@ [

D 9

N
\Q\:\b@ﬁ% \\\\&L// AII“

Q %"‘iv, -, _
\\\\\\// \\ \\\\Q’// b Association fo:s‘ %3:;5;;3%&5:%&5;5 Management
W
W
Cont
em‘Ime;erS 4 5 6 7 8 9 10 11 12 13 14 15 mm
1 2 3 4 5
Inches 10 2= iz
“ == sj 2 22
ol T
L =
= je
IL2 e pee

NN e
0}\ /// b//// \ //,q\\\\ //\\\\
C\>\/// < ¢ oa\>/// //q\\\\ N N\

(9}\///. 0"'52; g /// @ \ N
2 O I
Ny \ MANUFACTURED TO AIIM STANDARDS //1\»\ :

DI SN
07 // BY APPLIED IMAGE, INC. 2\ /{1}\\%

Lond- 94e@y--29 SIS DS DJCOP 173

Development of GUS for Control Applications at the Advanced Photon Source*

Y. Chung, D. Barr, M. Borland, G. Decker, K. Kimt, and J. Kirchman
Argonne National Laboratory, Argonne, IL 60439, U.S.A.

Abstract

A script-based interpretive shell GUS (General Purpose
Data Acquisition for Unix Shell) has been developed for
application to the Advanced Photon Source (APS) control.
The primary design objective of GUS is to provide a
mechanism for efficient data flow among modularized objects
called Data Access Modules (DAMs). GUS consists of four
major components: user interface, kernel, built-in command
module, and DAMs. It also incorporates the Unix shell to
make use of the existing utility programs for file manipulation
and data analysis. At this time, DAMs have been written for
device access through EPICS (Experimental Physics and
Industrial Control System), data I/O for SDDS (Self-
Describing Data Set) files, matrix manipulation, graphics
display, digital signal processing, and beam position feedback
system control. The modular and object-oriented construction
of GUS will facilitate addition of more DAMs with other
functions in the future.

1. INTRODUCTION

The Advanced Photon Source (APS) is a dedicated
synchrotron light source of the third generation being
constructed at Argonne National Laboratory. As of this
writing, construction of the accelerator systems is nearing
completion and commissioning of the linear accelerators,
positron accumulator ring (PAR), and the injector synchrotron
has started recently.

Construction, commissioning, and operation of such
complex machines as modem accelerators require a robust and
versatile man-machine interface for effective control. As the
size of machine and the number of subcomponents grow, the
need for a flexible programming environment that can rapidly
adapt to ever-changing situations is multiplied.

The control system for the APS is based on EPICS
(Experimental Physics and Industrial Control System), which
was co-developed by Argonne and Los Alamos National
Laboratories.[1] The data link between the control points and
the user applications is provided by Channel Access, the core
of EPICS for communication between the host computers and
the I0C (Input/Output Controller).

In order to complement the primary graphical user
interface for EPICS and to handle streamlined data acquisition
and analysis in a flexible laboratory measurement setting, a
command line interface with both interactive and non-
interactive programming capability has become necessary.
Although most operating systems on various platforms

*Work supported by the U.S. Department of Energy, Office of
Basic Energy Sciences, under Contract No. W-31-109-ENG-38.
$Present address: Samsung Heavy Industries Daeduk R&D
Center, P.O. Box 43, Daeduk, Daejun 305-600, Korea

e

provide a command interpreter and certain levels of
programmability, they are not specifically designed for a
laboratory environment dedicated to data acquisition, analysis,
display and device control that requires command flow
control, communication with measurement devices, and
storage and archiving of acquired data.

Usually a dedicated, stand-alone application, though
limited in its capabilities, would be developed for such
purposes. The drawback of this approach, however, is that
such applications provide little flexibility to adapt to different
laboratory environments or different configurations of
devices. This may become a serious shortcoming if frequent
changes are required in the measurement procedures, e.g.,
during the construction and commissioning phases of the
machine. "

GUS is a script-based interpretive shell with command line
interface that fills the gap between the operating system shell
and stand-alone applications and thus overcomes the short-
comings of both. Users can allocate variables, scalars, and
arrays, of numeric and string types. The data associated with
these variables can be manipulated with the loaded set of
commands and functions, One of the primary channels of
moving the data between the external world and the GUS
variables is the Data Access Modules (DAMs). The data thus
stored in variables can be viewed, displayed, analyzed, and
archived through the GUS commands and external applica-
tions.

