
• ,_2-8-I_

°om_LLLii_
IIlll_

lililNIIILL_liill'._

UCRL-JC-113858
PREPRINT

Performance and Scalability Aspects of
Directory-Based Cache Coherence in

Shared-Memory Multiprocessors

Silvio Picano - Purdue University
David G. Meyer- Purdue University

Eugene D. Brooks III- LLNL
Joseph E. Hoag- LLNL

This paper was prepared for submittal to
22nd Annual Conference

1993 International Conference on Parallel Processing
The Pennsylvania State University - University Park, PA

August 16-20, 1993

This is a preprint of a paper intended for publication in a journal or proceedings. Since
changes may be made before publication, Otis preprint is made available with the .

understanding that it will not be cited or reproduced without the permission of the
author.

, _DISTltlBUTIONOFTHISDOCUMENTfSUNLIMIT,Ell,.

t

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor the University
of California nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accu racy, completeness, or usefulness
._fany information, apparatus, product, or process disclosed, or represents that its use
would not infringe privately owned rights. Reference herein to any specific commercial
products, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States Government or the University of California. The views and
opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or the University of California, and shall not be used for
advertising or product endorsement purposes.

i

PERFORMANCE AND SCALABILITY ASPECTS OF DIRECTORY-BASED
CACHE COHERENCE IN SHAREI)-MEMORY MULTIPROCESSORS ."

Silvio Picano & David G. Meyer Eugene D. Brooks III & Joseph. E. Hoag
School of Electrical Engineering Massively Parallel Computing Initiative (MPCI)

Purdue University Lawrence Livermore National Laboratory (LLNL)
West Lafayette, IN 47907 Livermore, CA 94550

Abstract - We present a study that accentuates the 2 The Parallel Programs
performance and scalability aspects of directory.based cache
coherence in multiprocessor systems. Using a multiproces.
sor with a software.based coherence scheme, efficient lm- The parallel programs used in this study are described
plementations rely heavily on the programmer's ability to in the sections which follow.
explicitly manage the memory system, which is typically

handled by hardware support on other bus-based, shared 2.1 A Network Simulation Program
memory multiprocessors. We describe a scalable, shared
memory, cache coherent multiprocessor and present sim-

ulation results obtained on three parallel programs. This The network simulation program [2] simulates and com-
multiprocessor configuration exhibits high performance at putes performance statistics of a proposed communications
no additional parallel programming cost. network for scalable multiprocessors. Simulated cpu ports

Keywords: directory-based cache coherence, parallel interface to this network and communicate with other cpus
programming costs, Fortran D, multiprocessor simulation, via packet requests and responses. Multi-stage intercon-

nection networks provide the communication vehicles for

any number of simulated cpu and memory ports. The cpu

1 Introduction and memory ports are connected to a request network, and
a separate respc, nse network returns the requests back to
the requesting cpu port.

General purpose machines, such as the BBN
TC2000 [1], are achieving wide performance advantages

(and cost advantages) over traditional mainframe technol- 2.2 An Iterative Relaxation Program
ogy. Yet these new parallel computers come with their own
unique design and implementation problems with regards
to shared and non-shared memory paradigms, scalability An iterative relaxation method is a stencil algorithm,
issues, parallel programming costs, and cache coherence which sets each element of a multi-dimensional grid array
support, to the average of itself and its neighbors. The problem

In the current parallel programming environment, pro- space is represented as a set of discrete elements, and at
grammers distinctly annotate programs with directives each iteration, each element is recalculated as a function
and instructions specifically aimed at a particular multi- of itself and its nearest neighbors. For our particular pro-
processor that will extract the desired performance. The gram, we average each element with its 8 nearest neighbors
resulting programs become difficult to understand because in a :.)-dimensional. square grid. The domain decomposi-
in addition to the underlying algorithm, details associated tion is such that each processor will be responsible for the
with the machine architecture are embedded in the pro- update of a fixed group of contiguous rows in the grid.
grams.

In this paper, we analyze three parallel programs. We
introduce a multiprocessor configuration with several im- 2.3 A Gaussian Elimination Program
portant design features to enhance performance with little

or no cost to an application programmer. We simulate Gaussian elimination is a method of solving alinear sys-

the execution of the parallel programs on a multiproces- tems equation. The first part of the algorithm is referred
sor simulator and show that high performance is achieved

to as the reduction, where the matrix is reduced to an up-
without additional programming costs and concerns. per triangular form. The second part of the algorithm, the

*Work performed under the auspices of the U.S. Department back-solve, starts when the reduction is complete. Vector
of Energy by the Lawrence Livermore National Laboratory un- elements of the unknown solution are successively solved
der contract No. W-7405-ENG-48. for and substituted into the remaining equations.

