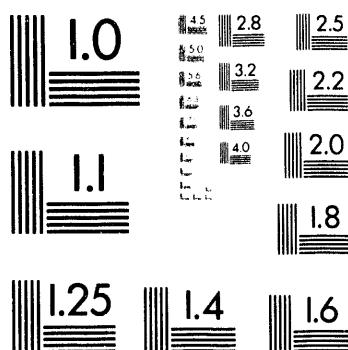


AIIM


Association for Information and Image Management

1100 Wayne Avenue, Suite 1100
Silver Spring, Maryland 20910
301/587-8202

Centimeter

Inches

MANUFACTURED TO AIIM STANDARDS
BY APPLIED IMAGE, INC.

1 of 1

DOCUMENT NO.

HW-59264

SERIES AND COPY NO.

DATE

February 16, 1959

GENERAL ELECTRIC

MANFORD - ATOMIC PRODUCTS OPERATION - RICHLAND, WASHINGTON

DECLASSIFIED

(CLASSIFICATION)

THIS DOCUMENT CONTAINS RESTRICTED DATA AS
DEFINED IN THE ATOMIC ENERGY ACT OF 1954
TO BE TRANSMITTED OR THE DISCLOSURE OF ITS
CONTENTS IN ANY MANNER TO AN UNAUTHORIZED
PERSON IS PROHIBITED.

FILE

PT-IP-158-D, SUPPLEMENT B
IRRADIATION OF ONE SWAGED UO₂ STAINLESS STEEL
CLAD FUEL ELEMENT IN A KE FRONT TO REAR TEST
HOLE

OTHER OFFICIAL CLASSIFIED INFORMATION

THIS MATERIAL CONTAINS INFORMATION AFFECTING
THE NATIONAL DEFENSE OF THE UNITED STATES
WITHIN THE MEANING OF THE ESPIONAGE LAWS.
TITLE 18, U. S. C., SECS. 793 AND 794, THE TRANS-
MISSION OR REVELATION OF WHICH IN ANY MANNER
TO AN UNAUTHORIZED PERSON IS PROHIBITED BY
LAW.

AUTHOR

R. K. Marshall

ISSUING FILE

THIS DOCUMENT MAY NOT BE LEFT UNATTENDED WHERE AN UNAUTHORIZED PERSON MAY HAVE ACCESS
TO IT. WHEN NOT IN USE, IT MUST BE STORED IN AN APPROVED LOCKED REPOSITORY WITHIN AN APPROVED
GUARDED AREA. WHILE IT IS IN YOUR POSSESSION AND UNLESS YOU HAVE OBTAINED A SIGNED RECEIPT FROM
A CLASSIFIED PERSON, IT IS YOUR RESPONSIBILITY TO KEEP IT AND ITS CONTENTS WITHIN THE LIMITS OF
THE PROJECT AND FROM AN UNAUTHORIZED PERSON. ITS TRANSMISSION, TO, AND STORAGE AT YOUR PLACE
OF RESIDENCE IS PROHIBITED. IT IS NOT TO BE COPIED. IF ADDITIONAL COPIES ARE REQUIRED,
OBTAIN THEM FROM THE RELATED ISSUING FILE. NO PERSONS HOLDING THIS DOCUMENT AS REQUESTED
TO SIGN IN THE SPACES PROVIDED BELOW.

ROUTE TO:	PAYROLL NO.	LOCATION	FILED ROUTE DATE	SIGNATURE AND DATE
C E Jones	2121	16-10	1-16-59	C E Jones 3-2-59
Ed. H. Pittman	6334	105 KE	3-3-59	Ed. H. Pittman 3-3-59
C E Jones	3			R M Marshall 3-3-59
D. P. Anderson	15017	105 KE		D. P. Anderson
17 Me. 0000	15472	105 KE		17 Me. 0000

DECLASSIFIED

~~DECLASSIFIED~~

HW- 59264

1. AEC-HOO, Attn: AT Gifford/HE Parker
2. AEC-HOO, Attn: AT Gifford/HE Parker
3. WG Albert/RW Bown
4. WH Clark/AG Blasewitz
5. CE Jones
6. OH Greager/RL Dickeman
7. RK Marshall
8. RE McGrath
9. JF Music
10. T Prudich/CA Priode
11. HG Spencer
12. P Thompson
13. EC Wood
14. 300 Files
15. Record Copy

This document classified by

W. K. Klarck

COPY 1 OF 1, SERIES MA

This document consists of
8 pages.

