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1. Exact 1-Loop Vacuum Polarization Effects in 1+1 Dimensional QHD T. C.
Ferr_e, (), E. Price and J, R,. Shepard

Vacuum polarization effects in QHD (at the 1-fermion-loop level) have typically been
included via the local density approximation (LDA) or its extension, the derivative expan-

sion (DE)_ '2 but it is difficult to assess the accuracy of these procedures. Furthermore,
, they are clearly valid only for relatively smooth systems as are typical in QHD, but not
i for tile strongly nonuniform systems that are common to soliton models of the nucleon.

Therefore, extending QHD vacuum techniques to other problems may require a more direct
treatment of the vacuum.

' To address this need , we have developed a spectral method for computing exactly
'i 1-loop vacuum, polarization contributions based on a Fourier expansion, of the exact wave-
, functions. This method allows us to determine fully self-consistent QHD-I nuclear ground
-I states in 1+1 dimensions with negligible uncertainties in the 1-loop contributions (exten-

--i sions to 1+3 dimensions are straightforward, although tedious, and are discussed in sub-sequent sections). A spectral approach is in some ways more desirable than a nonspectral
t approach because one calculates single-particle eigenstates and their energies directly and
,i carries out a state-by-state renormalization which allows much more physical insight than

i a nonspectral formulation. Also, spectral approaches allow an unambiguous counting of

! states so that portions of the spectrum treated in discrete and continuous representationscan be easily joined with no possibility for double counting.

-] Integration methods have been used wide!y for solving differential equations like the
:l_ Dirac equation, so much so that they have become accepted by many as a standard numer-

{ii ical method for solving such equations, and subsequently have occasionally been applied to
problems where they may not be particularly well-suited to the task. In calculating a few
bound states, a Numerov or Runge-Kutta integration scheme on a uniform spatial grid is

'i entirely adequate, and the results are insensitive to the details of the boundary conditions
_"i being imposed outside the nucleus. This computational approach is well suited for solv-

e4
ing for exact eigenfunctions, but has severe limitations when attempting to calculate very
many states in an infinite complete set and ,cum over renormalized density contributions

i from each. In such circumstances, a Numerov or Runge-Kutta integration scheme is clearly
-.! inadequate on its own, since the maximum number of nodes in any obtainable wavefunc-t

': tion is restricted by the number of grid points chosen for the integration. In fact, the
:!] number of grid points must be at roughly an order of magnitude greater than the number
'! of nodes of the deepest state considered, or the high-energy part of the spectrum will be

i[ unacceptably sensitive to the grid parameters. On the other hand, one cannot choose an
arbitrarily fine grid because of machine error and constraints in computing time. We have
investigated this approach thoroughly in QHD-I, and have found that while one may be

:[ able to reach reasonable convergence with integration methods in scalar-only systems, the
t presence of a vector potential slows convergence in the Dirac sea so greatly that it is essen-
_[ tiMly impossible to reach convergence in the Dirac sea by integration methods alone. More
I specifically, we have seen that the total renorrnalized vacuum baryon density arising from

] a large number of low-lying states calculated by Numerov integration is negative outside
-[

]
.......... ,_" ','". ........... _" Inlp'll,rl_ ,,,, ii .le ,rll,l_l_r' Itlj_'l,l'lln,,ITIIV"l'lq,'_l p, 11 "'p' "'_ I'll H' 'l_ll'lp'll ,_1111n i ....



the nucleus, and can be equal to a substantial fraction of its value inside the nucleus. This
gives rise to an appreciable attractive vector potential outside the rmcleus which is sul:I_-
cient'to cause severe instability. Furthermore, one finds that the total densities converge
very slowly as the number of states included in the sum is increased. Thus integration
methods alone are extremely cumbersome (if not entirely inappropriate) when computing
vacuum polarization densities in models including a vector potential.

This point is illustrated in Figures 1 and 2 which show the renormalized baryon and
scalar densities for several values of the number of sea states included (for illustration

purposed this number was kept very small but the qualitative 'features of these figures are
essentially unchanged even for arbitrarily large values of the cutoff). Since the nucleus
occupies the region inside roughly 4 fm, it is clear that these vacuum densities have large
contributions from the region outside the nucleus where its affect should be zero. We
have traced this problem to the loss of completeness that comes from the uncontrolled
truncation of the vacuum spectrum that is implied by placing the problem of a spatial
grid. Since the vacuum densities are renormalized they must integrate to zero, yet due to
the potentials there are a few bound vacuum states that are completely localized in the
region of the nucleus. Therefore, the net effect on the remainder of the vacuum states must
be an antilocalization that exactly compensates for the bound states. So, by arbitrarily
truncating the basis, this matching of localized and anitlocalized states is lost with the
result that there are substantial densities outside the nucleus.

In our spectral approach, we write our basis in terms of free parity eigenstates:

2Er_ +i V_--gW sin(kr_a:)

(01)

qar_-(_)=v/Nn-E'_+rn(2._,, i "_v ""_'sin(kr_) )- ,,.:.,. cos(k., )

and we obtain the exact states by diagonalizing a matrix. Since the matrix contains all
informationon the mixing of a linzitedsetof basisstates,the correspond.ingexact states
willincorporatea psuedo-completeness(whichcan be tracedto the 'completeness_property

of the sines and cosines, i.e. sin2(k_)+ cos2(k_) = 1). By this I =lean that any localization
found in one part of the exact spectrum will be exactly compensated by an antilocalization
elsewhere in the basis. This is demonstrated in Figures 1 and 2. The various curve compare
the Numerov and exact results for the vacuum densities including 20, 25 and 30 basis states.
Notice that the two methods give very similar results for the lower number of basis states,
but the two methods disagree near the end of the basis. Furthermore, when the basis is

exhausted (at 30 states) the exact spectral method finds densities that are well behaved
outside of the nucleus. So, even with very small basis sizes our exact method preserves
the crucial aspects of completeness, and any remaining truncation sensitivity reflects the

true effects of considering only a portion of the vacuum (We have observed that the results
converge quite quickly with increasing basis size, and that the convergence can be speeded
by adding an LDA or DE for the deep states in the sea beyond our truncated basis).



In comparing different theoretical models for computing vacuum polarization effects
in finite nuclei, it is especially usefuI to consider observable quantities which describe
the overall properties of the nuclear system, such as the self-consistent rrns nuclear size
:orins, and the average binding energy per nucleon BE/N. An important parameter in
these QHD models which facilitates a systematic study of the various vacuum models is
the scalar mass, which has drastic effects on the many-body solutic, n. In fact, in 3+1
dimensional calculations, the scalar mass is adjusted to tune the nuclear rms size to match
experimental data. We have studied the scalar mass dependence of our self-consistent
solutions on primarily two properties of the nucleus: the rms size ;_rrns, and the average
binding energy per nucleon BE/N. We will see that for very high scalar masses, where our
ground state solutions become increasingly nonuniform, the various vacuum models begin
to differ slightly. However, these differences are seen to be essentially negligible for the
systems studied here, and we conclude that the DE provides an adequate approximation
for the calculation of vacuum polarization effects in 1+1 dimensional QHt).

Figure 3 shows the rms size of self-consistent nuclear solutions with three closed shells
as a function of the scalar mass parameter. The first feature one notices is that the MFT
solutions have the least dependence on ms, and are clearly distinct from "Mlof the models
which include vacuum polarization. Next, the rms sizes of LDA and DE solutions are
undistinguishable at low ms, but start to differ slightly at very high scalar mass, with the
DE solutions tending surprisingly closer to the MFT solutions. (This might seem surprising
at first because the DE is an expansion in derivatives of the potentials which has the LDA
as its first term, so one nfight expect that the LDA solutions would lie between the MFT
and DE solutions. On the contrary, the inclusion of meson field derivatives in the vacuum
polarization densities pushes the DE solutions slightly closer to the MFT solutions. We
must keep in irfind, however, that the coupling constants in MFT and RHA models are
very different, so a strong statement about this observation is not possible.) Similarly,
the FDE solutions differ slightly from both the LDA and DE solutions at very high scalar
mass, also tending yet more toward the MFT solutions. Although these differences are
thought to be due to how these different models account for meson field derivatives, we
see that the differences are minim.al.

Figure 4 shows the average binding energy per nucleon BE/N of our nuclear solutions as
a function of the scalar mass. Again, the first feature one notices is that the MFT solutions
are distinct from the RHA solutions and the MFT model is much less dependent upon rn_
than the RHA solutions. In contrast to the behavior of the rms size, we see here that the
LDA and DE models are not distinct at high scalar mass on the scale of this plot, and the
FDE solutions exhibit almost imperceivable differences with the DE solutions for all scalar
masses, although the difference are slightly enhanced at higher scalar masses, also. The
BE/N is much less sensitive to the derivative terms appearing in the vacuum polarization
densities, and does not reflect the subtle differences in these models a.s clearly as the rms
size. Also, we see that when the basis size N is increased by several factors, the FDE
results in Figures 3 and 4 tend very precisely toward the DE results for all scalar masses,
although slightly less quickly at very high scalar masses. In Figures 3 and 4 above, solutions
in all models were calculated with N = 30. If N is increased we see the FDE solutions
tend more toward the DE solutions for all scalar masses. However, the tiny scale of these
differences together with the slow convergence of these slowly disintegrating solutions at
high scalar mass makes it difficult, if not impossible, to ascertain if these differences are
reflective of the theoretical models themselves, or of the convergence properties of these
theoretical models in our numerical codes. A simple extrapolation to infinite basis size
N based on calculations carried out for many different finite N seems to show that the
FDE results converge to the DE more precisely than at high scalar mass, but in both cases
the agreement is so close that it suffices to say that the DE is clearly adequate for the
description of vacuum polarization in these systems.

.i 3
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While this work has demonstrated that approximate treatments of the vacuum are ad-.
equate in 1+1 dimensional QHD, it is not clear that the same will be true 3+1 dimensional
QHD or in other field theoretic models, lt is certain, however, that direct calculations of
the vacuum in any system require great care in order to preserve the crucial completeness
prop,"rties of the vacuum. An article describing the details of this work has been submitted
to Phys. Rev. C.

1. C.J. Horowitz and B.D. Sefor, Nucl. Phys. A368, 503 (1981).
2. R.J. Perry, Phys. Left. B 182,269 (1986).
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2. Exact 1-Fermion Loop Contributions in 1+1 Dimensional Solitons J. R,
Shepard, C. E. Price and T. C. Ferre!e

Irl Section 1 of this document we report calculations of exact 1-fermion loop contribu-
tions in 1+1 dimensional quantum hadrodynamics (QHD). One of the conclusions of that
work is that, for a wide range of QHD problems, the familiar derivative expansion (DE) is
an adequate approximation to the exact treatment. Partly to see how our exact approach
fares in a more demanding context but more importantly because of interesting physics
issues to be addressed, we have computed exact 1-fernfion loop contributions in solitons in
a 1+1 dimensional discrete chiral model. This model is, of course, a simplification of the

linear sigma model 1-5 which has been studied for three decades because of its conceptual
simplicity, dynamical richness and "built-in" chiral symmetry. One of the more intriguing
features of the model is the existence of solutions - at least i.a the classical limit for the
scalar field - for which the fermions are strongly confined to a finite region where the scalar
field vanishes. These solutions - often referred to as "kink solutions" - have been examined

in detail by, e.g. the SLAC Bag Collaboration 6", m an effort to describe hadronic structure

and by a variety of others ( see, e.g., Refs. 7 and 8) to study "abnormal phases" of nuclear
matter.

Almost from the very beginning of these studies, there has been speculation about the

p,_rsistence of such solutions when vacuum contributions a_e included. 4'7 Indeed, there is

current interest 9'1°'11 in this question. Such analyses are complicated by the fact that
the kink or deep-bag sol.utions are of course non-uniform and therefore the treatment
of vacuum contributions is considerably harder than for uniform systems. A number of
workers have developed exact, treaments of 1-fermion loop effects in such systems. For

example, Campbell and Liao 4 presented early calculations of 1-fermion loop contributions
to the kink energy in 1+1 dimensions. However, their treatment was restricted to a single

st,ecial set of coupling constants. Li, Perry and Wilets 12 and, more recently, Wasson 13
have reported similar exact calculations. Wasson has furthermore presented results for a
variety of couplings and for which the 1-fermion loop contributions are treated in a fully self-
consistent manner. While some of these authors have focussed exclusively on calculational

aspects of the problem, others TM have concluded that 1-fermion loop contributions render
the kink solution either absolutely unstable or metastable with respect to other (e.g.,
shallow bag) solutions. In what follows, we outline our calculational method and sketch
some of our findings. A manuscript detailing these studies has been prepared and submitted
to Physical Review D. The interested reader is referred there for a more thorough discussion
than will appear here.

