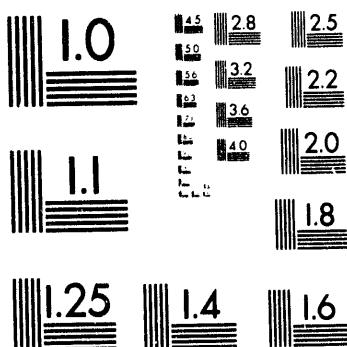


AIIM


Association for Information and Image Management

1100 Wayne Avenue, Suite 1100
Silver Spring, Maryland 20910
301/587-8202

Centimeter

Inches

MANUFACTURED TO AIIM STANDARDS
BY APPLIED IMAGE, INC.

1 of 1

Metals and Ceramics Division

**SUMMARY OF WORK ON COATINGS AND CLADDINGS
FOR FOSSIL ENERGY APPLICATIONS**

R. W. Swindeman

Date Published: May 1993

NOTICE: This document contains information of a preliminary nature. It is subject to revision or correction and therefore does not represent a final report.

Prepared for the
U.S. DOE Fossil Energy AR&TD Materials Program
AA 15 10 10 0

Prepared by
OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee 37831-6285
managed by
MARTIN MARIETTA ENERGY SYSTEMS, INC.
for the
U.S. DEPARTMENT OF ENERGY
under contract DE-AC05-84OR21400

MASTER

Sc

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

TABLE OF CONTENTS

LIST OF FIGURES.....	v
ABSTRACT.....	1
1. INTRODUCTION	1
2. COATINGS.....	1
3. CLADDINGS.....	2
3.1 CLADDING OF MODIFIED 316 STAINLESS STEEL.....	4
3.2 CLADDING OF MODIFIED ALLOY 800.....	10
3.3 CLADDING OF TYPE 304 STAINLESS STEEL WITH IRON ALUMINIDE.....	10
4. BONDING APPLICATIONS FOR CLADDINGS IN FOSSIL ENERGY APPLICATIONS	13
5. CONCLUSIONS.....	17
6. ACKNOWLEDGMENTS.....	18
7. REFERENCES.....	18

LIST OF FIGURES

<u>Figure</u>		<u>Page</u>
1	Chromized coating on 17-14CuMo stainless steel after creep testing at 700°C	3
2	Chromized coating on modified 316 (HT-UPS) stainless steel after creep testing at 700°C	3
3	Interface between alloy 671 cladding and modified 316 (HT-UPS) stainless steel	5
4	Simulated repair weld with alloy 92 in alloy 671 cladding on modified 316 stainelss steel: (a) typical region, (b) crack in the second pass of weld, and (c) clad-weld-base-metal intersection.....	6
5	Effect of creep exposure at 700°C on the ductility of 671 cladding on modified 316 (HT-UPS) stainless steel tube	7
6	Comparison of the corrosion rates of various materials in simulated fireside corrosion environments (Van Weele and Blough)	8
7	Interface between alloy 690 cladding and modified 316 stainless steel tube	9
8	Oxidation curves for annealed and cold-worked modified 316 stainless steel in comparison to 316 stainless steel at 800°C.....	9
9	Interface between alloy 671 cladding and alloy 800 tube: (a) as-fabricated and (b) after 500 h at 900°C with a cycle to near room temperature each day.....	11
10	Interface between alloy 690 and modified alloy 800 tube: (a) as-fabricated and (b) after 500 h at 900°C with a cycle to near room temperature each day.....	12
11	Oxidation of modified alloy 800 tube after 500 h at 900°C with a cycle to near room temperature each day	13
12	Interface between iron-aluminide cladding and type 304 stainless steel tube	14

<u>Figure</u>	<u>Page</u>
13 Effect of temperature on the ductility of coextruded iron-aluminide/304 stainless steel coextruded tube	15
14 Effect of exposure on the surface corrosion and interface between iron-aluminide cladding and type 304 stainless steel tube: 500 h at 900°C with a cycle to room temperature each day: (a) Fe ₃ Al surface, (b) interface, and (c) 304 stainless steel surface.....	16

SUMMARY OF WORK ON COATINGS AND CLADDINGS FOR FOSSIL ENERGY APPLICATIONS*

R. W. Swindeman

ABSTRACT

A summary of efforts to examine coatings and cladding materials for high-strength austenitic steels is provided. Chromized coatings on 17-14CuMo stainless steel and a modified type 316 (HT-UPS) stainless steel were investigated. Claddings included alloy 671, 690, and an iron-aluminide intermetallic alloy. Structural alloys that were clad included type 304 stainless steel, modified type 316 stainless steel, and modified alloy 800H. The capability of producing co-extruded tubing of the experimental alloys was demonstrated.

1. INTRODUCTION

In 1986, a 6-year program was started to evaluate materials for use in the boiler of a conceptual advanced steam cycle coal-fired power plant being studied by the Electric Power Research Institute (EPRI).^{1,2} The program included various groups of alloys that were selected for their strength, steam corrosion resistance, or ash corrosion resistance. It was recognized that for some alloys the combustion of high ash or chlorine content coal would require the protection of a coating or cladding.²⁻⁴ Various combinations were examined. These included chromized coatings for strong, lean stainless steels; nickel-chromium alloy cladding on a modified type 316 stainless steel and modified alloy 800H; and iron-aluminide cladding on type 304 stainless steel. This report reviews the work that has been undertaken over the last 6 years.

2. COATINGS

Coatings have been used with great success to protect waterwall tubing from corrosion fatigue and waterwall distress.⁵ Carbon steel and low-alloy steels have been coated with

*Research sponsored by the U.S. Department of Energy, Office of Fossil Energy, Advanced Research and Technology Development Materials Program [DOE/FE AA 15 10 10 0, Work Breakdown Structure Element ORNL-], under contract DE-AC05-84OR21400 with Martin Marietta Energy Systems, Inc.

high-chromium materials for extended life. More recently, chromized 9Cr-1Mo-V steel (Gr-91) has been evaluated as a superheater material for advanced steam cycle plants, and in this condition, it appears that the material has a corrosion resistance equivalent to 300 series stainless steels.⁶ Since Gr-91 steel may be heat treated to recover microstructure and strength (assuming minimal decarburization), chromizing appears to be attractive. Indeed, chromized superheater tubes of 9Cr-1Mo-V-Nb steel in the Tennessee Valley Authority Kingston Steam Plant Unit 5 have been in service for more than 10 years.