PR 469

REDACTED DATA
REDACTED INFORMATION

PT-IP-158-D, SUPPLEMENT B
IRRADIATION OF ONE SWAGED UO₂ STAINLESS STEEL CLAD FUEL ELEMENT
IN A KE FRONT-TO-REAR TEST HOLE

Classification Cancelled and Changed To

~~DECLASSIFIED~~

By Authority of CG-PR-2,

DS Lewis, 12-21-93.

HANFORD ATOMIC PRODUCTS OPERATION

By Jerry Maley, 4-21-94

RICHLAND, WASHINGTON

Verified By J. E. Saway 4-22-94

PRELIMINARY REPORT

"This report was prepared only for use within General Electric Company in the course of work under Atomic Energy Commission Contract W-31-109-Eng-52. Any views or opinions expressed in the report are those of the authors only."

LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission to the extent that such employee or contractor prepares, handles or distributes, or provides access to, any information pursuant to his employment or contract with the Commission.

~~DECLASSIFIED~~

MASTER

DECLASSIFIED

HW-59264

PT-IP-158-D, SUPPLEMENT-B

IRRADIATION OF ONE SWAGED UO₂ STAINLESS STEEL CLAD FUEL ELEMENT IN A KE FRONT-TO-REAR TEST HOLE

OBJECTIVE

The objective of this supplement is to authorize a change in the panellit trip range from 25-75 psi to 5-95 psi.

SUMMARY

The original production test authorized the irradiation of one, three-foot-long fuel element in test hole 3865 KE. Supplement A authorized the extension of the goal exposure from 1735 MWD/T to 5000 MWD/T.

The test hole facility consists of two concentric aluminum tubes which extend from the front face to the rear face of the reactor. The ID of the inner tube is 2-7/8 inch. Water from one crossheader supplies the annulus, water from another crossheader supplies the inner tube. The three-foot-long, .570 inch OD fuel element is centered in a 40-inch long aluminum holder which has an ID of 1.380 inch and an OD of 2.800 inch. The holder and fuel element are positioned in the inner tube downstream of the centerline of the graphite so that the fuel element generates a maximum specific power at one end of about 4.9 KW/FT. The average specific power generation is about 3.7 KW/Ft. During normal operation the flow through the inner tube is about 35 gpm with about 31 gpm through the holder and four gpm around it.

JUSTIFICATION

The panellit gage which monitors the flow to the inner tube fluctuates to such an extent during start-up that on two occasions the reactor was scrammed. During equilibrium operation the panellit gage reading remains stable. A possible explanation of this behavior is that during start-up aluminum spacers which are in the inner tube as part of the test charge chatter and cause variations in the water path through the tube. It is further surmised that at equilibrium operation the pressure drop across the column in the tube is sufficient to suppress the chattering.

An anchor charge was placed up stream but did not noticeably reduce the fluctuations of the panellit gage. It is concluded that extending the trip range to 5-95 psi will reduce the possibility of scramming without increasing any hazards to the reactor.

TECHNICAL BASIS

The present trip limits of 25-75 psi result in a reactor scram if the flow through the fuel element holder drops to a minimum of about 27 gpm. The 5-95 psi limits will allow the flow through the fuel element holder to drop to about 22 gpm before the reactor is scrammed. See Figure 1. Calculations predict that at this flow rate the surface temperature of the jacket will be 58 C above bulk water temperature. See Figure 2. It is concluded that such trip limits will not endanger the safety of the reactor.

