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SUMMARY OF WORK ON COATINGS AND CLADDINGS
FOR FOSSIL ENERGY APPLICATIONS*

R. W. Swindeman
!.

ABSTRACT

A summary of efforts to examine coatings and cladding materials for
high-strength austenitic steels is provided. Chromized coatings on 17-14CuMo
stainless steel and a modified type 316 (HT-UPS) stainless steel were
investigated. Claddings included alloy 671, 690, and an iron-aluminide
intermetallic alloy. Structural alloys that were clad included type 304 stainless
steel, modified type 316 stainless steel, and modified alloy 800H. The
capability of producing co-extruded tubing of the experimental alloys was
demonstrated.

1. INTRODUCTION

In 1986, a 6-year program was started to evaluate materials for use in the boiler of a

conceptual advanced steam cycle coal-fired power plant being studied by the Electric Power

• Research Institute (EPRI).I, 2 The program included various groups of alloys that were

selected for their strength, steam corrosion resistance, or ash corrosion resistance. It was

. recognized that for some alloys the combustion of high ash or chlorine content coal would

require the protection of a coating or cladding. 2-4 Various combinations were examined.

These included chromized coatings for strong, lean stainless steels; nickel-chromium alloy

cladding on a modified type 316 stainless steel and modified alloy 800H; and iron-aluminide

cladding on type 304 stainless steel. This report reviews the work that has been undertaken

over the last 6 years.

2. COATINGS

Coatings have been used with great success to protect waterwall tubing from corrosion

fatigue and waterwall distress. 5 Carbon steel and low-alloy steels have been coated with

. *Research sponsored by the U.S. Department of Energy, Office of Fossil Energy,
Advanced Research and Technology Development Materials Program [DOE/FE AA 15 10 10 0,
Work Breakdown Structure Element ORNL-], under contract DE-AC05-84OR21400 with
Martin Marietta Energy Systems, Inc.
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high-chromium materials for extended life. More recently, chromized 9Cr-IMo-V steel

(Gr-91) has been evaluated as a superheater material for advanced steam cycle plants, and in

this condition, it appears that the material has a corrosion resistance equivalent to 300 series

stainless steels. 6 Since Gr-91 steel may be heat treated to recover microstructure and strength

(assuming minimal decarburization), chromizing appears to be attractive. Indeed, chromized

superheater tubes of 9Cr-IMo-V-Nb _teel in the Tennessee Valley Authority Kingston Steam

Plant Unit 5 have been in service for more than 10 years.

Good coal ash corrosion resistance has been reported for chromized 17-14CuMo

stainless steel, 4 but no information is available on the strength and ductility of composite

materials. To examine this issue, specimens of two lean austenitic stainless steels [17-14CuMo

stainless steel and modified type 316 stainless steel] were chromized by Babcock & Wilcox

(B&W) Research Laboratory and tested at Oak Ridge National Laboratory (ORNL). More

details regarding the coating compositions and characterizations are provided elsewhere. 7,8

The microstructures of chromized coatings after creep testing are shown in

Figs. 1 and 2 for the two steels in which the coatings were two phase and 100 to 150 pna thick.

These photomicrographs show the cracks in the coatings that develop during creep testing at

700"C strains of a few percent. These cracks exposed the base metal to the environment. The

17-14CuMo stainless steel (see Fig. 1) was found to be creep brittle, and intergranular creep

cracks initiated in the base metal at locations where the coating cracked. The modified 316

stainless steel was creep ductile, and cracks in the coating were blunted at the coating/base

metal interface (see Fig. 2). In addition to the brittle coating, the long time at high temperature

required to produce a 100-I.tm-thick coating degraded the creep strength of the base metal. 9

Although the modified type 316 stainless steel was found to retain more strength than the

17-14CuMo stainless steel, it was concluded that higher chromium content steels would be

more desirable for coal ash corrosion resistance under severe service conditions.

