

AIIM

Association for Information and Image Management

1100 Wayne Avenue, Suite 1100
Silver Spring, Maryland 20910
301/587-8202

10 of 1

SAND94-0219
Unlimited Release
Printed June 1994

**SURFTHERM*: A PROGRAM TO ANALYZE THERMOCHEMICAL AND
KINETIC DATA IN GAS-PHASE AND SURFACE
CHEMICAL REACTION MECHANISMS**

Michael E. Coltrin and Harry K. Moffat
Chemical Processing Sciences Department
Sandia National Laboratories
Albuquerque, NM 87175-0601

ABSTRACT

This report documents the Surftherm program that analyzes transport coefficient, thermochemical, and kinetic rate information in complex gas-phase and surface chemical reaction mechanisms. The program is designed for use with the Chemkin (gas-phase chemistry) and Surface Chemkin (heterogeneous chemistry) programs. It was developed as a "chemist's companion" in using the Chemkin packages with complex chemical reaction mechanisms. It presents in tabular form detailed information about the temperature and pressure dependence of chemical reaction rate constants and their reverse rate constants, reaction equilibrium constants, reaction thermochemistry, chemical species thermochemistry and transport properties. This report serves as a user's manual for use of the program, explaining the required input and the output.

* This document describes the features in version 1.41. We expect that this software will continue to evolve, and thus later versions may render portions of this document out of date.

TABLE OF CONTENTS

I. INTRODUCTION	5
II. INFORMATION REPORTED BY SURFTHERM	8
Banner Information	8
General Mechanism Information	8
Summary of Species and Bath-Gas Composition	8
Summary of Species Thermochemical Information at Bath-Gas	
Conditions	9
Stoichiometry Information for Reaction Phase Changes	9
Uniform-Dimensional and Non-Dimensional Reaction Rate Information	9
Thermodynamic Function and Transport Parameter Table for Each	
Species	11
Summary Table of Thermodynamic Functions for Gas-Phase Reactions	11
Detailed Information about Each Gas-Phase Reaction	11
Fall-Off Behavior for Special Classes of Reactions	12
Summary Thermochemical Information for Surface Reactions	13
Detailed Information About Each Surface Reaction	13
Coverage Dependent Surface Reaction Rates	14
Breakdown of the Sticking Coefficient Surface Reaction Rate	15
III. PROGRAM STRUCTURE AND CONTROL	16
IV. PROGRAM INPUT AND OUTPUT	20
List of Keywords	21
General keywords	21
Keywords that Control Functionality	21
Keywords that Control Bath Gas Quantities	25
Keywords that Control the Composition of Tables	25
V. SURFTHERM EXAMPLE	27
Sample input file for Surftherm sample	27
Input file to Transport Fitting Code for sample	28
Input file to Chemkin Interpreter for sample	28
Output from Chemkin Interpreter for sample	29
Input file to Surface Chemkin Interpreter for sample	30
Output from Surface Chemkin Interpreter for sample	31
Output from Surftherm sample run	32
REFERENCES	45

SURFTHERM: A PROGRAM TO ANALYZE THERMOCHEMICAL AND KINETIC DATA IN GAS-PHASE AND SURFACE CHEMICAL REACTION MECHANISMS

I. INTRODUCTION

Complex chemically reacting flow simulations are commonly employed to develop a quantitative understanding and to optimize reaction conditions in systems such as combustion, catalysis, chemical vapor deposition and plasma processing. Although reaction conditions, geometries, and fluid flow can vary widely amongst the applications of chemically reacting flows, what they share in common is the need for accurate, detailed descriptions of the chemical kinetics occurring in the gas-phase or on reactive surfaces. Chemical reaction mechanisms containing hundreds of reactions and involving fifty or more chemical species are not uncommon in such models.

The Chemkin software [1] was specifically developed to aid in the incorporation of complex gas-phase chemical reaction mechanisms into numerical simulations. Currently, there are a number of numerical codes based on Chemkin which solve chemically reacting flows. The Chemkin interface allows the user to specify the necessary input through a high-level symbolic interpreter, which parses the information and passes it to a Chemkin application code. To specify the needed information, the user forms an ASCII input file declaring the chemical elements in the problem, the name of each chemical species, thermochemical information about each chemical species, a list of chemical reactions (written in the same fashion that a chemist would write them, i.e., a list of reactants converted to products), and rate constant information, in the form of modified Arrhenius coefficients. The thermochemical information is entered in a very compact form as a series of polynomial coefficients describing the species entropy (S), enthalpy (H), and heat capacity (C_p) as a function of temperature. The polynomial coefficients are in a form compatible with the NASA chemical equilibrium code [2]. Because all of the information about the reaction mechanism is parsed and summarized by the Chemkin interpreter, if the user desires to modify the reaction mechanism by adding species or deleting a reaction, for instance, they only change the interpreter input file and the Chemkin application code does not have to be altered. The modular approach of separating the description of the chemistry from the set-up and solution of the reacting flow problem allows the software designer great flexibility in writing chemical-mechanism-independent code. Moreover, the same mechanism can be used in different chemically reacting flow codes without alteration.

The Surface Chemkin package [3,4] was designed for the complementary task of specifying mechanistic and kinetic rate information for heterogeneous chemical reactions. Surface Chemkin was designed to run in conjunction with Chemkin and, indeed, execution of the Chemkin interpreter is required before the Surface Chemkin interpreter may be run. The user interface for Surface Chemkin is very similar to that of Chemkin,

but is expanded to account for the richer nomenclature and formalism required to specify heterogeneous reaction mechanisms.

Many years of effort have produced quite a number of high-level Chemkin applications for chemically reacting flow simulation. These codes are widely distributed to and used (sometimes as a “black box”) by researchers around the world. To the usual Chemkin user, the challenge has been converted from software development to that of developing a realistic reaction mechanism that accurately describes the system of interest.

The input that gives the complete specification of the chemical reaction mechanism to the Chemkin and Surface Chemkin interpreters is necessarily very compact and efficient. The numerical values provided consist of polynomial coefficients from fits to the temperature-dependent thermochemical data, and Arrhenius rate coefficients from fits to the temperature-dependence of the forward rate constant. Typically, reverse reaction rate constants are not specified, but are calculated by Chemkin via the equilibrium constant (which is derived from the thermochemistry).

Often, however, in developing or analyzing a chemical reaction mechanism, the information that might be most useful to the Chemkin user is not readily available because it is “hidden” in the efficient, but terse, interpreter input file. A good example would be rate information about the reverse of some reaction in a mechanism. Suppose a researcher found a published rate constant for a reaction which is identical to one in a Chemkin mechanism, but written in the reverse direction. The reverse rate information is not available simply by examining the Chemkin reaction input file. In practice, one has to write a small Chemkin application to evaluate the forward rate constants at a given temperature and pressure, evaluate the equilibrium constants, and take the ratio to obtain the reverse rate information. If one desires Arrhenius coefficients, that would require further manipulation to fit the reverse rate constants at several temperatures to an Arrhenius form, for example. What the user desired was a simple comparison of their mechanism to a literature value; what was required to get that information was quite a lot of expertise in manipulating Chemkin files and writing a short of amount of code.

Another example of information needed to be extracted from a Chemkin mechanism would be simple transport parameter values. The transport package incorporated within Chemkin [5] provides for a full Dixon-Lewis, multicomponent, dilute gas treatment of the gas-phase transport properties. It also includes the effects of such phenomena as thermal diffusion. Sometimes, what is wanted however for the analysis of coupled transport/reaction systems is a simple measure of transport rates, usually expressed in terms of dimensionless numbers. Surftherm has the capability of reporting, as a function of temperature, the pure species viscosity, pure species thermal conductivity, and binary diffusion coefficient with a carrier gas for every gas-phase species in the mechanism. Many multicomponent gas mixtures are dominated by one gas-phase component, called the “carrier gas.” A good approximation in many cases, then, to the mixture viscosity and thermal conductivities are the pure species viscosity and thermal conductivities of the carrier gas. Also, the binary diffusivity of the species and the carrier gas can be a good approximation to the mixture diffusivity for that species. Combined with a film theory

approach to mass transfer (i.e., an additional "film thickness" parameter must be supplied), this allows for the calculation of a gas-phase Damköhler number for every reaction in the mechanism. The Damköhler number is dimensionless number describing the relative rate of reaction versus transport. Surface Damköhler numbers are also calculated for every surface reaction in the mechanism.