We assume the following Lagrangian in 1+1 dimensions:

1

£ = _i7" 0#2 H-9dp_b + -_Odp.Odp- U(4, ) + Cctc (01)

where _b is the fermion field, 4) is the scalar field and where Z;ctc is the counter-term
Lagrangian whose exact form will be specified below. The scalar potential is

= _ f2)2. (02)

9
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This is of course the Lagrangian of the linear sigma model without the pseudoscalar field
and it thus possesses discrete rather than continuous chiral symmetry. For a uniform
system, in the absence of coupling to the fermion field (g = 0), the classical scalar field
satisfies

¢2= f2. (03)

There also exists a higher energy non-uniform "kink" solution

¢(a:) = f tanh(_f z) (04)

which "interpolates" between the two uniforrn solutions, namely ¢ = =kf. In general,
the classical field dynamically generates both fermion and scalar masses. Standard ma-
nipulations of the Lagrangian produce coupled equations of motion for the expectation
value of the scalar field, ¢0 and the fermion spectrum. The Dirac equation is solved using :
techniques identical to those employed in 1+1 QHD as described in Section 1.

The fermion energy density is of course divergent and must be renormalized. Renor-
malization of the energy density will also show how to treat the scalar density. With the
fermion basis truncated at momentum A, the unrenormalized energy density due to the

sea is, for a uni]orm system with ¢2 = f2 (or, equivalently, for S = 0),

+A

f dkE_ (05)E(/)(,)=-
-A

where E_ -- +x//_ 2 + (gf)2 = x/k 2 + m 2. Upon discretizing,

N

e(¢)-_! _ (_Eo) _o6)
_----N+I

E 0 _ V/k2 + (gr)2 and ki - (2i- 1)Tr/a. The shift in this energy density due to
where

S(z) ¢- 0 is, schematically,

O0

E ¼'rr[sC°]° (o7)
n"- 1

where Go is the "free" fermion propagator. Examination of the first four terms of this
expansion provide the detailed form of the renormalization counter-terms. They are con-
structed with care to maintain consistency with the truncated finite basis in which the
equations of motion - especially the Dirac equation - are solved. While the derivations are
straightforward, they and the expressions they yield are somewhat lengthy and will not be
reproduced here.

10
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In addition to applying our new method for treatment of 1-fermion loop effects, we also
examine a renormalization scheme which differs from that typically used in such studies.

'Speci.ficM.ly_we make one more chirM subtraction ttlan, e.g., Wasson 1'_in addition to rnak'
ing a derivative counter-term sub.tra_ction. We refer _'._the two renormMization procedures
as ',full" and "minimal", respectively. Both schemes ensure that the renormalized energy
and scMa.r density vanish a't the renormalization point defined by @2= ].2 and q2 = 0.
Examination of their differences begins by observing that, in the absence of coupling to
fermions, or, more ge_lerMly, in the classical limit,

02U I 2,\f '_ = #_ (08)' (9¢2 ,,,_. ;,
h

i, ,where po is the spontaneously generated classical scMar mass. This implies we may inter-
, pretI

0¢_ ,,=:, -gg_- s=o

where g_oo_,is the renormMiz.ed loop energy density as the correction to the scalar mass
dueto 1-fermion loop effects. Using our "full" renormalization method, 6_,g = 0 at the
renormalization point. In the "minimal" scheme, going to the infinite-cutoff, continuum
limit, 6#_ --, g2/_r at the same point. Hence, while the "full" dressed scalar meson mass

fc)r ¢_"= f2 a,nd q; := 0 is the c,lassical mass, #o = _b_'_f, the "n_nimal" result is

#2 =/_g+ ,g2/Tr. (010)

Our derivative counter term contribution ensures that, at, the renormMization poi,nt,

0 ]qi_= 0

where .'.:X(q_)is the scalar propagator dressed by i-fermion lo.op contributions. This relation

is of cours,e satisfied by the classical scalar propagator, &o(q_,_)= (q_ .... /._g)-..1 Finally,
additional terms in the full chiral renormalization generally imply more suppression of
loop contributions than for the minimal case.

We test the numerics of our calculations by comparing with the published results of

Campbe[1 _nd Liwo4 and of Wa,sson] _, both of which employ minimal renormalization.

For this renormalization scheme.) kink solutions wil.h A/g= = 2 constitute a _pecial case
in that the 1-fermion loop con_,,ribution to the scalar density vanishes when ¢(m) is given
by the classical kink solution, Eqn. (04). Hence, thi,_ kink _olution is also _el]'.c0n_u_.en.t
(with or without any fermions in the lowest positive energy levei). Campbell and Liao
treat only this case and find an analytic expression for the total kink energy, namely, _heir

, t, eEqn. 4,15. Their result implies E_oo_= 9/'# _ 0.3183109 We agree well with Campb.ll
and Liao. tn fact, a calculatio.a with a basis size given by No,,d,_..,= 10'0 differs from the

analytic result by less than 0.0,0,4%, Wa,sson la presents non-iterated (or perturbative)as

well a,s self.consistent re.sults for various values of A/g _ and we agree with him in all ca._e_.
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Table 1 presents results utilizing our full renormalization schenae. We note that the loop
energies are roughly two-thirds of those found with the minimal scheme. It also appears
that the classical kink solution is self-consistent in the full calculations for A/g 2 = 0.5 rather
than A/g 2 = 2 :_s before. Among other things, we see that DE contributions from outside
the basis are r,_ughly two orders of magnitude :smaller when computed with full rather than
minmal renormalization. It is thus apparent that the full chiral renormalization -in effect
- cuts off 1 loop contributions from the fermion sea at quite small values of momentum
For ex_mlple, we see (Table 1) that, le," ,k/g2 = 2, less than 1/2 °/oof the loop energy is due
to levels in the sea with momentum greater than-_ 2g, i.e., ,._ 2x the asymptotic fermion
mass, m ,:-:-gf. Such a drastic (effective) cutoff is surprising in light of the huge changes
in the fermion effective mass implie,_ Ey the kink solution, namely

_ = <1.
m

Put another way, fermions whose mass-squared is g2 far from the kink are subject _o
interactions so strong that their mass vanishes at the center of the kink. Such interactions
coulcl be expected to pole_rize the negative energy sea very significantly and would seem to
suggest much larger 1 loop contributions from deep in the sea than are observed, especially
with full renormalization. (We note in this regard that, for the uniform system, the 1
fermion loop energy density possesses a logarithmic singularity at m* = 0.)

We also make comparisons between "kink" and "shallow bag" solutions. It is assumed
in both cases that the lowest positive energy fermion level is fully occupied, i.e., this state
contains N, ea fermions where Naea is the fermion mulSiplicity owing to, e.g,, color, flavor,
etc. (Note that N_ea = 1. was assumed throughout the preceeding discussion, in order to
compare with Wasson,) For the kink solutions the lowest positive energy sta.te (and the
highest negative energy state) has zero total energy and yields a vanishing scalar den._ity.
Hence occupancy of this state has no effect on either the loop energy or the scalar field
configuration. In contrast, the positive energy fermions are es_entia,t for the shallow' bag
solutions since the associated scalar fields would decay to the trivial uniform configuration
(¢2 = f2)in their absence.

Properties of these solutions obtained using minimal (full) renormalization are dis-.
played in Table 2 (3). Also, Figure 1 (2) shows vector and scal.ar fermion densities as
well as fermion scalar potentials for self.,consistent minima.l (full) kink and shallow bag
solutions with )_/g_' = 0,5 and N_ = 6. Figure 3 (4) presents the same quantities but for
N_e._= 18. Because of the symmetries built into our free basis which ensure, for example,
that ali densities are symmetric about z = 0, "kinks" occur in pairs located symmetrically
about, the origin. (See Figures 1.--4,) Furthermore, the vector (i.e., probability) density
for the lowest positive energy fermion state e,ssociated with the kinks is strongly local.ized
at the center of each kink where S(z)= -g and m" vanishes. Hence, each kink contains
N_ea/2 fermions. In contra.st, the shallow bag ,_olutions are localized near the origin and
each contains N,._a fermions. For this rea,son, .va compare quantities for two kinks with
results for one shallow bag in Tables 2 and 3, We note also (Figures 2 and 4) that the
fully renormalized kink s.calar densities for ,_/g_"= 0.5 vanish; in fact, the valence and sea
contributions vanish separately, The same phenomenon is, of course, observed for )_/g2 = 2
with n._inimal renormalization.

t 12
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Armed with analytic results for X/g 2 = 2, Campbell and Liao 4 determined that,

in this special case, shallow bags are more bound than kinks for N, ea < 4rr while for
•N, ea > 47r, the situation is reversed. Our numerical results are consistent with this finding
since, as revealed in Table 2, shallow bag total energies are less than kink energies except
for Nsea = 18. Here our shallow bag solution evolves (slowly!) toward the kink and
the <0.002.o/o energy difference appearing in Table 2 is simply an artifact of incomplete
convergence after starting the iterations with a shallow bag configuration. It thus appears
that, for N_e, < 47r, self-consistent kink solutions can be found which are metastable with
respect to/,he shallow bag while, for N,e_ > 4rr, the shallow bag is unstable and only the

kink can be self-consistent. As A/g a is reduced from the special value of 2, the value of
Naea for which, kinks and shallow bags become degenera_.e appears to increase from 47r.

This conclusion is suggested by the fact that, for X/g 2 = 0.5 and 1, the shallow bag is more
bound for ali values of N,e= appearing in Table 2. It is interesting, however, to inspect the
shallow bag vector densities for Naea = 6 (Figure 1) and 18 (Figure 3) and to see that, even

,} for ,_/g2 = 0.5 when the simllow bag is always more bound, larger values of N.,ec, result in
shallow bags which look increasingly like slightly overlapping kinks. This suggests that,
when kinks and shallow bags become degenerate the two solutions are no longer distinctl

!1 It also leads to the intri.guiiltg notion that the shallow bag can- for large values of Nae=
t4 but where the shallow bag is still energetically favored - be viewed as a weakly bound pair
,J

Table 3 presents properties of kink and shallow bag solutions employing full renormal-
!_I ization and reveMs that the shallow bag results are more bound for all values of ,k/g 2 and

N, ea presented, including ,_/g2 = 2 and Nsea = 18. We have done additional calculations
for Naea = 18 which suggest that, for this multiplicity, kink versus shallow bag degeneracy
occurs for some value of A/g 2 between 3 and 4. Another view of this situation is that, for a

given value of A/g 2, larger values of Naea are required for degeneracy when using full rather
than minimal renormalization. It also appears that, as before, distinct self-consistent kink
and shallow bag solutions exist for small values of N, ea and that - above some critical value
-only the kink is self-consistent. Also, because "full" renormalization reduces the repulsive
1-fernnon loop contribu;_,_ns, these solutions are always more bound than their "minimal"
counterparts. (See Table 3.} Greater bindin.g is also reflected in the potentials presented
in Figures 1-.-4 which are always "steeper" functions of z with full renormalization.

Although the principal aim of the present paper is (1) to demonstrate the utility of

our calcuiational method and (2) to examine difference between minimal and full chiral
renormalization schemes, it seems of interest to exanfine kink and shallow bag solutions for
"baryons" consisting of three fermions in the lowest positive energy state with Naea = 6.
The kink solutions whose properties are summarized in Tables 2 and 3 are of course just
two such baryons. Further, the kink densities shown in Figures 1 and 2 represent one kink
baryon. New shallow bag solutions are required. Properties of these shallow bag baryons
are dispiayed in Table 4 and the associated densities and scalar potentials are displayed

in Figure 5. For ,k/g 2 = 2 and minimal renormalization, the shallow bag solutions are

more bound than the kink configurations. However, as A/g 2 is reduced and the relative

scalar-fermion coupling goes up, the situation is reversed. With )_/g_' = 0.5 and minimM

renormalization, the binding energy/fermion for the kink is more than twice that of the
shallow bag. When using the full renormMizafion, the kink binding is atway_ greater than
that of th.e shallow bag. Comparison of the kink vector densities shown in Figures 1 and
2 with the shallow bag vector densities of Figure 5 show that the former have widths
which are roughly 1/2 those of the latter as might be expected from the binding energy
differences. For relatively strong scalar-fermion coupling, the binding energies of both

'-,-,,_,,p .... i,r ,,, ,,, _r, ,, I_' II ' 'lit' " I1_' Ilrl' _ll_ _ " ' r_ , I_tl_ .....I'11,,_11__1_1[,II',l ' 'li _1" ' ' "li' II'!]lI_''' _' ' 'lllrll
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solutions roughly double with full renormalization and the kink values are again more than
twice the shallow bag results. For the most strongly bound fully renormalized kink solution,
the binding energy/fermion is nearly 1/3 the asymptotic fermion mass. We have made no
effort to factor out center-of-mass effect_ 4'5 from our solitonic solutions and are therefore at

some remove from ascribing physical significance to them even after extrapolating to 1 +3
dimensions. However, we can conclude that the details of the renormalization procedure -
e.g., the difference between nfinirnal and full prescriptions- can be critical in establishing

properties of kink versus shallow bag solutions including their relative stabilities. 11
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)_/g2 No, der A/g N_te_ Ezo,,p/g % DE

0.5 8 1.98 i 0.2335 0.09

25 6.47 I 0.2330 0.00

I0 0.2330 0.00

50 13.07 I 0.2330 0.00

10 0.2330 0.00

i00 26.28 1 0.2330 0.00

2.0 8 1.98 1 0.2466 0,18

15 3.83 I 0.2477 0.008

4 0.2469 0.008

15 0.2468 0.008

25 6.47 I 0.2476 0.00
....