Good coal ash corrosion resistance has been reported for chromized 17-14CuMo stainless steel,⁴ but no information is available on the strength and ductility of composite materials. To examine this issue, specimens of two lean austenitic stainless steels [17-14CuMo stainless steel and modified type 316 stainless steel] were chromized by Babcock & Wilcox (B&W) Research Laboratory and tested at Oak Ridge National Laboratory (ORNL). More details regarding the coating compositions and characterizations are provided elsewhere.^{7,8} The microstructures of chromized coatings after creep testing are shown in Figs. 1 and 2 for the two steels in which the coatings were two phase and 100 to 150 μm thick. These photomicrographs show the cracks in the coatings that develop during creep testing at 700°C strains of a few percent. These cracks exposed the base metal to the environment. The 17-14CuMo stainless steel (see Fig. 1) was found to be creep brittle, and intergranular creep cracks initiated in the base metal at locations where the coating cracked. The modified 316 stainless steel was creep ductile, and cracks in the coating were blunted at the coating/base metal interface (see Fig. 2). In addition to the brittle coating, the long time at high temperature required to produce a 100- μm -thick coating degraded the creep strength of the base metal.⁹ Although the modified type 316 stainless steel was found to retain more strength than the 17-14CuMo stainless steel, it was concluded that higher chromium content steels would be more desirable for coal ash corrosion resistance under severe service conditions.

3. CLADDINGS

Use of clad tubing in aggressive atmospheres is accepted in the fossil, waste incineration, and petrochemical industries. Typical base metals include carbon steel, 18-8 stainless steels, and alloy 800H. Initially, superheater tubing of alloys with high creep strength were clad. The target in the current research was to produce diameter tubing 50–60 mm with thicknesses of 7 to 12 mm, clad with nickel-chromium alloys at least 2 mm thick. Development of the clad tubing was undertaken by B & W Research Center,^{10,11} and

Y210995

Fig. 1. Chromized coating on 17-14CuMo stainless steel after creep testing at 700°C.

Y210999

Fig. 2. Chromized coating on modified 316 (HT-UPS) stainless steel after creep testing at 700°C.

combinations of materials are provided in Table 1. Three materials were clad: modified type 316 stainless steel, modified alloy 800H, and type 304 stainless steel. Weld overlay cladding of plates was also performed, but results are discussed elsewhere.

Table 1. Summary of work on claddings

Base material	Cladding	Process*	Source [†]	Evaluations [‡]
Mod 316SS tube	alloy 671	HIP/coextrusion	B&W	A, B, C, D, E
Mod 316SS tube	alloy 690	coextrusion	B&W	C, E
Mod 316SS plate	alloy 672	weld overlay	B&W	C, E
Mod 316SS plate	alloy 690	weld overlay	B&W	E
Mod 800 tube	alloy 690	coextrusion	B&W	D, E
Mod 800 plate	alloy 672	weld overlay	B&W	C, E
Mod 800 plate	alloy 690	weld overlay	B&W	E
Alloy 800 tube	alloy 671	coextrusion	INCO	D
TP304SS tube	Fe ₃ Al	coextrusion	B&W	A, C, D, E

*HIP = hot isostatic pressing.

[†]B&W = Babcock & Wilcox Company.

[‡]A = ductility by crush testing,

B = stress rupture,

C = coal ash corrosion,

D = cyclic oxidation,

E = microstructure.

3.1 CLADDING OF MODIFIED 316 STAINLESS STEEL

Modified 316 stainless steel was clad with alloy 671 by hot isostatically pressing (HIP) alloy 671 powder onto a tube blank and subsequently coextruding the composite tube at 1200°C (ref. 11). A sound interfacial bond was produced, as shown in Fig. 3, although a coarse carbide developed on the interface. Evaluations of the tubing included weldability, mechanical properties, and corrosion.⁸

To examine weldability of the clad tubes, a butt weld and simulated repair welds were made through the base metal and the clad in both the longitudinal and circumferential directions. The filler metal for the modified 316 stainless steel was a controlled residual element (CRE) 16-8-2 stainless steel, while alloy 92 was used for the cladding. No problem was encountered

Y216708

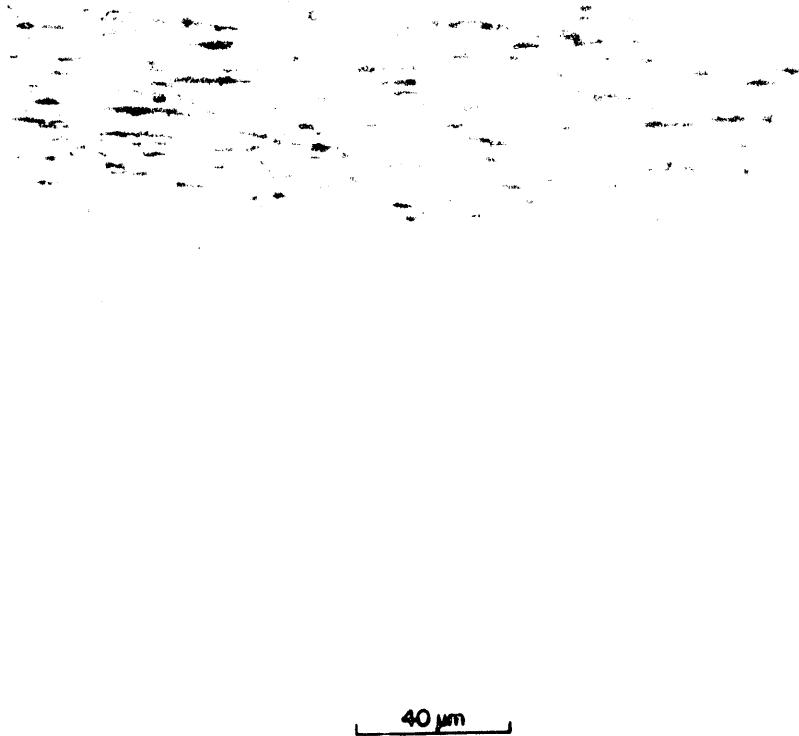
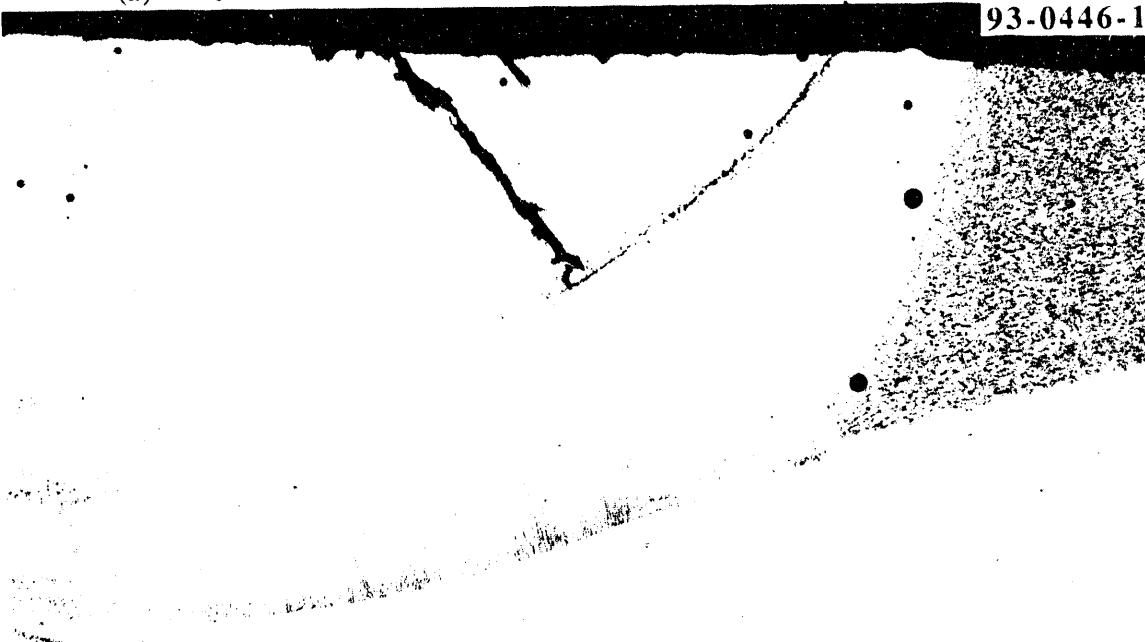


