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Abstract

Path planning needs to be fast to facilitate real-
time robotl programming. Unfortunately, current plan-
ning techniques are still too slow to be effective, as
they often reguire several minutes, if not hours of
computation. To overcome this difficully, we present
an adaptive algorithm that uses past ezperience to
speed up fulure performance. It is a learning algo-
rithm suitable for automating flexible manufacturing
in incrementally-changing environments. The aigo-
rithm allows the robot to adapt to ils environment by
having two experience manipulation schemes: For mi-
nor environmental change, we use an object-attached
ezperience abstraction scheme to increase the flexibil-
ity of the learned experience; for major environmen-
tal chenge, we use an on-demand ezperience repair
scheme lo retain those experiences that remain valid
and useful. Using this algorithm, we can effectively
reduce the overall robot planning time by re-using the
computation result for one task to plan a path for an-
other.

1 Introduction

One of the most important enabling technologies of
flexible manufacturing is path planning, which refers
to finding a short, collision-free path from an initial
robot configuration to a goal configuration. It has
to be fast (ideally within seconds) to support real-
time task-level robot programming. Accordingly, a
large amount of research has been done on path plan-
ning [9, 11, 1, 2, 12], mostly for stationary environ-
ments. There is also some work on planning for mo-
bile robots in time-varying environments that contain
constantly moving obstacles [6, 10, 15]. All of these
planners, however, typically require minutes of compu-
tation for mobile robots, and tens of minutes for 6 de-
grees of freedom manipulators. Further, little work
has been done for changing environments in which
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movable obstacles remain relatively stationary during
sequences of tasks, as opposed to time-varying envi-
ronments with constantly moving obstacles.

To address the need of flexible manufacturing, we
present a path planner for incrementally changing en-
vironments. Robots often perform multiple tasks in
the same or a slowly changing environment, and in
such cases planning time can be greatly reduced by
reusing the computation results for one task to plan
for another. One target application is manufacturing
of evolving products in which the design changes made
to a product are relatively small. In this case, the as-
sembly motion for the product before change can often
be reused with little modification for the new product.

We assume that for each robot task, the obstacles
are stationary, but may slowly change their configura-
tion or shape over the course of the robot performing
many tasks. We present a learning algorithm that
‘adapts’ to the environment change. There are a few
path planners that incorporate learning 3, 8, 13]; how-
ever, none deals specifically with changing environ-
ments. Our algorithm extends the work of [3], which
as stated, can only be applied to stationary environ-
ments.

In the following section, we first briefly describe
the work in [3] on stationary environments, and
then present the new algorithm for changing environ-
ments. The algorithm is composed of two experience-
manipulating schemes designed to cope with minor
and major environmental change. In addition to pre-
senting the algorithm, we also identify three other
variant strategies for using old experiences in new en-
vironments. We illustrate the algorithm and its vari-
ants with an example in Section 3, and demonstrate in
Section 4 the effectiveness of the proposed algorithm.

2 Algorithm

Let task (u, w) be defined as finding a collision-free
path to move the robot from configuration point u
to w. We assume that there are initially two path
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planners available: Reach and Solve. The Reach plan-
ner is required to be fast, symmetric, and only locally
effective, i.e., it should have a good chance of suc-
cess if u and w are close to each other. Any greedy
hill-climbing method using a potential field [1] or slid-
ing [7] approach should be sufficient to implement
Reach. The Solve planner, on the other hand, is re-
quired to be much more globally effective than Reach,
and hence is very slow. The planner may even be the
human operator himself. It is the performance of this
planner that we wish to improve.

In our learning scheme, we retain the global ef-
fectiveness of Solve by calling it whenever necessary,
while reducing the overall time cost by calling Reach
whenever possible. To utilize Reach, we maintain a
digested history of robot movements in the form of
a connected graph, called the ezperience graph G =
(V, E) with vertices V and edges E. Set V is a sparse
collection of subgoals that the robot can attain and
use. Set E indicates the subgoal connections that the
robot can follow through the application of Reach. Ide-
ally, G is to be used by Reach to achieve most tasks
without the help of Solve. If Reach is incapable of
achieving a task through G, Solve is called. If Solve
is also incapable of finding a solution, then we simply
skip to the next task. Otherwise, we learn from the
solution of Solve by abstracting (or compressing) it
into a chain consisting of a short sequence of subgoals

that Reach can use later to achieve the same or similar
tasks.

