10 =l 2
= e 22 “m 22
D T
l:
l“ T =
|=

[l

JIk22 i pie

(onf. 9208139/

UCRL-JC-113858
PREPRINT

Performance and Scalability Aspects of
Directory-Based Cache Coherence in
Shared-Memory Multiprocessors

Silvio Picano - Purdue University
David G. Meyer - Purdue University
Eugene D. Brooks III - LLNL
Joseph E. Hoag - LLNL

This paper was prepared for submittal to
22nd Annual Conference
1993 International Conference on Parallel Processin
The Pennsylvania State University - University Park, PA
August 16-20, 1993

May 1993

This isapreprintofapaperintended forpublicationina journal or proceedings. Since
changes may be made before publication, this preprint is made available with the
understanding that it will not be cited or reproduced without the permission of the

author.

MAST

"
.

« DISTRIBUTION OF THIS RECUMENT IS UNLIMITER

VAPPUIPP PAPre s 8 vt e Bri s h N o oW

..

R T SN

DISCLAIMER

This document was prepared as an account of work sponscred by an agency of the
United States Government. Neither the United States Government nor the University
of California nor any of their employees, makes any warranty, express or implied, or
mssumes any legal liability or responsibility for the accuracy, completeness, or usefulness
of any information, apparatus, product, or process disclosed, or represents that its use
would notinfringe privately owned rights. Reference herein to any specific commercial
products, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States Government or the University of California. The views and
opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or the University of California, and shall not be used for
advertising or product endorsement purposes.

oo il

PERFORMANCE AND SCALABILITY ASPECTS OF DIRECTORY-BASED
CACHE COHERENCE IN SHARED-MEMORY MULTIPROCESSORS *

Silvio Picano & David G. Meyer
School of Electrical Engineering

Purdue University
West Lafayette, IN 47907

Abstract - We present a study that accentuates the
performance and scalability aspects of directory-based cache
coherence in multiprocessor systems. Using a multiproces-
sor with a software-based coherence scheme, efficient im-
plementations rely heavily on the programmer’s ability to
explicitly manage the memory system, which is typically
handled by hardware support on other bus-based, shared
memory multiprocessors. We describe a scalable, shared
memory, cache coherent multiprocessor and present sim-
ulation results obtained on three parallel programs. This
multiprocessor configuration ezhibits high performance at
no additional parallel programming cost.

Keywords: directory-based cache coherence, parallel
programming costs, Fortran D, multiprocessor simulation.

1 Introduction

General purpose machines, such as the BBN
TC2000 [1], are achieving wide performance advantages
(and cost advantages) over traditional mainframe technol-
ogy. Yet these new parallel computers come with their own
unique design and implementation problems with regards
to shared and non-shared memory paradigms, scalability
issues, parallel programming costs, and cache coherence
support.

In the current paralle! programming environment, pro-
grammers distinctly annotate programs with directives
and instructions specifically aimed at a particular multi-
processor that will extract the desired performance. The
resulting programs become difficuit to understand because
in addition to the underlying algorithm, details associated
with the machine architecture are embedded in the pro-
grams.

In this paper, we analyze three parallel programs. We
introduce a multiprocessor configuration with several im-
portant design features to enhance performance with little
or no cost to an application programmer. We simulate
the execution of the parallel programs on a multiproces-
sor simulator and show that high performance is achieved
without additional programming costs and concerns.

*Work performed under the auspices of the U.S. Department
of Energy by the Lawrence Livermore National Laboratory un-
der contract No. W-7405-ENG-48.

Eugene D. Brooks III & Joseph E. Hoag
Massively Parallel Computing Initiative (MPCI)
Lawrence Livermore National Laboratory (LLNL)

Livermore, CA 94550

2 The Parallel Programs

The parallel programs used in this study are described
in the sections which follow.

2.1 A Network Simulation Program

The network simulation program [2] simulates and com-
putes performance statistics of a proposed communications
network for scalable multiprocessors. Simulated cpu ports
interface to this network and communicate with other cpus
via packet requests and responses. Multi-stage intercon-
nection networks provide the communication vehicles for
any number of simulated cpu and memory ports. The cpu
and memory ports are connected to a request network, and
a separate response network returns the requests back to
the requesting cpu port.

