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Abstract movable obstacles remain relatively stationary during
sequences of tasks, as opposed to time-varying envi-

Path planning needs to be fast to facilitate real- ronments with constantly moving obstacles.
time robot programming. Unfortunately, current plan- To address the need of flexible manufacturing, we

ning techniques are still too slow to be effective, as present a path planner for incrementally changing en-
they often require several minutes, if not hours of vironments. Robots often perform multiple tasks in

computation. To overcome this diOiculty, we present the same or a slowly changing environment, and in
an adaptive algorithm that uses past ezperience to such cases planning time can be greatly reduced by
speed up future performance. It is a learning alto- reusing the computation results for one task to plan
rithm suitable for automating flezible manufacturing for another. One target application is manufacturing
in incrementally.changing environments. The alto- of evolving products in which the design changes made
rithm allows the robot to adapt to its environment by to a product are relatively small. In this case, the as-
having two ezperience manipulation schemes: For mi- sembly motion for the product before change can often
nor environmental change, we use an object.attached be reused with little modification for the new product.
ezperience abstraction scheme to increase the flezibil- We assume that for each robot task, the obstacles

ity of the learned ezperience; for major environmen- are stationary, but may slowly change their configura-
tal change, we use an on-demand experience repair tion or shape over the course of the robot performing
scheme to retain those experiences that remain valid many tasks. We present a learning algorithm that
and useful. Using this algorithm, we can effectively 'adapts' to the environment change. There are a few
reduce the o_erall robot planning time by re-using the path planners that incorporate learning [3, 8, 13]; how-
computation result for one task to plan a path for an- ever, none deals specifically with changing environ-
other, ments. Our algorithm extends the work of [3], which

as stated, can only be applied to stationary environ-
ments.

1 Introduction In the following section, _ve first briefly describe
the work in [3] on stationary environments, and

One of the most important enabling technologies of then present the new algorithm for changing environ-
flexible manufacturing is path planning, which refers ments. The algorithm is composed of two experience-
to finding a short, collision-free path from an initial manipulating schemes designed to cope with minor
robot configuration to a goal configuration. It has and major environmental change. In addition to pre-
to be fast (ideally within seconds) to support real- senting the algorithm, we also identify three other
time task-level robot programming. Accordingly, a variant strategies for using old experiences in new en-
large amount of research has been done on path plan- vironments. We illustrate the algorithm and its vari-
ning [9, 11, 1, 2, 12], mostly for stationary environ- ants with an example in Section 3, and demonstrate in
ments. There is also some work on planning for mo- Section 4 the effectiveness of the proposed algorithm.
bile robots in time-varying environments that contain

constantly moving obstacles [6, 10, 15]. All of these

planners, however, typically require minutes of compu- 2 Algorithm
tation for mobile robots, and tens of minutes for 6 de-
grees of freedom manipulators. Further, little work

Let task (u, w) be defined as finding a collision-free
has been done for changing environments in which

path to move the robot from configuration point u
*Supported by US DOE contract DF_rAC04-94AL85000. to to. We assume that there are initially two path
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planners available: Reach and Solve. The Reach plan- Algorithm Adapt(g, 8; T)
net is required to be fast, symmetric, and only locally

u .-current position; v ,- u; G _-({v},¢);effective, i.e., it should have a good chance of suc-
cess if u and to are close to each other. Any greedy do forever
hill-climbing method using a potential field [1] or slid- [ Repair(G);I
ing [7] approach should be sufficient to implement to _ goal();

I !

