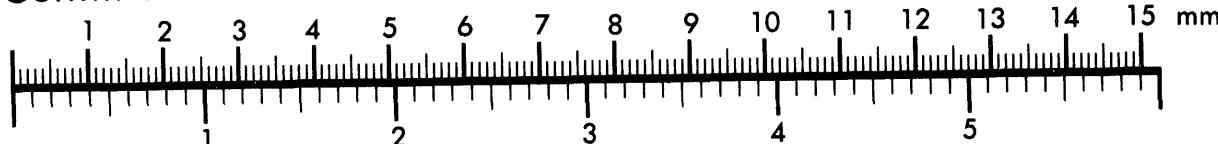
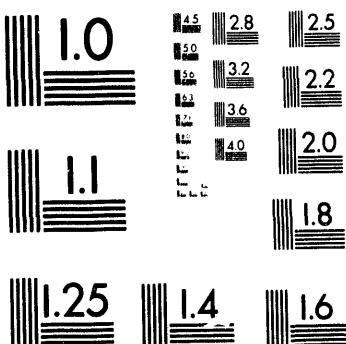


AIMS


Association for Information and Image Management

1100 Wayne Avenue, Suite 1100


1100 Wayne Avenue, Suite 1100
Silver Spring, Maryland 20910

301/587-8202

Centimeter

Inches

MANUFACTURED TO AIIM STANDARDS
BY APPLIED IMAGE, INC.

1 of 1

LA-UR- 04 - 2420

Conf-940514- - 7

Title:

Quasi-Elastic and Continuum Scattering of
500-MeV Pions

Author(s):

J. D. Zumbro

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Submitted to:

*Conference on the Intersections Between
Particle and Nuclear Physics*
St. Petersburg, Florida, May 31–June 6, 1994

Los Alamos
NATIONAL LABORATORY

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. The Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy.

Form No. 836 R5
ST 2629 10/91

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

Quasi-Elastic and Continuum Scattering of 500-MeV Pions

J. D. Zumbro
Los Alamos National Laboratory
Los Alamos, NM 87545

Abstract

Results for the scattering of 500-MeV pions are compared to the (e, e') data and to Intra-Nuclear cascade calculations. The (π, π') spectra, which are remarkably similar in shape to the (e, e') spectrum, show a large enhancement in the region corresponding to resonant-energy pions. Possible mechanisms for this "pion transparency" are suggested.

Introduction

High energy (500-MeV) pions provide several unique features as a probe of the nuclear medium. These include a relatively long mean-free path; and the fact that pion production produces pions with energies near the $\Delta_{3/2,3/2}$ resonance. Together these two features allow the study of pions produced in the nuclear interior. Our initial expectation is that pions produced at energies above and below the Δ resonance will escape the nucleus and be observed, while pions with energy near 180-MeV will be absorbed or scattered to lower energies. The fact that this expectation is not realized is the subject of this talk.

In Fig. 1 pion spectra ($T_\pi=500$ MeV, $\theta_\pi=50^\circ$) on targets spanning the periodic table are compared to (e, e') spectra from Ref. [1] ($T_e=500$ MeV, $\theta_e=60^\circ$). These spectra have, within 10%, the same momentum transfer versus energy loss. Except for the relative scale factor (see Fig. 2 for scale factors) there is a marked similarity being the data sets. A comparison of $^{12}\text{C}(\pi, \pi')$ data at 50° and 70° to a different set of (e, e') data (higher T_e) can be found in Ref. [2].

We have also compared the pion data to Intra-Nuclear cascade (INC) calculations performed using a modified version of the code described in Ref. [3]. In these INC calculations pions are scattered from a realistic nucleus with correlations using the free πN cross sections. Pion production is taken into account using known $(\pi, 2\pi)$ cross sections. The pion absorption in the INC calculation is adjusted to give the measured[4] 500-MeV absorption cross section of ~ 40 mb. Fig. 3 show a comparison of the INC inclusive spectra (solid histogram) to the measured $^{12}\text{C}(\pi, \pi')$ spectra (note that the INC calculations have an absolute normalization). While the quasi-elastic (QE) peak and the large energy loss portion of the spectra is reproduced, the region centered about outgoing pion energies between 150- and 200-MeV (energy losses of 350- to 300-Mev, respectively) is underpredicted by a factor of 2 to 5. The dip in the INC spectra shown in Fig. 3 is due to the absorption or scattering of resonant energy pions. This comparison points to the need for a mechanism that makes the nucleus transparent to pions at central nuclear densities with energies near central nuclear densities.