Fig. 3. Interface between alloy 671 cladding and modified 316 (HT-UPS) stainless steel.


in welding the tubing with CRE 16-8-2 stainless steel under fully restrained conditions. However, porosity developed in the cladding and some cracking was noticed in the second weld pass on the cladding, as shown in Fig. 4.

A full-scale tube was tested in creep-rupture under axial loading at 700°C and 217 MPa. Failure occurred after 478 h in the tubing at a location away from any welds.⁹ The reduction of area exceeded 30%. Inspection of the cladding in the region of the simulated repair welds revealed a few cracks at the fusion line. Rings were cut from the tested tubing, and these were subjected to diametral crush tests. Cracks were observed in the cladding at locations of the highest strain, while the base metal retained its ductility. Photographs of the ring specimens are shown in Fig. 5.

To examine corrosion behavior of the alloy 671 cladding, the tubing was split and rolled flat. The base metal was machined from the plate, and coupons were produced that were 25 × 50 × 1.5 mm in dimensions. These coupons were provided to Foster Wheeler Corporation for testing in simulated boiler fireside corrosion environments.⁷⁻⁹ Overall, the 671 cladding was found to have good corrosion resistance compared to alloys with lower chromium contents. A typical comparison of alloys is shown in Fig. 6 and was taken from the work of Van Weele and Blough.⁷

YP213111

(a)

93-0446-1

93-0446-2

(c)

YP16709

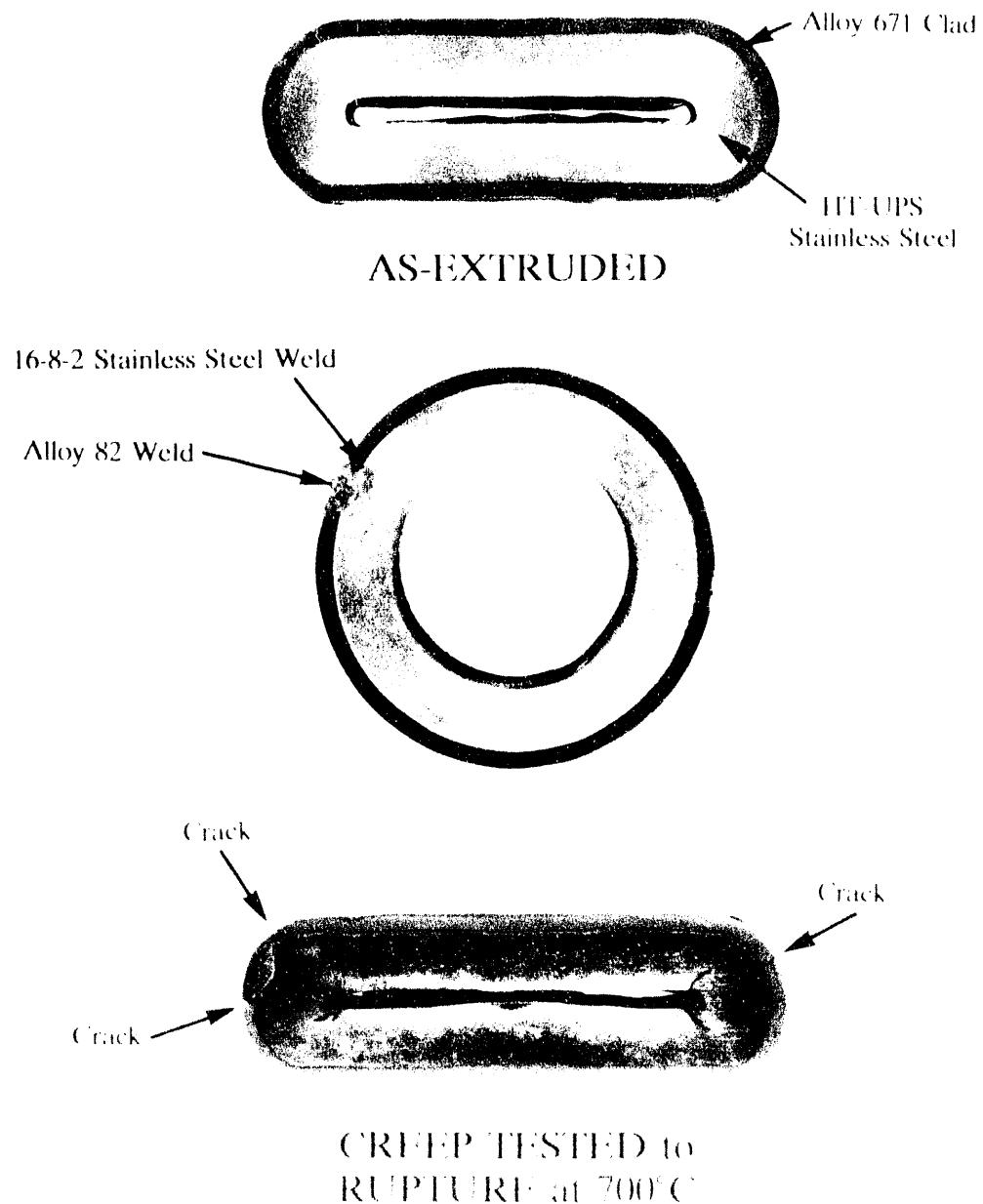


Fig. 5. Effect of creep exposure at 700°C on the ductility of 671 cladding on modified 316 (HT-UPS) stainless steel tube.