3 Performance Potential Table 1' Network Simulation Execution Statistics

3.1 Multiprocessor Simulation PEs Cache Hit Latency Invalid. Dist. (%)
Ratio (%) (cycles) Width-1 Width-2, , ,

A hardware enforced, cache coherent multiprocessor 2 85 10 96 4

simulator system is described in [3, 4]. We detail the sim- 4 89 13 93 6
ulator's configuration of interest below: 8 92 15 92 6

1. RISC cpus with fully pipelined functional units, 16 92 19 92 7
register scoreboarding, and compile-time branch 32 90 28 91 7

64 88 33 89 8
prediction are used, •

2. instruction pipeline stMls and flushes due to data
. hazards and wrong branch predictions are mod-

eled exactly, x_ =.,_7.=_=s_,l=u,=
3. 2x2 switch nodes comprise a request and a re-

sponse network, Rue.Time.(cyam),
4. each network is a worm-hole-routed, multi- uq=="_,. 4t_

paths 16_........... .. ,... _. .,

5. cache memory latency is 3 clock cycles with full" ,........... _2_

pipelined access (1 access per clock cycle),
6. memory accesses and invalidations are faithfully i=o7

modeled through the cache memories and net-

works, "_' _= ' ' b2° 2= 2,_ 2+ 26 27 2 = 29

7. a maximum of 5 outstanding shared memory re- Vett_i.._llt_(lellmle)
quests per PE is allowed,

8. a lock.up/tee, write-back, shared data cache per Figure 1: Network Simulation Execution Time
PE (64 kilobyte, 2-way set associative, 16-byte

line size) is used,

9. an invaiidation-based protocol (fully docu- show execution time results in Figure 1, for 2-ary 7-cube
mented in [4]) allows any number of read-only network simulations, x

copies of a cache line and grants an exclusive Analyzing the simulator's statistics more closely, we
copy of a cache line to a processor when a write note that the shared data caches (64 ldlobytes each) expe-
operation occurs, rience higher rates of both capacity misses and invalidation

10. the presence flag technique [5] implemented at misses with respect tr_ the rate of shared memory requests.
the memory controllers facilitates cache coher- For the 2-processor results, the capacity miss rate grows
ence, and 1.08 times faster than the shared memory reference rate,

11. barrier synchronization is supported by software, while the invalidation miss rate grows 1.38 faster than the

We do not model the effects of instruction cache misses or shared memory reference rate. In terms of total quantity

private data cache misses in the results presented below, of misses, capacity misses are 3 times greater than invali-
Recall that 2x2 switch node elements comprise the net- dation misses.
works. While a 4 PE system uses 4 network stages (i.e., 2 This situation reverses at higher processor counts. An-
networks, each having 2 stages), a 32 PE system uses 10 alyzing the 32-processor results in particular, we note that
network stages - which accounts for the increasing latency capacity misses now _:ow 10 times slower than misses due
as the PE count increases. Invalidation distribution refers to invalidations and t4 times slower than the shared sem-

to the quantity of read/write sharing in the program. Be- ory reference rate. h_. absolute terms, capacity misses are
fore a write operation takes place, a processor must make only 5% of the total cache miss rate. Providing large, co-
sure that it has the only exclusive write access to this data. herent caches is one key to achieving scalable performance
At the memory controller, invalidations are sent to every for this application.

cache having a copy of this data before the write operation
can continue. 3.2.1 Iterative Relaxation Resialts

3.2 Network Simulation Results In Table 2, we summarize some of the important run-time
statistics. In each category, the first column of numbers
represents the statistics for the 1P8xl_8problem size, while

This version of the program ignores any logical, do- the second column of numbers represents the statistics for
main decomposition of the network simulation program's

structure when scheduling parallel activity. We summa- 1This problem size represents the operation of 7-stage net-
rize some important run-time statistics in Table 1, and we works having 2x2 switch nodes. [3]

Table 2: Iterative Relaxation Execution Statistics Table 3: Gaussian Elimination Execution Statistics