As users of Chemkin applications ourselves, we daily encounter such questions about reaction rates and thermochemical information derivable from Chemkin mechanisms. This report describes a program called Surftherm, which was developed as a "chemist's companion" in using Chemkin and Surface Chemkin with complex chemical reaction mechanisms. It presents in tabular form detailed information about the temperature and pressure dependence of chemical reaction rate constants and their reverse rate constants, reaction equilibrium constants, reaction thermochemistry, chemical species thermochemistry and transport properties. As described above, all of this information is determined once a Chemkin reaction mechanism has passed through the interpreters. We have found Surftherm to be very useful in quickly obtaining the kind of kinetics and thermochemical information we actually use in testing and analyzing complex reaction mechanisms.

The remainder of the report summarizes the kinds of information that Surftherm reports to the user and the input necessary to run it.

II. INFORMATION REPORTED BY SURFTHERM

The printed output from Surftherm reports information about gas-phase Chemkin and Surface Chemkin input reaction mechanisms. Some of the information reported simply echoes information (species or reaction names, rate constant coefficients); other parts of the output include tables of quantities derived from the input files, like rate constants or thermodynamic quantities as a function of temperature or pressure. The level of detail (and length) of output is controlled by Keyword input parameters, which are described in Section IV. The description of the Surftherm output here is in the order it appears if all printing options are turned on, as in the example output given in Section V. It may be helpful to refer to the sample output in reading the description in this section.

Banner Information

The code prints banners showing the current version numbers of Surftherm, the Chemkin subroutine library and the Surface Chemkin subroutine library that are being used, and the precision (single or double). The name of the input file used to control Surftherm is printed, as well. The keyword input to Surftherm is then echoed as a record of what information was used to create the current output.

General Mechanism Information

General information about the reaction mechanism is given, including the total number of elements, species, phases, gas-phase and surface reactions, the number of species in each phase and the phase names. For surface phases, it reports the number of surface reactions in which that site type is not conserved. (If this is non-zero, the NONCON option was used in the Surface Chemkin input file.) For bulk phases, it also reports the number of surface reactions in which the number of moles of a bulk species change. These correspond to deposition or etching reactions.

Summary of Species and Bath-Gas Composition

The concept of a “bath gas” is used throughout the code. The specification of a bath gas consists of a characteristic temperature, pressure, and composition at which quantities are to be evaluated by default. Composition, here, refers to the default composition for all phases defined in the mechanism. Reaction rate information is evaluated at the bath gas conditions, unless it is tabulated as a function of a system parameter like temperature. In this case, all other parameters are fixed at the bath gas conditions in the table. The default temperature for the bath gas is 298.15 K. The default pressure is 1 atm., and the default composition is an equimolar composition in each phase. All defaults can be overridden by keyword entries from the command file.

The concept of a “carrier gas” is also used in the code. Unless overridden by a keyword, the carrier gas is assumed to be the gas component having the largest mole fraction. Surftherm calculates a single number for the characteristic time scale for diffusion (to be compared with the characteristic time scale for reaction). To make this comparison, the diffusion coefficient is calculated for a specified “major” species in the carrier gas. (In the example, the diffusion of the major species CH₄ in the carrier gas H₂ is used to calculate the characteristic diffusion time scale.) Unless overridden by a keyword, the major species in the gas phase is assumed to be the gas component having the second largest mole fraction.

Summary of Species Thermochemical Information at Bath-Gas Conditions

The program reports a table of thermochemical information on each species. It gives the enthalpy evaluated at 298 K and at the bath-gas temperature, and the heat capacity, entropy and free energy all evaluated at the bath-gas temperature.

Stoichiometry Information for Reaction Phase Changes

The program lists each gas-phase and surface reaction and the number of moles of each phase that are created or destroyed by that reaction. For example, the first gas-phase reaction converts two gas-phase species into one gas-phase species. Similarly, in the second surface reaction there is one gas-phase reactant, but no gas-phase products. In both cases, the gas mole change is reported as -1.

Uniform-Dimensional and Non-Dimensional Reaction Rate Information

It is often useful to know, in some sense, which reactions in a mechanism are “fast” and which are “slow.” It is difficult or misleading to simply compare rate constants, which can have different units depending on the molecularity of the reaction. In order to compare the rates of reactions in the mechanism, we define a quantity

$$\dot{k}_f = k_f [G]^g \prod_i [S_i]^{s_i}, \quad (1)$$

which we call the “uniform-dimensional” rate constant. Regardless of the order of reaction, it will have units of mole cm⁻³ sec⁻¹ for a gas-phase reaction or mole cm⁻² sec⁻¹ for a surface reaction. In this expression, k_f is the rate constant for the forward reaction, $[G]$ is the total concentration of gas-phase species determined at the bath gas conditions (in moles cm⁻³), g is the sum of the stoichiometric coefficients of all gas-phase species appearing as reactants in the reaction, $[S_i]$ is the total site density of surface phase i determined at the bath gas conditions, s_i is the sum of the stoichiometric coefficients of all surface species in phase i participating as reactants in this reaction.

Using the usual rate constant, one calculates the forward reaction rate as k_f times the product of the concentrations of the reactant species (in moles cm⁻³ for gas species, or

moles cm⁻² for surface species) raised to the power of their stoichiometric coefficients. With the uniform-dimensional rate constant, one calculates the same reaction rate as k_f^* times the (dimensionless) species mole fractions (gas-phase reactants) or site fractions (surface species) raised to the power of their stoichiometric coefficients. Thus, no matter the molecularity of the reaction, the reaction rate is k_f^* times quantities that have maximum values on the order of unity (the mole and site fractions), and it is easier to compare one reaction to another.

The quantity k_f^* just discussed can point out which reactions are fast relative to one another. It can also be of interest to know if a reaction is “fast” relative to a competing process like molecular transport. The Damköhler number for gas-phase reactions, Da , allows for such a comparison.

$$Da = \frac{k_f^*}{D[G]/L^2} \quad (2)$$

In equation (2), D is a diffusion coefficient and L is a characteristic length scale for diffusion, for example, a boundary-layer thickness or a characteristic reactor dimension. The Damköhler number is a dimensionless number that arises as a parameter in the nondimensionalization of the Navier-Stokes equation, and is a measure of the relative importance of gas-phase kinetics versus mass transport. If Da is much greater than 1, then a reaction is fast relative to transport; if it is much less than 1, then transport processes occur on a shorter time scale than kinetic processes.

One must supply a diffusion coefficient in equation (2) to evaluate Da . To do this, Surftherm requires the user to name a “major species” and a “carrier gas species.” Through internal calls to the Transport subroutine library [5], the code evaluates the binary diffusion coefficient between these two species at the specified bath temperature and pressure. Surftherm also lets the user specify the length scale L . The default value for L is 1 cm.

For each gas-phase reaction, Surftherm generates a report of k^* and Da for the forward and reverse directions. In some cases, the input Chemkin reaction mechanism specifies the reaction to be irreversible. In these cases, Surftherm still calculates the quantities k^* and Da for the reverse direction, but encloses the numbers in square brackets [] to flag these reactions as not being part of the mechanism.

A uniform-dimensional rate constant of equation (1) is also calculated for surface reactions. In this case, k_f^* has units of mole cm⁻² s⁻¹. Thus, one can make a comparison between reaction rates for surface reactions. The surface Damköhler number is defined to be

$$Da = \frac{k_f^*}{D[G]/L} \quad (3)$$

The equation for the surface Damköhler number differs from the equation for the gas-phase Damköhler number by a factor of the length scale L . As before, it provides a measure of the relative speed of the surface reaction rate versus the mass transport rate.

Thermodynamic Function and Transport Parameter Table for Each Species

The next major portion of output from Surftherm gives more detailed thermochemical and physical information for the gas-phase species. For each species in the mechanism, Surftherm reports the species number and its number in the phase, the name of the phase that it is in, and the elemental composition. The program reports all of the information on the species used in calculating its transport properties: the Lennard-Jones well depth and collision diameter, the dipole moment, the molecular polarizability, the rotational collision number, and its structure (atom, linear, or non-linear molecule). The values for the standard-state heat of formation and the molecular weight are also given.