To test this suggestion we have implemented a hadronization time in the INC calculation. The agreement between the data and predictions is much better when pions involved in pion production are assumed to not interact for a time equal to 2 fm/c after the $(\pi, 2\pi)$ reaction takes place. This modified INC calculation is shown as the dashed histograms in Fig. 3.

There are several possibilities for this apparent transparency. In the spirit of color transparency there may be a need for a hadronization time for the wave function of pions involved in pion production to settle into an eigenstate of mass. Another possible mechanism is for the pions to be transported through the nucleus by a weakly interacting intermediate particle. One possibility for this intermediate particle is the σ meson, which because it is isospin zero would not interact through the Δ and therefore should have a longer mean-free path than the pion. If the σ width was between 50- and 100-MeV, it would then have a lifetime between ~ 4 - and ~ 2 -fm/c, respectively; therefore a σ meson could be produced in the nucleus and would be likely to leave the nucleus without interaction before decaying into two pions. Other possibilities such as renormalized masses at central nuclear densities also exist.

Fig. 4 shows spectra at four different beam energies with about the same momentum transfer for elastic scattering from a nucleon in each case. The ^{16}O data in Fig. 4 is from Ref. [5]. Also shown in Fig. 4 are “standard” INC calculations for each case. One sees that the 300-MeV data set is underpredicted by the INC calculation in the region of resonance energy pions. While the assumption of *transparency* for pions from π -production improves the agreement between the 500-MeV data and the INC calculation, this assumption offers no improvement for data taken with a 300-MeV pion beam. This is because at 300-MeV there is little π -production, and what π -production there is does not produce resonance energy pions.

Conclusions (and/or questions)

The (π, π') spectra and (e, e') spectra have very similar shapes for light targets. Is this to be expected or is this surprising? i.e. is it the same mechanism filling the “dip” for both probes or the similarities in the spectra coincidental?

There are large discrepancies between the data and the INC calculations in the portion of the spectra that corresponds to resonance energy pions coming from the reaction. Pions in the calculation are absorbed and/or rescattered so that they don’t appear at resonance energies. This discrepancy is reduced if it is assumed that pions from $(\pi, 2\pi)$ reactions do not interact or are transparent for a time equal to 2 fm/c. This time is consistent with π -production taking place through an intermediate particle which does not interact strongly with the nucleus, but decays into two pions. This assumption does not remove the discrepancy between the INC calculation and the 300-MeV data.

The phenomenon giving rise to the enhanced yield of resonance energy pion is probably not the same as the “color transparency” that is discussed in the other talks in this session, it nevertheless important to understand. This mechanism has implication to future programs at both CEBAF and RHIC. At CEBAF the interpretation of electroproduction of baryonic resonances in nuclei will require a thorough understanding of pions in this energy range. Since Δ formation and decay provides the major route for energy transport through hot dense hadronic matter, understanding the transport

mechanisms in this energy range will be crucial to the interpretation of current and planned experiments which rely on the measurement of pions as a hadronic signature of a quark-gluon plasma.

REFERENCES

1. R.R. Whitney, I. Sick, J.R. Ficenec, R.D. Kephart, and W.P. Trower, Phys. Rev. **C9**, 2230 (1974).
2. J.D. Zumbro, C.L. Morris, J.A. McGill, S.J. Seestrom, R.M. Whitton, C.M. Edwards, A.L. Williams, M.R. Braunstein, M.D. Kohler, B.J. Kriss, S. Høibråten, R.J. Peterson, J. Ouyang, J.E. Wise, and W.R. Gibbs, Phys. Rev. Lett. **71**, 1796 (1993).
3. W.R. Gibbs and W.B. Kaufmann, in *Pion-Nucleus Physics: Future Directions and New Facilities at LAMPF, Los Alamos, NM, 1987*, edited by R.J. Peterson and D.D. Strottman, AIP Conference Proceeding No. **163** (AIP, New York, 1988), p. 279.
4. M.K. Jones, R.D. Ransome, V.R. Cupps, R.W. Fergerson, C.L. Morris, J.A. McGill, J.D. Zumbro, J.R. Comfort, B.G. Ritchie, J.R. Tinsley, P.C. Gugelot, and C. Fred Moore, Phys. Rev. C **48**, 2800 (1993).
5. C.H.Q. Ingram, P.A.M. Gram, J. Jansen, R.E. Mischke, J. Zichy, J. Bolger, E.T. Boschitz, G. Pröbstle, and J. Arvieux, Phys. Rev. C **27**, 1578 (1983).