PEs Cache Hit Latency Invalid. Dist. (%) PEs Cache Hit Latency Invalid. Dist. (%)
Ratio (%) (cycles) Width-1 Width-2 Ratio (%) (cycles) Width-1 Width-2

2 96-93 10-10 95-98 5-1 2 51-50 16-15 99-99 1-0
4 96-93 12-13 93-98 6-2 4 51-50 20-19 99-99 1-0
8 98-93 17-15 83-97 15-1 8 52-51 24-22 99-99 1-0

16 98-95 25-19 75-96 22-2 16 56-52 30-26 97-99 2-0
32 96-95 30-28 71-98 25-1 32 62-54 38-31 97-99 3-1
64 90-97 33-33 53-82 42-17 64 71-58 50-38 95-99 5-1

.....'_'" 4_ [41_

[!iii!!!iiii!!i:iii!!!iii..................,::.........:..1.::le07 16 PB8 :32PlEa

F.,xec. 'rime | ' ' 321_8 I F.xec. Time
(,_d,,-) •..... <cydu), I /_......:_r_J

.....................::............................::...................::................"" I ::::::::::::::::::::::::,........
128KI28 2561256 SI2x512 12Jlt12JJ 256_r_6 5121512

ReJmultiel OiltlellliOl (kill Kale) Mltrtl DilIIUlIIIJOI(JcqltiC,lie)

Figure 2: Iterative Relaxation Execution Time Figure 3: Gaussian Elimination Execution Time

the 512x512 problem size. We show the results of the simu- is evident through the increasing shared memory request
lations on this parallel program in Figure 2. In additional latency at higher PE counts.
to the very high cache hit ratios, we see that width-1 and
width-2 invalidation distributions combined make up over
95% of ali invalidations across ali numbers of processors.
This distribution is a direct result of the decision to tile the 4 Related Work
2-dimensional data in a blocked-row fashion to minimize

invalidation requests (i.e., data sharing) from other PEs. 4.1 Directory Limitations

3.2.2 Gaussian Elimination Results As well documented in the literature [5, 6, 7], one major
design constraint is the large amount of additional mem-We summarize some of the important run-time parame-

ters in Table 3, and we show serial and parallel execution ory needed to implement the presence flag coherence tech-
time results in Figure 3. In each category, the first col- nique. However, recent studies with Cerberus [6, 4] and

Stanford's DASH project [7] show that partial directoryumn of numbers represents the statistics for the 128x1°_8
states can reduce the memory requirements while main-

problem size. while the second column of numbers repre-
• sents the statistics for the 512x512 problem size. From taining a high level of desired performance. Work in [8]

the table, we see some unexpected behavior in the cache provides another method of reducing the directory require-
ments by using a combined hardware/software scheme to

hit ratio statistics. The increasing number of PEs actually dynamically allocate directory state as shared data is refer-
increases the individual cache hit ratios, which is unlike

enced. Software-assisted cache coherence schemes [9] are
many parallel applications. Investigating this further, we

alternatives to directory-based schemes. These schemes
note that this program has a high quantity of barrier syn-
chronization, which is actually implemented as an efficient promote the use of compile-time reference marking com-

bined with hardware-based coherence mechanisms.
software routine. The program's load imbalance and the
execution time spent in barrier routines artificially inflates
tile cache hit ratio statistics. In terms of absolute per- 4.2 Manual Data Distribution
formance, this program does not perform well because of

the high level of invalidation traffic resulting from exclu- Using simple and natural parallel program decomposi-
sively caching data that a PE will be unlikely to use again tions, each of the three programs required close to 8 par-
in a subsequent iteration. This performance degradation allel processors to regain the serial program's performance

L

on the BBN TC2000 [10, 2]. 2 This performance degrada- parallel programs on this multiprocessor showed high per-
tion is due to 1) the disabling of the data caches, and 2) formance at no additional parallel programming cost. We
the frequent use of the remote shared memory. Program also believe the multiprocessor configuration used in this
optimizations to selectively enable data caching and to ex- study is a conservative one, and that more aggressive de-
plicitly piace shared data in proper regions of the memory signs can be implemented with current technology.
hierarchy resulted in significant increases in parallel per-
formance. However, programming costs and complexity to

perform these optimizations are significant. References
The resulting source programs are difficult to under-

. stand if the reader has little knowledge of the BBN TC2000
[1] BBN Advanced Computers Inc., Cambridge, MA. In-

. multiprocessor. The code modifications are necessary to side the TC2000, 1989.
explicitly piace data in the multiprocessor's memory hier-

• archy to provide the fastest access possible. [2] S. Picano, E.D. Brooks III, and J.E. Hoag. Pro-
gramming Costs of Explicit Memory Localization on a

4.3 Automatic Data Distribution Large Scale Shared Memory Multiprocessor. In Proc.
of Supercomputing'91, pages 36-45, 1991.