2.1 Environmental Assumptions

To allow fruitful learning, we assume that the envi-
ronmental change is incremental, i.e., occasional and
localized. By occasional, we mean that the interval
between workcell changes is large compared to the
amount of time spent on each task. By localized, we
mean that the workcell change involves only a few ob-
jects in a relative small area of the workspace. Both
conditions are prevalent in applications and have their
intuitive implications: Occasional implies that old ex-
perience may be useful for significant amount of time,
and localized implies that old experience may have
salvage value.

2.2 Formal Specification

Formally, the speedup learning algorithm Adapt is
shown in Figure 1. It is the same as the one for station-
ary environments [3] except for the extra boxed frag-
ments. The second boxed fragment introduces 7, the

Algorithm Adapt(R,S;7)

u «— current position; v — u; G « ({v},0);
do forever
Repair(G);
w — goal();

if (not R(u,w;G,h)) then
if (not S(u, w; G, h)) then continue;
p «— Abstract(S[u, w; G, h]);
G « Augment(G, p);
1« last vertex of p;

endif

if T(u, w; G, h) then
Execute(R[u, w; G, A]); u — w;
enddo

end.

Figure 1: A learning algorithm for path planning in
incrementally-changing environment

trace procedure that verifies and repairs old experi-
ence on demand. The first fragment, which introduces

- Repair, is not part of the aigorithm, but is included for
- later discussion (Section 2.5) of other variants of the

algorithm that use it.

In the algorithm, u is the current robot configura-
tion, and w is the next goal configuration. To access
G, we maintain two pointers: @ and -, each of which
points to a vertex of G that is known to be reachable
with one call of Reach from u and w, respectively. The
algorithm is based on two planners: R and &, which
are in turn based on Reach &nd Solve, respectively.
Both R and S have task (u,w) as arguments, and
graph G and a heuristic vertex ordering function A as
parameters. For planner R, we use R(-) to denote the
predicate that R is successful, and R[] to denote the
path planned when R succeeds, and similarly for S.

Planner R searches for ways to achieve task (u, w)
using only Reach and G as guideline. The algorithm
for R(-) is the same as for the stationary case: Search
the vertices of G in order according to heuristic h, and
find a vertex v satisfying Reach(v, w). If v exists, then
set w + v, and return success; else return failure.

However, to generate R[] for changing environ-
ments, we require the success of 7(-), which guaran-
tees that there is a connected sequence of vertices T’
in G fromI'; = 1 to L =w for some k£ > 1. Once
T (-) succeeds, a simple solution for R[-] would be the
concatenation of Reach[[;,I'j41] for j going from 0
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Figure 2: Object-attached experience using critical
tag-points.

to k. Incidentally, the quality of this solution can be
improved locally as we shall see in Section 2.6.

Planner S sets t for the future augmentation of G,
and is the same as for the stationary case: To evalu-
ate S(-), set @ to be the best vertex in G according
to h, and return(Solve(1, w)). To generate S[] once
S(-) returns success, simply output Solve[w, w].

2.3 Object-attached Experience Abstrac-
tion

To abstract a solution path from v to w with
v € G, we again assume as in [3] that there is an
efficient Abstract(-) function available that returns a
short chain of critical vertices from v to v/ = w, with
each segment traversable by Reach. We assume that
the size of the chains abstracted from solutions of
are all boundable by a constant. In practice, this is
a reasonable assumption, since a typical task consists
of only 3 smooth motions: departure, traversal, and
approach. The process of compressing a solution path
into a few subgoals can be implemented in many ways:
One simple method is by means of binary search on
the appropriately discretized solution path.

Now, to increase the flexibility of the subgoals, we
require the vertices returned by Abstract(-) to be rel-
ative robot positions associated with nearby objects,
rather than the absolute positions in the stationary
case. That is, instead of remembering the robot po-
sitions as some points in absolute space, we now re-
member each of them as an offset from some nearby
object serving as a landmark.