Figure Captions

Fig. 1 - Comparison of pion spectra ($T_\pi=500$ MeV, $\theta_\pi=50^\circ$) and (e,e') spectra ($T_e=500$ MeV, $\theta_e=60^\circ$) from Ref. [1]. The energy loss is the incident beam energy minus the outgoing particle energy. The targets are indicated in each panel. The relative normalization of the (e,e') spectra is different for each panel and these factor are shown in Fig. 2.

Fig. 2 - The relative normalization of the (π,π') spectra to (e,e') spectra shown in Fig. 1 are plotted as a function of target mass number.

Fig. 3 - The (π,π') data (open symbols) is compared with two different Intra-Nuclear cascade calculations. The solid histograms are from the standard calculation. The dash histograms are from a calculation where pions from $(\pi,2\pi)$ reactions are assumed to not interact for a time equal to 2 fm/c after the reaction takes place. Arrows indicate the location of elastic scattering from the 1H .

Fig. 4 - The (π,π') data obtained with different beam energies but the same momentum transfer is shown for comparison. The histograms are from “standard” Intra-Nuclear cascade calculations. The oxygen data is from Ref. [5] was obtained with an H_2O target, hence the strong peak from $^1H(\pi,\pi)$ elastic scattering. Arrows indicate the location of elastic scattering from the 1H .