3. CLADDINGS

Use of clad tubing in aggressive atmospheres is accepted in the fossil, waste

incineration, and petrochemical industries. Typical base metals include carbon steel,

18-8 stainless steels, and alloy 800H. Initially, superheater tubing of alloys with high creep

strength were clad. The target in the current research was to produce diameter tubing

50--60 mm with thicknesses of 7 to 12 mm, clad with nickel-chromium alloys at least 2 mm

thick. Development of the clad tubing was undertaken by B & W Research Center, 10,11and



Fig. 1. Chromized coating on 17-14CuMo stainless steel after creep testing at 700"C.
t
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Fig. 2. Chromized coating on modified 316 (HT-UPS) stainless steel after creep
testing at 700"C.
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combinations of materials are provided in Table 1. Three materials were clad: modified
,,r

type 316 stainless steel, modified alloy 800H, and type 304 stainless steel. Weld overlay

cladding of plates was also performed, but results are discussed elsewhere.

Table 1. Summary of work on claddings

Base material Cladding Process* Source t Evaluations*

MOd 316SS tube alloy 671 HIP/coextrusion B&W A, B, C, D, E
MOd 316SS tube alloy 690 coextrusion B&W C, E
MOd 316SS plate alloy 672 weld overlay B&W C, E
Mod 316SS plate alloy 690 weld overlay B&W E

Mod 800 tube alloy 690 coextrusion B&W D, E
Mod 800 plate alloy 672 weld overlay B&W C, E
Mod 800 plate alloy 690 weld overlay B&W E
Alloy 800 tube alloy 671 coextrusion INCO D

TP304SS tube Fe3AI coextrusion B&W A, C, D, E

t,

*HIP = hot isostatic pressing.
tB&W = Babcock & Wilcox Company.
*A = ductility by crush testing,

B = stress rupture,
C = coal ash corrosion,
D = cyclic oxidation,
E = microstructure.

3.1 CLADDING OF MODIFIED 316 STAINLESS STEEL

Modified 316 stainless steel was clad with alloy 671 by hot isostatically pressing (HIP)

alloy 671 powder onto a tube blank and subsequently coextruding the composite tube at

1200"C (ref. 11). A sound interfacial bond was produced, as shown in Fig. 3, although a

coarse carbide developed on the interface. Evaluations of the tubing included weldability,

mechanical properties, and corrosion. $

To examine weldability of the clad tubes, a butt weld and simulated repair welds were

made through the base metal and the clad in both the longitudinal and circumferential directions.

The filler metal for the modified 316 stainless steel was a controlled residual element (CRE)

16-8-2 stair,less steel, while alloy 92 was used for the cladding. No problem was encountered
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Fig. 3. Interface between alloy 671 cladding and modified
316 (HT-UPS) stainless steel.

in welding the tubing with CRE 16-8-2 stainless steel under fully restrained conditions.

However, porosity developed ;.n the cladding and some cracking was noticed in the second

weld pass on the cladding, as shown in Fig. 4.

A full-scale tube was tested in creep-rupture under axial loading at 700°C and 217 MPa.

Failure occurred after 478 h in the tubing at a location away from any welds. 9 The reduction of

area exceeded 30%. Inspection of the cladding in the region of the simulated repair welds

revealed a few cracks at the fusion line. Rings were cut from the tested tubing, and these were

subjected to diametral crush tests. Cracks were observed in the cladding at locations of the

highest strain, while the base metal retained its ductility. Photographs of the ring specimens are

• shown in Fig. 5.

To examine corrosion behavior of the alloy 671 cladding, the tubing was split and

. rolled flat. The base metal was machined from the plate, and coupons were produced that were

25 x 50 x 1.5 mm in dimensions. These coupons were provided to Foster Wheeler

Corporation for testing in simulated boiler fireside corrosion environn_ents. 7-9 Overall, the

671 cladding was found to have good corrosion resistance compared to alloys with lower

chromium contents. A typical comparison of alloys is shown in Fig. 6 and was taken from the

work of Van Weele and Blough. 7
_
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Fig. 5. Effect of creep exposure at 700°C on the ductility of 671 cladding on modified
316 (HT-UPS) stainless steel tube.
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Fig. 6. Comparison of the corrosion rates of various materials
in simulated fireside corrosion environments (Van Weele and Blough).
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In a second effo_,, the cladding of the modified 316 (HT-UPS) stainless steel with

alloy 690 was accomplished by direct coextrusion of the alloy 690 powder with the tube blank

at 1200"C (ref. 11). The extrude5 product was then cold finished to leave the material in cold-

worked condition that enhanced the s'a'ength of the base metal. A high-quality interfacial bond

was produced, as shown in Fig. 7, but no mechanical testing was undertaken.