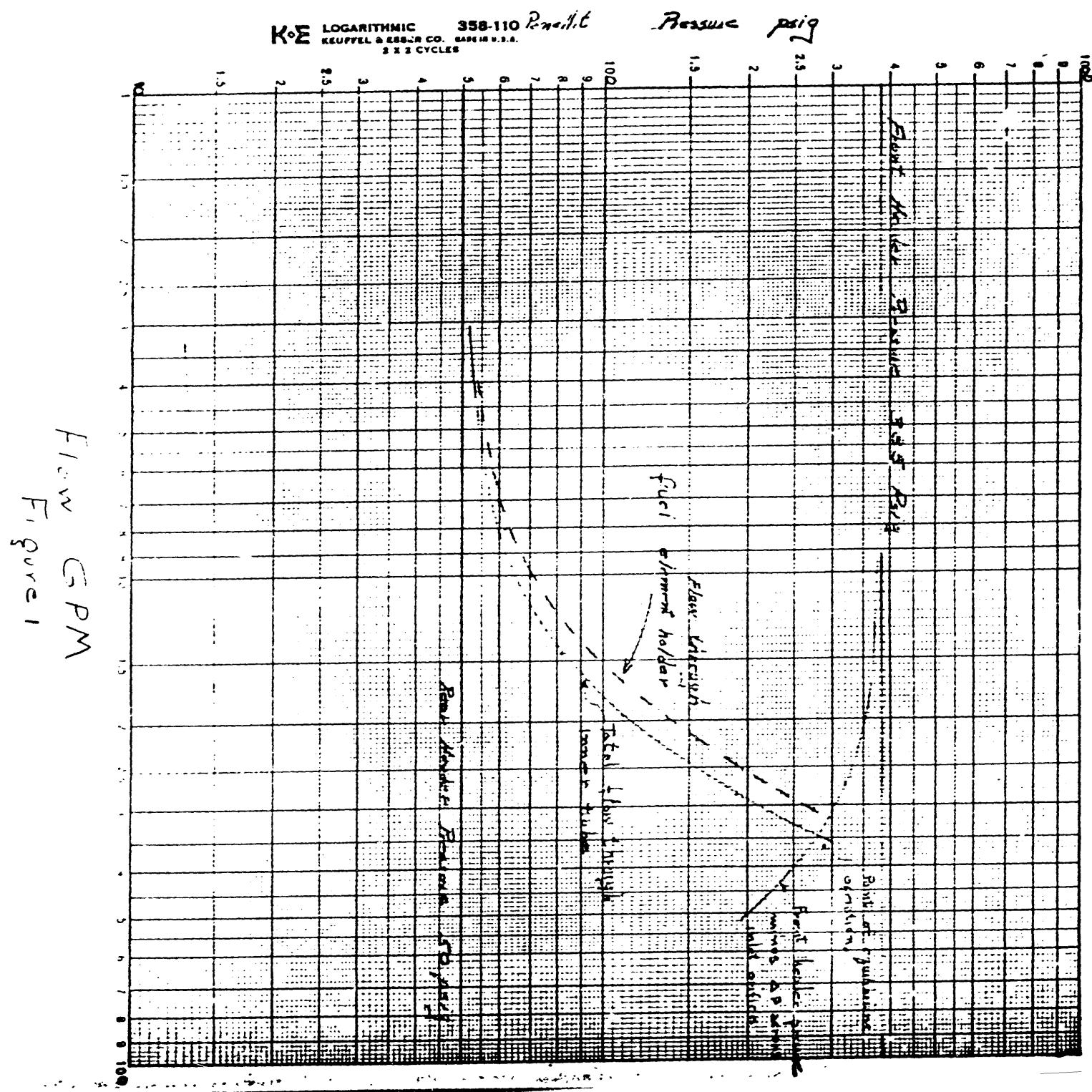
DECLASSIFIED

HW-59264

RESPONSIBILITY

ME Processing Operation will be responsible for the operational safety and production continuity of the reactor. R. K. Marshall and A. B. Blasewitz, Irradiation Testing Operation have the responsibility for the Research and Engineering Operation's interests.