2.2 An Iterative Relaxation Program

An iterative relaxation method is a stencil algorithm,
which sets each element of a multi-dimensional grid array
to the average of itself and its neighbors. The problem
space is represented as a set of discrete elements, and at
each iteration, each element is recalculated as a function
of itself and its nearest neighbors. For our particular pro-
gram, we average each element with its 8 nearest neighbors
in a 2-dimensional. square grid. The domain decomposi-
tion is such that each processor will be responsible for the
update of a fixed group of contiguous rows in the grid.

2.3 A Gaussian Elimination Program

Gaussian elimination is a method of solving a linear sys-
tems equation. The first part of the algorithm is referred
to as the reduction. where the matrix is reduced to an up-
per triangular form. The second part of the algorithm, the
back-solve, starts when the reduction is complete. Vector
elements of the unknown solution are successively solved
for and substituted into the remaining equations.

[

3 Performance Potential
3.1 Multiprocessor Simulation

A hardware enforced, cache coherent multiprocessor
simulator system is described in {3, 4). We detail the sim-
ulator’s configuration of interest below:

1. RISC cpus with fully pipelined functional units,
register scoreboarding, and compile-time branch
prediction are used,

2. instruction pipeline stalls and flushes due to data
hazards and wrong branch predictions are mod-
eled exactly,

3. 2x2 switch nodes comprise a request and a re-
sponse network,

4. each network is a worm-hole-routed, multi-
buffered, multi-stage cube type with 64-bit data
paths,

5. cache memory latency is 3 clock cycles with full
pipelined access (1 access per clock cycle),

6. memory accesses and invalidations are faithfully

modeled through the cache memories and net-

works,

a maximum of 5 outstanding shared memory re-

quests per PE is allowed,

8. a lock-up free, write-back, shared data cache per
PE (64 kilobyte, 2-way set associative, 16-byte
line size) is used,

9. an invalidation-based protocol (fully docu-
mented in [4]) allows any number of read-only
copies of a cache line and grants an exclusive
copy of a cache line to a processor when a write
operation occurs,

10. the presence flag technique [5] implemented at
the memory controllers facilitates cache coher-
ence, and

11. barrier synchronization is supported by software.

We do not model the effects of instruction cache misses or
private data cache misses in the results presented below.
Recall that 2x2 switch node elements comprise the net-
works. While a 4 PE system uses 4 network stages (i.e., 2
networks, each having 2 stages), a 32 PE system uses 10
network stages - which accounts for the increasing latency
as the PE count increases. Invalidation distribution refers
to the quantity of read/write sharing in the program. Be-
fore a write operation takes place, a processor must make
sure that it has the only exclusive write access to this data.
At the memory controller, invalidations are sent to every
cache having a copy of this data before the write operation
can continue.

3.2 Network Simulation Results

This version of the program ignores any logical, do-
main decomposition of the network simulation program’s
structure when scheduling parallel activity. We summa-
rize some important run-time statistics in Table 1, and we

Table 1: Network Simulation Execution Statistics

PEs | Cache Hit Latency Invalid. Dist. (%)
Ratio (%) (cycles) Width-1 Width-2
2 85 10 96 4
4 89 13 93 6
8 92 15 92 6
16 92 19 92 7
32 90 28 91 7
64 88 33 89 8
1e09{- 2-ary 7-cube Simuiation
Exec. Time
by i)

1e08

1e07

1 1 I A 1) I D
L AR B A L
Vector Leagth (log scale)

Figure 1: Network Simulation Execution Time

show execution time results in Figure 1, for 2-ary 7-cube
network simulations. !

Analyzing the simulator’s statistics more closely, we
note that the shared data caches (64 kilobytes each) expe-
rience higher rates of both capacity misses and invalidation
misses with respect to the rate of shared memory requests.
For the 2-processor results, the capacity miss rate grows
1.08 times faster than the shared memory reference rate,
while the invalidation miss rate grows 1.38 faster than the
shared memory reference rate. In terms of total quantity
of misses, capacity raisses are 3 times greater than invali-
dation misses.

This situation reverses at higher processor counts. An-
alyzing the 32-processcr results in particular, we note that
capacity misses now gzrow 10 times slower than misses due
to invalidations and 14.times slower than the shared mem-
ory reference rate. [n absolute terms, capacity misses are
only 5% of the total cache miss rate. Providing large, co-
herent caches is one key to achieving scalable performance
for this application.

