
++++++++,,,**_ MIM ,
++_'_++_+_'_*%+-- _ Information and Image,_ _+ \. Association for Management _+!i+_

b Silver Spr,ng, _._v ////'._"_"0

++',.-+*++
,-++ •

Centimeter
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 mm

I,,,,I,,"l'"'l''"l''"l'"'l'"'l""l''"l'"'l'"'l''"l
1 2 3 4 5

Inches IIIII,.o,+++
,. llHg

Illll +I.I ,__
illll_

IlliIN11111'--4Itttt+',_

.,.+j _+,+.,._.
+++90__ -_';" "

e_ _ _,,._,. MANUFACTURED TO lqllM STANDARDS

Development of GUS for Control Applications at the Advanced Photon Source*

Y. Chug, D. Barr, M. Borland, G. Decker, K. tGmt and J. t_ctu-n_

Argonne National Laboratory, Argonne, IL 60439, U.S.A.

Abstract provide a command interpreter and certain levels of
programmability, they are not specifically designed for a

A script-based interpretive shell GUS (.Qeneral Purpose laboratory environment dedicated to data acquisition, analysis,
Data Acquisition for Unix Shell) has been developed for display and device control that requires command flow
application to the Advanced Photon Source (APS) control, control, communication with measurement devices, and
The primary design objective of GUS is to provide a storage and archivingofacquireddata.
mechanism for efficient data flow among modularized objects Usually a dedicated, stand-alone application, though
called Data Access Modules (DAMs). GUS consists of four limited in its capabilities, would be developed for such
major components: user interface, kernel, built-in command purposes. The drawback of this approach, however, is that
module, and DAMs. It also incorporates the Unix shell to such applications provide little flexibility to adapt to different
make use of the existing utility programs for file manipulation laboratory environments or different configurations of
and data analysis. At this time, DAMs have been written for devices. This may become a serious shortcoming if frequent
device access through EPICS (Experimental Physics and changes are required in the measurement procedures, e.g.,
Industrial Control System), data I/O for SDDS (Self- during the construction and commissioning phases of the
Describing Data Se0 files, matrix manipulation, graphics machine.

display, digital signal processing, and beam position feedback GUS is a script-based interpretive shell with command line
system control. The modular and object-oriented construction interface that fills the gap between the operating system shell
of GUS will facilitate addition of more DAMs with other and stand-alone applications and thus overcomes the short-
functions in the future, comings of both. Users can allocate variables, scalars, and

arrays, of numeric and string types. The data associated with
1. INTRODUCTION these variables can be manipulated with the loaded set of

The Advanced Photon Source (APS) is a dedicated commands and functions. One of the primary channels of
synchrotron light source of the third generation being moving the data between the external world and the GUS
constructed at Argonne National Laboratory. As of this variables is the Data Access Modules (DAMs). The data thus
writing, construction of the accelerator systems is nearing stored in variables can be viewed, displayed, analyzed, and
completion and commissioning of the linear accelerators, archived through the GUS commands and external applica-
positron accumulator ring (PAR), and the injector synchrotron tions.
has started recently. The rest of this paper will describe the structure of GUS

Construction, commissioning, and operation of such and its components, which comprise the kernel, built-in
complex machines as modem accelerators require a robust and module, and Data Access Modules. How to interface to Unix
versatile man-machine interface for effective control. As the for using modularized applications to expand the capability of

size of machine and the number of subeomponents grow, the GUS will be also explained.
need for a flexible programming environment that can rapidly
adapt to ever-changing situations is multiplied. 2. STRUCTURE OF GUS

The control system for the APS is based on EPICS GUS consists of four major components: user interface,
(Experimental Physics and Industrial Control System), which kernel, built-in command module, and Data Access Modules
was co-developed by Argonne and Los Alarnos National as shown in Fig. 1.
Laboratories.J1] The data link between the control points and The GUS kernel is based on GPDAS,[2] which had been

the user applications is provided by Channel Access, the core originally developed for the IBM PC and compatible
of EPICS for communication between the host computers and microcomputers. GPDAS itself has been evolving ever since
the IOC 0nput/Output Controller). its first implementation on the APS magnet measurement

In order to complement the primary graphical user facility but its capabilities were fundamentally limited by the
interface for EPICS and to handle streamlined data acquisition memory restriction of the operating system. Unix-based
and analysis in a flexible laboratory measurement setting, a machines generally do not have such restrictions and GUS has
command line interface with both interactive and non- been significantly expanded in its capabilities, with the addi-
interactive programming capability has become necessary, tion of several Data Access Modules, through modular
Although most operating systems on various platforms construct_,on.