Reach. The Solve planner, on the other hand, is re-
if (not g(u, to; G, h)) then

quired to be much more globally effective than Reach,
and hence is very slow. The planner may even be the if (not ,S(u, to;G, h)) then continue;
human operator himself. It is the performance of this p ,- Abstract(8[u, to; G, h]);

planner that we wish to improve. G ,- Augment(G, p);

In our learning scheme, we retain the global ef- _b,- last vertex of p;
fectiveness of Solve by calling it whenever necessary,
while reducing the overall time cost by calling Reach ,endif 1

whenever possible. To utilize Reach, we maintain a JifT(u, to;G,h) thenJ
digested history of robot movements in the form of Execute(_[u, to;G, h]); u _ w;
a connected graph, called the ezper/ence grapAG = enddo
(I/, E) with vertices g and edges E. Set g is a sparse
collection of subgoals that the robot can attain and end.
use. Set E indicates the subgoal connections that the
robot can follow through the application of Reach. Ide- Figure 1: A learning algorithm for path planning in
ally, G is to be used by Reach to achieve most tasks incrementally-changing environment
without the help of Solve. If Reach is incapable of
achieving a task through G, Solve is called. If Solve
is also incapable of finding a solution, then we simply trace procedure that verifies and repairs old experi-
skip to the next task. Otherwise, we learn from the ence on demand. The first fragment, which introduces
solution of Solve by abstracting (or compressing) it Repair,is not part of the algorithm, but is included for
into a chain consisting of a short sequence of subgoals later discussion (Section 2.5) of other variants of the
that Reach can use later to achieve the same or similar algorithm that use it.
tasks. In the algorithm, u is the current robot configura-

tion, and to is the next goal configuration. To access

2.1 Environmental Assumptions G, we maintain two pointers: e andS, each of which
points to a vertex of G that is known to be reachable
with one call of Reach from u and to, respectively. The

To allow fruitful learning, we assume that the envi- algorithm is based on two planners: _. and 8, which
ronmentai change is incremental, i.e., occasional and are in turn based on Reach _nd Solve, respectively.
localized. By occasional, we mean that the interval Both _ and S have task (u, to) as arguments, and
between workcell changes is |arge compared to the graph G and a heuristic vertex ordering function h as
amount of time spent on each task. By localized, we parameters. For planner _, we use g(.) to denote the
mean that the workceHchange involves only a few oh- predicate that g is successful, and g[.] to denote the
jeers in a relative small area of the workspace. Both path planned when _. succeeds, and similarly for S.
conditions are prevalent in applications and have their Planner _. searches for ways to achieve task (u, to)
intuitive implications: Occasional implies that old ex- using only Reach and G as guideline. The algorithm
perience may be useful for significant amount of time, for7?.(-)is the same as for the stationary case: Search
and localized implies that old experience may have the vertices of G in order according to heuristic h, and
salvage value, find a vertex v satisfying Reach(_, to). If v exists, then

set tb 4-- v, and return success; else return failure.
2.2 Formal Specification However, to generate _[.] for changing environ-

ments, we require the success of T(.), which guaran-
Formally, the speedup learning algorithm Adapt is tees that there is a connected sequence of vertices F

shown in Figure 1. It is the same as the one forstation- in G from FI = _ to Fs_= tb for some k _> 1. Once
ary environments [3] except for the extra boxed flag- T(-) succeeds, a simple solution for 7_[.]would be the
ments. The second boxed fragment introduces T, the concatenation of Reach[Fj, Fj+I] for j going from 0
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left frame, the robot position is recorded via the tag-
point of the robot tool, and is attached to the rectan-
gular object. As the object moves toward the right,
the tag-point moves along also, enabling the robot to
comply with the change. If the tag-point had not been
attached to the object, the corresponding robot posi-
tion would have become invalid in the new environ-

ment.

Two potential drawbacks of this tag-point method
Figure 2: Object-attached experience using critical are that solving the inverse-kinematics for the tag-
tag-points, point will be necessary to recompute the robot config-

uration for the subgoal, and that solutions may disap-

to k. Incidentally, the quality of this solution can be pear for tag-points whose attached objects have movedtoo much. Nevertheless, under this object-attached
improved locally as we shall see in Section 2.6. experience abstraction scheme, we can adjust to any

Planner S sets tb for the future augmentation of G, minor environmental change without expensive expe-
and is the same as for the stationary case: To evalu-

rience repair.
ate S(.), set tb to be the best vertex in G according

to h, and return(Solve(tb, w)). To generate S[.] once 2.4 On-Demand Experience Repair
8(.) returns success, simply output Solve[tb, w].