A table is then given which reports this species' enthalpy, free energy, heat capacity, and entropy as a function of temperature. Optionally, the program reports the pure-species viscosity, pure-species thermal conductivity, and the binary diffusion coefficient as a function of temperature in the same table. The binary diffusion coefficient is reported at the bath gas pressure. The "binary" pair referred to is the carrier gas and the species listed in the table. The values for the viscosity and thermal conductivity do not depend on the specification of the bath gas. Keyword input parameters control how many temperatures are included in these tables. Similar thermochemical information is given for surface and bulk species, but the transport-property information is omitted.

Summary Table of Thermodynamic Functions for Gas-Phase Reactions

Kinetic and thermochemical information about gas-phase reactions is given next. First, a summary table is printed giving the change in free energy, enthalpy, and entropy for each gas-phase reaction at the specified bath-gas temperature.

Detailed Information about Each Gas-Phase Reaction

Following the summary table, more detailed information is reported in tables for each gas-phase reaction. The program reports the change in the number of moles in the reaction, whether the reaction includes third-body effects, whether any enhanced third-body collision efficiencies were included and their values, whether the reaction is reversible, and the number of reactant and product species. The modified Arrhenius rate expression for the rate constant (including its units) is given. This is essentially all of the information that the Chemkin database contains about the reaction.

A table of rate constant information in the high-pressure limit is given next. As a function of temperature it gives the forward rate constant, the forward pre-exponential constant and activation energy (calculated at that temperature), the change in free energy, enthalpy, and entropy, the reverse rate constant, the reverse pre-exponential and

activation energy, and k^* (the uniform-dimensional rate constant) for the forward and reverse directions.

Fall-Off Behavior for Special Classes of Reactions

If the rate constant's low-pressure fall-off is specified in the interpreter input (via Lindemann, Troe, or SRI expressions) the relevant parameters are printed. The low-pressure and high-pressure limits of the rate constant are specified in Chemkin as follows:

$$k_0 = A_0 T^{\beta_0} \exp(-E_0 / R_c T), \quad (4)$$

$$k_\infty = A_\infty T^{\beta_\infty} \exp(-E_\infty / R_c T). \quad (5)$$

The rate constant as a function of pressure is then

$$k = k_\infty \left(\frac{P_r}{1 + P_r} \right) F, \quad (6)$$

where the reduced pressure P_r is

$$P_r = \frac{k_0 [M]}{k_\infty}. \quad (7)$$

In equation (7) $[M]$ is the "effective" concentration of collision partners

$$[M] = \sum_i \epsilon_i [M_i], \quad (8)$$

where $[M_i]$ is the concentration of gas-phase species i , and ϵ_i is the collision efficiency of that species (assumed to be unity, unless specified by the interpreter input). In the Troe form, F is given by

$$\log F = \left[1 + \left[\frac{\log P_r + c}{n - d(\log P_r + c)} \right]^2 \right]^{-1} \log F_{cent}. \quad (9)$$

The constants are

$$c = -0.4 - 0.67 \log F_{cent}$$

$$n = 0.75 - 1.27 \log F_{cent}$$

$$d = 0.14$$

and

$$F_{cent} = (1 - a) \exp(-T/T^{***}) + a \exp(-T/T^*) + \exp(-T^{**}/T). \quad (10)$$

For reactions with pressure fall-off behavior, two tables are presented. The first table varies the gas temperature at the specified bath-gas pressure, and the second table varies the gas pressure at the specified bath-gas temperature. Each of these tables gives the calculated value of the rate constant, the pre-exponential and activation energy, k / k_∞ (a measure of how far into the fall-off region this reaction is), the low-pressure limit of the rate constant k_0 , the reduced pressure P_r , the fall-off parameter F , the effective concentration $[M]$, and the reverse reaction rate constant, pre-exponential, and activation energy.

An additional table is given for reactions in which a third body is explicitly included as a reactant, such as reaction 4 in the sample input file. This table essentially lumps the effective concentration $[M]$ together with the rate constant to make a new, “effective” rate constant. In reaction 4 of the example, this converts the third-order rate constant into a second order rate constant for the print-out. This table includes a column containing the total gas-phase concentration (at the specified bath temperature and pressure), as well as the effective concentration, as in equation (8).

Summary Thermochemical Information for Surface Reactions

The program next analyses each surface reaction in the mechanism. It first presents a summary table of the net thermochemistry of each surface reaction, evaluated at the specified bath temperature. Thermodynamic functions reported are the net changes in the free energy, the enthalpy, and the entropy.

Detailed Information About Each Surface Reaction

Next, tables of rate constant information are given for each reaction. The net molar change in the gas, surface, and bulk phases in the reaction is reported. If the rate constant is modified by site-coverage parameters (in the Surface Chemkin interpreter input file), those parameters are summarized. The number of gas, surface, and bulk species present as reactants and as products are listed, and whether the reaction is reversible. The types of reactants and products for the reaction are listed.

The program reports whether the reaction’s rate constant was input via a sticking coefficient form or via the regular form. Within the Surface Chemkin input file, the rate constant for the forward reaction can be optionally specified as a sticking coefficient. In this case, the sticking coefficient parameters are printed by Surftherm, but also Arrhenius coefficients are derived for a rate constant which would yield an identical rate. The Surface Chemkin code actually converts all sticking coefficient expressions to rate constants internally, but this is hidden from the user. Alternatively, if a rate constant was used in the interpreter input but a sticking coefficient was a legal option, i.e., there was exactly one gas-phase reactant species in the reaction, Surftherm reports parameters for an equivalent sticking coefficient expression. The program derives and reports Arrhenius coefficients for the reverse reaction and, if applicable, sticking coefficient parameters. These options are very useful for uncovering physically impossible reaction rate

constants. For example, it is normally physically impossible for a surface reaction to have a sticking coefficient greater than one. However, in practice, it can happen that a user unknowingly specifies thermochemical information for a reversible reaction such that the reverse reaction would have an effective sticking coefficient greater than one.

The sticking probability γ in Surface Chemkin can be specified in the three-parameter form

$$\gamma = aT^b \exp(-c / R_c T) \quad (11)$$

and the rate constant k is derived from γ as

$$k = \left(\frac{\gamma}{1 - \gamma/2} \right) \left(\frac{1}{\Gamma_{tot}^m} \right) \sqrt{\frac{RT}{2\pi W}}. \quad (12)$$

If more than one type of surface phase exists, there is an additional correction term, discussed below. In equation (12), m is the total number of surface species that appear as reactants in the reaction, Γ_{tot} is the total surface site density, and W is the molecular weight of the gas reactant species.

Surftherm next prints a table reporting the following rate information as a function of surface temperature: the rate constant, pre-exponential and activation energy for both the forward and reverse reaction, the net change in free energy, enthalpy, and entropy, and the uniform-dimensional rate constant k^* for the forward and reverse directions. All conditions other than the temperature are assumed to be given by the bath-gas conditions.

Coverage Dependent Surface Reaction Rates

Surface Chemkin allows modification of the rate constant expression for a surface reaction due to coverage of surface species in the following manner

$$k' = k \prod_i 10^{\eta_i Z_i} Z_i^{\mu_i} \exp(-\varepsilon_i Z_i / RT) \quad (13)$$

$$k = AT^\beta \exp(-E_a / RT). \quad (14)$$

In equation (13), the product runs over just the surface species. Z_i is the site fraction of surface species i . If coverage-dependence parameters are supplied for the reaction, an additional table is generated by Surftherm. This table gives the net rate constant k' , and a local fit to that k' to a two-parameter Arrhenius form, i.e., a pre-exponential and activation energy. Also given is the rate constant k for equation (14). The product in equation (13), i.e., k' / k , is listed in the table as "Cov_fac." Analogous information about the reverse reaction rate constants is also given in the table.