One of the limitations of the modified 316 stainless steel bimetallic tubing is the lack of

oxidation resistance of the stainless steel at high temperatures. With only 14% chromium, the

steel should not be used for steam or air service above 650°C. Some improvement in oxidation

resistance was gained by cold-working the modified 316 stainless steel before oxidation testing

at 800"C as shown in Fig. 8. Here, a comparison is made between the modified 316 stainless

steel (heat AX7) and cold-worked type 316 stainless steel. The annealed modified

316 stainless steel exhibited a high rate of oxidation, as measured by weight gain. The as-

received (10% cold-rolled) modified 316 stainless steel started with a high .,'ateof oxidation but



• Fig. 7. Interface between alloy 690 cladding and modified
316 stainless steel tube.

ORNL-DWG93-5833

--1 I I i i 1 I ............

TESTED IN AIR AT BO0°C --
15 -

c_
c_
E
L)
\ 10 -

E

AX7 (as received)
<
\ 5 -

• EL

v

" 316 SS (cold worked)
__

0 -
I I I I I l 1_

0 50 100 150 200 250 300

TIMF (h)

Fig. 8. Oxidation curvesfor annealedand cold-worked
modified 316 stainless steel in comparison to 316 stainless steel
at 800°C.



10

exhibited a dramatic decrease in the oxidation rate after 50 h. The cold-finished clad tubing was

designed to produce a level of cold work near 10%, but the cladding must be able to survive
10% cold work as weil.

A problem that was associated with the high ;.evels of vanadium and molybdenum was

experienced with the modified 316 stainless steel. The volatile oxides of these elements caused

the alloys to be prone to catastrophic oxidation in static air environments at temperatures _bove

650"C (ref. 7). Catastrophic oxidation would not be expected in steam tubing because the high

gas velocity would sweep away any volatile oxide. Even in the laboratory testing, samples

were tested to times of 50,000 and 60,000 h without experiencing severe oxidation at 700"C.

3.2 CLADDING OF MODIFIED ALLOY 800

Cladding of the modified alloy 800 with alloy 671 was attempted by direct coextrusion

of the alloy powder with the tube blank at 1200°C (ref. 11). However, the composite tubing

disbonded during cold finishing, and no additional efforts were made to produce tubing. Since

alloy 800 clad w:_.halloy 671 is commercially available, no further development work on this

combination of cladding and base metal was undertaken. The interface of a commercial

alloy 800 tube clad with alloy 671 is shown in Fig. 9.

Cladding of modified alloy 800 with alloy 690 was accomplished by direct coextrusion

of the alloy 690 powder with the tube blank at 1200"C (ref. 12). The extruded product was

then cold finished. A high-quality product was produced, as sh_3wn in Fig. 10. No

mechanical testing of this tubing was undertaken.

The oxidation behavior of the modified alloy 800 clad with alloy 690 was examined. A

ring cut from the tubing was exposed to 500 h at 900°C and thermally cycled once per day to

near room temperature. Heavy oxidation of the modified alloy 800 occurred, as shown in

Fig. 11. This behavior was consistent with poor oxidation behavior found elsewhere. 7

3.3 CLADDING OF TYPE 304 STAINLESS STEEL WITH IRON
ALUMINIDE

The cladding of austenitic stainless steels with iron aluminide (alloy FAS) was

examined by the B&W Research Laboratory. Exploratory studies were undertaken to

determine the compatibility of the iron aluminide with type 304 stainless steel, modified

316 stainless steel, 310 stainless steel, and modified alloy 800 (ref. 12). Of these materials, it

appeared that type 304 stainless steel was the most compatible and least likely to form brittle

phases at the clad-base-metal interface. Details of the production of the tubing are provided
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• Fig. 11. Oxidation of modified alloy 800 trbe after 500 h at 9000C
with a cycle to near room temperature each day.

li

elsewhere.13 Essentially, iron-aluminide powder was coextruded with a type 304 stainless

steel tube blank. Extrusions were made at 1200 and 1100*C. lt was found that the extrusion at

1100*C produced a sound product, as shown in Fig. 12.

Mechanical testing consisted of crush tests at several temperatures, and results are

shown in Fig. 13. Cracking of the cladding occurred at room temperature, 200, and 400*C,

but the severity of the cracking decreased with deformation temperature. Nevertheless, it is

apparent that warm-working and bending of the tubing should be performed above 400°C.