Or course, if the environment changes significantly,

2.3 Object-attached Experience Abstrac- thc validity of G will deteriorate. How much deteri-
tlon oration G will suffer depends on how drastically the

environment changes. If the change is major and ex-
To abstract a solution path from v to to with tensive, then it may be better to start over with no

v E G, we again assume as in [3] that there is an experience (G reinitialized), rather than to work with
efficient Abstract(.) function available that returns a the old impaired experience. In the more interesting
short chain of critical vertices from v to v_ - to, with case where the change may be major (e.g., introduc-
each segment traversable by Reach. We assume that ing a new object) but not extensive (e.g., the rest of
the sime of the chains abstracted from solutions of 8 the workcell is undisturbed), the right choice is not as
are all boundable by a constant. In practice, this is clear. Therefore, we introduce an on-demand repair

a reasonable assumption, since a typical task consists scheme (second boxed fragment in Figure 1) to retain
of only 3 smooth motions: departure, traversal, and those experiences that remain valid and useful.
approach. The process of compressing a solution path In this scheme, we plan as if G is connected, un-

into a few subgoals can be implemented in many ways: til _(.) succeeds and we actually need to produce a
One simple method is by means of binary search on path. Then, to generate _[.], _ve require the success of
the appropriately discretized solution path. T(.) to provide a connected sequence from ti to _b. As

Now, to increase the flexibility of the subgoals, we T(.) searches for and verifies such a sequence, it may
require the vertices returned by Abstract(.) to be rel- come across invalid edges, which it simply deletes. If

ative robot positions associated with nearby objects, fi is already connected to tb in G, then no repair need
rather than the absolute positions in the stationary take place. If, however, fi and tb do not belong to the

case. That is, instead of remembering the robot po- same (connected) component due to the deterioration
sitions as some points in absolute space, we now re- of G, then Solve is called to reestablish their connec-
member each of them as an offset from some nearby tivity. It is of course possible that connectivity cannot
object serving as a landmark, be reestablished due to the environmental change. In

One way to implement this strategy is to create a this case, the portion of G connected to tb is deemed
tag-point (pose for the robot tool point) for each crit- useless, and hence discarded. The procedure for T(.)
ieal robot position, and affix the tag-point to the local is as follows:
coordinate of a nearby object. Then, as this nearby
object changes its location or orientation, the tag- 1. While there exists a sequence F of vertices in G
point can be adjusted accordingly so that the robot comiecting ti -_ I'1 to _ = rk for some k >_ 1 do
tool point can maintain its distance to the object un- (a) If Reach(Fi, I'i+l) for all ! _< i < k then

der change. Figure 2 shows such an example. In the return success;
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(b) Else remove edge (rl, ri+l) with smallest i quality is important, then it may be worthwhile to lo-
such that -_Reach(ri, ri+l), cally optimize r by seeking to "cut corners" whenever

2. If Solve(d, @) succeeds then augment G with possible. The result of this compression is that G may
be augmented with additional edges to enable shorterAbstract(Solve[_, _]); return success;

3. Else remove the (connected) component of _ sequences in the future. Also, the redundancy intro-
from G, and return failure, duced may be useful in combating against experience

deterioration.