15 0.2467 0.00

50 13.07 1 0.2476 0.00

15 0.2467 0.00
, ,

Table 1. Properties of "sea-only" kink solutions with full rer,_:z:'.:_liz,_tion scheme. Assumes ' N_ = 1,

f2 : 1. Ezoop is the renormMized energy contribution due to the sea, 1.e., Ev plus DE contributions from
outside the basis. Also shown is the DE percentage of the loop energy.
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Kink Solution

3 2.0 2.6667 1.9090 0 4.5766 +0.5256

1.0 1.8932 1.9306 0 3.8240 +0.2756
b.............

0.5 1.3734 1.9780 0 3.3516 +0.1172

6 2.0 2.6667 3.8198 0 6.4866 +0.0811

1.0 1.9043 3.8461 0 5,7505 -0.0416

0.5 1.4158 3.8965 0 5.3125 -0.1146
..........

18 2.0 2.6667 11.4594 0 14.1265 -0.2152

1.0 1.9346 11.4842 0 13.4195 -0.2545

0.5 1.5090 11.5224 0 13.0320 -0.2760

Shallow Bag Solution

t 3 2.0 0.0861 0,0214 2,8445 2.9520 -0.0160 -0,1045
1.0 0.2004 0.1029 2.5579 2.8613 -0.0462 -0.2786

] 0.5 0.2944 0.2956 2.1238 2.7138 -0.0954 -0.5089
....... , ....

6 2.0 0.4740 0.2615 4.9618 5.6973 -0.0505 -0.3461
...... o,,,

1.0 0.7565 0.8960 3.6653 5.3204 -0.1133 -0.7223

0.5 0.6858 1.4689 2.8162 4,9708 -0.1715 -0.9347

!

18 2.0 2.6649 11.0840 0.3783 14.1268 -0.2152 I-1.9582t
1.0 1.8959 10.3681 1.1435 13.4075 -0.2551 -1.8366

0.5 1.3286 9.0009 2.6562 12.9848 -0.2786 -1.6217
...... iiI [ I

Table 2. Kink versus Shallow Bag Solutions with minimal renormalization. Assumes lowest positive energy
fermion level filled and f2 = 1. E_oop is the same as for Table 1. E,neao, is the energy due to the scalar
field and E_a_ is that for the positive energy fermions. BE/fermion= (E_o_ - N,,,I g)/N,j,,z where N_,l is the
number of positive energy fermions. S(0) is the shallow bag scalar potential at z = 0.
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_s_l_/g_l_sooI_zoopIE_o,L_:o_IB_J_rm_oo,Is(0)
Kink Solution

i

3 2,0 2.6741 1,4699 0 4,1442 +0,3814

1,0 1,8892 1,4160 0 3,3054 +0,1018

0.5 1.3353 1.3977 0 2,8377 -0.0896

6 2,0 2,6919 2,9152 0 5,6072 -0,0655

1.0 1.8962 2,8222 0 4,7188 -0.2315

0,5 1.3333 2.795_1 0 4,1292 -0,31.18

18 2,0 2.8026 8.5657 0 11.3691 -0,3684

w 1.0 1.9253 8,4173 0 10,3438 -0,4254

0,5 1.3333 8,3862 0 9,7210 -0,4599

Shallow Bag Solution

3 2.0 0.1636 0.0035 2,7570 2,9241 -0.0253 -0.1606

1.0 0.5181 0,0758 2,1243 2,7182 -0,0939 -0.5146

0.5 0.6586 0.3157 1,3990 2.3732 -0,2089 -0.8463

6 / 2.0 1,4170 0.3683 3.5307 5.3159 -0.1140 -0,7810

1.0 1,4045 1.0961 1.9963 4.4969 -0.2505 -1.1395

0.5 0.9871 1.4204 1,5137 3.9212 -0.3465 -1,2051

18 2,0 2.7619 6,6004 1.9628 11.3250 -0.3708 -1,6553

1,0 1,7976 6.2340 2.2075 10.2391 -0.4312 -1.5307
L

0.5 1.1781 6.2803 2.1361 9.5945 -0.4670 -1.4884

Table 3. Same a_ Table 2 but with full renormalization.
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Minimal Renormalization
, ,,

Shallow Bag 2.0 0.0506 0.0249 2.8928 2.9683 -0.0106
...........

1.0 0.0788 0.0779 2.7681 2.9247 -0.0251

0.5 0.0878 0.1660 2.6173 2.8711 -0.0430
,,,

% L..............

LKink 2.0 1.3333 1.9099 0 3.2433 +0.0811
....

1.0 0.9521 1.9230 0 2.8753 -0.0416
,, ,

0.5 0.7079 1.9482 0 2.6562 -0.1146
........

Full Renormalization
,,,, ,

Shallow Bag 2.0 0.1473 0.0058 2.7742 2.9273 -0.0242
........

1.0 0.3371 0.0699 2.3615 2.7685 -0.0772

0.5 0.3633 0.2136 1.9746 2.5515 -0.1495
........ ,

Kink 2.0 1.3459 1.4576 0 2.8036 -0.0655
,,

1.0 0.9481 1.4111 0 2.3594 -0.2135
_

, 0.5 0.6666 1.3977 0 2.0646 -0.3118
] ,i

i

Table 4, Same as for Tables 2 and 3 but _r 3-_rmion "baryons". See text for discussion.
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Fermion Densities Scalar" Potential
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x x

Fermion Densities Scalar Potential_'_'-_ ' T _'-'---r'_-*_'__
'1 ' ' _-

0.40 -' ',_H'/_LL'OW 'BR c'1 0,0 -

Vector (solid)

0.30 Scalar (dashed) -0.5
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Figure 1. Densities and scalar potentials for the ,k/g 2 = 0.5, Nsea = 6 kink and shallow
bag solutions of Table 2, i.e., minimal renormalization is employed. Lengths are in units
of 1/g wlfile densities and energies are in units of g. All quantities displayed are even
functions of z.
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Figure 2. Same as Fig. 1 but with full renormalization.
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Fermion Densities Scalar Potential
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Figure 3. Same as Fig, 1 but with Naea - 18.
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Figure 4. Same as Fig. 2 but with Naea = 18.
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Figure 5. Densities and scalar potentials for shallow bag "baryons" whose properties are
presented along with kink counterparts in Table 4. Units are the same as in Figures 1--
4 but note that the scales are expanded by a factor of 2 here. The corresponding kink
"baryons" appear in Figures 1 and 2. See text for discussion.
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3. Exact Scalar 1-loop Contributions in 1+3 Dimensions J. R. Shepard, C. E,
Price and J. F. Garten

As discussed sections 1 and 2 of this report, we have developed a new method for exactly
evMuating 1-loop contributions in relativistic quantum field theories in 1+i dimensions.
Two papers addressing 1-fermion loop effects in quantum hadrodynamics (QHD) and
in discrete chiral solitons have been prepared and submitted to The Physical Review.
Preliminary calculations of 1-scalar loop quantities in the discrete chiral model show that
our method accurately and efficiently reproduces previously published results, e.g., those of

Wasson and Koonin. 1 While these accomplishments are gratifying, they must ultimately
be considered as preliminaries to calculations in 1+3 dimensions. In this section, we report
our initial efforts at extending our method to 1+3.

Our treatment in 1+1 dimensions depends on scrupulously maintaining consistency
between the free basis in which the equations of motion are solved b)' matrix diagonalization
and the counter-term subtractions required for renormalization. By imposing periodic
boundary conditions, one naturally arrives at a discretized basis consisting of sines and
cosines. One element of such a basis is

where a is the "box length." This basis has a number of desirable features, a crucial one
being that it is straightforward to express the product of two elements of the basis as the
sum of single elements. Here, this feature follows from simple trigonometric identities, e.g.,

1 [cos(km - kn)x + cos(km + kn)x I (02)cosk,_x + cosk._ = _
,'

Extending our method to 1+3 dimensions depends on finding a 3D basis with similar
properties. Standard basis choices are not satisfactory in this regard. For example, a
spherical Fourier-Bessel basis consists of states of the following form:

_OnLM(_')(x jL(knL r) YLM(O, ¢) (03)

where knL = XLn/R and where x/;,_ is the n-th zero of jL(x) and R is the radius of a
spherical box and is the 3D analogue of the lD box length. While the angular flmctions
in the basis of course satisfy

ru(fl) rL,M,(a)=

/(2L + 1)(2U + 1) (04)

E(LL'OOIEO)(LLMM'[£M) v "4-_(-2-£-+l) _M(_),£M

Ilo such relation exists for the jL(kr, L r). 2
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To illustrate the philosophy behind our method in I+3, we briefly consider a method
for solving the free wave equation in 1+2 dimensions which employs the YLM's referred to
above. In 1+2, the time-independent wave equation in cylindrical coordinates is, of course,

[1 C9. vq P-'2102]00"-_(v_+ k_)_(p,e)= ;_;(p_)+ + k_ _(p,e)= 0 (05)

and, via the standard separation of variables, i.e,, a.ssuming

_(p,_) --.P.(p)6(e) -. P(p)_Me,

the radial DE i_

_lp_/+ po) P(o)=
0 (06)

_ which has as it8 regular solution

,if P(p)-, JM(kp). (07)
R

. Let us now reexamine the solution to the free wave equation in 1+3 appearing in Eq. (03).
4 The wave equation in spherical coordinates ist

:'i' I-_. a...) ,.2_inoao- __ +_sin_oa¢"_ k_]
1 O 1 a (sines i 02_;-Z(_2a_2 + _) _ _(,,e,¢) =0 (0s)

'1

and separation of variables yields the ,standard angular DE which can be written as

., 1[ 1 d (sin d_ M2 Fk_,r 2]
®(e) 0 (09)..,..

where we have again a_ssumed the a.zimuthal dependence has the form _b(¢) _ e_MC;.-O.L.._. .......
course, the regular solution is

e(e)--,p_(co,_e)

:' with kz, --+ v/L(L + 1)/r. We now reexpress the DE in Eq. (09) in terms of p -re and-)
, furthermore assume 0 < < 1 or, equivalently, p < < r. The result is

: [ld__ __dp_pp(p_pp)+ (k_- -_.p'_-)®(p/r)= 0 (010)

which we have already seen ha,s the solution JM(kl, p). Hence, for p < < r,

- p (011)
_

which is known a_sthe I:li],bformula 4'a . The point of this exercise is that, provided we are

treating zu systems to canzea near _,ne rtv'r'_r_ "_,utc uj ti, o_tbv.tv t_j ,_=,,,,_a T; _,,c,) .,.t .......
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whose radial extent po satisfies po < < r, we may assume solutions to the free wave equation
are

_(p, O) cx pM[cos(p/r)] eiMO cx YLM(PI", 0). (012)

Note that the wavenumbers are discrete and are given by k _ k/: = x/L(L + 1)/r. We
may now use the solutions as a basis in which to solve the wave equation by matrix
diagonalization when interactions localized near the north pole are present. The advantage
of this basis is that Eq. (04) is satisfied while no such relation exists for the JM(kp). In
consequence, provided that expansions of the interactions in the basis exist, e.g., for a
radially symmetric interaction,

v(p) = vL (013)
L

MI matrix elements required for diagonalization may be ezactly evaluated analytically.
Furthermore, expansion coefficients of powers of V may also be found analytically in terms
of the original coefficients, the V/;'s. Beyond this, if self-consistent solutions are sought,
the expansion coefficients of any densities bilinear in the basis states can also be evaluated
analytically. These features are all crucial to our method for numerical renormalization.

The method of extension to problems in 1+3 dimensions is now apparent. We first
find solutions to the free wave equation in spherical coordinates in l+Zt dimensions. We
then define a hypersphere of fixed radius R in 1+4 and, using methods analogous to
those presented above, show that, near the "north pole" of the hypersphere, the angular
functions of our free solution approach the standard 3D solution given in Eq. (03). These
new solutions will presumably satisfy relations sirn.ilar to that given in Eq. (04) for the
YLM'S and thus will be suitable for numerical renormalization in 3 spatial dimensions. We
now sketch a derivation of the required solutions beginning with the free wave equation:

R 3 OR _-'R) "_" R 2 sin 2 81 _)8-']" 081
(o141

[ 1 o __o.) °2 k'}
1

(sin6_ + + _o(R, 81 02 ¢) = 0
_-_ + R2sin 281 sin 02 082 002 sin2820¢ 2 ' '

i The desired solution is

JN+I(kR) TNL(cos81)YLM(82,¢) (015)_(R, 01,0_,¢) ---*_I_Llz(R, 01,02,¢) c_ kR

d

where the 2'_z; are related to the ultraspherical or Gegenbauer polynomials _ and satisfy
i

[ d_ d L(L + 1)](1 - _2)_-_-2 - 3_--_z + N(N+ 2)- 1 - z 2 TtlL(_) = 0 (016)

-_-1 r / _r ('_., ,_,-. _....... ._t. ..... A ¢_ . _ I:_ _. //' D _r_,_v';rr_ _,-_l,,_;r_ne

,|
|

|
!



i

J i

to the free wave equation in 1+3 are given by

(p(r, O2,¢) _ (PNLM(r, 02, ¢) _-- TNL(Cosr/R) YLM(82, dp)

jL( kN R,)YLM(82, ¢) (017)

with

vrNN • 2)
---_kN = , (018)R

A valuable discussion of 'the TNL is given by Bander and Itzykson 5 and beginning with
the representation of TNL appearing immediately after their Eq. A7, it is straightforward
to derive

T*

J+J' {J J L} (019)(_)J+J'+L+JV/(2j + l)(2J' + 1) j, j, J T/v,o(m)
J=IJ--J'f

1

J J L} =N'where J' J' ff is the usual six-j symbol and where 2J : N,2J' ,2,2" : .,V"
and where the proportionality factor depends on details of th.e normalization of the TNL.
Eq. (019) is the desired analogue to Eqs. (02) and (04) and again ensures exact anaiytic
expressions for matrix elements, etc.