Several semi-automatic parallelization tools exist to [3] E.D. Brooks III, T.S. Axelrod, and G.A. Darmohray.
simplify data distribution. One such tool aimed at archi- The Cerberus Multiprocessor Simulator. In G. Ro-
tectures like the BBN TC2000 is the Parallel Data Distri- drigue, editor, Parallel Processing for Scientific Com-

bution Preprocessor (PDDP) [10]. PDDP accepts a dialect puling, pages 384-390. SIAM, 1989.

of Fortran 77, Fortran 90 array syntax, and data layout [4] J.E. Hoag. The Cache Group Scheme for Hardware-
directives recommended by the High Performance Fortran Controlled Cache Coherence and the General Need

Forum (HPFF) committee. Much of the PDDP data dis- for Hardware Coherence Control in Large-Scale Mul-
tribution syntax and semantics have been borrowed from tiprocessors. Technical Report UCRL-LR-106975,
the Fortran D language [11]. Lawrence Livermore National Laboratory, Livermore,

The Gauss elimination program has been rewritten us- CA, March 1991.
ing PDDP primitives and has been benchmarked on the

BBN multiprocessor. The initial PDDP program intro- [5] L.M. Censier and P. Feautrier. A New Solu-
tion to Coherence Problems in Multicache Systems.

duced some performance problems due to hot spot accesses IEEE Transactions on Computers, C-27(12):ll12-
when ali processors attempt to read the pivot row (stored 1118, Dec. 1978.
in one local memory). Additional code is necessary to min-
imize the performance penalty of this hot spot. This new [6] E.D. Brooks III and J.E. Hoag. A Scalable Coher-
PDDP program yielded from 40-50% performance loss over ent Cache System With Incomplete Directory State.
the best efforts reported on the BBN machine. From this In Proc. of the International Conference on Parallel
experience, we see that automatic data distribution tools Processing, pages 553-554, August 1990.

have some side-effects which still complicate performance [7] A. Gupta, W.-D. Weber, and T. Mowry. Reduc-
and programming concerns [10]. ing Memory and Traffic Requirements for Scalable

Directory-Based Cache Coherence Schemes. In Proe.

of the International Conference on Parallel Process.

5 Summary and Open Issues ing, pages 312-321, August 1990.
[8] D.J. Lilja and P.C. Yew. Combining Hardware and

Parallel programs make critical demands on non- Software Cache Coherence Strategies. In ACM lnter.
uniform memory access multiprocessors because of the national Con]erence on Supercomputing, 1991.

• high communication requirements they pose. The result- [9] S.L. Min and J.-L. Baer. Design and Analysis of a
ing performance is strongly dependent on data placement, Scalable Cache Coherence Scheme Based on Clocks

movement, and allocation strategies. Using incremental and Timestamps. 1EEE Transactions on Parallel and
program modifications, we obtain significant performance Distributed Systems, 3(1):25-44, Jan. 1992.

gains on the BBN TC2000 multiprocessor through the el- [10] E.D. Brooks III, B.J Heston, K.H. Warren, and L.J.
" fective use of the memory hierarchy. While automatic

Woods. The 1992 MPCI Yearly Report: Harness-
data distribution models may alleviate some of the pro- ing the Killer Micros. Technical Report UCRL-ID-
gramming costs incurred, resulting performance may not

107022-92, Lawrence Livermore National Laboratory,
approach the multiprocessor's capabilities.

We described a multiprocessor configuration that has Livermore, CA, Aug. 1992.
several important design features to enhance multiproces- [11] S. Hiranandani, K. Kennedy, and C. Tseng. Compiler
sor performance. Detailed execution time results of the Optimizations for Fortran D on MIMD Distributed-

Memory Machines. In Proc. of Supercomputing'9_,
_The BBN TC2000 has facilities allowing programmers to pages 86-100, 1992.

maintain cache coherence in their software.

