A &
Y £ \°
:\«\W\ S N\ . ///.\ A“,As

o, 2 ¥ o 2 P
%\\ % W//\\ o ///fv\ A\ \N///w%»
Y. M & ¢®

& kS &
m.mm “.w, Mm_._E Wl“uﬂnn_____ Nm_____ .onIqM_____ Mlu% w m..
i:t, S EF T g
M= it o | Fasassms I e A
= i S — 5 5
AN -
\\ D
0///%\.//V\ h/// m ©

S g 0 4 £ S

3> \mvvv X ,m»///// S =

Conf-qu 1) 1045

-Oriented Optimization Systems

First IEEE International Conference on Image Processing

3]
Lo
1 [}
4 -
Ao i
- mun .
- 1
88 .7
K= 0
o) »~ 00 A
s a8 &8
o QO =
g 00w
o g aadd
[3) B d YO
v omH =
M . . . (]
o n =M
g v oA
. =2 .o.
< = e 5
~ S
L £
= E
o <]
' »

9 *joa3a) KouoBe Aue 10 JUSWUIIACH SRS PRALIUN)
oY) Jo 250Y) 1093l IO NEIS A[LIESS0OU J0U Op UWISY PIssaidxs sioyine jo suowndo pue
sMaA S 'Jooroqy KousSe AUe IO JUSWUIOACH SIILIS PAIU[) Y3 Aq Fuwoaej lo ‘uonepudIw

. W01 “JUSWLSIOPUS sH Adwi IO IMNSUCS A[LIESSIOIU 10U S0P ISIMIFYI0 JO ‘IIMjoBjnuUBUI
108 ‘YIRWIOpE) ‘OWey 9pEl} AQ 901A135 10 ‘s53001d ‘onpoid [RIINWWICO J1j10ods Aue 0] UIRIY U
U -39J9Yy 'SIgBu poumo Ajdieaud a8uLijul J0U pInOm Ism S 1B sjuasaidal 1o ‘pasoposip ssaooad
M 10 ‘ponpoad ‘smieredde ‘voneuniojul AUe jO SSITINJosN IO ‘ssouae|dwos ‘Aaeandoe ayy 10§ Apiq

-1suodsa1 Jo Anpiqer] eS| Aue sowmsse Jo ‘parjdun Jo ss21dx> ‘AueLIem Kue s3yEW ‘s3ofojdurd

noq) Jo Aue Jou ‘joaroyl Aouafe Aue JOU JUSWLISACKH SIIBIS PANU[) Y1 YN JUIWUIIA0G
saje1S paNu) A Jo Kouade ue Aq pasosuods JIOm JO JUNOOR UE SE posedaxd sem wodas sIqY

ATNIVIOSIA

NATIONAL LABORATORY

Los Alamos

U.S. Government retains & nonexciusive, royalty-free license 10

pubkisher recognizes that the ns
for U.S. Govemment purposes. The Los Alamos National Laboratory

low others to do 80,

opportunity employer, is operated by the University of California for the U.S. Department of Energy

under contract W-7405-ENG-36. By acceptance of this articie, the

Los Alamos National Laboratory, an affirmative action/equal
mummmmdmmm,omu

MMNMMMM&MM«MUWNWNMU.S.Dopuﬂmdeww.

Form No. 836 RS
ST 2629 10/91

GISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

AN OBJECT-ORIENTED OPTIMIZATION SYSTEMS
G. S. Cunningham, K. M. Hanson, G. R. Jennings, Jr., and D. R. Wolf

Los Alamos National Laboratory, MS P940
Los Alamos, New Mexico 87545 USA
cunning@m4c3po.lanl.gov

ABSTRACT

We have described the implementation of a graphi-
cal programming tool in the object-oriented language,
Smalltalk-80, that allows a user to construct a radio-
graphic measurement model. The measurement model
"can be used to generate the measurements predicted by
a given parameterized model of an experimental object.
In this paper, we describe extensions to the graphical
programming tool that allow it to be used to perform
Bayesian inference on very large sets of object param-
eters, given real experimental data, by optimizing the
likelihood or posterior probability of the parameters,
given the real data.

1. INTRODUCTION

The object-oriented (OO) paradigm has recently at-
tracted attention because of its promise for code re-
use and ease of maintainence, in addition to the nat-
ural and intuitive language it promotes for discussion
of software [3]. We have built and described an OO
graphical programming tool [1] that allows a user to
connect icons, which represent data transforms, on a
canvas in order to define a data-flow diagram that acts
on a user-defined object parameterization. In this pa-
per, we describe an extension of the graphical program-
ming tool that allows the user to interactively optimize
a 1D functional of the output of the data-flow diagram
with respect to object parameters. We discuss the ad-
vantages of programming the optimization tool in an
00 language.