Our first application of the 1+3 method just, outlined is to a scMar-ordy field theory
with the following Lagrangian:

= _0¢. 0¢ - u(¢)+ gp¢ (020)£

where U(¢) = ¼(¢2 _ f2)2 and. where p is a fixed external source. Upon decomposing the
scMar field according to ¢ = ¢0 + a and expanding in powers of a, the Lagrangian becomes

1

z:--=_0¢0.0¢0- y (¢0)+ gpC0
+ _¢0.& - v"(¢0)_

I [Oa. Oa U" (021 )+_ - (¢0)_]

1 _.,,, _U'"' )a 4.: - _u (¢0)_3- (¢0
I
|
i

I Assuming ¢0 satisfies
i [3¢o+ u'(¢0) =ap, (022)
!
i terms linear in a vanish. The loop expansion through 1-loop order is found by dropping
| terms of order a 3 and cr4 Further assuming ¢0 to be static, the energy of the system is, '

!i =
!

_1 27 :
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to this order,

E = Eo + Ezoov

where

E0= d3_ _ + U(¢0(_))- gp(_)¢0(_) (023)
and

Etoop- 1- _ E_ Io24)
Y_

where En is the eigenenergy of the n-rh mode, a_(_'), satisfying

[-V2+ U"(¢0(_)] an(_=E 2 a_(r_). (025)

Of course Eloop is divergent and must be renormMized. In the present calculations, we
make an initial guess for ¢0("-*),namely

¢0(_') = f tanh[_-f (r-r0)] (026)

which, in 1+1, would be the "kink solution" for the classical field (See Section 2 of this
report.) Note that the external source, p(_, is required in 1+3 to sustain the kink solution
since it is not stable by itself. The kink is then expanded via

N_ 88

¢0(_--.¢0(,')= _ ¢_ T_,0(¢o_/R) (027)
N=0

and, with a similar expansion for the external source which is also assumed to be a. func-
tion of r only, the equation of motion for ¢0(r), Eq. (022), may readily be solved by
iteration (specifically, one solves separately for each of the expansion, coefficients, CN).
Using Eq. (019)then allows expansion coefficients of U"(¢0(_) to be found anMytically.
Expressing the mode eigenfunctions in terms of the basis states, i.e.,

o.(_ -*_.LM(.,0,,¢) --*_.LM(Rel,e2,¢)

-= N=L

the corresponding equation of motion, Eq. (025), is easily solved by matrix diagonalization
since the required matrix elements, namely

< TNL YL_IU"(¢o(r))ITwL, YL'M'> (029)
i

can again be evaluated analytically using Eq. (019). The counter-term subtractions re-
quired to renormalize Eloov are simple to determine using procedures analogous to those

|
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employed in 1+1 (See Section 2). The renormalized 1-loop energy is, upon choosing the
uniform p = 0 vacuum with ¢20 = f2 as the renormalization point,

gT_n,a, _ g*m _110

E,oo -E E (2L+1)
L=o N=L (030)

1 v0( /

where E(_) = v/N(N + 2)/R 2 + 2)_f 2 and where, with V(r) = U" (¢0(r)) - 2Af 2, expan-
sions of powers of V are defined via

grrl. g. n_

Vn(r) = E V(n) TN,0(cos r/R). (031)
N=0

Finally, AE(_)D is a derivative counter-term contribution of a somewhat complicated form.

We now present a sample calculation assurtfing f = --93 MeV, A = g = 20 and where
the external source is

p(r) = P0 e -(r-r°)2/2r_ (032)

and is normalized so that its integral over the hypersphere is 4_r. We have chosen ro = 1
fm and rl = 0.2 fm while the radius of the hypersphere is R = 20/27r frn "_ 3.18 fm. The
basis s:_zeis determined by Nina= - 60. We then find the total energy of the configuration
to be 964.5 MeV consisting of 2273.9 MeV from ¢0, -1304.3 MeV from the interaction
term, gp¢0, and Eloop = -5.25 MeV. We note that the unrenormalized loop energy of
Eq. (024) is 8.33 × 108 MeV implying that, after counter-term subtractions, only about 1
part in 1,500,000 of the unrenormalized loop energy survives. The stability of the loop
 n¢ gy hang¢ in  ize hypersphe (R) whiChweobsCrv
demonstrates that numerical convergence has been achieved.

We are in the process of finding self-consistent 1-scalar loop kink-like solutions. By

applying standard path integral techniques 8 generalized to account for the non-uniformity
of the system, equations of motion for ¢0 and for the modes, a,_, which are self-consistent
through 1-loop in the loop expansion are readily obtained. Preliminary results indicate
that it is very difficult to find stable solutions in this approximation and we intend to
examine alternative expansion schemes, including for example those of Refs. 7 and 8. Of
course, we also plan to incorporate the new method of solution of the Dirac equation in
1+3 as outlined in Section 4 of this report so as to find self-consistent solutions for, e.g.,
chiral models including both meson and fermion 1-loop contributions.
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4. Exact Vacuum Calculations ill a Hyper-Spherical Basis C. E. Price, J.R.!

i Shepard and J. F. Garten

I

As reported in Section 77?, we have successfully developed an efficient numerical pro-
cedure for exactly renormalizing one-loop vacuum contributions to the ground states of
finite nuclei in a version of QHD for one spatial dimension. As is well-known, extension of

one-dimensional techniques to three spatial dimensions is highly non-trivial. In the presentcase, for example, the crucial "completeness" relation exploited in one dimension which
emerges because the free basis consists of sines and cosines cannot be readily duplicated
in three dimensions using the usual free basis constructed from spherical Bessel functions
(and the rel':Aivistic spin-angle functions).

In order to find an appropriate basis in three dimensions we have examined solutions
to the Dirac equation in four Euclidean dimensions. The fundamental idea behind this
approach is that the angular (3 angles) part of this basis should possess the required
completeness properties and should be a reasonable approximation to the desired three-D
solutions in the vicinity of the "north pole" of the four dimensional hypersphere.

The first step in determining the basis is to specify the representation of the gamma
matrices in four dimensions. We have chosen to use a four by four representation that
preserves the usual description of the spin:

t (10)70= 0 -1 7= -_ 0 74= _ 0

where 0'4 is the new matrix corresponding to the additional spatial dimension. The dirac
equation now takes the form:

(70E - M + _. V - V4)¢(.'4) = 0

where _ and V4 are the components of the gradient in four dimensions. Then writing the
Dirac spinor _b in terms of upper (G) and lower (F) components leads to:

[ 1_r4 0 1 0 cO
| E _ _ M 2+_. r4 a

r43 _rr4 + sin2 p

_-42si_2pop 5_ (ol)i 0 o i 0 o j_v(_4)+ _ -- sin +
- r42 sin 2 psinO08 8-_ r42 sin 2 psin 2 00¢(9¢

0

with

1 -.

F(_4)- E + M[-_'_'V- V4]G(._).

It is simple to show that in the limit r4 _ R (where R is a constant) these equations
reduce to the usual three dimensional equation in the region where sin p _ p.
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The solutions to equation (01) on the hypersphere are of the form:

where the T_l are hyper-spherical polynomials 1 and the Cjlm are the usual spin-angle

functions 2 and E 2 = (n + 1)2/R 2 + M 2, Notice that the lower components will not have a
definite parity but will involve some mixture of spin-angle functions of both parities. Since
we are ultimately interested in the behavior of these solution near the pole, we choose a
linear combination of degenerate solutions to equation (01) which approximates the usual
three dimensional solutions in the vicinity of the pole, One such choice is:

' 2ETRR 3 n + 1 Tn,t :5. n.2 Tr_+i @jtrn

-_ n - l T,_,l, T n + 2 T,_+ i,t, _.j _,m

F:l:(p, fl ) = -_ n + 2 Tn+l'l T u + 1

-* n + 2 Tr_+ i ,_, ± T,_,I, ¢bj_,m

where the ± subscript differentiates between states with l = j ± 1/2 ( l' = j q: 1/2) near

the pole.

In addition to preserving the correct three dimensional behavior near the north pole
of the hypersphere, this free basis has several remarkable properties (which can be traced

directly to the properties of ultra-spherical polynomials and spherical harmonics). First,
both the baryon and scalar densities that arise from this basis are uniform when ali degen-
erate eigenstates are included (this implies summing over l and m at fixed n). This allows
for the sort of simple treatment of nuclear matter that is common in plane wave bases but

very difficult in any other spherical basis, and allows for a natural energy cutoff (which
amounts to a cutoff in the quantum number n) for the vacuum contributions. Secondly,

by expanding any required potentials in the form:

v(p)= Y,,T.,o(p)

it is simple to show that this basis is closed. By this we mean that the product of the
potential and any state in the basis can be uniquely analytically expanded it terms of other
elements of the basis. These two properties do not exist for a standard three dimensional

basis using Bessel functions, and greatly simplify the calculation of vacuum polarization
effects.



a
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We have successfully demonstrated that this basis can be used to reproduce the usual
mean field results for finite nuclei provided the radius of the hypersphere is large enough
so that all of the physics (the entire nucleus) takes place in the region near the north pole
where sinp _ p. Calculations including an exactly renormalized vacuura (that makes no
us_ of the local density approximation or the derivative expansion) are in progress.

1. M. Bander and C. Itzykson, Rev. Mod. Phys. 38 330 (1966)
2. J. D. Bjorken and S. D. Drell, Relativistic Quantum Mechanics (McGraw-Hill,

New York)
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5. Relativistic Nuclear Matter with Self-Consistent Correlation Energy C. E,
Price, J. R. Shepard and J. A. McNeil (Colorado School of Mines)

One of the more appealing features of QHD is its elegant saturation mechanism, namely
the relativistic quenching of the scalar attraction at high densities. However, attempts to
include vacuum effects beyond the Hartree (one-loop) level have proved difficult. The
loop expansion appears not to converge as the self-consistent 2-loop solutions are radically

different from their one-loop cousins (even in terms of the physics of saturation). 1 In a
preliminary effort to examine alternative organization schemes we have calculated the
correlation energy in the ring sum approximation based on the mean field (no-vacuum)

basis. Using mean field parameters we confirm the earlier calculation by Ji 2 which showed
a large correlation energy, -33 MeV per nucleon. Thus, the correlation energy is large
compared to the mean field energy and may not be treated as a perturbation. In this
work we include the correlation energy self-consistently in fixing the model parameters,
and compare to the standard mean field results.

The role of the vacuum in relativistic nuclear models based on meson-nucleon degrees
of freedom is controversial. 3 We know that nucleons have substructure on the scale of

,,_ 1 GeV. For QHD-I at the one-loop level energy scales beyond this are significant, but
do not dominate the physics at least as regards the saturation mechanism and the low
energy phenomenology. The relativistic Hartree results are qualitatively the same and
quantitatively similar to the mean field results. Beyond one-loop the high energy sector

completely dominates the physics in an uncontrolled manner. Prakash, et al. 4 argue that
the subnucleon structure implies a cutoff on scales of 1 GeV. They calculated the two-
loop contributions including vertex cutoffs on this scale and found that the two-loop terms
were small. To nfimic the softening of the vertices in the ring energy due to the onset
of subnucleonic degrees of freedom which are beyond the scope of the present model,
we have calculated the vacuum polarized correlation energy using renormalized vacuum
polarizations with vertices regularized by vertex form-factors. In this way we retain the
"low-lying" effects of the vacuum. The price we pay is that the results are quantitatively
sensitive to the choice of cutoff parameter in the vertex form factor. Nevertheless, we know
that the scale of such effects is about 1 GeV, and we find that the qualitative features of
the results are similar for any cut-off on this scale. Using this regularization scheme, we
self-consistently fit the model parameters including the correlation energy.