ORNL-DWG 91-9615

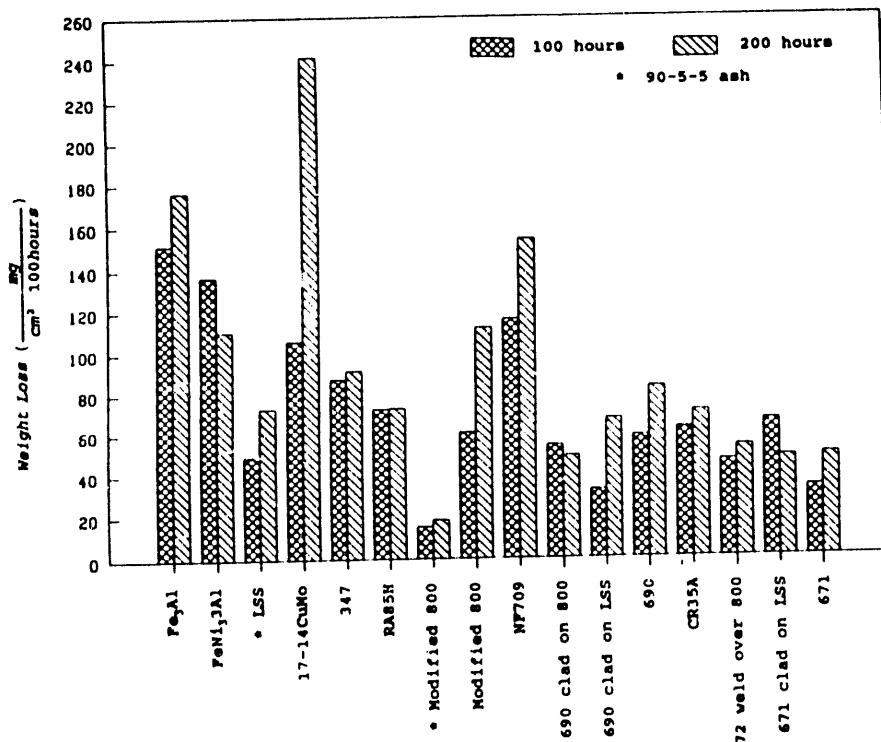


Fig. 6. Comparison of the corrosion rates of various materials in simulated fireside corrosion environments (Van Weele and Blough).

In a second effort, the cladding of the modified 316 (HT-UPS) stainless steel with alloy 690 was accomplished by direct coextrusion of the alloy 690 powder with the tube blank at 1200°C (ref. 11). The extruded product was then cold finished to leave the material in cold-worked condition that enhanced the strength of the base metal. A high-quality interfacial bond was produced, as shown in Fig. 7, but no mechanical testing was undertaken.

One of the limitations of the modified 316 stainless steel bimetallic tubing is the lack of oxidation resistance of the stainless steel at high temperatures. With only 14% chromium, the steel should not be used for steam or air service above 650°C. Some improvement in oxidation resistance was gained by cold-working the modified 316 stainless steel before oxidation testing at 800°C as shown in Fig. 8. Here, a comparison is made between the modified 316 stainless steel (heat AX7) and cold-worked type 316 stainless steel. The annealed modified 316 stainless steel exhibited a high rate of oxidation, as measured by weight gain. The as-received (10% cold-rolled) modified 316 stainless steel started with a high rate of oxidation but

Y213328

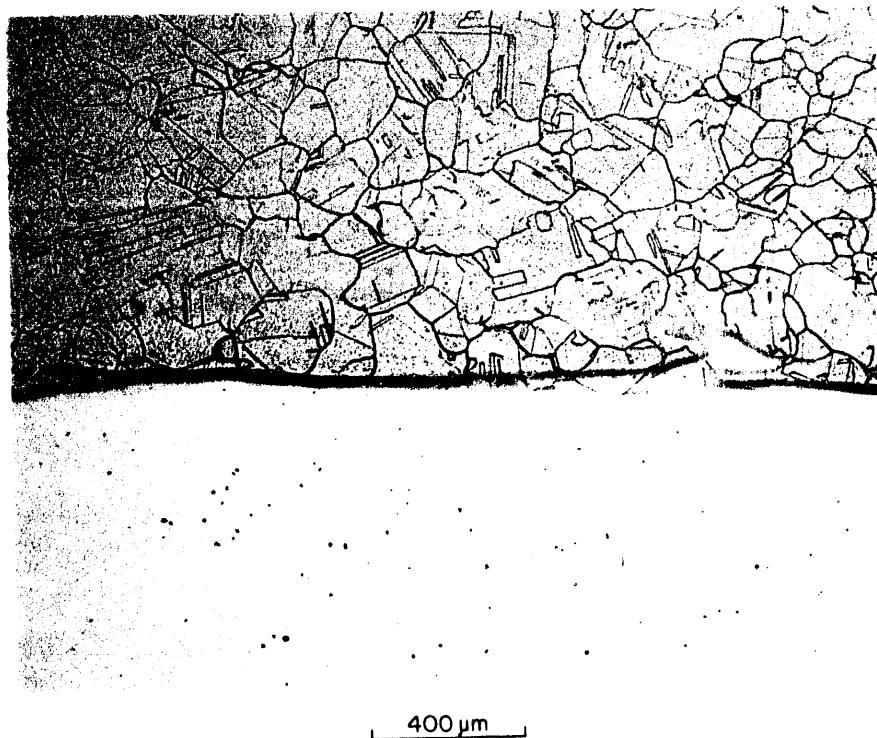


Fig. 7. Interface between alloy 690 cladding and modified 316 stainless steel tube.