The rest of this paper will describe the structure of GUS
and its components, which comprise the kernel, built-in
module, and Data Access Modules. How to interface to Unix
for using modularized applications to expand the capability of
GUS will be also explained.

2. STRUCTURE OF GUS

GUS consists of four major components: user interface,
kernel, built-in command module, and Data Access Modules
as shown in Fig. 1.

The GUS kernel is based on GPDAS,[2] which had been
originally developed for the IBM PC and compatible
microcomputers. GPDAS itself has been evolving ever since
its first implementation on the APS magnet measurement
facility but its capabilities were fundamentally limited by the
memory restriction of the operating system. Unix-based
machines generally do not have such restrictions and GUS has
been significantly expanded in its capabilities, with the addi-
tion of several Data Access Modules, through modular
construction.

The built-in command set provides the basic programming
environment, and the DAMs add several more commands to it
for data acquisition, manipulation, display, and archiving.
GUS incorporates the native Unix operating system.

g

E o LN e g

ma ke

. g P L P

- IV RN I B M w
ol

MO @ RO UMY e

Commands that are not part of the loaded command set are
passed to Unix for execution.

User Interface

Command
Parser
(GPDAS)

]
EPICS
Channel
Access

Graphics Unix

'

10C

Fig. 1: Structure of GUS.

In consideration of the command interpreter's relatively
slow execution speed, some routines requiring high speed can
be separated as module programs and called from the shell or
scripts. Modularization of an application into several small
utilities is also a good programming strategy since they are
easy to debug, don't take up much memory space, and can be
used individually in other contexts. Such separation of
functionality through small-size applications, however, needs
optimization in terms of generality and efficiency. Smaller
applications would be more general but also would tend to
have less combined efficiency. Larger applications, on the
other hand, would be more efficient at the expense of
generality.

3. KERNEL AND BUILT-IN MODULE

GUS commands, or statements, are first sent to the kernel
for processing interactively through the console or non-
interactively through a file called a script. In the interactive
mode, individual yet complete statements are entered at
prompts through the shell. After processing by the kemel, the
commands will be executed by either the built-in module, a
DAM, or an external program. A script is a collection of
statements that is executed non-interactively and can be called
from the shell or other scripts.

The typical command syntax of GUS is very much like
plain English. For example, the following command

write line to screen from "Hello, World“;

will print a character string "Hello, World" on the
console. The semicolon (;) at the end of the statement is the
command delimiter.

3.1 Data Types and Variables

The name of a GUS variable always starts with the #-sign
and there are eight data types for variables: char, short,

int, long, float, double, string, and struct.
Arrays of arbitrary dimensions are allowed, except for the
struct variables. The dimensions and size of the variable
are limited only by the available memory.

Variable dimensions can be assigned either explicitly with
variable declaration statements or implicitly by GUS
commands through the context. For example, in the following
statement

#y = sin(#x);

the dimensions of the #y variable will be changed, if neces-
sary, to match those of the #x variable.

Declaration of variable types can also be implicit, e.g., by
assigning a value to one without previous declaration. In this
case, variable names that start with characters i through n or I
through N implies long type. In contrast to the variable
dimensions, which can change through the context at any
time, variable types do not change once assigned unless
explicitly redeclared.

3.2 Command Flow Control

The command control flow statements commonly found in
programming languages are also available in GUS. These are
if,while,do .. while, for, goto, pause, and wait
statements.

3.3 Macros

Even though the plain English-style syntax of GUS
statements provides better readability, it is sometimes desired
to abbreviate them for conciseness. This is especially useful
when a user is entering the commands interactively in the
shell. An abbreviated way to write statements or parts thereof,
called a macro, is available by using the de f ine command.

Macros can contain multiple statements, including
command flow control statements, and may have optional
arguments within parentheses immediately following the
macro name. For example, consider the macro definition:

define cagetvalue(pvs, data)
chacc get value from pvs to &data;

"Chacc" is the Channel Access DAM command for reading
and writing process variables (PVs). The following statement

cagetvalue (#bpm names, #bpm-data):;

would "hen get the data from all BPMs included in the name
array #bpm_riames and store them in the double variable
#bpm_data.

3.4 Built-in Commands and Operators

In addition to the commands described so far, the built-in
module includes commands for subroutine calls, file I/O, on-
line help, save and show for variables and macros, binary data
I/O for variables, script execution, and argument passing.