Starting from the QHD-I Lagrangian, we focus our attention on the ring-sum polar-
ization energy density given by

i / d4q {Tr(DH0gring(kF,M*) = -_ _ ) + ln[det(1 - DH0)]}

__ where H0 is the mixed scalar-vector polarization insertion which can be represented by a

i 3x3 scalar-vector matrix and a 2x2 (diagonal) transverse vector matrix: 5

q2IIl wqHl H,n )

Hay = -wqHt -w2IIz -w/qIIm

Hm w/qHm H,
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II[tran. = 0 liT

where the 4-momentum transfer is q_ = (w, q-). Kurasawa and Suzuki's 6 analytic forms for
the various polarizations greatly reduce the computing time.

The analytic structure of the integrand allows a Wick rotation. Defining w = iqo, we
have

= _ = -(q0+ =

where qE is the Euclidean 4-momentum. The integrals then become

c_ 2_"

1//$ring(kF,M*) = (2_r)a dqEq_ dOEcos2(OE){Tr(DIIo) + ln[det(1 - DH0)]}
_' o o

/ where q0 = qE sin(0E) q = qE cos(0E). The remaining two integrals are performed numer-
.'- ically. For mean field parameters we find convergence at an upper limit for qE ,,5 lOkr.

Using the mean field parameters given in Table I, we find a large ring energy of -33 MeV
per nucleon as did Ji. 2 It is therefore clear that within this model the ring-sum correlation
energy is not a sn:all effect being twice the magnitude of the MFT binding energy.

iii iiii i

Model g2 g2 M*/M _ (MEV)Ering(MeV) A (GEV)
i irnl j_.

-= MFT(w/o fit) 109 189 .54 450 -33 -

MFT(w/fit) 43.1 100.3 .853 178 -46 -

RHA-1 48.9 75.9 .839 298 - 1.93 1.0

RHA-2 48.9 80.7 .835 313 -6.98 2.0
nii i,i iii

Table I. Parameters for relativistic nuclear matter fit to saturation density (kF=1.42
fm -1) and binding energy per nucleon (-15.75 MEV). The meson masses were fixed at
mv=783 MeV and rna=500 MeV.

= We sought to include the ring-sum correlation energy in the total nuclear matter energy
density and refit the coupling parameters to saturation density and binding energy per
nucleon (with meson masses fixed at rnv = 783 MeV and ms = 500 MEV). The total
energy density is given by

where

gF = 167r2'7 [2kFEaF_ M,2kFEF_ M,41n(kFM, + EF )],
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g2
1 g2p2 1 _,ap2

M* 25M.7 [M,41n( ) - + 4M* 3M* + M*M 3

We fix the saturation density appropriate to kF = 1.42 fm -1. The saturation condition
is

I

OkF ,42fm_t

At each step of the fitting procedure the self-consistency condition,

g2__-spa'
M* ==M- m_

is maintained.

The scalar density in turn can be found from the energy density through the mini-
mization condition,

OE I O,OA/I* ks=l.42.fm-_

which gives

O(Es"+ E,_=+ E,_,,_)
P_ = OM* "

As usual the Fermi sea contribution to the scalar density is

pas" - cOM*cOES"_ 4r27 M*[ks'ES'- M* ln( kS'M,+ Es' )]

and the ring contribution is calculated numerically.

The coupling constants were varied until a self-consistent solution was obtained. Once
the coupling pa_'araeters were found, the equation of state was generated by finding the
self-consistent total energy at various values of ks' near the saturation value keeping the
coupling parameters fixed. Three models were considered: the mean field model and the
relativistic Hartree model with vertex cutoffs of 1 GeV and 2 GeV. The resulting coupling
constants and bulk properties are given in Table I.
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The resulting equation of state for the mean field model is shown in Fig. 1. We found a
compressibility of 179 MeV which is significantly smaller than the standard MFT result of
around 400- 500 MeV, and is near the values derived fronl analyses of the breathing modes
of heavy nuclei. Also shown in Fig. 1 are the separate contributions from the MFT-terms
and the correlation energy. We see that the saturation curve is a sensitive cancellation

of the 1.arge repulsive MFT terms with the large attractive ring-.sum energy. (At the
saturation point the ring energy is -46 MeV !). The saturation mechanism is therefore
quite different than the usual one of relativistic quenching of the scalar attraction with
higher density. Here the attractive ring energy dominates at moderate densities with tile
repulsive vector-MFT term dominating at high densities. It is an open question whether
this saturation mechanism is realistic in that it is consistent with other low energy finite
nuclear phenomenology. Given the relatively large value of the M*/M one suspects that
the spin-orbit splitting in finite nuclei will be too slnall. This issue will be explored in
subsequent work.

The corresponding ring-sum energy when the vacuum is included is divergent even
when the polarizations themselves have been renormaliz.ed. Since the theory is renormaliz-
able, the new divergences may be rendered finite; however this prescription is not realistic
in that the high energy sector of QHD does not incorporate the physically correct internal
nucleon degrees of freedom. There are other ways of moderating the high energy sector
within QHD. We have crudely incorporated the internal nucleon degrees of freedom using
a vertex form-factor of the standard dipole form:

1
f(q , A) = (1+d/A:)

where A is chosen to be of the order of 1 GeV. Over this scale (1 _ 2 GeV) the results are
quantitatively sensitive to A.

In Fig. 2 we show the equation of state for h = 1 GeV and in Fig. 3 the corre-
sponding curve for A = 2 GeV. For A = 1 GeV the standard relativistic Hartree energy
dominates. At the saturation density the ring energy is just -1.93 MeV per nucleon. The
self-consistent coupling parameters are given in Table I. The compressibility is 298 MeV
which is significantly snlaller than the usual RHA result of around 450 MeV. However, as

in the previous MFT case the ratio, M*/M, is 0.839 which is larger than the usual RHA
result and will probably imply a spin-orbit splitting in finite nuclei which is too small.
While these quantitative values are not meaningful due to their sensitivity to the cutoff,
we find that the fundamental saturation mechanism of the underlying RHA is preserved
and the correlation energy is a relatively small correction comparable to that found in non-.
relativistic nuclear structure models. For A = 2 GeV the correlation energy is naturally
larger. At saturation density the ring energy is -6.98 MeV. The coupling parameters for
this case are also found in Table I. The compressibility is 313 MeV while the ratio M*/M
is 0.835. Thus we see that these bulk quantities are relatively insensitive to the cutoff in

tile region of 1-2 GeV. Comparing Figures 2 and 3 one can see the trend in the increasing
importance of the ring energy as A is increased. The attraction from the a meson plays
a smaller role as the correlation energy begins to dominate the energy in the equation of
state near saturation.

We have also solved (but not shown) the self-consistent relativistic Hartree model for
a sigma mass of 600 MeV. We found that the qualitative features remain similar, but that
the compressibility increases dramatically to around 450-600 MeV while the M*/M-ratio
drops to around 0.72. The higher compressibility results from a more rapid change in
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the ring energy with respect to kF near the saturation, point for this value of the sigma
mass as compared to the previous case. The smaller M*/M should give about the correct
spin-orbit splitting in finite nuclei. There appears to be a correlation between the larger
compressibility and the smaller M*/M. This correlation was shown in previous work by
Furnstahl, Price, and Walker 7 in the context of non-linear QHD models, and may be a
universal feature of non-linear self-consistent relativistic niodels of nuclear matter.

The lesson learned from this study is that relativistic nuclear models, such as QHD,
based only on hadronic degrees of freedom are capable of realizing a credible (i.e. successful
and convergent) phenomenology if the high energy sector is moderated at scales beyond 1-2
GeV. It remains for quark-nucleon models to provide a quantitative understanding of the
nature and scale of such modifications. However, gl eli the phenomenological nucleon form
factors, one would expect any successful quark model (,f nucleons to result in effective vertex
forni factors with cutoffs on the scale of 1 GeV where, as we have shown here, models based
on meson-nucleon degrees of freedom preserve the simple relativistic saturation mechanism
when ring energy contributions are included. It remains to investigate whether other low
energy phenomena can be consistently described in this extended model.

1. R. $. Furnstahl, R. $. Perry, B. D. Serot, Phys. Rev. 106 372 (1989)
2. X. ii, Caltech preprint (unpublished)
3. T. Cohen, in Workshop Proceedings: From Fundamental Fields to Nuclear

Phenomena, p. 18, eds. J. A. McNeil and C. E. Price, World Scientific,
Singapore (1991)

4. T. D. Cohen, Phys. Rev. Left. 62 3027 (1989)
5. S. A. Chin, Ann. of Phys. (N.Y.)lO8 301 (1977)
6. Kurasawa and Suzuki, Nucl. Phys. B122 219 (1988)
7. R. J. Furnstahl, C. E. Price and G. E. Walker, Phys. Rev. C36 2590 (1987)
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| Fig. 1. Equation of state for mean field theory with ring-sum correlations.
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Fig. 2. Equation of state for relativistic Hartree theory with ring-sum correlations with
vertex cutoff of 1 GeV.
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Fig. 3. Equation of state for relativistic Hartree theory with ring-sum correlations with
vertex cutoff of 2 GeV.
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6. Consistent RHA-RPA for Finite Nuclei C. E. Price, E. Rost, J. R. Shepard
and J. A. McNeil (Colorado School of Mines)

We have formulated a consistent RPA based on the relativistic Hartree approximation
(RHA) to finite nuclear ground states. 1 In the standard approach, degrees of freedom
associated with the negative energy Dirac sea of nucleons are described via the derivative
expansion of the 1-loop effective action. A consistent RPA is obtained by expanding the
vacuum-dressed a- and w-propagators and retaining only those terms also found in the
derivative expansion used for the RHA.

We have also examined the influence of 3-momentum cutoffs (or "sideways form-
factors") in the Dirac sea on our RHA-RPA calculations. We view such cutoffs as a
crude way of suppressing contributions involving small length scales where the finite size
of the nucleon almost certainly implies such contributions are unphysical. We find that,
when QHD parameters are adjusted to reproduce tile saturation point of nuclear matter,
the strength of the resulting spin orbit potential for finite nuclei depends strongly on the
cutoff momentum. Specifically, a cutoff of zero - implying no vacuum contributions - yields
the strongest spin orbit interaction while an infinite cutoff corresponding to the standard
RHA gives the weakest. A physically plausible 3-momentum cutoff equaling 2Mproton

provides a good description of, e.g., the 0d5/2 versus Od3/2 splitting in 4°Ca.

Our RPA results show the importance of the consistency mentioned above. For exam-
ple, tile calculated (e, e_) Coulomb form factors for the lowest 3- levels in 160 and 4°Ca
display the high degree of collectivity seen in the data only in the consistent calculations.
Using a simple local density approximation in the RHA ground state and the full a- and
¢,,-propagators in the RPA diminish the peak values of the form factors by at least a factor
of two.

For the quasielastie (e,e _) Coulomb response, consistency per _e is not so important
as it is for the low-lying collective excitations. However, as also noted by, e.g., Horowitz
and Piekarewicz, 2 inclusion of vacuum contributions appreciably improves the agreement
between theory and experiment for 12C and 4°Ca at 10" =400 and 550 MeV/c.

1. C.E. Price, k3. Rost, J. R. Shepard and J. A. McNeil, Phys. Rev. C45 l C-'_
(1992); J. R. Shepard in "From Fundamental Fields to Nuclear Phenome', ,
C. E. Price and J. A. McNeil, eds., (World Scientific, Singapore) 1991, pp.
190-211

2. C.J. Horowitz and J. Piekarewicz, Nucl. Phys. A511 461 (1990)
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7. Transverse Response Functions in the &-Resonance Region, E. Rost, C. E.
Price and J. R. Shepard

In recent years several measurements 1-3 of separated (e,e t) response functions, SL and

ST, have been performed at high momentum transfer ([ql _ 400 MeV/c). The longitudinal
response function, SL, has been useful in studying nuclear properties such as the Coulomb
sum rule 4, RPA correlations _ and vacuum fluctuation 8 effects. Nuclear many-body theo-
ries agree with the data at the ,-_20% level and the study of various effects via comparison
with experiment is meaningful. On the other hand the measured transverse response func-

' tions, ST, increase at large excitation energies while nucleon-only theories yield decreasing

transverse response with energy. It has long been suspected that this effect is a result of Aexcitation (see e.g. Ref 7). We have calculated the excitation of the A using a relativistic
Hartree approximation (RHA) in configuration space. While previous works have empha-

I sized the 7NA vertex at the expense of the nuclear structure part of the calculation, wehave chosen to treat the nuclear structure carefully and to make some approximations in
,i treating the vertex. This permits us to employ the successful RHA description of nuclear

i properties in a straightforward way.The response functions are calculated in terms of a Feynman propagator (or Green

I function) which, for nucleon excitation_ satisfies a Dirac equation

| + i7. v - M - y; = - y), (1)

in the presence of the self-consistent Hartree field, _g, and with the appropriate boundaryconditions, s-lI

i We generalize the excited state spectrum to include excitation of _h.e 3-3 nucleon reso--_ nance taken to be a L_ particle of mass MA=1232 MeV/c 2 and decay width r=ll0 MeV.
The Feynman propagator, GF in Eq. (1), will then involve A states while the hole states
will remain of nucleon character so that we need to evaluate a 7NA transition amplitude

written symbolically as (zX J_[N t. The conventional choice yields 12,13

(AIJg N) = _Af_(k) F(q 2) r_(q),(p), (2)

with

i r_(q) = (-qog/_'_ + q'_g_)MAT,_Ts + (q¢k/_ v u- q (3)
q
._ and

!__ F(q2) =M!_((MA + MN) 2 __q2) _-'-\ 0.71GEV2 ) (1-3.5GEV2) . (4)

i
q Here k is the outgoing 4-momentum of the A, p is the incoming 4-momen'tum of the

i nucleon, q = k - p, • is a nucleon spinor, and _ AB is a A spinor with an index/3.
The operator in Eq. (3) is too complicated to be readily treated in configuration space.