The built-in command set provides the basic programming

*Work supported by the U.S. Department of Energy, Office of environment, and the DAlvls add several more commands to it

BasicEnergySciences,underContractNo. W-31-109-ENG-38. for data acquisition, manipulation, display, and archiving.
tPresent address:Samsung Heavy IndustriesDaedukR&D GUS incorporates the native Unix operating system.

%

Commands thatarcnotpartof theloadedcommand setare int, long, float, double, string, and struct.

passed to Unix for execution. Arrays of arbitrary dimensions are allowed, except for the
st: ruct variables. The dimensions and size of the variable

are limited only by the available memory.

I 1 Variable dimensions can be assigned either explicitly withuser Interlace J variable declaration statements or implicitly by GUS

_____ commands through the context. For example, in the following

Command _ _o=1 statement

Parser

(GPDAS) _--_Variable_ #y = Sin (#x);t

...r...... thedimensionsofthe#y variable_ be changed,ifneces-Built-in DamAccess
Command Modules SalT, tOrl_,h those of the #x v&r_b]e.

Module (DN_) Declaration of variable types can also be implicit, e.g., by
_ assigning a value to one without previous declaration. In this

_; _ i_ case, variable names that start with characters i through n or I

I EPICS [Channel Graphics Unix through N implies long type. In contrast to the variableAccess dimensions, which can change through the context at any

time, variable types do not change once assigned unless

_e [explicitly redeclared.
I 3.2 Command Flow Control

Fig. 1: Structure of GUS. The command control flow statements commonly found in
programming languages are also available in GUS. These are

In consideration of the command interpreter's relatively if, while, do .. while, for, goto, pause, and wait
slow execution speed, some routines requiring high speed can statements.
be separated as module programs and called from the shell or
scripts. Modularization of an application into several small 3.3 Macros
utilities is also a good programming strategy since they are
easy to debug,don't take up much memory space,and can be Even though the plain English-style syntax of GUS

statementsprovidesbetter readability, it is sometimes desiredused individually in other contexts. Such separation of
functionality throughsmall-size applications,however, needs to abbreviate them for conciseness. This is especially useful
optimization in terms of generality and efficiency. Smaller when a user is entering the commands interactively in the
applications would be more general but also would tend to shell. An abbreviatedway to write statementsorpartsthereof,
have less combined efficiency. Larger applications, on the called a macro, is available by using the de fine command.
other hand, would be more efficient at the expense of Macros can contain multiple statements, including
generality, command flow control statements, and may have optional

arguments within parentheses immediately following the

3. KERNEL AND BUILT-IN MODULE macro name. For example, consider the macro clef'tuition:

GUS commands, or statements, are first sent to the kernel define cagetvalue (pvs, data)

for processing interactively through the console or non- chaco get value from pvs to &data;

interactively through a file called a script. In the interactive "Chacc" is the Channel Access DAM command for reading

mode, individual yet complete statements are entered at and writing process variables (PVs). The following statement
prompts through the shell. After processing by the kernel, the
commands will be executed by either the built-in module, a eager:value (#bpm...names, #bpm_data) ;

DAM, or an external program. A script is a collection of would :hen get the data__fromall BPMs included in the name

statements that is executed non-interactively and can be called array #bpm...r_ames and store them in the double variable
from the shell or other scripts. #bpm._dat a.

The typical command syntax of GUS is very much like

plain English. For example, the following command 3.4 Built-in Commands and Operators

write line to screen from "Hello, World" ; Illadditiontothecommands describedsofar,thebuilt-in
moduleincludescommands forsubroutinecalls,fileI/O,on-

willprinta characterstring"Hello, World" on the linehelp,saveandshow forvariablesand macros,binarydam

console. The semicolon (;) at the end of the statement is the I/O for variables, script execution, and argument passing.
command delimiter. The operators provided by the kernel include arithmetic,

3.1 Data Types and Variables string manipulation, array-related, mathematical, bitwise, data
conversion, typecasting, file I/O, and other miscellaneous

The name of a GUS variable always starts with the #-sign operators.
and there are eight data types for variables: char, short,

4
o,

applications. The data can be either ASCII or binary, and
4. DATA ACCESS MODULES users can generate one using a text editor such as emacs or vi.