ORNL-DWG93-5833

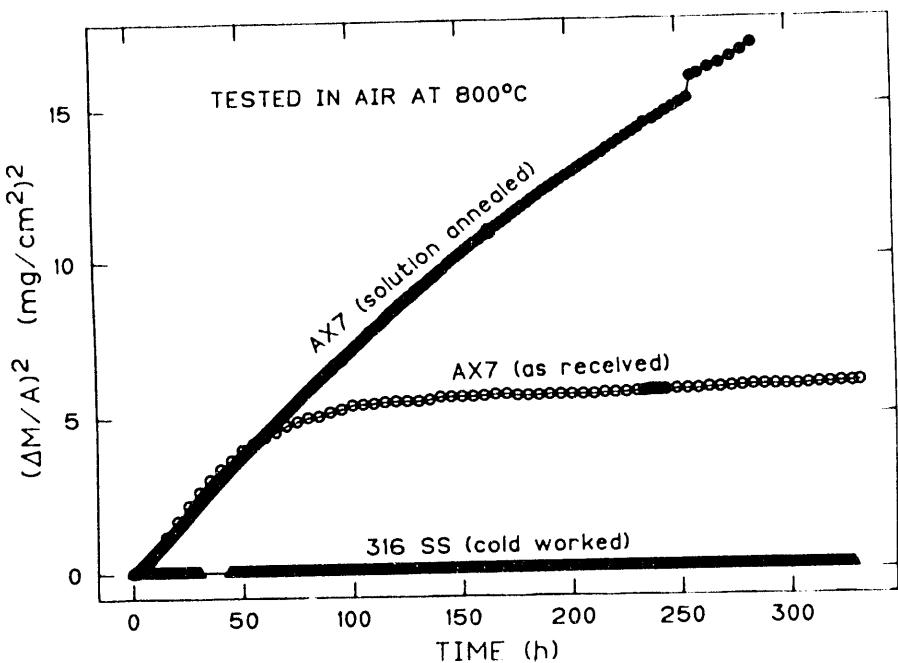


Fig. 8. Oxidation curves for annealed and cold-worked modified 316 stainless steel in comparison to 316 stainless steel at 800°C.

exhibited a dramatic decrease in the oxidation rate after 50 h. The cold-finished clad tubing was designed to produce a level of cold work near 10%, but the cladding must be able to survive 10% cold work as well.

A problem that was associated with the high levels of vanadium and molybdenum was experienced with the modified 316 stainless steel. The volatile oxides of these elements caused the alloys to be prone to catastrophic oxidation in static air environments at temperatures above 650°C (ref. 7). Catastrophic oxidation would not be expected in steam tubing because the high gas velocity would sweep away any volatile oxide. Even in the laboratory testing, samples were tested to times of 50,000 and 60,000 h without experiencing severe oxidation at 700°C.

3.2 CLADDING OF MODIFIED ALLOY 800

Cladding of the modified alloy 800 with alloy 671 was attempted by direct coextrusion of the alloy powder with the tube blank at 1200°C (ref. 11). However, the composite tubing disbonded during cold finishing, and no additional efforts were made to produce tubing. Since alloy 800 clad with alloy 671 is commercially available, no further development work on this combination of cladding and base metal was undertaken. The interface of a commercial alloy 800 tube clad with alloy 671 is shown in Fig. 9.

Cladding of modified alloy 800 with alloy 690 was accomplished by direct coextrusion of the alloy 690 powder with the tube blank at 1200°C (ref. 12). The extruded product was then cold finished. A high-quality product was produced, as shown in Fig. 10. No mechanical testing of this tubing was undertaken.

The oxidation behavior of the modified alloy 800 clad with alloy 690 was examined. A ring cut from the tubing was exposed to 500 h at 900°C and thermally cycled once per day to near room temperature. Heavy oxidation of the modified alloy 800 occurred, as shown in Fig. 11. This behavior was consistent with poor oxidation behavior found elsewhere.⁷

3.3 CLADDING OF TYPE 304 STAINLESS STEEL WITH IRON ALUMINIDE

The cladding of austenitic stainless steels with iron aluminide (alloy FAS) was examined by the B&W Research Laboratory. Exploratory studies were undertaken to determine the compatibility of the iron aluminide with type 304 stainless steel, modified 316 stainless steel, 310 stainless steel, and modified alloy 800 (ref. 12). Of these materials, it appeared that type 304 stainless steel was the most compatible and least likely to form brittle phases at the clad-base-metal interface. Details of the production of the tubing are provided

93-0442-2

(a)

93-0443-2

(b)

Fig. 9. Interface between alloy 671 cladding and alloy 800 tube:
(a) as-fabricated and (b) after 500 h at 900°C with a cycle to near room
temperature each day.


93-0444-1**93-0445-2**

Fig. 10. Interface between alloy 690 and modified alloy 800 tube:
(a) as-fabricated and (b) after 500 h at 900°C with a cycle to near room
temperature each day.

Fig. 11. Oxidation of modified alloy 800 tube after 500 h at 900°C with a cycle to near room temperature each day.

elsewhere.¹³ Essentially, iron-aluminide powder was coextruded with a type 304 stainless steel tube blank. Extrusions were made at 1200 and 1100°C. It was found that the extrusion at 1100°C produced a sound product, as shown in Fig. 12.

Mechanical testing consisted of crush tests at several temperatures, and results are shown in Fig. 13. Cracking of the cladding occurred at room temperature, 200, and 400°C, but the severity of the cracking decreased with deformation temperature. Nevertheless, it is apparent that warm-working and bending of the tubing should be performed above 400°C.

Oxidation tests were performed at 760 and 900°C. Ring samples were exposed for approximately 500 h at each temperature with cooling to near room temperature once per day. The cladding-base-metal interface is shown in Fig. 14 and gives no evidence of disbonding.

4. BONDING APPLICATIONS FOR CLADDINGS IN FOSSIL ENERGY APPLICATIONS

Because the cost of clad tubing is high relative to bare (monoblock) tubing, the use of cladding for protection against corrosion at high temperature has been limited in power boiler applications. A few coal-fired boilers in the United States use clad superheater tubing, such as

92-1589-2

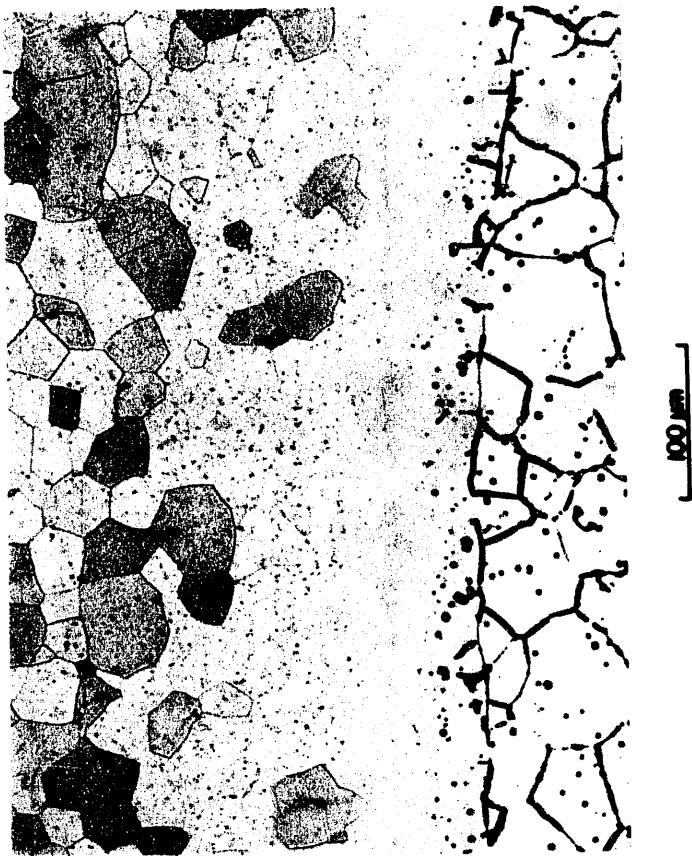


Fig. 12. Interface between iron-aluminide cladding and type 304 stainless steel tube.

