
8 - O. H. Greager  
9 - M. K. Harmon  
10 - W. M. Harty  
11 - B. F. Judson  
12 - J. B. Kendall  
13 - R. W. McCullugh  
14 - G. F. Owsley  
15 - H. C. Rathvon  
16 - L. H. Rice  
17 - H. P. Shaw  
18 - R. J. Sloat  
19 - S. G. Smolen  
20 - M. J. Szulinski  
21 - R. E. Tomlinson  
22 - A. J. Waligura  
23 - M. T. Walling ←  
24 - J. H. Warren  
25 - W. K. Woods  
26 - 700 Files  
27 - Record Center

Classification Cancelled (Change to

UNCLASSIFIED

by Authority of A.E. Barker  
Printout 8-7-72  
By L. Page 9-14-72

~~This document contains restricted data as defined in the Atomic Energy Act of 1954. Its transmission or the disclosure of its contents in any manner to an unauthorized person is prohibited.~~

~~Excluded from automatic downgrading and declassification~~

**UNCLASSIFIED**

December 18, 1964

U. S. Atomic Energy Commission  
Richland Operations Office  
Richland, Washington

Attention: Mr. J. T. Christy, Chief  
Chemical Operations Branch  
Production Division

Gentlemen:

TENTATIVE U-233 AND THORIUM NITRATE SPECIFICATIONS

Reference: Letter, J. T. Christy to R. E. Tomlinson, "U-233 and Thorium Nitrate Specifications", dated November 16, 1964.

In response to your request we have reviewed the proposed thorium nitrate specifications, prepared tentative product specifications for Purex U-233 and thorium nitrates, and estimated the feasibility, cost and product composition for providing U-233 oxide at Hanford. The tentative specifications proposed for U-233 and thorium product for the Purex Plant are presented in the attached tables. The values chosen represent our understanding of feed material and reactor processing needs and our current estimate of Purex Plant capabilities. Some adjustments have been made in the thorium limits proposed in Reference 1 to reflect reactor control needs for rare earth materials.

The practicality of achieving the various impurity concentration limits in Purex will be explored as part of the planned thorium process test. We have therefore chosen to label the attached specifications as tentative until further review can be made following an analysis of the process test data. We plan to forward to you proposed specifications as soon as the data are available in early 1965. In the meanwhile, we would appreciate your comments on the attached limits.

In the event that it would be desirable to ship the U-233 as the oxide, we would propose to store the U-233 solution that is produced during the relatively short production campaigns at Purex, and to process the U-233 through the oxide facility at Z-Plant over a period of 12 months. In this manner, the capital cost of the oxide facility is minimized and design would be based on a rate of 10 kgs of U-233 per month. The capital cost of this facility is conceptually estimated at \$250,000 for Z-Plant and \$125,000 for lag storage (including PR cans, assuming storage at some existing location such as Gable Mountain, T-Plant, or U-Plant). The product would be  $U_3O_8$  (calcined uranyl peroxide or ammonium diuranate) with a purity essentially the same as that specified for the nitrate product. The

UNCLASSIFIED

RL-SEP-180

U. S. Atomic Energy Commission  
Attention: Mr. J. T. Christy

-3-

December 18, 1964

U-233 would be decontaminated from the radioactive daughters of U-232 immediately prior to conversion to the oxide.

It is estimated that the operating cost for converting 100 kgs of U-233 from the nitrate to the oxide would be approximately \$65,000 per year, including Departmental and general overheads, but exclusive of depreciation on the above mentioned capital cost.

The above data are based on existing General Electric organization and no provision or consideration has been given to transfer operations which will take place within this period of time. Similar data prepared by other contractors may vary widely based on assumptions used.

Very truly yours,

R. E. Tomlinson

Manager  
Research and Engineering

RE Tomlinson:BFJ:lm,j

TENTATIVE PRODUCT SPECIFICATIONS  
PUREX URANIUM-233 NITRATE

Material Composition (2)

Uranium (as nitrate solution)  
Nitric Acid

50 to 350 g/l  
0.5 to 1.5 lbs/gal

Analytical Method (1)

Potential Coulometry  
Hydrogen Ion

Radiochemical Impurities (2)

|                  |                             |
|------------------|-----------------------------|
| Uranium-232      | < 6 ppm of U-233            |
| Uranium Isotopes | < 0.05 grams/gram of U-233  |
| Plutonium        | < 0.001 grams/gram of U-233 |
| Thorium          | < 0.005 grams/gram of U-233 |
| ZrNb-95          | < 4 uc/gram of U-233        |
| Ru-103, RuRh-106 | < 2 uc/gram of U-233        |
| Pa-233           | < 1 uc/gram of U-233        |