_LJ_ In order to reduce its complexity, we note that the second term should be smaller than the

i
l
i' r_' ,-[
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first by roughly the ratio of the momentum k to MA. Also the first term involves diagonal
coupling in the Dirac spinors while the second term couples upper and lower components
(so again the first term should dominate). We also note that for the cases considered here,
the space-like part of the 4-momentum, q, is larger than the time-like part co. Hence we
take Eq. (3) to be of the form

leading to

(AIJ"IN> _- _(Iql) _A(k)3'57" *(P), (6)

with

a(lq( ) -s0 F(q 2) MA Iql. (7)

This form preserves the 7rN character of the A With its 75 term and preserves the 4-vector
character of the amplitude (via the 7") but the A is now effectively treated as a spin-l/2
spinor. A constant factor a0 has been inserted since the simplification in Eq. (5) is severe.
Surprisingly, we find that a0 = 1.0 is adequate for all cases that we studied. We also find
that the value of c_([q[) varies slowly for the cases considered in this work (e.g., for the 12C
dip region it varies from -_ 0.60 to ,-_0.75.)

We also generalize the propagator of Eq. (1) to satisfy

+ ir/2) ° + v - MI,- r H(x)lCF(x,y; = - y), (S)

i.e., an imaginary term is added to the energy and the A mass is used. The irl2 addition
to the energy in Eq. (8) is non-vanishing ST below the A threshold.

In Fig. 1 we show the transverse response for 12C as a function of energy loss at a
three-momentum transfer IQ1=550MeV/c calculated using the mean-field parameters of
ref. 9 (ga2=109.626, m,=520, g2=190.431, mv=783.) The dotted line shows the calculated

'. response involving nucleon excitation alone and is identical to the corresponding curve
.I' in ref. 10. The dashed curve presents the calculation using only A excitation as outlined

'i above and the solid curve is the incoherent sum of the two. The agreement with the data is
surprisingly good and may be fortuitous. Indeed we expected that the severe approximation
involved in the simplification of Eq. (5) might require an effective normalization constant,
c_0, for which we have found the value of unity to be adequate.

We note that the Delta is propagated in our model with its free width P. This ig-
nores medium effects of A propagation such as Pauli blocking and pion absorption. Such
effects have been calculated (see, e.g., ref. 14) in a momentum-space A-hole formalism.
A subsequent paper 15 observed that most of these effects could be roughly accounted for
by a simple shift (--30 -- i40) MeV in the position of the Delta (the -30 MeV real shift
corresponds to a simplified self-energy _ in our notation.)

In Fig. 2 we show the effect of various alternate prescriptions for the the Delta param-
eters in Eq. (7) as applied to the A-excitation part of Fig. 1. The dot-dashed line was
calculated using a Delta width reduced by 40 MeV as suggested in Ref. 15. The dotted
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curve modified this 40 MeV reduction by a factor p(r)/p(O) as is more reasonable since
Pauli blocking decreases as the density p(v) decreases. Finally the short dashed curve is
calculated with the extreme assumption of setting EH to 0. It is interesting that the differ-
ence between the dashed curves is about equal to a constant -30 MeV shift as suggested
by Chen and Lee. 15,

The significance of the curves in Fig. 2 is that they have similar shapes and thus would
ali give comparable results in the dip region with a small modification of c_0. The falloff in
tile dip region, say from 300 MeV to 200 MeV, is about a factor 4. The Gaussian folding
prescription of Ref. 13 leads to a falloff factor of about 8 over the same range and the
results of A-hole momentum space calculations 16 also produce a Delta "line shape" which
falls off sharply with energy below threshold. This different rate of falloff is the reason
that our calculations are able to reproduce the experimental data in tile dip region.

Although we are not able at present to improve on the vertex simplification in Eq. (5),
we can make some assessment of its importance by performing the calculations with an even

,. simpler prescription obtained by removing ali lower components from the calculations so
that the vertex is essentially the operator a taken between non-relativistic wavefunctions.
The effect of this truncation is a very nfinor (,d 1 to 2 %) change in ST which would be

+ indistinguishable from the dashed curve in Fig. 2. Our relativistic formulation is used
mainly for its convenience in computing nuclear structure realistically with a minimal
number of parameters. We believe tha_ our re_ul_s for ST in _he dip region are dominated
by our employment of a configuration space calculation which treats the nuclear radius,
surface and binding energies accurately.

Figures 3-5 present RHA calculations at Iql=400 MeV/c for 12C, and at q1=550
MeV/c for 4°Ca and 56Fe (treated approximately by assuming S6Fe is equivalent to a

. closed-shell 5SNi nucleus.) The agreement with data in the Delta-excitation and the dip
" region is surprisingly good considering that ali employ the c_0 = 1 normalization of the

simplified vN_ vertex.
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Fig. 1. Transverse response functions for 12C at 1q[=550MeV/c. The dotted curve is the
RHA result using only nucleon excitation. The dashed curve is the RHA result with only
A excitation as described in the text. The solid curve is the sum of the dotted and dashed
curves.
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12C Transverse q = 550 MeV/c
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Fig. 2. Transverse response function for 12C at Iq1=550 MeV/c with only ZXexcitation.
The dashed curve represents our "standard" RHA cMculation as in Fig 1. The dot-dashed

_: curve is calculated with a shift of the A width by -40 MeV whereas the dotted curve
modifies this shift by a density ratio factor as discussed in the text. The short dashed
curve is calculated using a zero self-energy E.
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Fig. 3. Transverse response functions for 12C at Iq =400 MeV/c. The curves are described
in the caption to Pig. 1.
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! Fig. 4. Transverse response functions for 4°Ca at [q[=550 MeV/c. The curves are de-

i scribed in the caption to Fig. 1.

49



ii

I

I

II

S_Fe Transverse q = 550 IvieV/e

-__________._.__/ "

/
l

_ ___ _
_. • ' ' , /

//

o,oso- _/ / -

_cnc_ _ ' //////

/

/

0.010 _ / --

/
./I I I

0 I 0 0 _ '" II ' I I ' I _. I J I__ / ' J ' ..... ' I .... ' ' ' ' ] II=: I

p

0 100 200 300 400

(M_V)

!
Fig. 5. Transverse response functions for 5eFe at Iql=550 MeV/c. The curves are described

m in the caption to Fig. 1.
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8. Hadronic Matter in a Nontopological Soliton Model J. R. Shepard and
J. Piekarewicz (Supercomputer Computations Research Institute, Florida State
University)

Quantum chromodynamics (QCD) is widely believed to be the correct theory of the
strong interactions. Unfortunately, remarkably little progress has been madc in solving
the theory in the low-energy region relevant to nuclear physics. In spite of some impressive
achievements in lattice QCD, it is unrealistic to expect any major contribution from this
field to nuclear physics in the foreseeable future. Consequently, one is left with the difficult
task of formulating phenomenological models that, while being computationally tractable,
capture the essence of QCD. One such is the standard a-model of Gell-Mann and Levy 1 'in

which the small empirical values of the pion mass and of the pion-nucleon s-wave amplitude
are a direct consequence of chiral symmetry. Furthermore, a self-consistent mean-field
calculation gives saturation of nuclear matter and guarantees that the pion remains a

Goldstone boson in the nuclear medium. 2'a The a-model has also been used to study an
"abnormal" phase of nuclear matter that is characterized, in particular, by the presence of

massless nucleons. 4 In fact, it was this model which inspired Friedberg and Lee to conceive

the nontopological solit_on model. 5 In the high density limit of this model, Lee and Wick
found that the uniform solution with mas_,less fermions yielded, at least at the mean-field
level, a global minimum in the energy of the system. The low-density limit of the many-
quark system is, however, more subtle. At low density, one expects that most ground-state
properties of the system will still be dominated by its symmetry-broken vacuum phase. It
is not clear, however, that a spatially-uniform quark distribution will give rise to a stable
configuration. In fact, it is not at all implausible that, at sufficiently low density, the
system will evolve into a non-uniform phase, a soliton crystal, that will be characterized
by the clustering of quarks into loca regions of high-density. How to dynamically generate
the correct number of (3) quarks per cluster, independent of their (spin, flavor and color)
degeneracy, is still an open problem. In fact, most if not all of the soliton crystal (or

multi-bag) calculations consider nuclear matter as a collection of three-quark bags. 6'7's'9
At low-density, then, the system does indeed resembles a collection of weakly interacting
nucleons. Although it might be physically appealing to consider a non-uniform state with
three quarks per site, it is not at all clear that this configuration will actually lead to a
minimum in the energy" density of the system.

The idea that, in the presence of an attractive interaction, the ground state of the
system is spatially non-uniform was first proposed by Overhauser in the context of nuclear

matter as early as 1960l°. He showed that in one spatial dimension the wave number of

these oscillations was controlled by the density (or equivalently the Fermi momentum kp)
and given by q = 2kp. His findings suggest that, in the present case, while the periodic
solution might indeed be energetically favorable, the one-dimensional ground state should
contain, six (3 x 2 color-flavor degeneracy), andnot three, quarks per bag.

We have investigated the structure of the mean.-field ground state in two different,
although equivalent, ways. In one of them, we have solved the mean-field equations for
the one-dimensional soliton model by direct matrix diagonalization. A strength of this
approach lies in the fact that no biases concerning the structure of the ground state are
introduced into the calculation. In the second approach, we have solved the mean-field
equations but only in the uniform phase. The stability of the uniform mean-field ground

511
ill



I

i

state was then investigated by calculating the linear response of the system in a random
phase approximation (RPA).

This work has appeared in Physical Review C45, 2963 (1992). Here we present a
summary of our findings; those interested in a more detailed account are referred to the
published article.

The dynamics will be prescribed by a Lagrangian density obtained from a simplified

version of the nontopological soliton model first suggested by Friedberg and Lee_

1 - 1.c = ¢(i0 -go)¢ + _0 _0._ - u(_),

U(cr) "-=- (¢r2 _ f2)2

Here g is the fermion-meson coupling constant,, f is the vacuum expectation value of the
sigma field and ,_ is a positive constant characterizing the strength of the meson self-

I interactions. For small fermion density, the scalar field assumes a non-vanishing expecta-

tion value;i.e.,

(a)- _f. (02)

- This effect spontaneously generates both fernfion and scalar masses. By defining a new
scalar field that is shifted by its classical vacuum expectation value,

¢(_) _ <a) - a(_) - +f - a(x), (03)

the Euler-Lagrange equations associated with the resulting'Lagrangian become

(o_+ m_.)¢+ v'(¢) = g_¢, (04)
(i_- M +g¢)¢= o.

•_ where the meson field operator and its scalar source have been replaced by their vacuum
--_ expectation values:
!

¢ -. (¢)= ¢0, (05)
_| ¢¢ --.(¢¢) - p..
i

ii Solution of these equations assuming a uniform ground state is straightforward. Two

I distinct situations arise. In one, the expectation value of the scalar field vanishes and
in consequence fermion masses are zero, too. This solution is the grounsd state in the
high density limit. The other solution which yields the ground state for a range of lower

I densities yields non-zero scalar fields and fermion masses. Below a certain critical density

the equatioI.s of motion derived assuming uniformity have no solution. At these densities
. the effective scalar mass becomes imaginary, i.e., the scalar field becomes tachyonic.
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These low density pathologies indicate that the ground state of the system is in fact
non.uniform. In this case we solve the mean-field equat;._ns (Eq.(04)) are solved exactly
by direct matrix diagonalization. The equations are solved in a one-dimensional box as-
suming antiperiodic boundary conditions for the fermion spinors which then implies that
the densities and the scalar field satisfy periodic boundary conditions. The method is dis.
cussed in detail in Ref. 11 and in Sections ??? in this report where details of the method
can be found.

The issue of the stability of the uniform ground state can be studied in, at least, two

different ways 12, In one of them, one directly compares the energy of the uniform system

with the energy obtained from exact solution of tile mean-field equations. A second way

of learning about the stability of the uniform state is via linear response theory. I3 The
presence of an RPA excited state at zero excitation energy or, equivalently, a pole in

the scalar meson propagator for spacelike (q_, < 0) momenta, will signal the onset of
instability for the uniform system and suggests that the uniform and non-uniform states
are degenerate.