YP16190

ROOM TEMPERATURE

200°C

400°C

Fig. 13. Effect of temperature on the ductility of coextruded iron-alumide/304 stainless steel coextruded tube.

93-0447-1

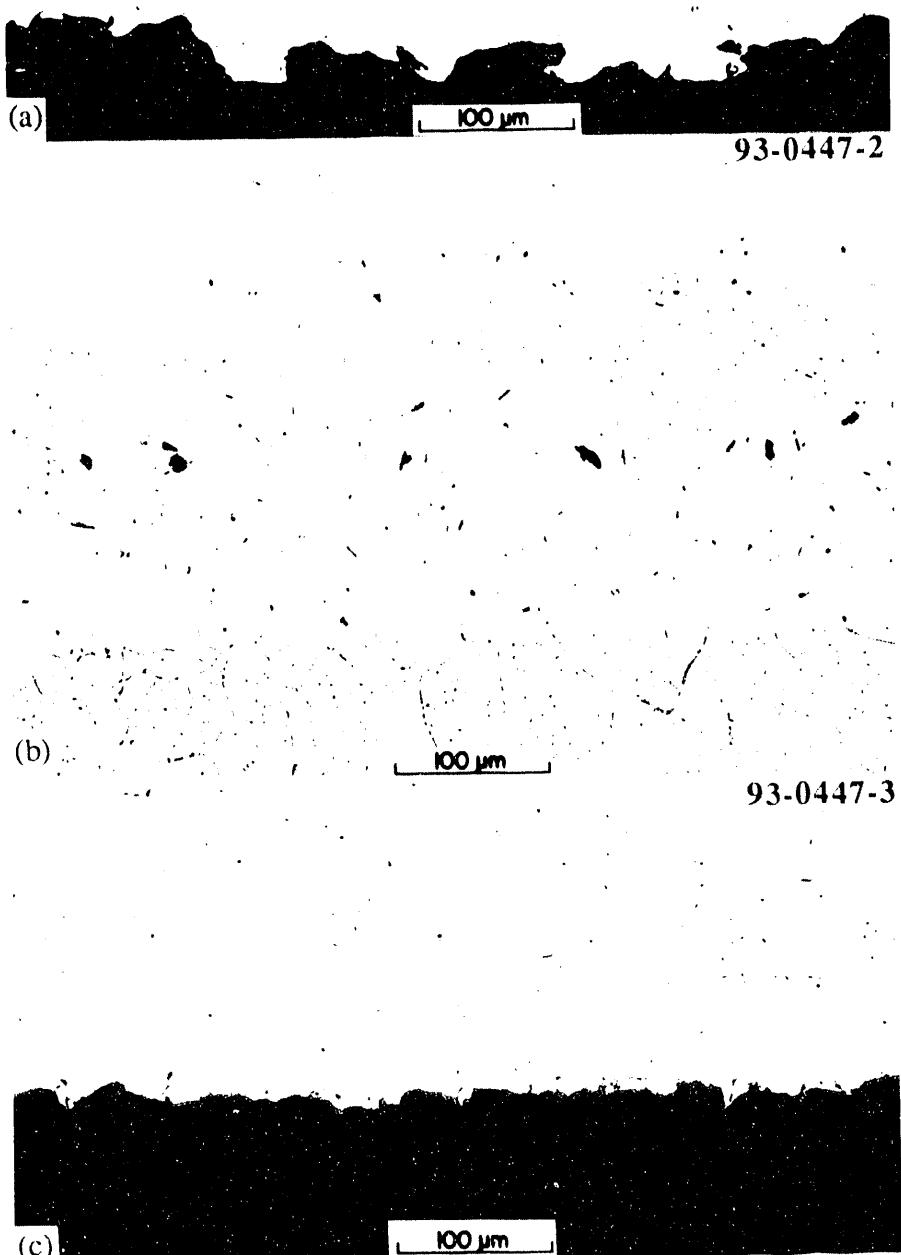


Fig. 14. Effect of exposure on the surface corrosion and interface between iron-aluminide cladding and type 304 stainless steel tube: 500 h at 900°C with a cycle to room temperature each day: (a) Fe_3Al surface, (b) interface, and (c) 304 stainless steel surface.

alloy 671 clad over alloy 800, but the introduction of 310HCbN stainless steel, fine-grained 347 stainless steel, and 20Cr25NiCbN stainless steel may eliminate this requirement since these alloys have relatively good resistance to coal ash corrosion.⁶ It is not expected that the use of alloys 690 and 671 will increase in power boiler superheater tubing.

Coal-fired furnaces for the Combustion 2000 project¹⁴ will require tube temperatures in the range of 980 to 1100°C (1800 to 2000°F). Although the eventual goal is to use ceramic heat exchanger tubes, it seems likely that metallic tubing will be needed in the early stages of the developmental work. Materials such as alloy 800H, 253MA stainless steel, and HP-40 could be chosen, but the potential for coal ash corrosion exists, and high-chromium cladding of tubing alloys may be required. Materials such as alloy 671, alloy 690, and CR35A are potential cladding alloys for this application.

For severe sulfidizing conditions, the choices of structural alloys are limited, and metallic components must be cooled to temperatures where sulfidation rates are low. Currently, refractory-insulated carbon steel is used for large-diameter piping and vessels. This practice is likely to continue. To avoid entrainment of refractory particles in the gas stream, exiting cyclones or filters with metallic liners are used. Typically, these are type 310 stainless steel, 253MA, or some similar material when the environment is oxidizing and contains low sulfidizing potential. Studies by DeVan¹⁵ have clearly shown that iron aluminide has outstanding corrosion resistance to gases containing high sulfur. In this respect, iron aluminide has potential as a liner for containment of refractory insulating piping for gasifier or carbonizer gas streams.

5. CONCLUSIONS

Austenitic alloys may be chromized, but the long times and high temperatures required for thick, chromized layers significantly reduce the strength of the base metal. The chromized coatings may be brittle, forming cracks at low strains. These cracks can promote base-metal cracking in creep-brittle stainless steels. The modified stainless steels do not suffer creep embrittlement.

Tubing of modified type 316 stainless steel and modified alloy 800 (HT-UPS) alloys may be clad with either alloy 690 or alloy 671 for improved coal ash corrosion resistance in the temperature range of 650 to 700°C (1200 to 1300°F). Testing at 700°C indicates compatibility of the materials. The 671 cladding exhibits room-temperature embrittlement after exposure at 700°C, but ductility at high temperature is good.