One way to implement this strategy is to create a
tag-point (pose for the robot tool point) for each crit-
ical robot position, and affix the tag-point to the local
coordinate of a nearby object. Then, as this nearby
object changes its location or orientation, the tag-
point can be adjusted accordingly so that the robot
tool point can maintain its distance to the object un-
der change. Figure 2 shows such an example. In the

left frame, the robot position is recorded via the tag-
point of the robot tool, and is attached to the rectan-
gular object. As the object moves toward the right,
the tag-point moves along also, enabling the robot to
comply with the change. If the tag-point had not been
attached to the object, the corresponding robot posi-
tion would have become invalid in the new environ-
ment.

Two potential drawbacks of this tag-point method
are that solving the inverse-kinematics for the tag-
point will be necessary to recompute the robot config-
uration for the subgoal, and that solutions may disap-
pear for tag-points whose attached objects have moved
too much. Nevertheless, under this object-attached
experience abstraction scheme, we can adjust to any
minor environmental change without expensive expe-
rience repair.

2.4 On-Demand Experience Repair

Of course, if the environment changes significantly,
the validity of G will deteriorate. How much deteri-
oration G will suffer depends on how drastically the
environment changes. If the change is major and ex-
tensive, then it may be better to start over with no
experience (G reinitialized), rather than to work with
the old impaired experience. In the more interesting
case where the change may be major (e.g., introduc-
ing a new object) but not extensive (e.g., the rest of
the workeell is undisturbed), the right choice is not as
clear. Therefore, we introduce an on-demand repair
scheme (second boxed fragment in Figure 1) to retain
those experiences that remain valid and useful.

In this scheme, we plan as if G is connected, un-
til R(-) succeeds and we actually need to produce a
path. Then, to generate R[], we require the success of
T(-) to provide a connected sequence from i to @. As
T (-) searches for and verifies such a sequence, it may
come across invalid edges, which it simply deletes. If
i is already connected to % in G, then no repair need
take place. If, however, i and 1 do not belong to the
same (connected) component due to the deterioration
of G, then Solve is called to reestablish their connec-
tivity. It is of course possible that connectivity cannot
be reestablished due to the environmental change. In
this case, the portion of G' connected to w is deemed
useless, and hence discarded. The procedure for 7(-)
is as follows:

1. While there exists a sequence T of vertices in G
connecting & = I'y to @ = I'; for some k£ > 1 do

(a) If Reach(T;,Ii41) for all 1 < ¢ < k then
return success;



(b) Else remove edge (I's, T'i41) with smallest ¢
such that ~Reach(I';, Ti41).

2. If Solve(d,w) succeeds then augment G with
Abstract(Solve[i, 1]); return success;

3. Else remove the (connected) component of @
from G, and return failure.

2.8 Other Repair Strategies

1t is also possible to cope with major environmental
change using other variants of the on-demand repair-
ing strategy. One trivial strategy is simply to forget
the old experience and start over (with G reinitialized)
whenever there is a change in the environment. The
corresponding algorithm, Ao, can be obtained from
Figure 1 by skipping the boxed condition, and defin-
ing Repair(G) to be the reinitialization procedure.

Another less trivial strategy is to verify each edge
of G first whenever there is a change. Then with the
time investment, we can initialize G to the home com-
ponent that contains the current robot position. The
corresponding algorithm, A;, can again be obtained
from Figure 1 by skipping the boxed condition, and
defining Repair(G) to be the above home-component
extraction procedure.

Notice that both strategies above only update G ac-
cording to environmental cliange, and do not really re-
pair old experience. In contrast, a third strategy that
repairs actively is to first apply T to attempt reaching
every vertex of G from home, before taking on any
new task. The corresponding algorithm, A3, can be
obtained from Figure 1 by skipping the boxed condi-
tion, and defining Repair(G) to be the above repair-all
procedure.

All of the suggested algorithms (including the
repair-on-demand algorithm As) have their advan-
tages and disadvantages. Intuitively, if the environ-
ment undergoes a major and extensive change, then
starting over with Ao may be the best choice. On
the other hand, if Solve costs much more than Reach,
then using A; to save some old experience may be
better. Alternatively, if the change is only local, then
repairing old experience with .42 or A3 may be more
beneficial. Which algorithm to use thus depends on
the particular application.

