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ABSTRACT mental object cem be obtained using the optimization

We have described the implementation of a graphi- tool. Maxhnum a posteriori (MAP) estimates can also
cal programming tool in the object-oriented language, be obtained, if prior information is used.
SmaUtalk-80, that allows a user to construct a radio-

graphic measurement model. The measurement model 2. THE OO PARADIGM
can be used to generate the measurements predicted by
a given parameterized model of an experimental object. The OO paradigm is founded on the concept of an ob.
In this paper, we describe extensions to the graphical jeer. Objects have responsibilities, or methods, and

programming tool that allow it to be used to perform data, or attributes. To talk about objects, either to
Bayesian inference on very large sets of object psram- one another in software analysis or design, or to the
eters, given real experimental data, by optimizing the computer in a programming session, is natural and in-
likelihood or posterior probability of the parameters, tuitive, since we think in terms of objects. Attributes
given the real data. are encapsulated by methods so that internal data stor-

age, accessing, and manipulation, is not important to

1. INTRODUCTION the "outside world', which can only obtain information
about the attributes by meua_ng the object to per-

The object-oriented (OO) paradigm h_ recently at- form some method. Encapsulation and messaging f_.
ciUtate the construction of flexible, essy-to-understandtracted attention because of its promise for code re-

use and ease of maint_inence, in addition to the nat- software modules. CIauu are templates of objects, and

ural and intuitive language it promotes for discttssion are contained in class hierarchies, wherein sebclasaes
of software [3]. We have built and described an OO inherit methods and attributes from auperc/a_es, so

that code is re-used and sensibly organized. Finally,graphical programming tool [1] that allows a user to
connect icons, which represent data transforms, on a type-casting is eliminated with the use of dynamic bind.
canvas in order to define a data-flow diagram that acts /mS.

We are using Smalltalk-80 and the VisuaiWorks pro-on a user-defined object parameterization. In this pa-
per, we describe an extension of the graphical program- gramming environment from ParcPlace Systems in con-
ruing tool that allows the user to interactively optimize junction with C, Fortran, and X-W'mdows. Smalltalk-
a 1D functional of the output of the data-flow diagram 80 is a pure object-oriented programming language,
with respect to object parameters. We discuss the ad- which truly encourages object-oriented thinking. How-

vantages of programming the optimization tool in an ever, its poor performance in executing loops and nu-
OO language, merical computations has forced us to use C and For-

We believe that the optimization tool will be useful tran for numerically intensive computations and X-Windows
to scientists and engineers for orchestrating Bayesian for loop-intensive graphics.
inference and hypothesis testing of geometric object pa-
rameters given real radiographic data [2]. The general 3. AN O0 GRAPHICAL PROGRAMMING
problem for which these tools are intended is the de- TOOL
termination of an object of unknown shape and distri-
bution, described by a user-defined parameterization, The graphical programming tool operates as follows
given limited data generated by a well-characterized, (refer to Fig. 1). The user is presented with a can-
user-defined measurement system. The graphical pro- vas, on which appear buttons that allow the user to

gramming tool, in conjunction with a likelihood func- add items to, or delete items from, the canvas. The
tion, allows the user to define a complete model of a user can add or delete Transforu and Connections.
measurement system. The maximum likelihood (ML) Transforms map input Data to outpu_ Data and are
estimate of the parameters that describe the experi- represented on the screen by an icon. The user specifies



the data-flow by connecting one Transform to another methods.
using a Connection, which is represented on the screen

as a set of connected line segments. 4.1. The reverse adJoint method
The Transforms are _living" objects, and the user

can interact with them in several ways. He can see We obtain the gradient of the log likelihood with re-

a description of a Transform and change the param- spect to object model parameters (_) using a reverse
eters that define it. The user can also message the adjoint technique, which implements the chain-rule for
Transform to display its output. This message is for- differentiation from back to front [4].
warded to the Transform's output attribute, which is For example, let us define a simple measurement
messaged to display itself. The fact that the Transform model (refer to Fig. 1) wherein d(z) denotes the data
objects are alive distinguishes this graphical program- predicted by taking line integrals of a Unlfor_rid2D
ruing tool from one that allows a user to construct and object model, z, using transform L, to produce path-
visualize a script that contains a sequence of actions to lengths, 1/, which are then pointwise exponentiated to
be executed in a certain order, produce attenuations, z, and convolved with a point

We have written classes for several categories of spread function represented by the matrix H to finally
Transforms, including MultiInpu_SingleOutput (Add, produce d(z). Then
Multiply, Subtract), $inglslnputSingls0ul:put
(Convolution, Exponential, Log, Lost0, $qltt, Sin, d(z)- H(E(L(z))) (I)
Cos, Linslntsgral, ParallslLinslntegral) and no-
input single-output (Parauoter and its subclasses), is an approximation to a true radiographic measure-