Breakdown of the Sticking Coefficient Surface Reaction Rate

If a sticking coefficient can describe the surface reaction, Surftherm also prints a table of information about γ as a function of surface temperature. The line labeled “Surface site density divisor” gives the quantity Γ_{ω} raised to the m power. The table prints γ , and at each temperature fits it to a two-parameter Arrhenius form, i.e., just using the constants a and c in equation (11). The column labeled “Eff_Veloc” is the square-root term in equation (12). The column labeled “Veloc_Corr” is

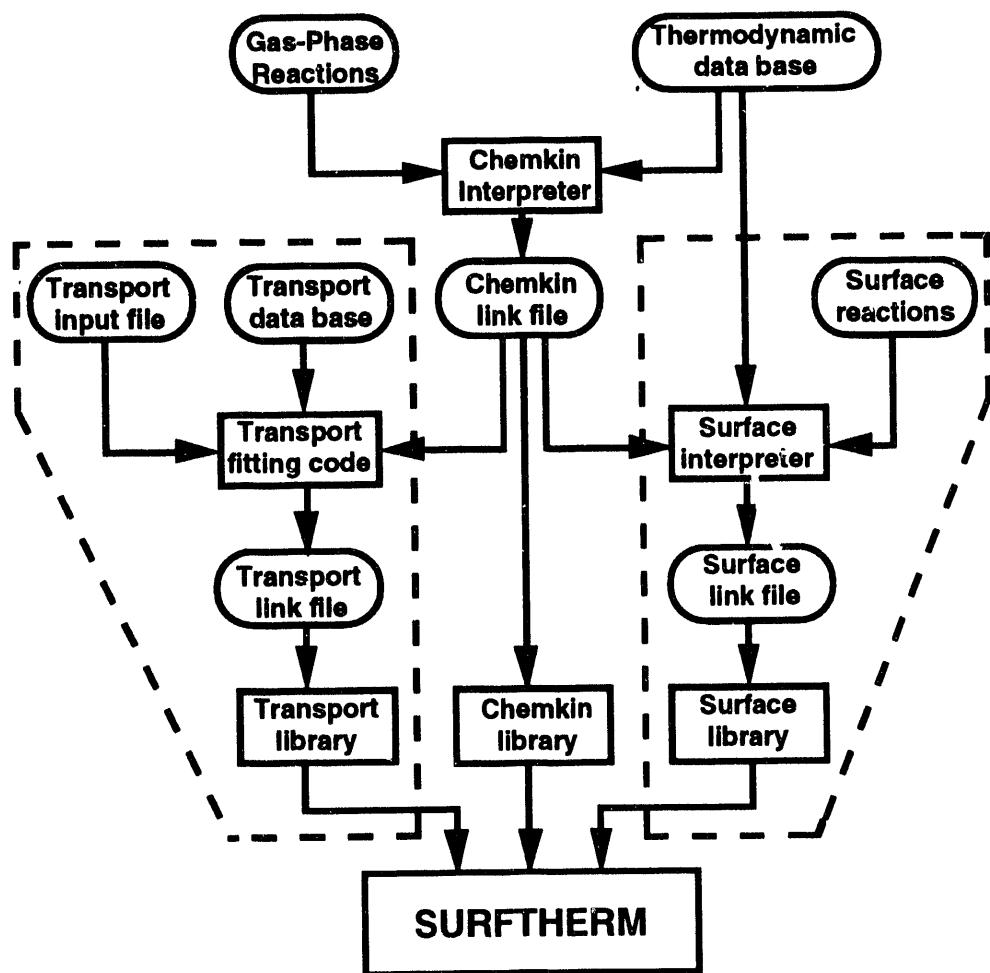
$$v_c = \frac{1}{1 - \gamma/2}. \quad (15)$$

It is the correction to the effusive flux to the surface due to the breakdown of the Maxwell-Boltzmann distribution of species velocities near to a surface with a high sticking coefficient. The column labeled “Sden_Ratio” is a subtle term arising when more than one surface phase exists. It is best illustrated by an example. Suppose two types of surface phase were declared (phases α and ω), which each occupy part of the surface. If these phases have site densities of Γ_α and Γ_ω , respectively, then a molecule colliding with the surface has a probability

$$P_\alpha = \frac{\Gamma_\alpha}{\Gamma_\alpha + \Gamma_\omega} \quad (16)$$

of colliding with a species in phase α . A multiplicative term like this P_α modifies the conversion between a sticking coefficient and a rate constant, as in equation (12). It is this term that appears as “Sden_Ratio” in the sticking-coefficient table. The last column in the table is the rate constant corresponding to this sticking coefficient, and the next-to-the-last column is the rate constant times the site-density term. If the reverse reaction can also be described with a sticking coefficient, an analogous table for the reverse reaction is also given by the program.

III. PROGRAM STRUCTURE AND CONTROL


In addition to direct user input, the Surftherm program depends on data and subroutines from the Chemkin [1] and Surface Chemkin [3] packages, and (optionally) the Transport package [5]. (Detailed instructions on using these software packages are found in their respective users manuals.) Therefore, to analyze a reaction mechanism, the user must be able to set up a control procedure that allows for the execution of several preprocessor programs, the access to several data bases, the loading of subroutines from several libraries, and the passing of files from one process to another. Figure 1 shows the relationships between these various components. A sample command procedure for running the Surftherm program under the VAX/VMS operating system is given in Fig. 2, and a similar shell script for running Surftherm under Unix is given in Fig. 3. Analogous operations would have to be performed under any operating system.

The first step is to execute the Chemkin interpreter. The Chemkin interpreter reads (Unit 15) user-supplied information about the species and chemical reactions for a particular gas-phase reaction mechanism. It then extracts further information about the species' thermodynamic properties from a data base (Unit 17). This information is stored on the Chemkin Linking File (Unit 25), a file that is needed by the transport property fitting program (Tranfit), the Surface Chemkin interpreter, and later by the Chemkin subroutine library, which will be accessed by the Surftherm program. The printed output from the Chemkin interpreter is written to Unit 16.

The next program to be executed is the transport property fitting program, Tranfit. It needs input from a transport property data base (Unit 31) and from the Chemkin subroutine library. Its purpose is to compute polynomial representations of the temperature-dependent parts of the individual species viscosities, thermal conductivities, and the binary diffusion coefficients. Like the Chemkin interpreter, the Tranfit program produces a Linking File (Unit 35) that is later needed by the transport property subroutine library, which will evaluate mixture properties to be reported in Surftherm tables. Printed output from Tranfit is written to Unit 6.

The Surface Chemkin interpreter must also be executed after the Chemkin interpreter has been run, because it relies on gas-phase species and element information in the Chemkin Linking file. The Surface Chemkin interpreter reads (Unit 15) user-supplied information about surface and bulk species names, site types, and surface reactions, and optional thermochemical information (Unit 17). This information is combined into a Surface Chemkin linking file (Unit 26), which will be used by the Surface Chemkin subroutine library called by the Surftherm program. The printed output from the Surface Chemkin interpreter is written to Unit 16.

The input that tells Surftherm the kind of information to be tabulated is entered in a Keyword format from Unit 5 (described in Section IV). The Surftherm program produces printed output on Unit 6.

Figure 1. Relationship of the Surftherm program to the Chemkin, Surface Chemkin, and Transport preprocessors and the associated input and output files.