2.5 Other Repair Strategies

It is also possible to cope with major environmental 3 Example
change using other variants of the on-demand repair-
ing strategy. One trivial strategy is simply to forget
the old experience and start over (with G reinitialized) We illustrate the learning algorithm with a simple
whenever there is a change in the environment. The example involving a point robot in a 2D workspace.
corresponding algorithm, .A0, can be obtained from (Similarly, the algorithm can plan for arbitrarily
Figure 1 by skipping the boxed condition, and defin- shaped and jointed robots by planning for a point
ing Repair(G) to be the reinitialization procedure, robot in the configuration space.) Let Reach imple-

Another less trivial strategy is to verify each edge ment a go-straight procedure, with Reach(u, w) re-
of G first whenever there is a change. Then with the turning success iff to is visible from u, and Reach[u, to]
time investment, we can initialize G to the home com- returning the line segment _"_. Let Solve implement a
ponent that contains the current robot position. The greedy 2-step go-straight, procedure, with Solve(u, w)
corresponding algorithm, .A1, can again be obtained returning success iff the two points are connectable by
from Figure 1 by skipping the boxed condition, and at most 2 line segments, and Solve[u, to] returning the

shortest such connecting path. To complete the algo-
defining Repair(G) to be the above home-component rithmic specification, let the heuristic used in R: and S
extraction procedure, be h - hi, with hi ordering the vertices of G accord-

Notice that both strategies above only update G ac-
cording to environmental change, and do not really re- ing to the distance to to, starting with the closest pointfirst.
pair old experience. In contrast, a third strategy that
repairs actively is to first apply T to attempt reaching Figure 3 illustrates Adapt with a series of snapshots.
every vertex of G from home, before taking on any Frame (1) shows the initial setting with the robot ___

new task. The corresponding algorithm, .A2, can be home u = too amongst two objects A and B. The
obtained from Figure 1 by skipping the boxed condi- robot's i_itial tasks are to inspect both A from to1 and
tion, and defining Repair(G) to be the above repair-all tos, and B from tos and to4. To begin, the experience
procedure, graph G is initialized to the single vertex v0 = too.

All of the suggested algorithms (including the The first goal indicated by to1 is shown in Frame
repair-on-demand algorithm .As) have their advan- (2). Since "Ris unable to plan'using only Reach and G,
rages and disadvantages. Intuitively, if the environ- Adapt then calls S. Using h, 8 chooses to extend
ment undergoes a major and extensive change, then from v0 to to1, since u0 is the only vertex in G. The
starting over with ,4o may be the best choice. On path produced by Solve(v0, to1) consists of the line set-

the other hand, if Solve costs much more than Reach, ments _ and v-T_. This path is then abstracted into
then using .A1 to save some old experience may be the chain connecting v0 to vl and vx to vs. The result
better. Alternatively, if the change is only local, then of augmenting G is that G now becomes the 3-vertex

chain. Using this augmented G, 7_ is now able to pro-repairing old experience with .As or .As may be more
duce a path from u = too to to1, which consists ofbeneficial. Which algorithm to use thus depends on
the segments uv0, v0vl, viva, and v2tol, with _ andthe particular application.

being null segments.

2.6 Solution Quality and Redundancy With the first task accomplished, the next task is
to go to to2 shown in Frame (3). Since 7_ is again

So far we have focused on task solvability but not unable to plan using only Reach and G, Adapt then

solution quality. If solution quality is not important, calls 8. Using h, 8 chooses to extend from vs to tos,
then in R:[.], we can simply produce the solution of go- and produces the line segments _ and _3-T_. The
ing through F with Reach. In this situation, the expe- result of augmenting G is that G now becon'les the
rience graph will always be a tree. However, if solution 5-vertex chain with new ":ertices us and v4.
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Figure 3: Snapshots of Adapt under environmental change

Figure 4: A planar 2-1ink robot environment with incremental change
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Figure 5: Time improvement of Adapt with all 4 repair strategies over Solve
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With this G, _ is still unable to succeed in reach- 4 Computational Experience
ing wa in Frame (4). Consequently, S chooses to ex-
tend from v0 and produces 2 more segments _ and Using Adapt, we have improved the performance of
vs_'--'_.Thus, before calling "R[-], G is a 7-vertex chain the same path planner used in [3], this time operat-
with new vertices v5 and re. After calling _[.], how- ing under environmental change. Figure 4 shows a
ever, G becomes cyclic due to the addition of edges 2-1ink planar robot environment in which Adapt is ap-
(va, vl) and (vl, vs) as a result of locally optimizing plied. The environment exemplifies the planar compo-
the solution path (v4, v3, v2, vl, v0, _'5,re). nent of a typical robot workcell in a SCABA configu-