Chemical Impurities (3)

|                               |                     |
|-------------------------------|---------------------|
| Iron                          | < 1000 ppm of U-233 |
| Sodium                        | < 500 ppm of U-233  |
| Cadmium                       | < 1 ppm of U-233    |
| Boron                         | < 1 ppm of U-233    |
| Silicon                       | < 100 ppm of U-233  |
| Phosphorus                    | < 100 ppm of U-233  |
| Molybdenum                    | < 10 ppm of U-233   |
| Rare Earths                   | < 10 ppm of U-233   |
| Ce                            | < 1 ppm of U-233    |
| Sm                            | < 0.1 ppm of U-233  |
| Eu                            | < 0.1 ppm of U-233  |
| Gd                            | < 0.1 ppm of U-233  |
| Dy                            | < 0.1 ppm of U-233  |
| Other Metallic Impurities (4) | < 1000 ppm of U-233 |
| Chloride                      | < 20 ppm of U-233   |
| Sulfate                       | < 200 ppm of U-233  |

RL-SEP-180

(1) Sample methods and analytical procedures are summarized in HW-53368, "Analytical Technical Manual", February 1961.

(2) Samples taken of each product batch from the product sample tank in Purex for these analyses. A product batch would contain approximately six kilograms of uranium-233.

(3) Samples taken of every fifth product batch for these analyses.

(4) Al, Be, Bi, Ca, Co, Cr, Cu, K, Mg, Mn, Ni, Li, Pb, Sn, Zn

~~CONFIDENTIAL~~

RL-SEP-180

TENTATIVE PRODUCT SPECIFICATIONS  
PUREX THORIUM NITRATE

| <u>Material Composition (2)</u>     | <u>Limits</u>         | <u>Analytical Method (1)</u> |
|-------------------------------------|-----------------------|------------------------------|
| Thorium (as nitrate solution)       | 3 to 4 lbs/gallon     | Volumetric Analysis          |
| Nitric Acid                         | 0.3 to 1.5 lbs/gallon | Hydrogen Ion                 |
| <u>Radiochemical Impurities (2)</u> |                       |                              |
| Plutonium                           | < 10 ppb of thorium   | TIA Extraction               |
| Uranium (excludes U-233)            | < 10 ppm of thorium   | Fluorimeter                  |
| Uranium-233                         | < 20 ppm of thorium   | Mass Spectrography           |
| ZrM-95                              | < 10 uc/lb of thorium | Multichannel Analysis        |
| Ru-103, RuRh-106                    | < 20 uc/lb of thorium | Multichannel Analysis        |
| Pa-233                              | < 2 uc/lb of thorium  | Multichannel Analysis        |
| <u>Chemical Impurities (3)</u>      |                       |                              |
| Silicon                             | < 100 ppm of thorium  | Emission Spectrography       |
| Phosphorous                         | < 100 ppm of thorium  | Emission Spectrography       |
| Molybdenum                          | < 10 ppm of thorium   | Emission Spectrography       |
| Cadmium                             | < 1 ppm of thorium    | Emission Spectrography       |
| Boron                               | < 1 ppm of thorium    | Emission Spectrography       |
| Mg + Ca + Al                        | < 500 ppm of thorium  | Emission Spectrography       |
| Fe                                  | < 100 ppm of thorium  | Emission Spectrography       |
| Rare Earths                         | < 40 ppm of thorium   | Emission Spectrography       |
| Ca                                  | < 5 ppm of thorium    | Emission Spectrography       |
| Si                                  | < 0.5 ppm of thorium  | Emission Spectrography       |
| Eu                                  | < 0.5 ppm of thorium  | Emission Spectrography       |
| Gd                                  | < 0.5 ppm of thorium  | Emission Spectrography       |
| Dy                                  | < 0.5 ppm of thorium  | Emission Spectrography       |
| Other Metallic Impurities (4)       | < 500 ppm of thorium  | Emission Spectrography       |
| Chloride                            | < 20 ppm of thorium   | Spectrophotography           |
| Sulfate                             | < 200 ppm of thorium  | Spectrophotometry            |

(1) Sample methods and analytical procedures are summarized in HW-5363, "Analytical Technical Manual", February 1961.

(2) Samples taken of each product batch from the product sample tank for these analyses. A product batch would contain approximately six tons of thorium.

(3) Samples taken of every fifth product batch for these analyses.

(4) Be, Bi, Co, Cr, Cu, K, Mn, Na, Ni, Li, Pb, Sn, Zn

END

DATE  
FILMED  
9/17/93