We believe that the optimization tool will be useful
to scientists and engineers for orchestrating Bayesian
inference and hypothesis testing of geometric object pa-
rameters given real radiographic data [2]. The general
problem for which these tools are intended is the de-
termination of an object of unknown shape and distri-
bution, described by a user-defined parameterization,
given limited data generated by a well-characterized,
user-defined measurement system. The graphical pro-
gramming tool, in conjunction with a likelihood func-
tion, allows the user to define a complete model of a
measurement system. The maximum likelihood (ML)
estima.e of the parameters that describe the experi-

mental object can be obtained using the optimization
tool. Maximum a posteriori (MAP) estimates can also
be cbtained, if prior information is used.

2. THE OO PARADIGM

The OO paradigm is founded on the concept of an ob-
ject. Objects have responsibilities, or methods, and
data, or attributes. To talk about objects, either to
one another in software analysis or design, or to the
computer in a programming session, is natural and in-
tuitive, since we think in terms of objects. Attributes
are encapsulated by methods so that internal data stor-
age, accessing, and manipulation, is not important to
the “outside world”, which can only obtain information
about the attributes by messaging the object to per-
form some method. Encapsulation and messaging fa-
cilitate the construction of flexible, easy-to-understand
software modules. Classes are templates of objects, and
are contained in class hierarchies, wherein subclasses
inherit methods and attributes from superclasses, so
that code is re-used and sensibly organized. Finally,
type-casting is eliminated with the use of dynamic bind-
ing.

We are using Smalltalk-80 and the VisualWorks pro-
gramming environment from ParcPlace Systems in con-
junction with C, Fortran, and X-Windows. Smalltalk-
80 is a pure object-oriented programming language,
which truly encourages object-oriented thinking. How-
ever, its poor performance in executing loops and nu-
merical computations has forced us to use C and For-

tran for numerically intensive computations and X-Windows

for loop-intensive graphics.

3. AN OO GRAPHICAL PROGRAMMING
TOOL

The graphical programming tool operates as follows
(vefer to Fig. 1). The user is presented with a can-
vas, on which appear buttons that allow the user to
add items to, or delete items frem, the canvas. The
user can add or delete Transforms and Connections.
Transforms map input Data to output Data and are
represented on the screen by an icon. The user specifies

the data-flow by connecting one Transform to another
using a Connection, which is represented on the screen
as a set of connected line segments.

The Transforms are “living” objects, and the user
can interact with them in several ways. He can see
a description of a Transform and change the param-
eters that define it. The user can also message the
Transform to display its output. This message is for-
warded to the Transform’s output attribute, which is
messaged to display itself. The fact that the Transform
objects are alive distinguishes this graphical program-
ming tool from one that allows a user to construct and
visualize a script that contains a sequence of actions to
be executed in a certain order.

We have written classes for several categories of
Transforms, including MultiInputSingleOutput (Add,
Multiply, Subtract), SingleInputSingleCutput
(Convolution, Exponential, Log, Log10, SqRt, Sin,
Cos, Linelntegral, ParallelLineIntegral) and no-
input single-output (Parameter and its subclasses).

Parameter and its subclasses define the object model
that is the input to the measurement mode! defined by
the data-flow diagram. For example, a
GeometricObjectModel has a 1ist0fComponents that
might contain a Polygon2D, a Bezier2D, a Grid2D, and
a UniformGrid2D.

4. AN OO OPTIMIZER

Let the output of the measurement system model spec-
ified by the data-flow diagram be predicted data, d(8),
where @ is a set of parameters that defines the object
model. For example, 8 = {6;;} might be the set of
density values in a UniformGrid2D of fixed size. If
the user has data, d, that are generated by a real mea-
surement system that corresponds well to the measure-
ment system model, plus some additive noise, n, with
probability distribution Py (n), then Py(d — d(6)) is a
1D functional on the output of the data-flow diagram,
called the likelihood function. Optimizing Py (d—d(8))
over 8 produces the ML estimate of @ given the data,
d. If Pg(0) is a prior probability distribution over 6,
then ¢(6) = log|Pn(d—d(0))]+log|{Pe(8)] is a 1D func-
tional called the log posterior. Maximizing ¢(8) over
@ produces the MAP estimate of 4, given the data, d.
Thus, the capability for optimizing 1D functionals of
data-flow diagrams includes the capability for solving
Bayesian inference problems.