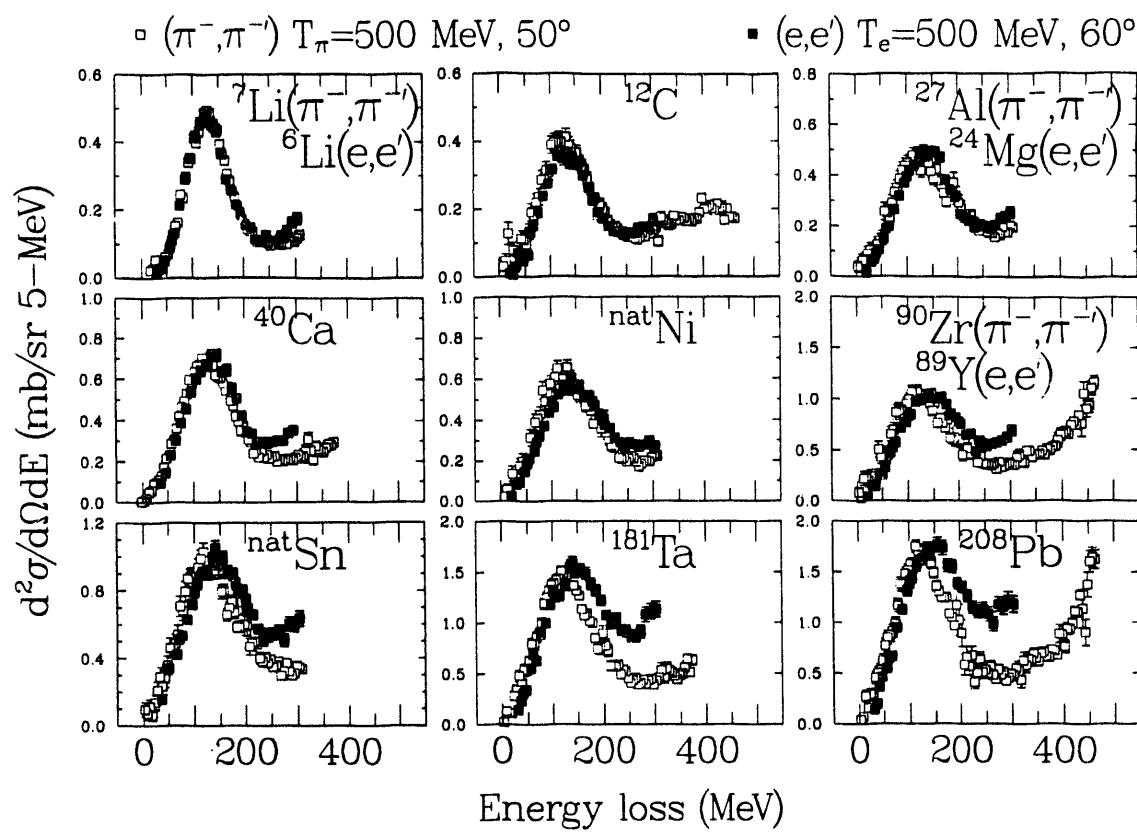


Figure 1

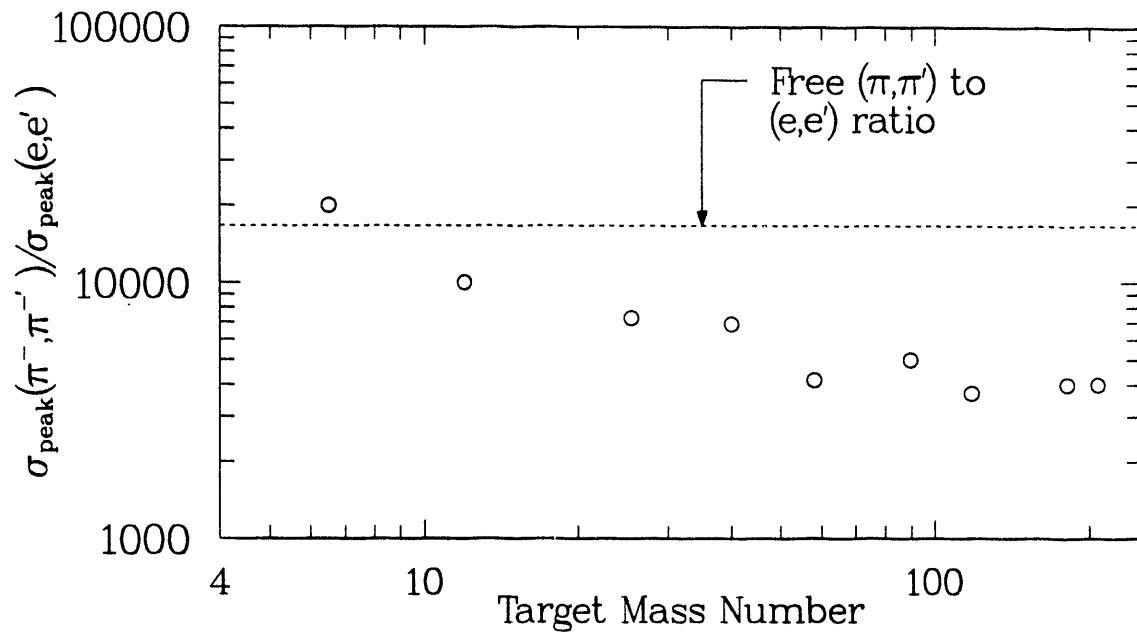


Figure 2

Figure 3
 $^{12}\text{C}(\pi, \pi')$ $T_\pi = 500$ MeV