2.6 Solution Quality and Redundancy

So far we have focused on task solvability but not
solution quality. If solution quality is not important,
then in R{.], we can simply produce the solution of go-
ing through I' with Reach. In this situation, the expe-
rience graph will always be a tree. However, if solution

quality is important, then it may be worthwhile to lo-
cally optimize I by seeking to “cut corners” whenever
possible. The result of this compression is that G may
be augmented with additional edges to enable shorter
sequences in the future. Also, the redundancy intro-
duced may be useful in combating against experience
deterioration.

3 Example

We illustrate the learning algorithm with a simple
example involving a point robot in a 2D workspace.
(Similarly, the algorithm can plan for arbitrarily
shaped and jointed robots by planning for a point
robot in the configuration space.) Let Reach imple-
ment a go-straight procedure, with Reach(u,w) re-
turning success iff w is visible from u, and Reach(u, w]
returning the line segment Ww. Let Solve implement a
greedy 2-step go-straight procedure, with Solve(u, w)
returning success iff the two points are connectable by
at most 2 line segments, and Solve[u, w] returning the
shortest such connecting path. To complete the algo-
rithmic specification, let the heuristic used in R and §
be h = h;, with h; ordering the vertices of G accord-
ing to the distance to w, starting with the closest point
first.

Figure 3 illustrates Adapt with a series of snapshots.
Frame (1) shows the initial setting with the robot a¢
home u = wp amongst two objects A and B. The
robot’s initial tasks are to inspect both A from w, and
ws, and B from w3 and w4. To begin, the experience
graph G is initialized to the single vertex vo = wp.

The first goal indicated by w; is shown in Frame
(2). Since R is unable to plan-using only Reach and G,
Adapt then calls S. Using h, S chooses to extend
from vy to wy, since vg is the only vertex in G. The
path produced by Solve(vo, wy) consists of the line seg-
ments Tov1 and T10z. This path is then abstracted into
the chain connecting vy to v; and v; to va. The result
of augmenting G is that G now becomes the 3-vertex
chain. Using this augmented G, R is now able to pro-
duce a path from u = wp to w;, which consists of
the segments uvg, Yov1, U1z, and T3, with WU and
T2w; being null segments.

With the first task accomplished, the next task is
to go to wy shown in Frame (3). Since R is again
unable to plan using only Reach and G, Adapt then
calls S. Using h, S chooses to extend from vy to wy,
and produces the line segments 7373 and V305. The
result of augmenting G is that G now becomies the
5-vertex chain with new vertices vz and vy4.



Figure 3: Snapshots of Adapt under environmental change
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With this G, R is still unable to succeed in reach-
ing w3 in Frame (4). Consequently, S chooses to ex-
tend from vo and produces 2 more segments Tgvs and
U5%. Thus, before calling R[], G is a 7-vertex chain
with new vertices vs and vg. After calling R[], how-
ever, G becomes cyclic due to the addition of edges
(vs,v1) and (vy,vs) as a result of locally optimizing
the solution path (vq, vs, v, v1, vy, vs, v6).

Frame (5) shows that R is now capable of reach-
ing w4, with w4 = v;. Consequently, S is not called
for the first time, and G is not modified.

So far, the workcell has been stationary. In
Frame (6), we return the robot to its home and in-
troduce a new object C. With Ao using the start-over
strategy, we would lose the entire G and not retain
anything from the 3 previous calls to §. With A;, we
would verify all 8 edges in G with Reach, remove the
only broken edge (vo, v1), and retain the rest of G since
it remains connected. If Reach costs much less than
Solve, then the return on the initial time investment
is certainly justifiable compared to that of Ap. This
case demonstrates that improving solution quality can
also increase experience redundancy, which in turn de-
creases experience deterioration under change. With

" Ay using the active-repair scheme, we would also just

"remove edge (vo,v1) from G at the end of Repair(G).
With A3 using the repair-on-demand strategy, we sim-
ply do nothing.

Frame (7) shows what happens if we introduce some
minor change by moving object B and its object-
attached goals ws and wy. Because of the object-
attached abstraction scheme, vs and vg also move
along with B. Consequently, if the robot were to go
back to ws, it would again succeed by simply reaching
toward vs and vg.