R K Marshall

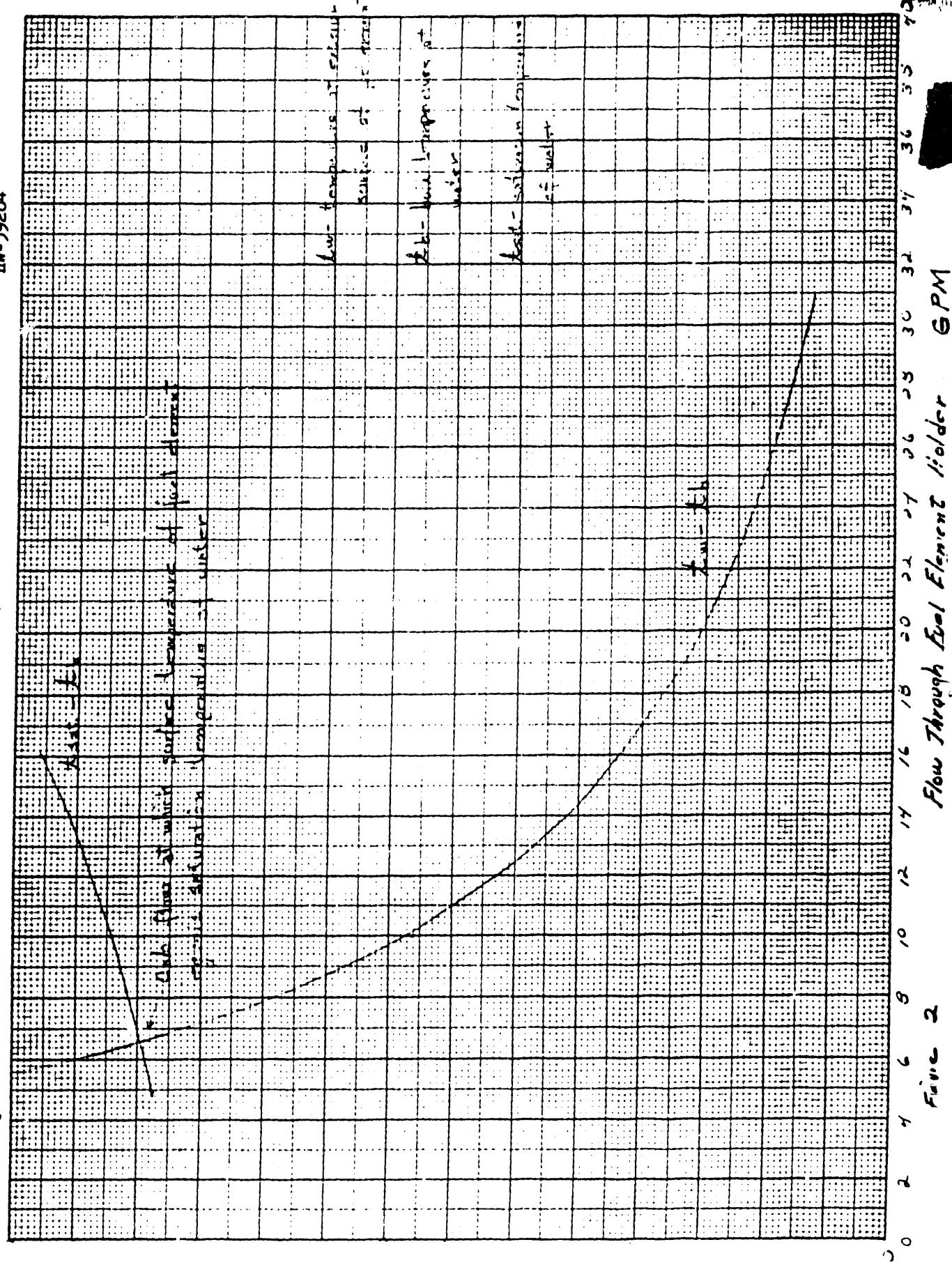

R. K. Marshall
Irradiation Testing Operation

RK Marshall:bmr

CLASSIFIED

1

11W-59264



K.E. 10 x 10 TO THE $\frac{1}{2}$ INCH 358-11
KURRUFER & SONS CO.
BIRMINGHAM, ENGLAND

DECLASSIFIED

५

卷之三

$\Delta T_C = 60^\circ C$ $R_1 R = 100\Omega$

DECLASSIFIED

HW-59264

APPENDIX

Calculations

Case considered: Flow reduction caused by restriction upstream of the fuel element.

DATA

1. Calculations based on maximum specific power of 4.9 KW/FT. (16,700 B/hrft) which occurs at one end of the fuel element.
2. Maximum heat flux $1.12 \times 10^5 \text{ B/hrft}^2$.
3. Average power generated 3.7 KW/FT.
4. Inlet water temperature assumed to be 20 °C.
5. ID of flow passage in which fuel element is centered 1.380 inch.
6. OD of stainless steel clad fuel element 0.570 inch.
7. Saturation temperatures : a) 151 °C at 55 psig
b) 156 °C at 65 psig
c) 175 °C at 115 psig
8. Cross sectional area of flow path through fuel element holder .00863 ft².
9. Area of heat transfer/foot of fuel element $0.149 \frac{\text{ft}^2}{\text{ft}}$