We have extended the graphical programming tool
to include Gaussian likelihood functions and the ability
to optimize them with respect to object-model param-
eters using conjugate gradient (for unconstrained prob-
lems) and gradient descent (for constrained problems)

methods.

4.1. The reverse adjoint method

We obtain the gradient of the log likelihood with re-
spect to object model parameters (3}) using a reverse
adjoint technique, which implements the chain-rule for
differentiation from back to front [4].

For example, let us define a simple measurement
model (refer to Fig. 1) wherein d(z) denotes the data
predicted by taking line integrals of a UniformGrid2D
object model, z, using transform L, to produce path-
lengths, y, which are then pointwise exponentiated to
produce attenuations, z, and convolved with a point
spread function represented by the matrix H to finally
produce d(z). Then

d(z) = H(E(L(2))) 1)

is an approximation to a true radiographic measure-
ment system that can be easily built using the graphi-
cal programming tool.

If our real data are d, and we assume that they
are produced by adding white gaussian noise to the
data predxcted by the true object zrpye, then ¢ is just
the norm ofd d, and the derivative of ¢ w.r.t. d is
just d* = 2(d — d). The derivative of ¢ w.r.t. zis
just z* = d*, that is, the adjoint operator for the
Convolution acting on the the Data passed back to it
by the Likelihood. Similarly, the derivative of ¢ w.r.t.
y is just y* = —exp~?.z* = ET2*, where - is point-
wise multiplication and y is the current input to the
Exponential. Finally, the derivative of ¢ w.r.t. the
object parameters z can be obtained by “backproject-
ing” the adjoint Data y* to produce z* = LTy*

Thus, the derivative of ¢ w.r.t. z can be written:

v ¢ = LT(ET(HT(2(d- d)))) ()

This equation suggests a “reverse-adjoint” implemen-
tation. Each Transform must know how to calculate
the derivative of its outputs w.r.t. its inputs. These are
the “sensitivity matrices” LT, ET, HT, which may well
depend on the current input state of the Transform.
Rather than calculating the sensitivity matrices explic-
itly and then having them operate on the adjoint Data
set passed from the upstream Transform, we write ad-
joint operator codes that automatically process the ad-
joint Data set to produce a new adjoint Data set with-
out calculating the sensitivity matrices explicitly. So,

for example, we don’t explicitly calculate ET, which is
diagonal but rather use the adjoint Data z* to produce
the adjoint Data y* = —exp~¥.z* = ET(y)z*, which
only requires a vector multiply.

4.2. Extending the class hierarchy

Extending the responsibility of Transforms to include
an associated adjoint gradient operation is easily acco-
modated in our OO programming environment. The
adjoint method takes Data that has the structure of a
Transform output and maps it into Data that has the
structure of a Transform input. Dual to the data-flow
mode of operation, where outputs of the data-flow di-
agram query previous Transforms to generateQutput
until eventually Parameters are encountered and just
return themselves, in the gradient-flow mode of opera-
tion Parameters query forward Transforms to
generateAdjointOutput until eventually a Likelihood
is encountered and returns the gradient of itself with re-
spect to the present state of its input. Thus, the gradi-
ents flow backwards, or in reverse, until each Parameter
eventually returns the gradient of the Likelihood with
respect to itself.

Connections are also modified in order to propogate
Data in both directions. When a Connection is told to
getData it gets the Data from the previous Transforz
and sends it to the one upstream requesting it for input.
When a Connection is told to getAdjointData, it gets
the adjointData from the Transform upstream and
sends it to the Transform downstream, requesting it
as an adjointInput.

Note that, in general, computing the adjoint gra-
dient operator requires that the Transform know the
current state of its input, since the derivative may well
depend on the input (the Exponential, e.g.). Thus,
it is natural to bundle the Transform with its current
state (stored in its input) as we have done.

Parameters are given extended responsibilities in
order to accomodate the existing optimization strate-
gies. In particular, all Parameters must be responsi-
ble for add’ing themselves to and subtract’ing them-
selves from any instance of the same Class. Parameters
also must be able to multiplyByScalar:aScalar, find
their norm and determine their
innerProductWith:anObject for anObject that is an
instance of the same class. Furthermore, we have made
some Parameters capable of projecting themselves onto
certain constraint sets, namely upper and lower bounds.

Since addition, subtraction, multiplication by scalar,
norm, inner product, and constraint satisfaction are all
the responsibility of Parameters, the Optimizer logic
can be applied to very different types of optimizations
problems, e.g. one or two-dimensional de-convolution,
tomographic inversion, inversion from noisy nonlinear
point functions, etc. The logic in the Optimizer can
work for any vector space, regardless of its detailed
structure. The detailed structure of the Parameters
being optimized is taken care of in the implementation

of the fundamental vector space operations (addition,
multiplication by scalar, etc.). The encapsulation and
polymorphism provided by the Parameters allows us to
concentrate on building and adapting robust, abstract,
optimization algorithms that can be widely employed.