Parameter and its subclasses define the object model ment system that can be easily built using the graphi-
that is the input to the measurement model defined by cal programming tool.
the data-flow diagram. For example, a If our real data are d, and we assmne that they
Geomtric0bjectNodel has a list0fCoe_)onents that are produced by adding white gaussian noise to the
ndght contain a Polygon2D, a Bszisr2D, a Grid2D, and data predicted by the true object ZTnvZ, then _ is just
a Unifor_rid2D. the norm of d - d, and the derivative of _ w.r.t, d is

just d* - 2(d- d). The derivative of _ w.r.t, z is
just z* -- HTd *, that is, the adjoint operator for the

4. AN OO OPTIMIZER Convolution acting on the the Data passed back to it
by the Likelihood. Shnilarly, the derivative of _bw.r.t.

Let the output o.fthe meam_rement system model spec. I/is just I/* -- - exp-U .z* -- E_uz*, where • is point-
ified by the data-flow diagram be predicted data, d(0), wise multiplication and I/is the current input to the
where 0 is a set of parameters that defines the object Exponential. Finally, the derivative of _ w.r.t, the
model. For example, 0 --- (0ij) might be the set of object parameters z can be obtained by _backproject-
density values in a Unifor_rid2D of fixed size. If ing" the adjoint Data I/* to produce x* -- LTM*.
the user has data, d, that are generated by a real men- Thus, the derivative of _ w.r.t, z can be written:
surement system that corresponds well to the measure-

ment system model, plus some additive noise, n, with V _ = Lr(ET(HT(2( d- d)))) (2)
probability distribution PN(n), then P,_(d-d(O)) is a

1D functional on the output of the data-flow dia_am, This equation suggests a _r_rse-adjoint" implemen-
called the likelihood function. Optimizing Plv(d-d(O)) tation. Each Transform must know how to calculate

over 0 produces the ML estimate of 0 given the data, the derivative of its outputs w.r.t, its inputs. These are

d. If Po(O) is a prior probability distribution over 0, the _sensitivity matrices" L T, E_, If "r, which may well
then _(0) - log[PN(d-_(O))].log[Po(O)] is a 1D func- depend on the current input state of the Transform.
tional called the log posterior. Maximizing _(0) over Rather than calculating the sensitivity matrices explic-
0 produces the MAP estimate of 0, given the data, d. itly and then Imving them operate on the adjoint Data
Thus, the capability for optimizing 1D functionais of set passed from the upstream Transform, we write ad-
data-flow diagrams includes the capability for solving joint operator codes that automatically process the ad-
Bayesian inference problems, joint Data set to produce a new adjoint Data set with-

We have extended the graphical programming tool out calculating the sensitivity matrices explicitly. So,
to include Gaussian likelihood functions and the ability for example, we don't explicitly calculate _, which is
to optimize them with respect to object-model param- diagonal but rather use the adjoint Data z* to produce

eters using conjugate gradient (for unconstrained prob- the adjoint Data y* - -exp-Y.z* - ET(y)z *, which
lems) and gradient descent (for constrained problems) only requires a vector multiply.



4.2. Extending the class hierarchy of the fundamental vector space operations (addition,
multiplication by scalar, etc.). The encapsulation andExtending the responsibility of Transforms to include
polymorphism provided by the Parameters allows us to

an associated adjoint gradient operation is easily acco. concentrate on building and adapting robust, abstract,
modated in our OO programming environment. The optimization algorithms that can be widely employed.adjoint method takes Data that has the structure of a

Transform output and maps it into Data that has the
, structure of a Transform input. Dual to the data-flow 4.3. Capabilities

mode of operation, where outputs of the data-flow di- The user specifies that a Parameter is to be optimized
abram query previous Transforms to genorateOutput by connecting it to the Optimizer. The user can spec-
until eventually Parameters are encountered and just ify an optimization strategy (conjugate gradient or gra-
return themselves, in the gradient-flow mode of opera- dient descent), tolerances, and maximum number of
tion Parameters query forward Transforms to iterations for the global search and each line minimiza-
generateAdJolnt0utput until eventually a Likelihood tion, sad gets feedback on the current step size, num-
is encountered and returns the gradient of itself with re- ber of global iterations, and the number of likelihood
spect to the present state of its input. Thus, the gradi- evalutions thus far.

ents flow backwards, or in reverse, until each Parameter At any point during the optimization, the user can
eventually returns the gradient of the Likelihood with interrupt the Optimizer so that he can see the present
respect to itself, state of the solution (and Data predicted by the present