10. Film coefficient.
 - a. $\frac{h D_e}{K} = .023 \left[\frac{D_e G}{V} \right]^{.8} \left[\frac{C_p}{K} \right]^{.4}$
 - b. $h = K_t \frac{V}{D_e \cdot 2} \text{ B/hrft}^2 \text{ F}$
 - c. V in ft/sec
 - d. $D_e \text{ in ft} = \frac{[D_2^2 - D_1^2]}{(D_2 + D_1)} = D_2 - D_1$ $D_2 = \text{OD}$
 $D_1 = \text{ID}$
 - e. $D_e \cdot 2 = \frac{1.380 - .570}{12} = [0.0675] \cdot 2 = 0.584$
 - f. K_t from Fuel Element Technical Manual HW-40000
Figure III-2. $K_t @ 20^\circ\text{C} = 160$
11. $\Delta T_{wf} = \text{Drop across water film} \quad q' = hA \Delta T_{wf}$

DECLASSIFIED

HW-59264

12. ΔT_{fe} = Rise in water temperature $q = WC_p \Delta T_{fe}$

Results - Plotted as Figure 2

Flow through Fuel Element Holder gpm	Vel. through Fuel Element holder Ft/sec	V^8	$\frac{h}{B \cdot Hr ft^2}$	ΔT_{wf} C	ΔT_{fe} C	Tsat- Tbulk C
30	7.76	5.15	1410	44	1.5	
20	5.18	3.73	1020	61	2.1	174
10	2.59	2.14	587	106	4.2	154
5	1.29	1.23	337	184	8.4	147

Reynolds No. at 5 gpm:

$$NRe = \frac{D \cdot G}{\eta} = \frac{(.0675)(5)(498)}{2.71 \cdot .00863} = 7200$$

DECLASSIFIED

HW-59264

APPROVALS:

W.H.Clark

W. H. Clark, Acting Manager
Irradiation Testing Operation

R.L.Dickeman

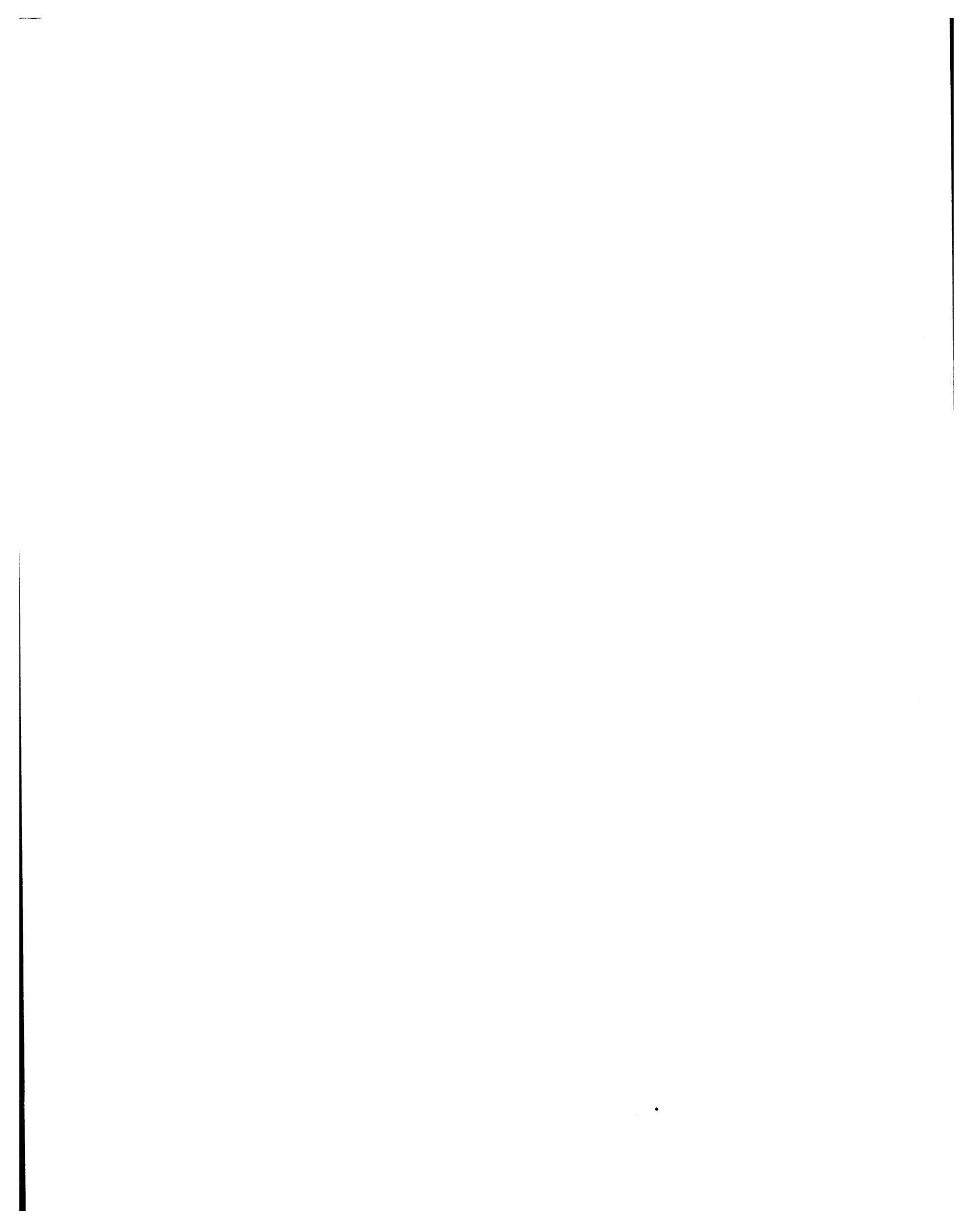
R. L. Dickeman, Manager
Process & Reactor Development

O.H.Greager

O. H. Greager, Manager
Research & Engineering Operation

J.F.Music by R.S.Bell

J. F. Music, Manager
Process Technology Operation


R.S.Bell

R. S. Bell, Manager
KE & KW REACTORS OPERATION

DATE
FILMED

9/7/94

END