<u>VAX/VMS COMMANDS</u>		<u>Meaning</u>
\$ assign	EXAMPLE.GAS FOR015	Assign the user's gas-phase reaction mechanism to Fortran unit 15. This is the input file for the Chemkin interpreter.
\$ assign	CKINTERP.OUT FOR016	Assign the output file for printed output from the Chemkin interpreter.
\$ assign	CKTHERMO.DAT FOR017	Assign the Thermodynamic Database to Fortran unit 17.
\$ assign	CKLINK.BIN FOR025	Assign the Chemkin Linking file to Fortran unit 25.
\$ run	CKINTERP.EXE	Execute the Chemkin interpreter.
\$ assign	TRANSPORT.OUT FOR006	Assign the output file for printed output from the Transport Package Fitting Code (Tranfit).
\$ assign	TRANSPORT.DAT FOR031	Assign the Transport Database to Fortran unit 31.
\$ assign	TPLINK.BIN FOR035	Assign the Transport Linking file to Fortran unit 35.
\$ run	TRANFIT.EXE	Execute the Transport Property Fitting code.
\$ assign	EXAMPLE.SURF FOR015	Assign the user's surface reaction mechanism to Fortran unit 15. This is the input file for the Surface Chemkin interpreter.
\$ assign	SKINTERP.OUT FOR016	Assign the output file for printed output from the Surface Chemkin interpreter.
\$ assign	SKTHERMO.DAT FOR017	Assign the Surface Thermodynamic Database to Fortran unit 17. This could be the same database as used above for Chemkin.
\$ assign	SKLINK.BIN FOR026	Assign the Surface Chemkin Linking file to Fortran unit 26.
\$ run	SKINTERP.EXE	Execute the Surface Chemkin interpreter.
\$ for	SURFTHERM.FOR	Compile the Surftherm source code.
\$ link	SURFTHERM,CKLIB/LIB, SKLIB/LIB,TPLIB/LIB, MATH/LIB	Link the Surftherm object code with the Chemkin, Surface Chemkin, Transport, and necessary mathematics libraries.
\$ assign	SURFTHERM.INP FOR005	Assign the keyword input file for Surftherm to Fortran unit 5.
\$ assign	SURFTHERM.OUT FOR006	Assign the output file for printed output from Surftherm to Fortran unit 6.
\$ run	SURFTHERM.EXE	Execute the Surftherm program

Figure 2. Sample command file to run Surftherm and the necessary preprocessors under VAX/VMS.

```

#!/bin/csh
# Runs the Surftherm application, ckinterp, skinterp, and tranfit under the c shell
# usage: run_surftherm chemkin.inp schemkin.inp surftherm.inp
#
set CHEMKIN_DIR = '/chemkin'
set UNIT = 'ftn'
#
echo "surftherm code: run under Unix"
if ($#argv == 3) then
    echo ' PID number of the running shell = ' $$
    unset noclobber
else
    echo 'Please use three arguments on the command file'
    echo '          1 - chemkin interpreter file'
    echo '          2 - surface chemkin interpreter file'
    echo '          3 - surftherm input file'
    exit 1
endif
echo Mechanisms used:
echo "          Using $1 as the input to the chemkin interpreter"
echo "          Using $2 as the input to surface chemkin interpreter"
echo "          Using $3 as the input to surftherm"
if(-e "$UNIT"15) /bin/rm "$UNIT"15
ln $1 "$UNIT"15
##          RUN THE CHEMKIN INTERPRETER.
# It takes its input file from "$UNIT"15
# and writes its ascii output file to "$UNIT"16 and its linking file to cklk
#
"$CHEMKIN_DIR"/ckinterp
/bin/rm "$UNIT"15
#
/bin/mv "$UNIT"16 "$3.ckout"
echo 'ckinterp has successfully run:'
echo '          It created an ascii output file named '"$3.ckout"'
echo '          It created a linking file named cklk'
#          RUN THE SURFACE CHEMKIN INTERPRETER
#
#          skinterp reads from 15, writes to 16, and reads thermo from thermdat
if (-e "$UNIT"15) rm "$UNIT"15
ln $2 "$UNIT"15
"$CHEMKIN_DIR"/skinterp
/bin/rm "$UNIT"15
#
/bin/mv -f "$UNIT"16 "$3.skout"
echo 'skinterp has successfully run:'
echo '          It created an ascii output file named '"$3.skout"'
echo '          It created a linking file named sklink'
#
#          RUN THE TRANSPORT PACKAGE INTERPRETER, tranfit
"$CHEMKIN_DIR"/tranfit >"$3.tpout"
echo 'tranfit has successfully run:'
echo '          It created an ascii output file named '"$3.tpout"'
echo '          It created a linking file named tmlink'
#          RUN SURFTERM
$CHEMKIN_DIR/surftherm $3 > "$3.surftherm.out"
#
echo 'surftherm has successfully run:'
echo '          It created an ascii output file named '"$3.surftherm.out"'

```

Figure 3. Sample script to run Surftherm and the necessary preprocessors on a Unix machine.

IV. PROGRAM INPUT AND OUTPUT

The Surftherm program's input is in a keyword format. On each input line an identifying keyword must appear first. For some keywords only the keyword itself is required, while for others additional information (such as a species name or a number) is required. Some keywords have default values associated with them and in such cases the Keyword line is optional. The order of the keyword inputs is generally unimportant, except that if the same keyword is given more than once (with conflicting values), the last one read will be operative. All keywords and associated modifiers are given in upper case. The rules governing the syntax of the keyword images are listed below:

1. The first four columns of the line are reserved for the keyword, which must begin in the first column.
2. Any further input associated with the keyword can appear anywhere in columns 5 through 80. The specific column in which the information begins is unimportant.
3. When more than one piece of information is required, the order in which the information appears is important.
4. When numbers are required as input, they may be stated in either integer, floating point, or E format. The program converts the numbers to the proper type. The double precision specification is not recognized; however, if a double precision version of the program is being run, the double precision conversion is done internally.
5. When gas-phase species names or chemical reactions are given as input, they must appear exactly as they were specified in the Chemkin interpreter input. When surface or bulk species names or surface reactions are used as input, they must appear exactly as they were specified in the Surface Chemkin input.
6. When more than one piece of information is given on a line, the pieces are delimited by one or more blank spaces.
7. If more information is input than required, then the last read inputs are used. For example, if the same keyword is encountered twice or if conflicting keywords are given, the last one read is used.
8. Two types of "comment" lines can be included. If one inserts either a period (.) or an exclamation point (!) in the first column, the input line will be ignored by the program and this line will not be echoed in the output file. If a slash (/) is placed in column one, the input line will be ignored by the program, but will be echoed in the printed output file.
9. Any characters appearing on a line after an exclamation point (!) are considered to be comments and are not processed as keyword input. They are, however, echoed in the printed output file.

List of Keywords

General keywords

ALL

Turns on all output from all Surftherm tables. Use this keyword if you want to activate all features and tables. Note, the usual default for each of the other output options is for all output to be given.

Example usage:

ALL

NONE

Turns default output off for all of Surftherm's tables. One can use this keyword in combination with another keyword below, to turn on output from only one feature. This keyword will also turn-off all previously specified output from keywords given before it.

Example usage:

NONE

END

Signals end of the current keyword input. The keyword is optional, and an end of file condition serves the same purpose.

Example usage:

END

CNTR

Signals that another set of outputs will be requested. After the current set of output tables is processed by the program, the program will process more keywords. Upon continuation, the NONE keyword is automatically assumed on later sets of input keywords.

Example usage:

CNTR

Keywords that Control Functionality

GEN [ALL] [NONE]

Controls the printing of general information about the mechanism. It also controls the printing of summary tables about the reaction thermodynamics. The ALL option produces all of the general information tables. NONE will suppress this output. If only GEN is given on the input line, ALL is assumed (the default). The GEN information is printed by default unless explicitly turned off.

Example usage:

GEN	ALL
GEN	NONE

TSUM [ALL] [NONE] [SPECIES] [GAS] [SUR]

Controls the printing of summary tables for the thermodynamic functions at the bath gas conditions (see TRTH, TBTH, and XBTH, below). There are three sets of thermodynamic tables: one for the species, one for the gas reactions, and one for the surface reactions. The last three options turn on each table individually. The default is ALL, which will print all three thermodynamic tables. They may all be suppressed with NONE.

Example usage:

TSUM	ALL
TSUM	NONE
TSUM	SPECIES
TSUM	GAS
TSUM	SUR

THRM [ALL] [GAS] [SUR] [BULK] [NONE] [Species_Name] [Species_number]

Prints out individual thermodynamics tables for the species in the mechanism. The default is ALL, which generates the tables for all species in the mechanism. The GAS, SUR, and BULK options will cause thermodynamic tables for only species in the specified phase to be printed. Listing individual species by their name or by their number (as listed in the Chemkin or Surface Chemkin interpreter output files) will generate thermodynamic tables for the specified species. The keyword NONE will suppress all of the species thermodynamic tables.

Example usage:

THRM	ALL
THRM	NONE
THRM	GAS
THRM	SUR
THRM	BULK
THRM	3
THRM	CH4
THRM	CH(S)
THRM	D

TRAN [ALL] [NONE]

Prints out the transport data base properties (intermolecular potential parameters) for each gas-phase species in the mechanism. This feature also expands the thermo table to create a table of transport properties as a function of temperature. The NONE option turns off printing of this table. The transport data base, trandat, must exist in the current directory, unless the NONE option is used.