ration [5] with the z-component decoupled. In this ex-

Frame (5) shows that _ is now capable of reach- periment, the initial environment shown in Frame (a)
ing w4, with tb4 = vl. Consequently, _ is not called has 5 polygonal obstacles in the workcell and a goal
for the first time, and G is not modified, set consisting of 9 preselected goal positions. Starting

at home 0, the robot is to go through a sequence of

So far, the workcell has been stationary. In goals randomly selected from the goal set. During the
Frame (6), we return the robot to its home and in- exercise, we introduce an incremental environmental
troduce a new object C. With ,40 using the start-over change, shown in Frame (b), by adding a new obsta-
strategy, we would lose the entire G and not retain cle to the workcell and a new goal position to the goal
anything from the 3 previous calls to S. With .A1, we set.
would verify all 8 edges in G with Reach, remove the The result of this experiment, with Adapt using all

only broken edge (v0, vx), and retain the rest of G since 4 different repairing strategies, is shown in Figure 5.
it remains connected. If Reach costs much less than Here, the ratio of the cumulative planning cost re-

Solve, then the return on the initial time investment quired by Adapt to that required by Solve only is plot-
is certainly justifiable compared to that of ,40. This ted against the task number. The planning costs are
case demonstrates that improving solution quality can averaged over 100 runs and are measured by the hum-
also increase experience redundancy, which in turn de- ber of robot-to-obstacle distance evaluations, which is
creases experience deterioration under change. With the dominating factor in the computing cost of each

• .A2 using the active-repair scheme, we would also just planner. The environment change is introduced after
remove edge (v0, Vl) from G at the end of [lepair(G). task 40. To emphasize the important features of the
With .Aa using the repair-on-demand strategy, we sim- result, the initial portion of the curve corresponding
ply do nothing, to ratios greater than 1 is not plotted. The unplot-

ted portion actually decreases monotonically from 2.5

Frame (7) shows what happens if we introduce some at task number 1 to 1.0 at task number 16. The ex-
minor change by mo-_ing object B and its object- periment shows that before the environmental change,
attached goals ws and w4. Because of the object- Adapt is able to learn and speed up its performance rel-
attached abstraction scheme, v5 and ve also move ative to Solve from 150% slower to 33% faster. It also
along with B. Consequently, if the robot were to go shows that Adapt needs abou_ 16 training tasks before
back to w3, it would again succeed by simply reaching becoming competitive with Solve, a fact attributable
toward vs and _e, to both the task simplicity for Solve and the significant

costs incurred by Adapt during solution abstraction
Frame (8) shows what happens if we move object C and compression.

to a corner and decide not to inspect object B any- After the environmental change, the performance
more. In this case, .At would be identical to .40 in re- curve for Adapt splits up into 4 curves, each corre-
ducing G back to the single vertex v0, except that .At sponding to a different experience repairing strategy.
would also have to spend time verifying all 7 edges of G The curves for ,40, .At, and .A_ exhibit similar behav-
before removing them. With ,42, G would be actively iors in that they all gradually increase and then de-
repaired, which means that it would call Solve twice crease at roughly the same rate, with .As being clearly
to reestablish the connectivity of the 2 components better than .At, which in turn being clearly better than
to v0. With .As, we again do nothing until the need .A0. The curve for .A2 is different in that it first jumps
arises. If we choose not to inspect B anymore, then to a high point and then comes down rapidly' to ap-
only one component needs to be reconnected to v0, proach the curve for .A3. The jump is due to the high
which means only one additional call to Solve would initial cost of active repair, and the rapid decrease is
be required in the future. This case demonstrates the due to the benefit of the repair. Overall, the relative

situation where using .As is better than using .42. performance of the repairing strategy is as expected,
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