Oxidation tests were performed at 760 and 900°C. Ring samples were exposed for

approximately 500 h at each temperature with cooling to near room temperature once per day.

The cladding-base-metal interface is shown in Fig. 14 and gives no evidence of disbonding.
,i

4. BONDING APPLICATIONS FOR CLADDINGS
IN FOSSIL ENERGY APPLICATIONS

Because the cost of clad tubing is high relative to bare (monoblock) tubing, the use of

cladding for protection against corrosion at high temperature has been limited in power boiler
:)rates supcilteat_A tuu,tt_, _u,.,,,asapplications. A few coal-fired boilers in the United "" " use clad ...... '- ....... I":...... _"
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200°C
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Fig. 13. Effect of temperature on the ductility of

coextruded iron-aluminde/304stainlesssteel coextruded
tube.
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Fig. 14. Effect of exposure on the surface corrosion and
interface between iron-aluminide cladding and type 304 stainless
steel tube: 500 h at 900"C with a cycle to room temperature each
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surface.
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alloy671 cladoveralloy800,buttheintroductionof310HCbN stainlesssteel,fine-graine_

, 347stainlesssteel,and20Cr25NiCbNstainlesssteelmay eliminatethisrequirementsincethest

alloyshaverelativelygoodresistancetocoalashcorrosion.6 Itisnotexpectedthattheuseof

. alloys690and671willincreaseinpowerboilersuperheatertubing.

Coal-firedfurnacesfortheCombustion2000project14willrequiretubetemperaturesin

therangeof980 to1100"C(1800to2000"F).Althoughtheeventualgoalistouseceramic

heatexchangertubes,itseemslikelythatmetallictubingwillbeneededintheearlystagesof

thedevelopmentalwork. Materialssuchasalloy800H,253MA stainlesssteel,andHP-40

couldbechosen,butthepotentialforcoalashcorrosionexists,andhigh-chromiumcladdingof

tubingalloysmay bc required.Materialssuchasalloy671,alloy690,and CR35A are

potentialcladdingalloysforthisapplication.

For severesulfidizingconditions,thechoicesofstructuralalloysarclimited,and

metalliccomponentsmust be cooledtotemperatureswhere sulfidationratesarelow.

Oazently,refractory-insulatedcarbonsteelisusedforlarge-diameterpipingandvessels.This

practiceislikelytocontinue.To avoidentrainmentofrefractoryparticlesinthegasstream,

exitingcyclonesorfilterswithmetalliclinersareused.Typically,thesearetype310stainless

steel,253MA, orsome similarmaterialwhen theenvironmentisoxidizingandcontainslow

sulfidizingpotential.Studiesby DeVan 15 haveclearlyshown thatironaluminidehas

outstandingcorrosionresistancetogasescontaininghighsulfur.Inthisrespect,ironaluminidc

haspotentialasalinerforcontainmentofrefractoryinsulatingpipingforgasifierorcarbonizer
.m

gasstreams.

$. CONCLUSIONS

Austeniticalloysmay bechromizcd,butthelongtimesandhightemperaturesrexluired

forthick,chromizcdlayerssignificantlyreducethestrengthofthebasemetal.Thc chrornizcd

coatingsmay bebrittle,formingcracksatlow strains.Thesecrackscanpromotebase-metal

crackingincreep-brittlestainlesssteels.The modifiedstainlesssteelsdo notsuffercreep

embrittlement.

Tubingofmodifiedtype316 stainlessstccland modifiedalloy800 (HT-UPS) alloys

• may becladwitheitheralloy690oralloy671forimprovedcoalashcorrosionresistanceinthe

temperaturerangeof650to700"C(1200to1300"F).Testingat700"Cindicatescompatibility

. of the materials. The 671 cladding exhibits room-temperature embrittlement after exposure at

700"C, but ductility at high temperature is good.
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Clad modifed 316 stainless steel tubing should not be used for temperatures above

700"C because of the tendency of base-metal alloys to undergo catastrophic oxidation.

Iron aluminide may be clad onto type 304 stainless steel. The cladding will crack when

deformed at low temperatures. Tube bending must be at temperatures above 400"C. Thermal

cycling experiments to 760 and 900"C indicate good material compatibility and oxidation
resistance on the clad side.
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