We now proceed to show one-dimensional results obtained in a mean-field approxi-
mation to the soliton model. In ali the calculations we have used 7 = 6 for the (3 x 2
color-flavor) degeneracy. In Fig. 1 we show the energy per fermion as a function of the
inverse of the Fermi momentum, or equivalently the length of the one-dimensional box for
fixed fermion number. The energy per fermion in the uniform massless phase is shown by
the dotted line while the solid line gives the energy in the massive phase. The massive

solution terminates at (kp/M) -1 = 0.913 due to bn instability generated by the tachy-
onic nature of the scalar meson. Nevertheless, for this small value of the coupling, the
massive solution not only binds but, in addition, saturates. In contrast, the value of the
coupling is still too small for tlm massless solution to give binding. Nevertheless, at high-
enough density, where the mesonic contribution to the energy density is small, the system
is guaranteed to behave as a massless free Fermi gas. The squares in Fig. 1 represent
the exact mean-field energy obtained from solving the equations of motion by matrix di-
a,gonalization. It indicates that at high enough density the massless solution is, indeed,
energetically favorable and that at a lower density, where the mesonic contribution to the
energy becomes important, the system moves into the uniform massive phase. At even
lower density, however, we expect loss of uniformity in the system as the fermions will
tend to cluster into regions of high density in order to benefit from the attraction. This
is, indeed, confirmed by the exact mean-field calculations which show, particularly clearly
in the inset, deviations from the massive uniform results. This fact is further confirmed in

Fig. 2 where the effective fermion mass M* = M - ge0 (solid line) and the vector density

(dashed line) are plotted as a function of the spatial separation at (kp/M) -1 = 1.97. The
figure clearly indicates the clustering of fermions around regions of strong attraction or,
equivalently, small effective ma, ss. To gain some insight into the nature of the non-uniform
solution we have plotted, in Fig. 3, the conserved vector density as a function of the di-
mensionless ratio k_,r/_r for three different values of the density. The main purpose of this
plot. is 1_oconfirm Overhauser's claim that the true ground state, i.e., the non-uniform
state, is characterized by a periodic behavior of the vector density with the wave number
of the oscillations, q = 2k_,, controlled by the density. In particular, one ca,n readily verify
from examining the full spatial range of the density (figure not shown) that each cluster

contains six (and not three) fern'5ons as suggested by the fermion degeneracy. We stress
that nowhere ia the matrix calculation have we assumed a particular form (e.g., uniform
or periodic) for the solution.

In Fig. 4, we show the regions of instabiliZy of the massive uniform state as given by
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zeroes of the dimesic function calculated in RPA. The momentum transfer q represents
the external momentum at which the uniform system is being probed. The curve labeled
by qm_n/kF indicates the lowest value of the momenta at which the instability sets in.
Analogously, qm,,/k_, represents the largest value of the momenta that can still drive the
instability. At low-density the region of the instability is large due to the strong fermion
clustering as seen, for example, in the large spatial variations of the density. As the density
increases, however, the region of the instability shrinks until, finally, at (k_,/M) -1 _., 1.8
the instability disappears. Note, that in agreement with Overhauser's claim, the instability
of the uniform state is most strongly driven at a momentum of q = 2kf,. In fact, in the
limit of an infinitely large box, where the gap at the Fermi energy disappears, there is a
costless (_o= 0) excitation in tbe system of momentum q = 2kj, (a particle from just below
the Fermi level gets promoted to a state just above the Fermi level). This is the reason for
the logarithmic singularity in the scalar polarization at q = 2k_,. The RPA study of the
stability of the uniform state is, nevertheless, still meaningful as long the momentum is
not too close to q = 2k_,. This behavior of the polarization, however, is particular to one
spatial dimension. In three dimension, the singularity is integrable and the RPA analysis
can be carried out even at q = 2kp. In the inset of Fig. 4, we have also plotted the ratio
pt/po of the non-uniform to the uniform component of the density,

= po+ p, (oo)

In addition of showing the transition from the uniform to the non-uniform system, the
picture establishes the consistency between the exact solution of the mean.field equations
and the stability study of the uniform system by means of an RPA analysis.

In Fig. 5 we show the energy per fermion as a function of the inverse Fermi momentum
for a coupling of C_ = 0.25. In this case the results are qualita_,ively different from before.
A simple consequence of the stronger coupling is that the system is now bound in the
massless phase but no longer saturates in the massive phase. More interesting, perhaps,
the uniform massive solution is now unstable for ali values of the density. We have already
established that at very high density the system is guaranteed to be in the uniform massless
phase. As the density decreases, but still for large values (kp/M ,.,, 1), the fermions start
to cluster well before the uniform massive solution can become stable. The fact that the
uniform massive solution is unstable for all values of the density can be confirmed by means
of the RPA stability analysis. Figure 6 indicates that even though the uniform solution
leads to a minimum in the energy density of the system for (kp/M > 2.288), the nzinimum
is only local. Perhaps the most interesting consequences of the strong coupling are seen
in Fig. 7. ttere, the effective fermion mass (solid line) and the vector density (dashed
line) are plotted as a function of the spatial separation at a density of (k_,/M) -1 = 1.36.
As in the previous case, and as suggested by Overhauser, the effective mass oscillates
with a wave number given by q = 2k_,. The vector density, on the other hand, appears
to oscillates at twice that rate. The answer to this apparent contradiction can be tbund
in the shell-like (kink) solution discussed extensively by Campbell and Liao and by the

SLAC bag collaboration. 14'15 In the previous sections we have discussed the fact that the
dynamics of the problem involves a delicate balance between a ferrrfionic contribution to
the energy that, at least for the uniform system, is minimized for M* = 0, and a mesonic
contribution that is rrfinimized for M* = M. In fact, due to the discrete chiral symmetry of
the underlying Lagrangian the mesonic contribution to the energy is minimized for M* =
___,r o^-_o,,,,,_-*_, _ nnn-nnifnrm field confi_:uration of low energy could be achieved by
allowing the scalar field to interpolate between its two vacuum values while concentrating
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the fermion density in a shell around the transition region. In this way the mesonic
contribution to the energy is minimized everywhere except in the transition region while
the fermions are concentrated in a small region where they are effectively massless. Figure
7 shows a manifestation of this non-uniform configuration. The fermions are, indeed,
concentrated in regions of space where they' are effectively massless. Furthermore, since
the energy of a free Fernfi gas is an even function of the mass, it is equally costly tc, have
a local fermion mass of M* = -M as it is to have M* = +M. Consequently, the density
oscillates twice as fast because the fermions are not only excluded from regions where the
potential is shallow (with M* large and positive)but also from regions where the potential
is very deep (M* also large but negative)! In particular, fermions no longer cluster into
groups of six (as suggested by the degeneracy) but, instead, into groups of three. Although
this behavior is, perhaps, suggestive of a fundamental QCD result (three quarks confined in
a hadron) the simplicity of the one-dimensional model precludes us from attaching any real
significance to it. Nevertheless, we stress that this behavior, namely, three fermions per
cluster, was never imposed at any stage in the calculation but was, instead, a consequence
of the dynamics of strong fields.

To summarize, we have calculated ground.state properties of hadronic matter in a
mean-field approximation to the soliton model in one spatial dimension, The model in-
corporates fundamental physical principles like Lorentz invariance and (discrete) chiral
symmetry from the outset. The symmetry, however, can be spontaneously broken in the
ground state leading, in particular, to a dynamical generation of fermion mass. We have
studied three possible phases of the model. A uniform massless phase in which chiral sym-
metry is restored and the system behaves like a free Fermi gas. A uniform massive phase
that can be viewed as the finite-density limit of the broken-symxnetry vacuum ground state
and finally, a non-uniform, actuMly periodic, phase in which fermions cluster into local re-
gions of high-density to benefit form the scalar attraction. In the "weak coupling" case,
I,he non-uniform phase contained six (as opposed to three) fermions per cluster. However,
in the "strong coupling" case, each cluster contains three fermions. Due to the simplicity
of our one-dimensional model we do not attach profound significance to this result. We
stress, however, that in contrast to some approaches that impose the three-quark-bag con-
dition from the outset, the present result is a direct consequence of the strong relativistic
dynamics.
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Figure 2. Effective fermion mass and vector density in the non-uniform phase as a function
of position for C_ = 1/8.
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Figure 5. Energy per fermion as a function of the inverse Fermi momentum for C,2 = 1/4.
The uniform massless (massive) solution is given by the dotted (solid) line. The squares

i indicate the results obtained by direct matrix diagonalization.
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Figure 6. Ground-state instabilities of the uniform massive solutions as a function of the
inverse Fermi momentum for C_ = 1/4.
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9. Scalar and Vector contributions to pp --, 3.A Reaction P.D. Kunz and Univer-
sity of WashingtonCollaboration (M.A. Alberg, E.M. Henley and L. Wilets)

The reaction 10p _ /_A has been described in two complementary models' meson
exchange 1-5 or quark annihilation. 3,6-'1°'11 Both approaches provide reasonable fits to the
data 12 as long as the effects of initial and final state interactions are included. Because
meson exchange occurs at short distances one may expect quark degrees of freedom to
be important. In this work we present here a calculation based on constituent quark
dynamics. We describe our reaction mechanism, the initial and final state interactions,
and a comparison of our results with the experimental data.

We have proposed a reaction mechanism which includes both scalar and vector contri,
butions to the annihilation and subsequent creation of quark-antiquark pairs. The simplest
graphs for these terms are shown in Fig. 1. The 3P 0 term represents the confining scalar
force and the 3S1 term describes a vector quantum exchange (e.g. of one or more gluons).

In our model, the operator for vector exchange is

and that for scalar exchange is

I. gs_ v_ e' ---+ Va- Ve-- . 0" 3 . ,

2ms 2ra

where ms and m are the strange and up quark masses respectively. Our matrix element
for the reaction is

jL4_p._,hh _ (XAA(I'2'3'; 4'5'6')¢(1'2'3')¢(4'5'6')1(Iv + I,)

× ¢(123)¢(456)XNN(123; 456)) ,

in which Xhh and XI_N are distorted waves in the relative coordinate between the initial
and finM particles, respectively, and _bis a harmonic osciUator wavefunction of the internal
motion of the quarks. The quark wave function is parameterized in the form

't t

i<j
,

In our previous work '13_we used the same distorting potentials for NN as Kohno and
Weise. 3 The real part of the .NN potential is determined by a G-parity transformation of
the long-range part of a realistic one-boson exchange potential, with a smooth extrapolation
to the origin. An imaginary term, added to take into account annihilation processes, is of



Wood-Saxon form with a radius R = 0.55 fm and diffuseness parameter a = 0.2 frn. The
strength of this potential was adjusted to produce good fits to/Sp elastic scattering data.
For the real part of the AA interaction Kohno and Weise use the isoscalar boson exchanges
of the real part of the NN potential. The annihilation term is taken to be of the same
form as that for the NN. Since the A.Apotential can not be verified by fitting of elastic
scattering data, we adjust the strengths to fit lop _ AA cross section, polarization and spin
correlation data.

Our previous results fit only the data at momenta of 1508, 1546 and 1695 MeV/c
separately. However, the recent acquisition of an IBM RS6000 computer system has given
us a high speed computing facility which allows a more extensive search capability for
fitting the data. The searches now include data sets at momenta of 1436, 1437, 1495, and
1477 MeV/c besides the three higher momenta. In addition we now have the computing
power necessary to perform global searches on all data sets simultaneously. The searches
varied the /_.A potential parameters, the strengths of the vector and scalar interactions
along with the radius r0 of of the quarl, bag and also the radius and diffuseness of the
imaginary potential for the .&A system. These two additional parameters particularly
the diffuseness cause a markedly lower chi square for the searches. Thus we have nine
parameters for 256 data points in the seven data sets.

Our procedure was to search first on only one of the two interactio_,; strengths. These
results are labeled vector only and scalar only in Table 1. Then, using these two parameter
sets as starting points we continued the search for all nine parameters. The results seem
to fall into two classes, labeled vector dominant and scalar dominant respectively and are
shown in Table 1. The first result starts from the vector only case and remains dominantly
vector while the second starts from the scalar only case and remains dominantly scalar
with the lowest chi square for the scalar dominant case.

'The parameters for the scalar dominant case are used to calculate the differential cross
sections which are shown in Fig. 2 and the polarizations and spin correlation coefficients
whidh are shown in Fig. 3 and Fig. 4 respectively. The strengths of the potential parameters
in the table are the scaling factors for the Kohno-Weise potentials needed to obtain the fits.
It seems clear the best fits included non-zero contributions from both scalar and vector
terms, and strengths of terms in the hyperon-antihyperon potential that differ from those

, predicted by SU3 ....