Example usage:

TRAN	ALL
TRAN	NONE

NDIM [ALL] [GAS] [SUR] [NONE]

Prints out a table for the uniform-dimensional reaction rate constants for gas and surface reactions. The ALL option will produce output for both sets of reactions. Specifying either GAS or SUR will produce reaction rate information for only the given type of reaction. The NONE option suppresses all of these tables. Note that forming the NDIM print-out may require the bath gas quantities XBTH, PBTH, and TBTH, below.

Example usage:

NDIM	ALL
NDIM	GAS
NDIM	SUR
NDIM	NONE

GRXN [ALL] [NONE] [Gas_Reaction_Number...] [Gas_Reaction_Expression]

Prints out a table of reaction rates and other pertinent information for each gas-phase reaction. The ALL option is the default and produces tables for every gas-phase reaction. The NONE option suppresses output for all of the reactions. If reaction information is desired for only certain reactions, they may be optionally specified by their number (given in the interpreter output) or by typing an exact duplicate of the reaction expression (see example input).

Example usage:

GRXN	ALL
GRXN	NONE
GRXN	1
GRXN	2 5
GRXN	CH4+H<=>CH3+H2

PFAL [ALL] [NONE] [Gas_Reaction_Number ...] [Gas_Reaction_Expression]

Analyze the pressure fall-off of a gas phase reaction, i.e., creates a table of reaction rates versus total gas pressure at a constant temperature. Optional keyword usage is the same as in GRXN, above.

Example usage:

PFAL	ALL
PFAL	NONE
PFAL	1
PFAL	2 5
PFAL	2CH3 (+M) <=> C2H6 (+M)

TFAL [ALL] [NONE] [Gas_Reaction_Number ...] [Gas_Reaction_Expression]

Analyze the fall-off of a gas-phase reaction with respect to changes in the temperature, i.e., create a table of reaction rates versus temperature at a constant pressure. The pressure and gas composition are assumed to be that of the bath gas. Optional keyword usage is the same as in GRXN, above.

Example usage:

TFAL	ALL
TFAL	NONE
TFAL	1

TFAL	2	5
	2CH3 (+M) <=> C2H6 (+M)	

GTHB [ALL] [NONE] [Gas_Reaction_Number ...] [Gas_Reaction_Expression]

Create an extra table of the reaction rates for those reactions which involve third bodies. This option employs the bath-gas composition (specified by the XBTH keyword) to yield effective reaction rates. Optional keyword usage is the same as in GRXN, above.

Example usage:

GTHB	ALL	
GTHB	NONE	
GTHB	4	
GTHB	2	5
GTHB	2H+M<=>H2+M	

SRXN [ALL] [NONE] [Surf_Reaction_Number ...] [Surf_Reaction_Expression]

Prints out a table of reaction rates and other pertinent information for a surface reaction. Optional keyword usage is the same as in GRXN, above.

Example usage:

SRXN	ALL	
SRXN	NONE	
SRXN	1	
SRXN	2	5
SRXN	CH(S)+H<=>C(S,R)+H2	

STCK [ALL] [NONE] [Surf_Reaction_Number ...] [Surf_Reaction_Expression]

Analyzes the forward and reverse surface reaction's sticking coefficient, if applicable. Optional keyword usage is the same as in GRXN, above.

Example usage:

STCK	ALL	
STCK	NONE	
STCK	1	
STCK	2	5
STCK	CH(S)+H<=>C(S,R)+H2	

SCOV [ALL] [NONE] [Surf_Reaction_Number ...] [Surf_Reaction_Expression]

Analyze the coverage dependence of a surface reaction, i.e., create a table of effective reaction rates versus temperature. Surface coverage is assumed to be that of the bath-gas composition. Optional keyword usage is the same as in GRXN, above.

Example usage:

SCOV	ALL	
SCOV	NONE	
SCOV	1	
SCOV	2	5
SCOV	CH(S)+H<=>C(S,R)+H2	

Keywords that Control Bath Gas Quantities

XBTH Species_Name/Species_Number Value

Specifies the bath gas composition. The Species_Name (or number as it appears in the interpreter output) and desired mole fraction are required parameters. If at least one species in a phase has been set with the XBTH keyword, then all of the specified mole fractions for that phase are summed and normalized so that they add up to one. If no XBTH parameters have been specified for any species in the phase, then mole fractions for all species in that phase are set equal to one another.

Example usage:

```
XBTH      H2  1.0
XBTH      3   1.0
XBTH      CH(S) 0.5
XBTH      C(S,R) 0.5
```

PBTH Value

Set the total bath gas pressure in Torr. The default is 760 torr.

Example usage:

```
PBTH      1000.      ! (torr)
```

TBTH Value

Set the bath gas temperature in Kelvin. This temperature is used wherever a single temperature is needed. The default is 298.15 K.

Example usage:

```
TBTH      900.      ! (Kelvin)
```

Keywords that Control the Composition of Tables

TLOW Value

Set the lower limit of the temperature range (K) in all tables where the temperature is varied. The default is 300 K.

Example usage:

```
TLOW      100.      ! (Kelvin)
```

THIG Value

Set the upper limit of the temperature range (K) in all tables where the temperature is varied. The default is 1500 K.

Example usage:

```
THIG      298.15      ! (Kelvin)
```

TDEL Value

Set the temperature increment in all tables where the temperature is varied. The default is 100 K.

Example usage:

```
TDEL      200.      ! (Kelvin)
```

PLOW Value

Set the lower limit of the pressure range (Torr) in all tables where the gas pressure is varied. The default is 1 Torr.

Example usage:

```
PLOW      1.0      ! (torr)
```

PHIG Value

Set the upper limit of the pressure range (Torr) in tables where the gas pressure is varied. The default is 1000 Torr.

Example usage:

```
PHIG      1000.    ! (torr)
```

PNUM Value

Set the total number of pressures in tables where the gas pressure is varied. The default is 10. Note that the changes in the pressure are determined on a logarithmic scale.

Example usage:

```
PNUM      10
```

CARR Gas_Species_Name/Gas_Species_Number

Specify the named species as the carrier gas. This keyword is used to identify the species in calculating binary diffusion coefficients for tables and for non-dimensionalizations which require a binary diffusion coefficient. The default is to use the gas species with the largest mole fraction (from the XBTH input) in the bath-gas composition. If the gas-phase bath-gas composition is not specified, the default is to use the first species in the mechanism.

Example usage:

```
CARR      H2
CARR      3
```

MAJ Gas_Species_Name/Gas_Species_Number

Sets the "Major Species". This is only used to calculate an effective diffusion coefficient when non-dimensionalizing the reaction rate constants. The default is to use the gas species with the second largest mole fraction (from the XBTH input) in the bath-gas composition. If the gas-phase bath-gas composition is not specified, the default is to use the second species in the mechanism.

Example usage:

```
MAJ      CH4
MAJ      1
```

LSCL Value

Sets the length scale (cm) for the calculation of gas and surface Damköhler numbers. The default is 1 cm.

Example usage:

```
LSCL      3.      ! (cm)
```

V. SURFTHERM EXAMPLE

The next several pages give example input and output files from a sample execution of the Surftherm program. In the order in which they appear, the example files are: the keyword input file for Surftherm, the input to the Transport Properties Fitting code (Tranfit), the input to the Chemkin interpreter, the output from the Chemkin interpreter, the input to the Surface Chemkin interpreter, the output from the Surface Chemkin interpreter, and the output from Surftherm.

The Surftherm example input file has been designed to illustrate as many of the features as possible. As such, a lengthy output file was generated. In practice, by selecting only the options desired, the output length can be shorten considerably.

The Chemkin and (especially the) Surface Chemkin input files were contrived to illustrate many features of Surftherm. As such they should not be considered as a source for kinetic rate information for Carbon/Hydrogen systems.

The printed output from Surftherm has been augmented in a number of places by comments, which appear in bold-faced font. The additional comments explain which keyword controls a given portion of the output.