Clad modified 316 stainless steel tubing should not be used for temperatures above 700°C because of the tendency of base-metal alloys to undergo catastrophic oxidation.

Iron aluminide may be clad onto type 304 stainless steel. The cladding will crack when deformed at low temperatures. Tube bending must be at temperatures above 400°C. Thermal cycling experiments to 760 and 900°C indicate good material compatibility and oxidation resistance on the clad side.

6. ACKNOWLEDGMENTS

This activity was initiated under guidance of R. R. Judkins, P. T. Carlson, and N. C. Cole of the Fossil Energy Advanced Research and Technology Development (AR&TD) Materials Program and E. E. Hoffman of Department of Energy—Oak Ridge Operations. G. M. Goodwin and J. F. King of the Materials Joining Group and C. D. Lundin of the University of Tennessee offered helpful technical assistance. Subcontract work was performed by the Babcock & Wilcox Research Laboratory in Alliance, Ohio, under the guidance of S. E. LeBeau, M. Topolski, and W. Mohn. The author thanks K. Spence for editing and M. R. Upton for final report preparation.

7. REFERENCES

1. S. B. Bennett, *Engineering Assessment of an Advanced Pulverized Coal Power Plant*, EPRI CS-2555, Electric Power Research Institute, Palo Alto, Calif., August 1982.
2. R. W. Swindeman et al., *Alloy Design Criteria and Evaluation Methods for Advanced Austenitic Alloys in Steam Service*, ORNL-6274, Martin Marietta Energy Systems, Inc., Oak Ridge Natl. Lab., 1986.
3. T. Flately, E. P. Latham, and C. W. Morris, "CEGB Experience with Co-Extruded Tubes for Superheated and Evaporative Sections of PF Fired Boilers," in *Advances in Material Technology for Fossil Power Plants*, ASM International, Materials Park, Ohio, 1987.
4. M. Tamura et al., *Tempaloy 17-14CuMo/NAC CR35A Composite Tubing for the Superheaters of Advanced Coal Fired Boilers*, Nippon Kokan Technical Report No. 49, Japan.

5. A. L. Plumley and W. R. Rocznak, "Practical Prevention of Waterwall Distress—A Metallurgical Approach," paper presented at the EPRI Conference on Improved Technology for Fossil Power Plants—New and Retrofit Applications, Washington, D.C., March 1-3, 1993.
6. J. L. Blough et al., "In-Situ Coal-Ash Corrosion Testing for 2 Years at Three Utilities," paper presented at the EPRI Conference on Improved Technology for Fossil Power Plants—New and Retrofit Applications, Washington, D.C., March 1-3, 1993.
7. S. Van Weele and J. L. Blough, *Literature Search Update Fireside Corrosion Testing of Candidate Tube Alloys, Coating, and Claddings*, Topical Report Project No. 9-61-5329, Foster Wheeler Development Corporation, Livingston, N.J., 1990.
8. R. W. Swindeman, G. M. Goodwin, P. J. Maziasz, and E. Bolling, *Procurement and Screening Test Data for Advanced Austenitic Alloys for 650 °C Steam Service (Part 2, Final Report)*, ORNL/TM-10206, Martin Marietta Energy Systems, Inc., Oak Ridge Natl. Lab., August 1988.
9. R. W. Swindeman, P. J. Maziasz, E. Bolling, and G. M. Goodwin, *Evaluation of Advanced Austenitic Alloys Relative to Alloy Design Criteria for Steam Service: Part 1 - Lean Stainless Steels*, ORNL-6629/P1, Martin Marietta Energy Systems, Inc., Oak Ridge Natl. Lab., May 1990.
10. E. R. Naylor et al., "Fundamental Study of Aluminizing and Chromizing Processes," pp. 273-87 in *Fossil Energy Materials Program Semiannual Progress Report for Period Ending March 31, 1989*, ORNL/FMP-89/1, Martin Marietta Energy Systems, Inc., Oak Ridge Natl. Lab., 1989.
11. S. E. LeBeau, *Production of Small Heats of Austenitic Tubing—Final Report CRD No. 1191*, Babcock & Wilcox report RDD: 89:4423-01-01:01, Alliance, Ohio, August 1988.
12. M. Topolski, *Evaluation of the Fabricability of Advanced Austenitic Tubing*, Babcock & Wilcox report RDD:91:4500-01-01:01, Alliance, Ohio, March 1991.
13. W. R. Mohn and M. J. Topolski, "B&W-4 Evaluation of the Fabricability of Advanced Iron Aluminide-Clad Austenitic Stainless Steel Tubing," pp. 271-76 in *Fossil Energy Advanced Research and Technology Development Materials Program Semiannual Progress Report for the Period Ending September 30, 1992*, ORNL/FMP-92/2, Martin Marietta Energy Systems, Inc., Oak Ridge Natl. Lab., December 1992.
14. L. A. Ruth, "Combustion 2000: Clean, Efficient Power for the Future," paper presented at the EPRI Conference on Improved Technology for Fossil Power Plants—New and Retrofit Applications, Washington, D.C., March 1-3, 1993.

15. J. H. DeVan, "Corrosion Performance of Iron Aluminide (Fe₃Al) in Coal Conversion Process Environments," pp. 235-41 in *Heat-Resistant Materials*, ASM International, Materials Park, Ohio, 1991.

INTERNAL DISTRIBUTION

1-2.	Central Research Library	21.	H. E. McCoy
3.	Document Reference Section	22.	O. Omatette
4-5.	Laboratory Records Department	23.	P. L. Rittenhouse
6.	Laboratory Records, ORNL RC	24.	G. Romanoski
7.	ORNL Patent Section	25.	P. S. Sklad
8-10.	M & C Records	26.	G. M. Slaughter
11.	C. R. Brinkman	27-31.	R. W. Swindeman
12.	P. T. Carlson	32.	P. F. Tortorelli
13.	J. H. DeVan	33.	S. Viswanathan
14.	E. L. Fuller	34.	Y. A. Chang
15.	G. M. Goodwin	35.	H. W. Foglesong
16.	C. R. Hubbard	36.	J. J. Hren
17.	R. R. Judkins	37.	M. L. Savitz
18.	J. R. Keiser	38.	J. G. Simon
19.	O. F. Kimball	39.	K. E. Spear
20.	P. J. Maziasz		