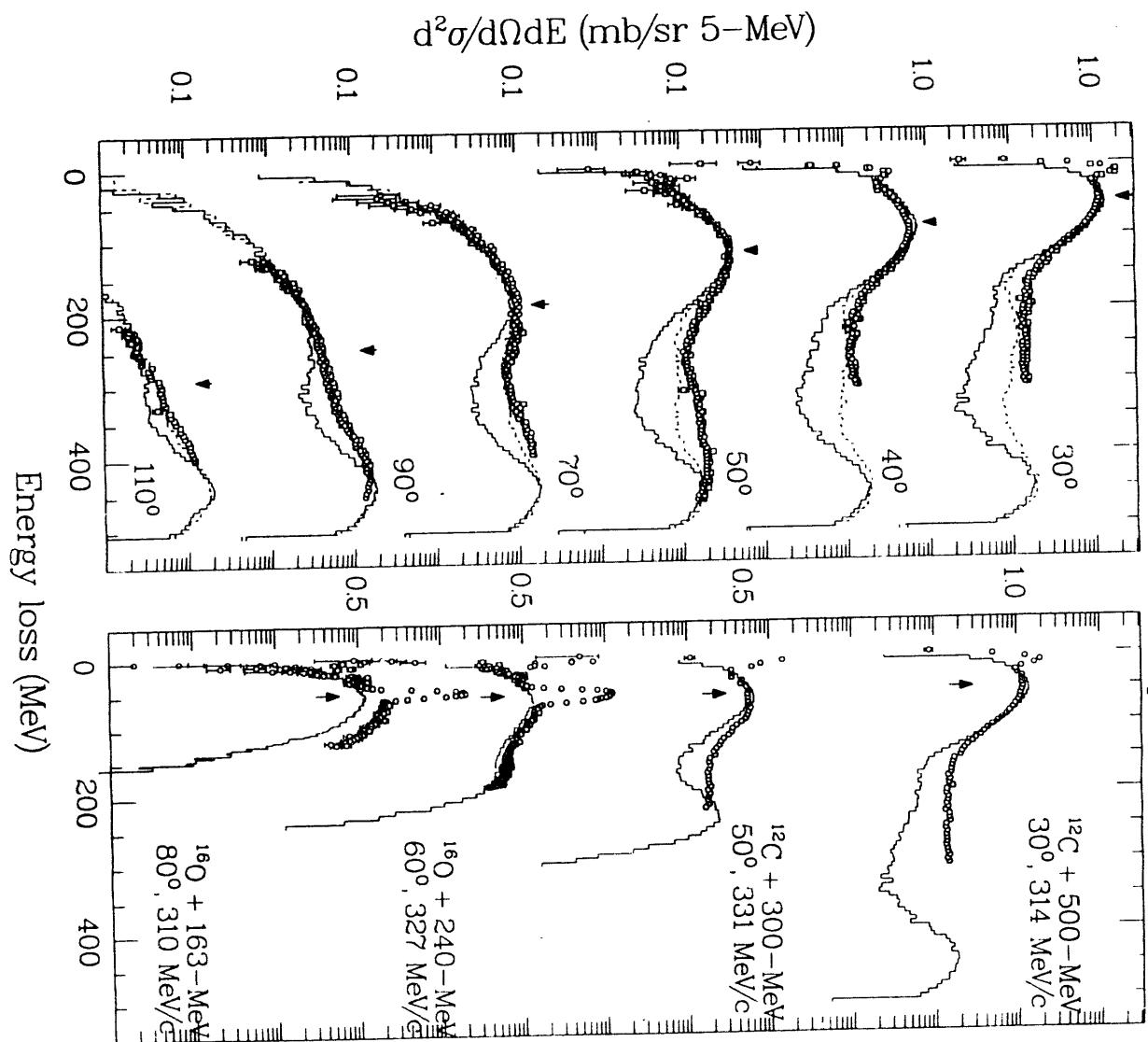
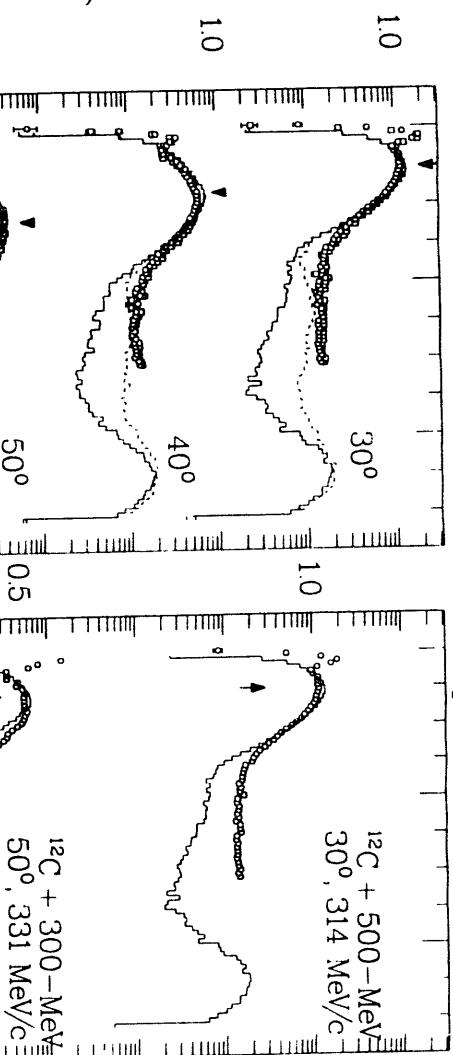



Figure 4
 (π, π') spectra with
 $Q_{\text{transfer}} = \sim 320$ MeV/c

**DATE
FILMED**

9/6/94

END