Sample input file for Surftherm sample

```
NONE
GEN    ALL
TSM    SPECIES   GAS     SUR
THRM   CH3      CH4     CH(S)   CH2(S)  BULK
TRAN   ALL
NDIM   GAS      SUR
GRXN   ALL
PFAL   ALL
TFAL   ALL
GTHB   ALL
SRXN   ALL
STCK   ALL
SCOV   ALL
XBTH   H2      0.90
XBTH   H       0.02
XBTH   CH4     0.05
XBTH   CH3     0.03
PBTH   20.
TBTH   1100.
TLOW   300.
THIG   1200.
TDEL   400.
PLOW   100.
PHIG   700.
PNUM   3
CARR   H2
MAJ    CH4
LSCL   1.3
CNTR
```

```

END
PBTH 1000.
NDIM ALL
END

```

Input file to Transport Fitting Code for sample

	1	144.000	3.800	0.000	0.000	0.000
C2H6	2	252.300	4.302	0.000	0.000	1.500
CH4	2	141.400	3.746	0.000	2.600	13.000
H	0	145.000	2.050	0.000	0.000	0.000
H2	1	38.000	2.920	0.000	0.790	280.000

Input file to Chemkin Interpreter for sample

```

ELEMENTS H C
SPECIES
  CH3 C2H6 CH4 H H2
END
THERMO
CH3          121286C  1H   3          G  0300.00  5000.00  1000.00  1
  2.84405160E+00 6.13797410E-03-2.23034522E-06 3.78516080E-10-2.45215903E-14 2
  1.64378086E+04 5.45269728E+00 2.43044281E+00 1.11240987E-02-1.68022034E-05 3
  1.62182872E-08-5.86495262E-12 1.64237813E+04 6.78979397E+00 4
C2H6          51090C   2H   6          0G  300.000  5000.000  2000.00  0 1
  0.13436084E+02 0.36325546E-02-0.24694586E-06-0.11228470E-09 0.15553612E-13 2
  -0.18298318E+05-0.56480824E+02 0.81958778E-01 0.24148658E-01-0.12186742E-04 3
  0.31174958E-08-0.34426783E-12-0.11399086E+05 0.20696499E+02 4
CH4          121286C  1H   4          G  0300.00  5000.00  1000.00  1
  1.68347883E+00 1.02372356E-02-3.87512864E-06 6.78558487E-10-4.50342312E-14 2
  -1.00807871E+04 9.62339497E+00 7.78741479E-01 1.74766835E-02-2.78340904E-05 3
  3.04970804E-08-1.22393068E-11-9.82522852E+03 1.37221947E+01 4
H            120186H   1          G  0300.00  5000.00  1000.00  1
  2.50000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 2
  2.54716270E+04-4.60117638E-01 2.50000000E+00 0.00000000E+00 0.00000000E+00 3
  0.00000000E+00 0.00000000E+00 2.54716270E+04-4.60117608E-01 4
H2          121286H   2          G  0300.00  5000.00  1000.00  1
  2.99142337E+00 7.00064411E-04-5.63382869E-08-9.23157818E-12 1.58275179E-15 2
  -8.35033997E+02-1.35511017E+00 3.29812431E+00 8.24944174E-04-8.14301529E-07 3
  -9.47543433E-11 4.13487224E-13-1.01252087E+03-3.29409409E+00 4
END
REACTIONS
2CH3(+M)=C2H6(+M)          0.903E+17 -1.180    654.000
  LOW/ 3.18E41 -7.03 2762. /
  TROE/ .6041 6927. 132. /
  H2/2/
CH4+H=CH3+H2          0.220E+05  3.000    8750.000
CH3+H(+M)=CH4(+M)          0.600E+17 -1.000    0.000
  LOW/8.0E26 -3.0 0.0/
  H2/2/
H+H+M=H2+M          0.100E+19 -1.000    0.000
  H2/0.0/
H+H+H2=H2+H2          0.920E+17 -0.600    0.000
END

```

Output from Chemkin Interpreter for sample

CHEMKIN INTERPRETER OUTPUT: CHEMKIN-II Version 3.0 Jun. 1991
DOUBLE PRECISION

```

-----
ELEMENTS      ATOMIC
CONSIDERED   WEIGHT
-----
1. H          1.00797
2. C          12.0112
-----
C
P H
H A
A R
SPECS      S G MOLECULAR TEMPERATURE ELEMENT COUNT
CONSIDERED E E WEIGHT    LOW      HIGH    H  C
-----
1. CH3        G 0  15.03506  300.0  5000.0  3  1
2. C2H6       G 0  30.07012  300.0  5000.0  6  2
3. CH4        G 0  16.04303  300.0  5000.0  4  1
4. H          G 0  1.00797  300.0  5000.0  1  0
5. H2         G 0  2.01594  300.0  5000.0  2  0
-----
```

REACTIONS CONSIDERED			(k = A T**b exp (-E/RT))		
	A	b		E	
1. 2CH3(+M)=C2H6(+M)			9.03E+16	-1.2	654.0
Low pressure limit:	.31800E+42	-.70300E+01		.27620E+04	
TROE centering:	.60410E+00	.69270E+04		.13200E+03	
H2	Enhanced by	2.000E+00			
2. CH4+H=CH3+H2			2.20E+04	3.0	8750.0
3. CH3+H(+M)=CH4(+M)			6.00E+16	-1.0	.0
Low pressure limit:	.80000E+27	-.30000E+01		.00000E+00	
H2	Enhanced by	2.000E+00			
4. H+H+M=H2+M			1.00E+18	-1.0	.0
H2	Enhanced by	.000E+00			
5. H+H+H2=H2+H2			9.20E+16	-.6	.0

NOTE: A units mole-cm-sec-K, E units cal/mole

NO ERRORS FOUND ON INPUT...CHEMKIN LINKING FILE WRITTEN.

WORKING SPACE REQUIREMENTS ARE

INTEGER:	138
REAL:	211
CHARACTER:	7

Input file to Surface Chemkin Interpreter for sample

```

SITE/DIAMOND/ SDEN/5.22E-09/
    CH(S)      C(S,R)    CH3(S)
    CH2(S)     CH2(S,R)   CH(S,R)
END
BULK
    D /3.515/
END
THERMO ALL
    300.      600.      3000.
CH(S)          71291C  1H   1   0   OG   300.000  3000.000 1000.00  0 1
    .0.14872259E+01 0.33000924E-02-0.28411702E-06-0.34383971E-09 0.76660243E-13  2
    -0.97217761E+03-0.10147021E+02-0.18660052E+01 0.90233106E-02 0.29339509E-06  3
    -0.52555964E-08 0.20409182E-11 0.16202820E+03 0.81504984E+01  4
C(S,R)         71291C  1   0   0   OG   300.000  3000.000 1000.00  0 1
    0.16900997E+01 0.11069085E-02-0.12616481E-06-0.11996654E-09 0.28811839E-13  2
    0.21028852E+05-0.10340458E+02-0.12628431E+01 0.73135700E-02-0.72650602E-06  3
    -0.57274971E-08 0.29829661E-11 0.21889631E+05 0.52818985E+01  4
CH3(S)         71291C  1H   3   0   OG   300.000  3000.000 1000.00  0 1
    0.22271934E+01 0.64840489E-02-0.50900690E-06-0.66263206E-09 0.14445464E-12  2
    0.72205317E+04-0.13843549E+02-0.23782465E+01 0.14169827E-01 0.60410139E-06  3
    -0.75244326E-08 0.28128064E-11 0.87938271E+04 0.11347555E+02  4
CH2(S)         71291C  1H   2   0   OG   300.000  3000.000 1000.00  0 1
    0.17394471E+01 0.51764320E-02-0.42153641E-06-0.53463645E-09 0.11763388E-12  2
    -0.70305313E+04-0.12329198E+02-0.25071146E+01 0.12199585E-01 0.59056043E-06  3
    -0.66420434E-08 0.24363521E-11-0.55698042E+04 0.10931940E+02  4
CH2(S,R)       100191C  1H   2   0   OG   300.000  3000.000 1000.00  0 1
    0.17394471E+01 0.51764320E-02-0.42153641E-06-0.53463645E-09 0.11763388E-12  2
    0.24246523E+05-0.12329198E+02-0.25071146E+01 0.12199585E-01 0.59056043E-06  3
    -0.66420434E-08 0.24363521E-11 0.25707254E+05 0.10931940E+02  4
CH(S,R)        71291C  1H   1   0   OG   300.000  3000.000 1000.00  0 1
    0.14872259E+01 0.33000924E-02-0.28411702E-06-0.34383971E-09 0.76660243E-13  2
    0.15069210E+05-0.10147021E+02-0.18660052E+01 0.90233106E-02 0.29339509E-06  3
    -0.52555964E-08 0.20409182E-11 0.16203417E+05 0.81504984E+01  4
D              71291C  1   0   0   OG   300.000  3000.000 1000.00  0 1
    0.16900997E+01 0.11069085E-02-0.12616481E-06-0.11996654E-09 0.28811839E-13  2
    -0.56464282E+03-0.10340458E+02-0.12628431E+01 0.73135700E-02-0.72650602E-06  3
    -0.57274971E-08 0.29829661E-11 0.29613477E+03 0.52818985E+01  4
END
REACTIONS
    CH(S)      + H      <=> C(S,R)    + H2          2.14      0.0    7300.0
    STICK      COV /CH(S) 0.1  0.0  -0.25/
    C(S,R)     + H      => CH(S)          3.0E-1    0.0      0.0
    STICK
    C(S,R)     + CH3     <=> D          + CH3(S)    4.0E12    0.0    1200.0
    REV       /1.0E13  0.0  15000./
    CH2(S,R)   + CH(S,R) <=> CH2(S)   + CH(S)    6.0E19    0.0    2000.0
END