3.2.1 Iterative Relaxation Results

In Table 2, we summarize some of the important run-time
statistics. In each category, the first column of numbers
represents the statistics for the 1282128 problem size, while
the second column of numbers represents the statistics for

! This problem size represents the operation of 7-stage net-
works having 2x2 switch nodes. [3]

Table 2: Iterative Relaxation Execution Statistics

PEs | Cache Hit Latency Invalid. Dist. (%)
Ratio (%) (cycles) Width-1 Width-2
2 96-93 10-10 95-98 5-1
4 96-93 12-13 93-98 6-2
8 98-93 17-15 83-97 15-1
16 98-95 25-19 75-96 22-2
32 96-95 30-28 71-98 25-1
64 90-97 33-33 53-82 42-17

Table 3: Gaussian Elimination Execution Statistics

PEs | Cache Hit Latency Invalid. Dist. (%)
Ratio (%) (cycles) ~Width-1 Width-2
2 51-50 16-15 99-99 1-0
4 51-50 20-19 99-99 1-0
8 52-51 24-22 99-99 1-0
16 56-52 30-26 97-99 2-0
32 62-54 38-31 97-99 3-1
64 71-58 50-38 95-99 5-1

1e08LL 1 1
128x128 256x256 S12x512
Relmuation Dimension (log scaie)

Figure 2: Iterative Relaxation Execution Time

the 5122512 problem size. We show the results of the simu-
lations on this parallel program in Figure 2. In additional
to the very high cache hit ratios, we see that width-1 and
width-2 invalidation distributions combined make up over
95% of all invalidations across all numbers of processors.
This distribution is a direct result of the decision to tile the
2-dimensional data in a blocked-row fashion to minimize
invalidation requests (i.e., data sharing) from other PEs.

3.2.2 Gaussian Elimination Results

We summarize some of the important run-time parame-
ters in Table 3, and we show serial and parallel execution
time results in Figure 3. In each category, the first col-
umn of numbers represents the statistics for the 128z128
problem size. while the second column of numbers repre-
sents the statistics for the 5121512 problem size. From
the table, we see some unexpected behavior in the cache
hit ratio statistics. The increasing number of PEs actually
increases the individual cache hit ratios, which is unlike
many parallel applications. Investigating this further, we
note that this program has a high quantity of barrier syn-
chronization, which is actually implemented as an efficient
software routine. The program’s load imbalance and the
execution time spent in barrier routines artificially inflates
the cache hit ratio statistics. In terms of absolute per-
formance, this program does not perform well because of
the high level of invalidation traffic resulting from exclu-
sively caching data that a PE will be unlikely to use again
in a subsequent iteration. This performance degradation

1006»-; " s
256x256 5122512
Matrix Dimeasion (log scale)

Figure 3: Gaussian Elimination Execution Time

is evident through the increasing shared memory request
latency at higher PE counts.

4 Related Work
4.1 Directory Limitations

As well documented in the literature [5, 6, 7], one major
design constraint is the large amount of additional mem-
ory needed to implement the presence flag coherence tech-
nique. However, recent studies with Cerberus [6, 4] and
Stanford’s DASH project [7] show that partial directory
states can reduce the memory requirements while main-
taining a high level of desired performance. Work in [8]
provides another method of reducing the directory require-
ments by using a combined hardware/software scheme to
dynamically allocate directory state as shared data is refer-
enced. Software-assisted cache coherence schemes [9] are
alternatives to directory-based schemes. These schemes
promote the use of compile-time reference marking com-
bined with hardware-based coherence mechanisms.

4.2 Manual Data Distribution

Using simple and natural parallel program decomposi-
tions, each of the three programs required close to 8 par-
allel processors to regain the serial program’s performance

on the BBN TC2000 (10, 2. * This performance degrada-
tion is due to 1) the disabling of the data caches, and 2)
the frequent use of the remote shared memory. Program
optimizations to selectively enable data caching and to ex-
plicitly place shared data in proper regions of the memory
hierarchy resulted in significant increases in parallel per-
formance. However, programming costs and complexity to
perform these optimizations are significant.

The resulting source programs are difficult to under-
stand if the reader has little knowledge of the BBN TC2000
multiprocessor. The code modifications are necessary to
explicitly place data in the multiprocessor’s memory hier-
archy to provide the fastest access possible.