The operators provided by the kernel include arithmetic,
string manipulation, array-related, mathematical, bitwise, data
conversion, typecasting, file I/O, and other miscellaneous
operators.

4. DATA ACCESS MODULES

Data access modules are integrated into GUS as compiled
objects. All of the DAM:s at this time are written as a class in
C++, which facilitates their addition to or deletion from the
existing set of DAMs. For example, a DAM named "mydam”
can be added with the following C++ statements in the
program source code:

#include "mydam.h"
MyDAM mydam;

The C++ header file mydam.h has the class declaration for
MyDAM and the DAM is integrated into GUS simply by
instantiating a variable mydam of MyDAM class.

The constructor function for a DAM includes declaration
of new commands for the DAM and the subcommands that
belong to them. Each command or subcommand has an
associated function to process the command issued by the
user.

A typical command syntax for the DAMs is

command subcommand <arguments>
For example, the following command
matrix shift rows 1 9 by -1 in #x;

will shift rows 1 through 9 in a 2-D array variable #x by 1
row upward.

At this time there are eleven DAMs integrated into GUS as
listed in Table 1. The idlgraf and mateng DAMs
interface GUS to the commercial software IDL and Matlab,
which make the features of these software programs available
to GUS. Similar modules can be added in the future as
necessary.

Table 1: List of Data Access Modules in GUS

Name Description No. of
subcommands
chacc Channel Access for EPICS 2
devio Device control for EPICS 2
fdbk Beam position feedback 1
file File pointer navigation 4
idlgraf | Interface to IDL 7
mateng | Interface to Matlab engine 6
matfile | MAT-file read/write 7
matrix | 2-D matrix manipulation 13
psgraf | PostScript graphics 9
sdds SDDS file read/write 10
vector | Vector manipulation 13

5. INTERFACE TO UNIX

Commands that do not belong to the GUS kemel or the
DAMs are passed to Unix for execution. Using this feature,
modular applications can be developed separ.te from GUS
when high speed is necessary.

Data transfer and archiving can be facilitated through the
Self-Describing Data Sets (SDDS) file format.[3] The data can
be saved to an SDDS file through the SDDS DAM or other

applications. The data can be either ASCII or binary, and
users can generate one using a text editor such as emacs or vi.

An SDDS file is referred to as a "data set." Each data set
consists of an ASCII header describing the data that is stored
in the file, followed by zero or more "data tables." Each
successive data table consists of a list of zero or more
"parameter” values followed by zero or more rows of tabular
data. The names, units, data types, and so forth of the
parameters and of the columns of the tabular data are defined
in the header. These do not change from one data table to the
next.

Since the SDDS files carry detailed information about the
data, they are useful for long-term storage of the data as well
as for inter-application communication. A function library to
support data 1/O through SDDS files has been written and
applications need to be linked with it in order to read and
write SDDS files.

The transfer of data between GUS and other applications
can also be done through save and loadvar commands as
shown below:

save -g var to input.vm &#datal &#data2;
myprogram input.vm output.vm;
loadvar all from output.vm &#data3;

In this example, variables #datal and #data2 are saved to
input . vm in binary format. The application myprogram
reads them and the output is written to output .vm. The
data can be retrieved using the 1oadvar command.

The applications used in this context are called GUS
Expansion Modules (GEMs). The files that mediate the data
ransfer are called GEM-files and they contain the types,
names, dimensions, and data of the variables. A function
library has been written to support the data I/O. Due to the
relatively simple file structure and I/O functions, the GEM-
files are more suitable for short-term storage of data for
communication among GUS and GEMs.

6. APPLICATIONS

The earlier version on IBM PC and compatibles (GPDAS)
continues to be used for magnet measurement and beam
diagnostics R&D at the APS.[2] The current GUS runs on
Unix workstations and is used .o calibrate beam position
monitors and test power supplies and is being implemented for
machine commissioning and operation of the APS accelerator
complex.

7. REFERENCES

[11 W. McDowell et al., "Status and Design of the Advanced
Photon Source Control System,” Proceeding of 1993 IEEE
Particle Accelerator Conference, Washington, D.C., p. 1960,
1993

[2] Y. Chung and K. Kim, "Development and Application of
General Purpose Data Acquisition Shell (GPDAS) at Advanced
Photon Source,” Proceeding of 1991 IEEE Particle Accelerator
Conference, San Francisco, p. 1299, 1991

[3] M. Borland, "Application Programmer's Guide for SDDS
Version 1," to be published.