Data access modules are integrated into GUS as compiled An SDDS file is referred to as a "data set." Each data set

objects. All of the DAMs at this time are written as a class in consists of an ASCII header describing the data that is stored
C++, which facilitates their addition to or deletion from the in the file, followed by zero or more "data tables." Each
existing set of DAMs. For example, a DAM named "mydam" successive data table consists of a list of zero or more
can be added with the following C++ statements in the "parameter" values followed by zero or more rows of tabular

data. The names, units, data types, and so forth of the

program source code: parameters and of the columns of the tabular data are defined
#include "mydam.h" in the header. These do not change from one dam table to the

MyDAM mydam; next.

The C++ header file mydam, h has the class declaration for Since the SDDS files carry detailed information about the

MyDAM and the DAM is integrated into GUS simply by data, they are useful for longrterm storage of the data as well
instantiati_g a variable mydam of MyDAMclass, as for inter-application communication. A function library to

The constructor function for a DAM includes declaration support data I/O through SDDS files has been written and
of new commands for the DAM and the subcommands that applications need to be linked with it in order to read andwrite SDDS files.
belong to them. Each command or subcommand has an
associated function to process the command issued by the The transfer of data between GUS and other applicationscan also be done through save and loadvar commands as
i/ser.

A typical command syntax for the DAMs is shown below:

command subcommand <arguments> save -g var to input.vm &#datal &#data2;
myprogram input, vm output, vm;

Porexample, the following command loadvar all from output .vm &#data3;

matrix shift rows 1 9 by -i in #x; In this example, variables #datal and #data2 areSaved to

will shift rows 1 through 9 in a 2-D array variable #x by 1 input, vm in binary format. The application myprogramreads them and the output is written to output, vm. The
row upward.

At this time there are eleven DAMs integrated into GUS as data can be retrieved using the loadvar command.
listed in Table 1. The idlgraf and mateng DAMs The applications used in this context are called GUS
interface GUS to the commercial software IDL and Matlab, Expansion Modules (GEMs). The files that mediate the dam
which make the features of these software programs available ransfer are called GEM-files and they contain the types,
to GUS. Similar modules can be added in the future as names, dimensions, and data of the variables. A function

library has been written to support the data I/O. Due to the
necessary, relatively simple file structure and I/O functions, the GEM-

Table 1: List of Data Access Modules in GUS files are more suitable for short-term storage of data for

_lame Description No. of communication among GUS and GEMs.

subeommands 6. APPLICATIONS
chacc Channel Access for EPICS 2
devio Device control for EPICS 2 The earlier version on IBM PC and compatibles (GPDAS)

fdbk Beam position feedback 1 continues to be used for magnet measurement and beam
file File pointer navigation 4 diagnostics R&D at the APS.[2] The current GUS runs on
idlgraf Interface to IDL 7 Unix workstations and is used ,o calibrate beam position
mateng Interface to Matlab engine 6 monitors and test power supplies and is bcng implemented for
mat: file MAT-file read/write 7 machine commissioning and operation of the APS accelerator

matrix 2-D matrix manipulation 13 complex.

psgraf PostScript graphics 9
sdds SDDS file_md_mte I0 7.REFERENCES

vector Vector manipulation 13 [1] W. McDowell et al., "Status and Design of the Advanced
Photon Source Control System," Proceeding of 1993 IEEE

5. INTERFACE TO UNIX Particle Accelerator Conference, Washington, D.C., p. 1960,
1993

Commands that do not belong to the GUS kernel or the [2] Y. Chung and K. Kin, "Development and Application of

DAMs are passed to Unix for execution. Using this feature, General Purpose Data Acquisition Shell (GPDAS) at Advanced
modular applications can be developed separate from GUS Photon Source," Proceeding of 1991 IEEE particle Accelerator

Conference, San Francisco, p. 1299, 1991
when high speed is necessary.

Dam transfer and archiving can be facilitated through the [3] M. Borland, "Application Programmer's Guide for SDDSVersion 1," to be published.
Self-De.s_fibing Data Sets (SDDS) file fro'mat.[3] The data can
be saved to an SDDS file through the SDDS DAM or other