Connections are also modified in order to propogate solution) by using the graphical programming tool, which
Data in both directions. When a Connection is told to contains icons that represent the "live" Data being op-
getData it gets the Data from the previous Transform timized. The present solution can be modified inter-
and sends it to the one upstream requesting it for input, actively using modelling tools that are called by inter-
When a Connection is told to getAdJointVata, it gets acting with the icon that represents the Parawter of
the adJolntData from the Transform upstream and interest. Transforms can also be changed at any time.
sends it to the Transform downstream, requesting it The log likelihood and lik-J;_hood can be plotted as a
as an adJointlnput, function of step along the current gradient direction,

Note that, in general, computing the adjoint gra- and the effect of stepping along the gradient from the
dient operator requires that the Transform know the present solution for wurious step sizes can be visualized
current state of its input, since the derivative may well easily. These capabilities are very useful for under-
depend on the input (the F.xponentlal, e.g.). Thus, standing how the optimization is working, as well as
it is natural to bundle the Transform with its current for guiding the Optimizer toward a solution.
state (stored in its input) as we have done. Note that a "global" derivative of _ w.r.t, object

Parameters are given extended responsibilities in parsmetm is obtained by "local" message-passing and
order to accomodate the existing opthnization strate- methods operating on encapsulated data. For example,
gles. In particular, all Parameters must be responsi- one can change the fundamental representation of the

ble for add'ing themselves to and subtract'ing them- object described above by having a Polygon21) parame.
selves from any instance of the same Class. Parsmstors terization 0 that feeds into a ConvortToUniform0rid2D

also must be able to multtplyByScalar:a.qcalar, find Transform to produce a Uniformt]rtd2D z. One can
their norm and determine their use the previous graphical program as it is, and just
innerProductWith:anObJect for an0bJect that is an insert the new Transform "before" z. Then z', the
instance of the same class. Furthermore, we have made derivative of _bw.r.t, z, can be backpropogated to pro-
some Paramters capsble of projecting themselves onto duce 0", the derivative of _ w.r.t. 0. The ability to
certain constraint sets, namely upper and lower bounds, cascade models of the experimental object suggests a

Since addition, subtraction, multiplication by scalar, "level of detail" approach to optimization (called multi-
norm, inner product, and constraint satisfaction are all scale if the successfully-refined parameterizations are
the responsibility of Parameters, the Optimizer logic UniformGrid2Ds with smaller pixels and called multi-
can be applied to very different types of optimizations grid if the parsmeterizations are successfully-refined ge.
problems, e.g. one or two-dimensional de.convolution, ometrical descriptions).
tomographic inversion, inversion from noisy nonlinear Finally, the Optimizer can be used to probe the
point functions, etc. The logic in the Optimizer can confidence that the user should have in the final solu-
work for any vector space, regardless of its detailed tion. The user can select two states of the Parameter
structure. The detailed structure of the Parameters set, say Pl and P_, and ask the Optimizer to provide a
being optimized is taken care of in the implementation one-dimensional plot of the likelihood as a function of



the new Para_t,r set, oPl + (1 -a)P2. For example, 6. REFERENCES
one could perturb a Polygon2D solution, Pl, by mov-
ing a boundary vertex to a new location to produce ,02. [I] Cunningham, G.S., Hanson, K.M., Jennings, Jr.
Plotting the likelihood as a function of opt 4- (I -a)P2 G.R., Wolf, D.R., "An object.oriented implemen-
would then reveal the confidence one should have in the tation of a graphical programming system,* to be

position of that boundary vertex - a broad likelihood published in Proc. SPIE, vol. 2163, 1994.
means that there are many positions of the boundary
point that are equally likely, and so the position of that [2] Hanson, K.M., _Bayesian reconstruction based on

flexible prior models," J. Opt. Soc. Am. A, vol. 10,
vertex should not be trusted. 1993, pp. 997-1004.

5. SUMMARY [3] Taylor, D. A., Object.Oriented Technolo_: A
Manacjer'a Guide, Addison-Wesley, 1990.

The advantages of an OO language are enormous in
the context of graphical programming, graphical ob- [4] Thacker, W.C., "Automatic differentiation from
ject modeling, sad optimization. Not only did the OO an oceanographer's perspective," Automatic Di].
paradigm make extending the graphical programming ferenti_ion of Algorithms: Theory, lmplementa.
tool to include optimization easier than we expected, tion, and Application, ed. A. Griewank and G.
it also stimulated our creativity. The potential exten- Corllss, SIAM, 1991, 360 pp.
sions we envision to interactive, graphical optimization
using the foundation we have discussed in this paper
are very exciting.

Our immediate future plans include extending the
2D radiographic measurement model to 3D polyhedra
and volumetric grids. We also plan to incorporate
other measurement models, such as rs_e data (that
measures exterior surface location) and surface velocity
data. Ultimately, we envision 3D time-evolving object
and measurement models that will be used to fuse data

from a variety of experimental diagnostics.
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