Oar searches find the oscillator parameter for the quark bag to be about 0.54 fm for the
. scalar dominant result and 0.86 fm for the scalar dominant result compared to the value

of 0.64 fm required to describe the constituent quark radius in the nucleons and lambdas.
The vector dominant case shows a destructive interference between the vector and scalar
contributions but a low absorptive potential strength nearer to the value used by Kohno

i and Weise. The scalar dominant case, on the other hand, shows a constructive interferencebetween the vector and scalar contributions but with the strength of the imaginary part
of the potential that is a factor of two larger that used by Kohno and Weise and is thus

="1 more peripheral.

i One further feature of the searches is that the real part of the central potential V is

small for the vector dominant case and is of opposite sign to that predicted by the SU3

extension of the pp interaction for the scalar dominant case. Although the dependence of
the fits on the tensor and spin orbit potentials is rather weak both results require a large
modification to the tensor potential in the scalar results and to the spin orbit potential in

I the vector results. These changes may reflect the need for a more sophisticated model to .

take into account the annihilation region at short distances. Other workers 12'14have found.

that a real part and spin dependent terms must be added to the model in order to ach_o.ve

|
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fits superior to those using a simple absorptive term, Also our fits require an absorptive
potential with a markedly sharper edge than that used by Khono and Weise.

Recently data has become available for the momenta at 1642 MeV/c, We have used
our parameters for tile scalar dominant case to fit these data without any adjustment. The
resulting fits to the cross section, polarization and spin correlations are shown in Fig. 5.

In summary we have shown that a quark model which includes both scalar and vector
contributions can provide good fits to experimental data for the pp _/_A reaction. The
sensitivity of the results to the parameters of the hyperon-antihyperon potentials may pro-
vide information about the hyperon-antihyperon interaction, but a more extensive model
for the annihilation region needs to be added. Also, The sensitivity of the fits to other
forms of the one boson exchange potentials for the /_p system needs to be investigated
before any definitive statements concerning the properties of the _.A interaction can be
made.
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Global Search gv 9s ro W V t@ VI,s rw gw X2dr
, i ,! e

Vector only 1,41 0.00 0,864 1,41 -1.,23 5,43 ..0,42 0,93 0.67 4,44

Scalar only 0,00 4,,26 0,,571 2,06 0.41 1,38 1,85 1,18 0.13 3.86

Vector dominant 1.,31 0,29 0,856 1.04 -1,06 4,75 -0,85 1,1,3 0,50 4,20

Scalar doutinant -2,40 4,44 0,537 2,36 0.0,5 0.97 3.98 1.10 0,08 2,76
. ,, , , , m -- -

Table I, Parameters of best fits to experimental data,

,
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Figure 1. Lowest order diagrams for/Sp _ AA
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Figure 2. Comparison of calculationswith the scalardominant parameters of Table I
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10. 0 + and 2 + Strengths in Pion Double-Charge Exchange to Double Giant-
Dipole Resonances E. Rost, J. M. O'Donnell(LA_'IL) and H. T. Fortune (Univ.
Pennsylvania)

Although multi-phonon resonances have been considered in nuclear physics for a long
time 1, it is only recently that such resonances have been unambiguously observed 2. The
observability of the two.,.phonon giant-dipole resonance (or double dipole, DD) in pion
double-charge exchange (DCX) has been attributed to a number of features of such reac-
tions. These include a reduced background due to the absence of isoscalar and isovector
components in isotensor DCX reactions, and also the suppression of spin-flip excitations
at forward angles.

The initial success in applying sequential-model calculations to describe DCX reactions
to the double isobaric analog state 3 and the clear signal of the giant-dipole resonance
(GDR) in pion single charge exchange (SCX)4. suggest that similar calculations may be
appropriate for double resonances involving the GDR. We have explored the details of a
simple reaction model which is expected to describe the strongly populated DD paying
special attention to the two-phonon nature of the DD. We use standard optical model
parameters and fit to magnitudes of SCX data to obtain transition matrix elements to the
GDR. The phonon model is then used to evaluate the matrix elements to the DD. The
DCX cross sections are then calculated as a two-step sequential reaction process with no
further free parameters.

The strength for a decay, B(EA) with multipolarity A, from an n phonon state to one
with n - 1 phonons, is proportional to the B(E)_) for the decay of tile one-phonon state,

.B(E),; n _ n- 1)= nB(EA; 1 _ 0). (1)

We obtain a sinfilar relation for the reverse transition

2J,_ + I I

B(.EA; [n - 1, Jt.] -+ [n, J_,]) = n 2JL + 1 2), + l B(EA; [0, 0] _ [1, ,\]). (2)

Either of these expressions may be used to relate the reduced matrix element 34(n --_n- 1)
to the one-photon reduced matrix element, ,M(1 --_ 0), viz.

2J_ + 1.M2(1 -+0). (3)
,M2(n --, n- 1) = n 2A + 1

We note from this equation that the reduced matrix element from the Jt7.a,_= 2 component

| of the DD is larger than for tile .]t,.a_ = 0 component by a factor v/5, where Jtra_ is the

total angular momentum transfer in the two-step reaction.

Equations (1) and (2) may be applied for cases in which the phonons are built on a state_-_i with angular momentum j; in this case Jt and Ju are then the J transfers associated with
=| populating n - 1 and n phonons, respectively. The total strength lor a given J_n is split,
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into several components with total angular momentum I, where [Jtran - Jl <- I _<.Jtran + J.
In the weak-coupling limit, the strength to each component is given by 1

[nJt_,_jI]
[n i 1Jt,_n3I ]) = (2I' + 1)(2Jt_n + 1)[ I' A ' J (4)Jtran '

x B(E&; [nJtran] _ In + 1J_ra,_])

where the curly brackets represent a 3-j symbol.

We have performed coupled-channel, distorted-wave calculations for the
4°Ca(n+,rr-)4°Ti reaction to the DD. We chose this case because (1) sufficient single-
charge-exchange data exist for us to make a reliable estimate of the strength of the transi..
tion matrix elements, (2) 4oCa is a spherical nucleus, (3) the forward-angle DCX data show
a slight rise 2 suggestive of a 3tran = 0 component in the DD and (4) previous calculations 2
for this nucleus had to be arbitrarily renormalized by different factors for the Jtran = 0
and Jtran = 2 components.

The pion optical potential employed nuclear densities 5 obtained from by electron scat-
tering and used the Kisslinger optical model prescription 8 with phase shifts taken from
ref. 7. Isovector transition matrix elements are proportional to /31. We have extracted
values of 131from the analysis of the GDR excitation in the A = 40 system at several
energies and have found an average value fli = 0.147 + 0.032.

The double giant-dipole resonance (DD) cross sections are now obtained using the
above formalism and a standard coupled channel calculation. The results are shown as the
solid curve together with the data 2 in Fig. 1. The Jtran = 0 and Jtran = 2 components are
shown as dotted and dashed curves. The main features (the location of the first minimum
and the maximum around 22°) are reproduced by the calculations. The 50 datum is
overpredicted although is is known that the forward rise in the Jtran = 2 component is
very sensitive to effects such as pion absorption. Alternatively it may be that the Jtran = 0
component is overpredicted. However we do seem to have identified for the first, time the
Jtran = 0 component to the DD in DCX reactions.

In summary, we have performed coupled-channel, impulse-approximation calculations
for the DD observed in DCX reactions and have interpreted the results as an indication
that these reactions proceed via the GDR as an intermediate state. The main features of
the cross section magnitude and shape were reproduced and are comparable to the better
understood double isobaric analog state (_r+,lr-) transitions at this energy. We believe
that the current calculations support the observation of a Jtran = 0 component of the DD.

A paper describing this work has been published in Physical Review C.
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Figure 1. Angular distributions for the double giant-dipole (DD) resonance in the
1 .4°Ca(_r+,_r-)4°Ti reaction at 295 MeV The data were taken from Ref. 2. The curves are
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II. Nucleons in a Hybrid Sigma Model Including a Quantized Pion Field
C. E, Price and J. A. McNeil

The fundamental field theory of the strong interaction, QCD, has not yet evolved to a
form which makes possible quantitative, first-principle calculations of low-energy hadronic
properties. Nevertheless, there is general agreement that, when such calculations are done,
they will be consistent with the ideas of quark confinement and hidden chiral symmetry.
Much effort has been expended to develop phenomenological field theories which are at
once calculationally tractable and also to some degree compatible with QCD. A familiar

example is that of the Skyrme modell which can be interpreted as the large Nc linfit of

low-energy QCD2 add whose topological solitons possess both the properties of absolute
confinement and hidden chiral symmetry. It is both the strength and weaknes:s of the
Skyrme models that they make no explicit reference to quarks. Non-topological soliton

(or hybrid) models a have been put forward as alternatives which include quark ,degrees
of freedom throughout. These models still possess hidden chiral symmetry but the quarks
are not absolutely confined. This latter shortcoming, it may be argued, should not be
distressing provided the binding energy of the quarks in hadrons is large on the scale set
by our definition of the "low-energy" hadrorfic properties we seek to describe. In any
case, such hybrid models, typically based on elaborations of the Lagrangian of the a-

model, 4 can provide very economical descriptions of, e.g., the N-A system. For example,

the calculations of Birse and Banerjee 3 and reproduce with reasonable accuracy nucleon
properties such as rest mass, magnetic moments, rms radii, gA and g_rgN with essentially
two free parameters, namely the coupling constant g for the interaction between the quarks
and the chiral field (or equivalently, the effective quark mass) and m_, the mass of the scalar
meson. These and virtually ali other hybrid model calculations employ the "hedgehog"
ansatz. This amounts to assuming that the pion field has the form ff = Tr. and then

calculating an intrinsic state in which isospin 1_and angular momentum f are coupled to

yield a state for which the "grand spin" /_ = [+ f is a good quantum number. Since

the matrix elements of the quark spin and isospin operators are readily evaluated forsuch states, significant calculational simplifications are achieved. More significantly, it
has been shown that the hedgehog is a local minimum of energy at least with respect to

some restricted variation, s However, it is also true that the hedgehog is an unphysical

object and physical states with well defined f and f must be projected from it much as,
in the standard treatment of deformed nuclei, states of "good" angular momentum must
be projected from a deformed intrinsic state.

With these difficulties in mind, we developed an alternative to the hedgehog model

which utilized techniques employed in calculations of deforrr, ed nuclear ground states 6

i inthe framework of quantum hadrodynamics (QHD). z We ft,und that we could obtain

predictions for the nucleon mass, magnetic moments, fins radii and coupling constants that
were in good agreement with experiment (perhaps even better than the values obtained
in the hedgehog approach) and that our solutions had the 'correct' angular momentum
and isospin projections (z-components). There are two important limitations of these

I earlier calculations; 1) lack of total angular momentum and total isospin quantum numbers

(because of the deformation our states are mixtures of various total angular momentum
, and total isospin states having the same z-components), and 2) no contributions from

1
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charged pions (only the neutral pion contributed).

These two problems may be addressed simultaneously by treating only the sigma field
in the mean field approximation and insisting that the 3 quarks and whatever pions are
present couple to the correct spin and isospin (namely J = 1/2, I = 1/2). As a first
step, we have assumed that the nucleon is made up of three quarks and at most one pion.
Therefore our nucleon state is written as:

1 _- _ t,n,_t ,} t- ½ j,v ,1 _rn,_t

where b__rn,7,1creates a quark with angular momentum lm and isospin lt, atlm,lt creates

a pion with angula.r momentum lm and isospin lt and [o'>c is a sigma coherent state, l°
This ground state ensures that the nucleon has the correct spin and isospin quantum
numbers and explicitly includes the lowest order effects of both neutral and charged pions.
Numerical calculations are in progress.

Ultimately, we must recognize that the pions will have significant contributions beyond
this lowest order. These effects will be included in two ways: first we will investigate the
possibility of inclu :_ng higher numbers of pions (more than one) by adding terms to the
ground state given above (this should demonstrate the convergence properties of such a
series), and second, we will attempt to include tile pion via a coherent state (as we have
done for the sigma). A meson coherent state is defined by the relations:

z>o: z Iz> at _ 0° -0--7 z>o

0 (zc(_o_t _ <zloz* <zl__ - Oz*

where Iz)c is the coherent state characterized by the c-number z and & (&t) is a meson
destruction (creation) operator. For our sigma meson such a state can be written as:

!z)c = E (zat)n _n znn! O} : exp(z& t) 10>-- _ n>

where n) is the usual n-meson state. One advantage of a coherent state for the mesons is
that it provides a justification of the usual mean-field substitution:

where the c-number z is simply related to the mean-field a(r-'). Since z}c contains compo-
nents with all possible numbers of mesons, the expectation value of a single meson operator
need not be zero.
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For the pion field, which is an isovector, the coherent state is more complicated. Since
the nucleon has a definite isospin, it is inappropriate to think of it as involving a state
with an arbitrary number of uncorrelated pions. It is, therefore, necessary to form the
coherent state for the pion by including the proper coupling to the quarks so that the
final nucleon state has the desired quantum numbers. We will approach this problem by
writing two pion states, one involving only even numbers of pions and one involving only
odd numbers of pions. In each of these states the pions are coupled pair-wise to zero total
isospin. In other words the even state involves all possible numbers of di-pions (two pions
coupled to isospin zero), and the odd state involves all possible numbers of di-pions and
one unpaired pion whose quantum numbers determine the quantum numbers of the odd
pion state. Then each of these states is coupled to the three quarks to form a nucleon. A
state defined in this way will be very similar to the state used above and the calculational
procedure should be virtually identical.
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