EXTERNAL DISTRIBUTION

40. ABB-CE POWER PRODUCTS MANUFACTURING, COMBUSTION
ENGINEERING, INC., 911 West Main Street, Chattanooga, TN 37402

D. A. Canonico

41-42. ARGONNE NATIONAL LABORATORY, 9700 S. Cass Avenue, Argonne,
IL 60439

W. A. Ellington
K. Natesan

43. BABCOCK & WILCOX, Fossil River Power Generation Division, 20 South
Van Buren Avenue, Barberton, OH 44203

W. C. Mack

44. BABCOCK & WILCOX RESEARCH LABORATORY, 1562 Beeson Street,
Alliance, OH 44601

M. J. Toploski

45. CABOT CORPORATION, Corrosion-Resistant Alloys, 1020 West Park
Avenue, Kokomo, IN 46901

A. I. Asphahani

46. CARPENTER TECHNOLOGY CORP., Steel Division, P.O. Box 62,
Reading, PA 29603

47. J. W. Martin
CHICAGO BRIDGE AND IRON COMPANY, 800 Jorie Blvd., Oak Brook,
IL 60521

48. E. Upitis
ROBERT L. CLOUD AND ASSOCIATES, 2150 Shattuck Avenue, Suite 1200,
Berkeley, CA 94704-1306

49. W. R. Mikesell
COMMISSION OF THE EUROPEAN COMMUNITIES, Petten Establishment,
Postbus 2, 1755 ZG Petten, The Netherlands

50-52. Marcel Van de Voorde
ELECTRIC POWER RESEARCH INSTITUTE, 3412 Hillview Avenue,
P.O. Box 10412, Palo Alto, CA 94303

53. W. T. Bakker
R. Viswanathan
J. Stringer
EXXON RESEARCH AND ENGINEERING CO., P.O. Box 101,
Florham Park, NJ 007932

54. M. J. Humphries
FOSTER WHEELER DEVELOPMENT CORPORATION, 22 Rutgers Lane,
Parsippany, NJ 07054

55. J. Blough
GA TECHNOLOGIES, INC., Reactor Structural Materials Branch, Fuels and
Materials Division, P.O. Box 81608, San Diego, CA 92138

56. D. I. Roberts
GENERAL ELECTRIC COMPANY, Turbine Materials Engineering,
Building 41, Room 306, 1 River Road, Schenectady, NY 12345

57. J. Pepe
GILBERT ASSOCIATES, INC., Morgantown Road, Green Hills, Reading,
PA 19603

R. L. Dail

58. INCO ALLOYS INTERNATIONAL, INC., P.O. Box 1958, Huntington,
WV 25720
T. H. Bassford

59. LUKENS STEEL COMPANY, R&D Center, Coatesville, PA 19320
J. Gulya

60. THE MATERIALS PROPERTIES COUNCIL, INC., United Engineering
Center, 345 E. 47th Street, New York, NY 10017
M. Prager

61. NATIONAL MATERIALS ADVISORY BOARD, National Research Council,
2101 Constitution Avenue, Washington, DC 20418
Z. M. Zwilsky

62. OFFICE OF NAVAL RESEARCH, Code 431, 800 N. Quincy Street,
Arlington, VA 22217
S. G. Fishman

63. STANDARD OIL, INDIANA, P.O. Box 400 - MS B-8, Naperville, IL 60540
S. Ibarra

64. STONE AND WEBSTER ENGINEERING CORPORATION, 245 Summer
Street, P.O. Box 2325, Boston, MA 02170
M. P. Berardi

65. STRESS ENGINEERING SERVICES, INC., 415 Glensprings Drive,
Suite 200, Cincinnati, Ohio 45246
D. L. Marriott

66. SUPERIOR TUBE COMPANY, P.O. Box 191, Norristown, PA 19404
C. C. Matthews

67-68. TENNESSEE VALLEY AUTHORITY, Metallurgical & NDT Section,
820 Chestnut Street, Tower II, Chattanooga, TN 37401
S. O. Hilton
B. Roberts

69. R. D. THOMAS AND COMPANY, INC., 103 Avon Road, Narberth,
PA 19072
R. D. Thomas, Jr.

70-71. UNIVERSITY OF CALIFORNIA AT BERKELEY, Department of Materials Science and Mineral Engineering, Berkeley, CA 94720

E. R. Parker
R. O. Richie

72. UNIVERSITY OF MANCHESTER INSTITUTE OF SCIENCE AND TECHNOLOGY, P.O. Box 88, Manchester, M601QD, United Kingdom

F. J. Stout

73. UNIVERSITY OF PITTSBURGH, Department of Metallurgical and Materials Engineering, 848 Benedum Hall, Pittsburgh, PA 15261

G. H. Meier

74. UNIVERSITY OF TENNESSEE, Department of Materials Science, Knoxville, TN 37996

C. D. Lundin

75. DOE, ENERGY CONVERSION AND UTILIZATION TECHNOLOGIES DIVISION, CE-14, 5E-101 Forrestal Building, Washington, DC 20585

J. J. Eberhardt

76. DOE, OFFICE OF BASIC ENERGY SCIENCES, Materials Sciences Division, ER-131, J314/GRN, Washington, DC 20585

J. B. Darby

77-78. DOE, OFFICE OF FOSSIL ENERGY, Washington, DC 20585

J. P. Carr (FE-24, C179/GRN)
R. E. Harrington (FE-20, C164/GTN)

79. DOE, OFFICE OF VEHICLE AND ENGINE R&D, CE-131, 5G-064 Forrestal Building, Washington, DC 20585

R. B. Schultz

80-84. DOE, MORGANTOWN ENERGY TECHNOLOGY CENTER, P.O. Box 880, Morgantown, VA 26505

J. W. Byam, Jr.
D. DuBis
V. P. Kothari

J. E. Sholes
J. S. Wilson

85-88. DOE, PITTSBURGH ENERGY TECHNOLOGY CENTER, P.O. Box 1040,
Pittsburgh, PA 15236

R. A. Carabetta
S. W. Chun

J. J. Joubert
F. W. Steffgen

89-90. DOE, OAK RIDGE OPERATIONS OFFICE, P.O. Box 2001, Oak Ridge,
TN 37831

Office of Deputy Assistant Manager for Energy Research and Development
E. E. Hoffman

91-92. DOE, OFFICE OF SCIENTIFIC AND TECHNICAL INFORMATION,
P.O. Box 62, Oak Ridge, TN 37831

For distribution by microfiche as shown in DOE/OSTI-4500,
Distribution Categories UC-103 (Fluidized Bed Combustion),
UC-105 (Flue Gas Cleanup), UC-106 (Gas Stream Cleanup),
UC-108 (Coal Liquefaction), UC-109 [Coal Gasification
(Surface and Underground)], UC-110 (Fuel Cells), UC-111 (Heat
Engines), and UC-114 (Coal-Based Materials and Components)

**DATE
FILMED**

9/15/93

END