4.3 Automatic Data Distribution

Several semi-automatic parallelization tools exist to
simplify data distribution. One such tool aimed at archi-
tectures like the BBN TC2000 is the Parallel Data Distri-
bution Preprocessor (PDDP) [10]. PDDP accepts a dialect
of Fortran 77, Fortran 90 array syntax, and data lavout
directives recommended by the High Performance Fortran
Forum (HPFF) committee. Much of the PDDP data dis-
tribution syntax and semantics have been borrowed from
the Fortran D language {11].

The Gauss elimination program has been rewritten us-
ing PDDP primitives and has been benchmarked on the
BBN multiprocessor. The initial PDDP program intro-
duced some performance problems due to hot spot accesses
when all processors attempt to read the pivot row (stored
in one local memory). Additional code is necessary to min-
imize the performance penalty of this hot spot. This new
PDDP program yielded from 40-50% performance loss over
the best efforts reported on the BBN machine. From this
experience, we see that automatic data distribution tools
have some side-effects which still complicate performance
and programming concerns {10].

5 Summary and Open Issues

Parallel programs make critical demands on non-
uniform memory access multiprocessors because of the
high communication requirements they pose. The result-
ing performance is strongly dependent on data placement,
movement, and allocation strategies. Using incremental
program modifications, we obtain significant performance
gains on the BBN TC2000 multiprocessor through the ef-
fective use of the memory hierarchy. While automatic
data distribution models may alleviate some of the pro-
gramming costs incurred, resulting performance may not
approach the multiprocessor’s capabilities.

We described a multiprocessor configuration that has
several important design features to enhance multiproces-
sor performance. Detailed execution time results of the

2The BBN TC2000 has facilities allowing programmers to
maintain cache coherence in their software.

[

parallel programs on this multiprocessor showed high per-
formance at no additional parallel programming cost. We
also believe the multiprocessor configuration used in this
study is a conservative one, and that more aggressive de-
signs can be implemented with current technology.

References

[1] BBN Advanced Computers Inc., Cambridge, MA. In-
side the TC2000, 1989.

[2] S. Picano, E.D. Brooks III, and J.E. Hoag. Pro-
gramming Costs of Explicit Memory Localization on a
Large Scale Shared Memory Multiprocessor. In Proc.
of Supercomputing'91, pages 36-45, 1991,

[3] E.D. Brooks III, T.S. Axelrod, and G.A. Darmohray.
The Cerberus Multiprocessor Simulator. In G. Ro-
drigue, editor, Parallel Processing for Scientific Com-
puting, pages 384-390. SIAM, 1989.

(4] J.E. Hoag. The Cache Group Scheme for Hardware-
Controlled Cache Coherence and the General Need
for Hardware Coherence Control in Large-Scale Mul-
tiprocessors. Technical Report UCRL-LR-106975,
Lawrence Livermore National Laboratory, Livermore,
CA, March 1991.

[5) L.M. Censier and P. Feautrier. A New Solu-
tion to Coherence Problems in Multicache Systems.
IEEE Transactions on Computers, C-27(12):1112-
1118, Dec. 1978.

[6] E.D. Brooks III and J.E. Hoag. A Scalable Coher-
ent Cache System With Incomplete Directory State.
In Proc. of the International Conference on Parallel
Processing, pages 553-554, August 1990.

(7] A. Gupta, W..D. Weber, and T. Mowry. Reduc-
ing Memory and Traffic Requirements for Scalable
Directory-Based Cache Coherence Schemes. In Proc.
of the International Conference on Parallel Process-
ing, pages 312-321, August 1990.

(8] D.J. Lilja and P.C. Yew. Combining Hardware and
Software Cache Coherence Strategies. In ACM Inter-
national Conference on Supercomputing, 1991.

[9] S.L. Min and J.-L. Baer. Design and Analysis of a
Scalable Cache Coherence Scheme Based on Clocks
and Timestamps. [EEE Transactions on Parallel and
Distributed Systems, 3(1):25-44, Jan. 1992.

{10] E.D. Brooks III, B.J. Heston, K.H. Warren, and L.J.
Woods. The 1992 MPCI Yearly Report: Harness-
ing the Killer Micros. Technical Report UCRL-ID-
107022-92, Lawrence Livermore National Laboratory,
Livermore. CA, Aug. 1992.

[11] S. Hiranandani, k. Kennedy, and C. Tseng. Compiler
Optimizations for Fortran D on MIMD Distributed-
Memory Machines. In Proc. of Supercomputing’92,
pages 86-100, 1992,

" DATE
FILMED
q /29/ 93