4.3. Capabilities

The user specifies that a Parameter is to be optimized
by connecting it to the Optimizer. The user can spec-
ify an optimization strategy (conjugate gradient or gra-
dient descent), tolerances, and maximum number of
iterations for the global search and each line minimiza-
tion, and gets feedback on the current step size, num-
ber of global iterations, and the number of likelihood
evalutions thus far.

At any point during the optimization, the user can
interrupt the Optimizer so that he can see the present
state of the solution (and Data predicted by the present
solution) by using the graphical programming tool, which
contains icons that represent the “live” Data being op-
timized. The present solution can be modified inter-
actively using modelling tools that are called by inter-
acting with the icon that represents the Parameter of
interest. Transforms can also be changed at any time.
The log likelihood and likslihcod can be plotted as a
function of step along the current gradient direction,
and the effect of stepping along the gradient from the
present solution for various step sizes can be visualized
easily. These capabilities are very useful for under-
standing how the optimization is working, as well as
for guiding the Optimizer toward a solution.

Note that a “global” derivative of ¢ w.r.t. object
parameters is obtained by “local” message-passing and
methods operating on encapsulated data. For example,
one can change the fundamental representation of the
object described above by having a Polygon2D parame-
terization 6 that feeds into a ConvertToUniformGrid2D
Transform to produce a UniformGrid2D z. One can
use the previous graphical program as it is, and just
insert the new Transform “before” z. Then z*, the
derivative of ¢ w.r.t. z, can be backpropogated to pro-
duce 6°, the derivative of ¢ w.r.t. 8. The ability to
cascade models of the experimental object suggests a
“level of detail” approach to optimization (called multi-
scale if the successfully-refined parameterizations are
UniformGrid2Ds with smaller pixels and called multi-
grid if the parameterizations are successfully-refined ge-
ometrical descriptions).

Finally, the Optimizer can be used to probe the
confidence that the user should have in the final solu-
tion. The user can select two states of the Parameter
set, say P, and P;, and ask the Optimizer to provide a
one-dimensional plot of the likelihood as a function of

the new Parameter set, aP, + (1 — a)P;. For example,
one could perturb a Polygon2D solution, P;, by mov-
ing a boundary vertex to a new location to produce P;.
Plotting the likelihood as a function of aP, + (1-a)P;
would then reveal the confidence one should have in the
position of that boundary vertex - a broad likelihood
means that there are many positions of the boundary
point that are equally likely, and so the position of that
vertex should not be trusted.

8. SUMMARY

The advantages of an OO language are enormous in
the context of graphical programming, graphical ob-
ject modeling, and optimization. Not only did the OO
paradigm make extending the graphical programming
tool to include optimization easier than we expected,
it also stimulated our creativity. The potential exten-
sions we envision to interactive, graphical optimization
using the foundation we have discussed in this paper
are very exciting.

Our immediate future plans include extending the
2D radiographic measurement model to 3D polyhedra
and volumetric grids. We also plan to incorporate
other measurement models, such as range data (that
measures exterior surface location) and surface velocity
data. Ultimately, we envision 3D time-evolving object
and measurement models that will be used to fuse data
from a variety of experimental diagnostics.

6. REFERENCES

(1] Cunningham, G.S., Hanson, K.M., Jennings, Jr.
G.R., Wolf, D.R., “An object-oriented implemen-
tation of a graphical programming system,” to be
published in Proc. SPIE, vol. 2163, 1994.

(2] Hanson, K.M., “Bayesian reconstruction based on
flexible prior models,” J. Opt. Soc. Am. A, vol. 10,
1993, pp. 997-1004.

[3] Taylor, D. A., Object-Oriented Technology: A
Manager’s Guide, Addison-Wesley, 1990,

(4] Thacker, W.C., “Automatic differentiation from
an oceanographer’s perspective,” Automatic Dif-
Jerentiation of Algorithms: Theory, Implementa-
tion, and Application, ed. A. Griewank and G.
Corliss, SIAM, 1991, 360 pp.

Figure la. The 9raphical programmuag too! Canves.

Figurc lb. Optimizer inter face

I DR SRR NONERte

csnamai teconsiruchon econstruchon
with vion-negativity with Nom-negativi'ty
ConSstvaint cnd vpper bovnd
Con stvaints

F'igurc le. Keconstruchon of l28x128 ob/'cct qunj e views

el
10/ 7 /9