Frame (8) shows what happens if we move object C
to a corner and decide not to inspect object B any-
more. In this case, A; would be identical to Ag in re-
ducing G back tc the single vertex vg, except that A,
would also have to spend time verifying all 7 edges of G
before removing them. With A2, G would be actively
repaired, which means that it would call Solve twice
to reestablish the connectivity of the 2 components
to vo. With A3, we again do nothing until the need
arises. If we choose not to inspect B anymore, then
only one component needs to be reconnected to v,
which means only one additional call to Solve would
be required in the future. This case demonstrates the
situation where using Ajg is better than using A,.

4 Computational Experience

Using Adapt, we have improved the performance of
the same path planner used in [3], this time operat-
ing under environmental change. Figure 4 shows a
2-link planar robot environment in which Adapt is ap-
plied. The environment exemplifies the planar compo-
nent of a typical robot workeell in a SCARA configu-
ration [5) with the z-component decoupled. In this ex-
periment, the initial environment shown in Frame (a)
has 5 polygonal obstacles in the workcell and a goal
set consisting of 9 preselected goal positions. Starting
at home 0, the robot is to go through a sequence of
goals randomly selected from the goal set. During the
exercise, we introduce an incremental environmental
change, shown in Frame (b), by adding a new obsta-
cle to the workcell and a new goal position to the goal
set.
The result of this experiment, with Adapt using all
4 different repairing strategies, is shown in Figure 5.
Here, the ratio of the cumulative planning cost re-
quired by Adapt to that required by Solve only is plot-
ted against the task number. The planning costs are
averaged over 100 runs and are measured by the num-
ber of robot-to-obstacle distance evaluations, which is
the dominating factor in the computing cost of each
planner. The environment change is introduced after
task 40. To emphasize the important features of the
result, the initial portion of the curve corresponding
to ratios greater than 1 is not plotted. The unplot-
ted portion actually decreases monotonically from 2.5
at task number 1 to 1.0 at task number 16. The ex-
periment shows that before the environmental change,
Adapt is able to learn and speed up its performance rel-
ative to Solve from 150% slower to 33% faster. It also
shows that Adapt needs about 16 training tasks before
becoming competitive with Solve, a fact attributable
to both the task simplicity for Solve and the significant
costs incurred by Adapt during solution abstraction
and compression.

After the environmental change, the performance
curve for Adapt splits up into 4 curves, each corre-
sponding to a different experience repairing strategy.
The curves for Ay, A1, and A3 exhibit similar behav-
iors in that they all gradually increase and then de-
crease at roughly the same rate, with A3 being clearly
better than .4;, which in turn being clearly better than
Ao. The curve for A3 is different in that it first jumps
to a high point and then comes down rapidly to ap-
proach the curve for A3. The jump is due to the high
initial cost of active repair, and the rapid decrease is
due to the benefit of the repair. Overall, the relative
performance of the repairing strategy is as expected,



since the environmental change is incremental, involv-
ing only local and occasional change. In fact, one can
formalize the concept of local and occasional change,
and prove the optimality of on-demand repair Aj3 rel-
ative to the other variants Ay, A;, and A3 under such
change [4].

5 Conclusion

We have presented an adaptive path planning al-
gorithm for flexible manufacturing in incrementally-
changing environments. The algorithm extends a pre-
vious work for stationary environments with two aug-
menting experience-manipulating schemes: For minor
environmental change, an object-attached experience
abstraction scheme is introduced to increase the Jexi-
bility of the learned experience; for major environmen-
tal change, an on-demand experience repair scheme
is introduced to retain those experiences that remain
valid and useful.

We have discussed the tag-point approach to stor-
ing the object-attached experience. In justifying our
on-demand experience repair scheme (As), we have
also identified three other variants with different re-
pairing strategies: Ao simply forgets the old experi-
ence and starts over whenever there is a change; A,
first verifies the old experience and then retains only
the home component; and A, actively repairs the old
experience before taking on new tasks. We have dis-
cussed the relative merits of each repair scheme and
characterized their performance curves. Finally, we
have demonstrated the practicality of our algorithm by
improving the performance of an existing path planner
under a changing environment.
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