```

Output from Surface Chemkin Interpreter for sample

SURFACE INTERPRETER OUTPUT:

Copyright 1990, Sandia Corporation.

The U.S. Government retains a limited license in this software.

CHEMKIN-II Version 4.04 Apr. 1992

DOUBLE PRECISION

CKLIB: Chemical Kinetics Library
CHEMKIN-II Version 4.0, October 1992
DOUBLE PRECISION

SPECIES CONSIDERED	MOLECULAR WEIGHT	Density	ELEMENT COUNT		
			Nsites	H	C
<hr/>					
Gas phase species:					
1. CH3	15.03506			3	1
2. C2H6	30.07012			6	2
3. CH4	16.04303			4	1
4. H	1.00797			1	0
5. H2	2.01594			2	0
SITE: DIAMOND		.522E-08	moles/cm**2		
6. CH(S)	13.01912			1	1
7. C(S,R)	12.01115			1	0
8. CH3(S)	15.03506			1	3
9. CH2(S)	14.02709			1	2
10. CH2(S,R)	14.02709			1	2
11. CH(S,R)	13.01912			1	1
BULK: BULK1					
12. D	12.01115	.352E+01	g/cm**3	0	1
<hr/>					
SURFACE REACTIONS CONSIDERED			(k = A T**b exp(-E/RT))		
			A	b	E
1. CH(S)+H<=>C(S,R)+H2			2.14E+00	.0	7300.0
Coefficients are sticking parameters...					
Coverage parameters for species CH(S)			:		
1.000E-01 .000E+00-2.500E-01					
2. C(S,R)+H=>CH(S)			3.00E-01	.0	.0
Coefficients are sticking parameters...					
3. C(S,R)+CH3<=>D+CH3(S)			4.00E+12	.0	1200.0
Reverse Arrhenius coefficients:			1.00E+13	.0	15000.0
4. CH2(S,R)+CH(S,R)<=>CH2(S)+CH(S)			6.00E+19	.0	2000.0

NOTE: A units mole, E units cal/mole

NO ERRORS FOUND ON INPUT...SURFACE LINKING FILE WRITTEN.

WORKING SPACE REQUIREMENTS ARE

INTEGER: 206

REAL: 308

CHARACTER: 17

Output from Surftherm sample run

```
SURFTHERM: Program to analyze gas/surface reaction mechanisms
           surftherm.f, version 1.41, 1/6/94
           DOUBLE PRECISION
           Command File = example
CKLIB: Chemical Kinetics Library
CHEMKIN-II Version 4.0, October 1992
DOUBLE PRECISION
SKLIB: Surface kinetics library
Copyright 1990, Sandia Corporation.
The U.S. Government retains a limited license in this software.
CHEMKIN-II Version 4.07, October 1992
DOUBLE PRECISION
```

Command Lines read:

```
KEYWORD INPUT
NONE
GEN ALL
TSUM SPECIES GAS SUR
THR M CH3 CH4 CH(S) CH2(S) BULK
TRAN ALL
NDIM GAS SUR
GRXN ALL
PFAL ALL
TFAL ALL
GTMB ALL
SRXN ALL
STCK ALL
SCOV ALL
XBTH H2 0.90
XBTH H 0.02
XBTH CH4 0.05
XBTH CH3 0.03
PBTH 20.
TBTH 1100.
TLOW 300.
THIG 1200.
TDEL 400.
PLOW 100.
PHIG 700.
PNUM 3
CARR H2
MAJ CH4
LSCL 1.3
CNTR
END
```

```
-----  
CKLIB: Chemical Kinetics Library
CHEMKIN-II Version 4.0, October 1992
DOUBLE PRECISION

SKLIB: Surface kinetics library
Copyright 1990, Sandia Corporation.
The U.S. Government retains a limited license in this software.
CHEMKIN-II Version 4.07, October 1992
DOUBLE PRECISION
```

```
TRANLIB: Multicomponent transport library,
CHEMKIN-II Version 1.7, October 1992
DOUBLE PRECISION
```

(GEN keyword produces this portion of printout)

```
=====
GENERAL INFORMATION CONCERNING THE SURFACE CHEMKIN PROBLEM:
Total number of elements declared = 2 ( H C )
Total number of species = 12
```

Total number of phases = 3
 Total number of gas-phase reactions = 5
 Total number of surface-phase reactions = 4
 Universal gas constant = 8.31400E+07 ergs/(mole*K)
 Universal gas constant used for activation energies = 1.9870 cals/(mole*K)
 Pressure of one standard atmosphere = 1.01325E+06 dynes/cm**2

GAS phase (Always phase # 1, with the name, "GAS"):
 Number of species = 5
 Number of surface reactions where the # of gas products is different than the # of gas reactants = 2
 Number of elements in the phase = 2 (H C)

SURFACE PHASES:

Phase Number	Name of Phase	SS Site Density (moles/cm**2)	Number of Species	Number of Elements	Site_changing	Elements:
2	DIAMOND	5.2200E-09	6	2	0	(H C)

Tot SS Site Dens= 5.2200E-09 (mole/cm**2) (used in sticking coefficient express)

BULK PHASES:

Phase Number	Name of Phase	Number of Species	Number of Elements	Mole_changing	Elements:
3	BULK1	1	1	1	(C)

(GEN keyword produces this portion of printout)

SUMMARY OF SPECIES IN THE MECHANISM with a DESCRIPTION OF BATH GAS COMPOSITION:

(PBTH keyword sets this pressure)

Total pressure = 20.0 torr

(TBTH keyword set this temperature)

Temperature (where needed) = 1100.E+00 Kelvin

(CARR keyword determines this species)

Carrier Gas (used in diff. calcs) = H2

(MAJ keyword determines this species)

Major Gas Species (used in nondim calcs) = CH4

(XBTH keyword sets these mole fractions)

Number	Name	Mole_fraction	Concentration
1.	CH3	.3000E-01	.8747E-08 mole/cm**3
2.	C2H6	.0000E+00	.0000E+00 mole/cm**3
3.	CH4	.5000E-01	.1458E-07 mole/cm**3
4.	H	.2000E-01	.5831E-08 mole/cm**3
5.	H2	.9000	.2624E-06 mole/cm**3
6.	CH(S)	.1667	.8700E-09 mole/cm**2
7.	C(S,R)	.1667	.8700E-09 mole/cm**2
8.	CH3(S)	.1667	.8700E-09 mole/cm**2
9.	CH2(S)	.1667	.8700E-09 mole/cm**2
10.	CH2(S,R)	.1667	.8700E-09 mole/cm**2
11.	CH(S,R)	.1667	.8700E-09 mole/cm**2
12.	D	1.000	.0000E+00 activity(unitless)

(TSUM keyword produces this portion of printout)

SUMMARY OF STANDARD STATE THERMODYNAMIC FUNCTIONS FOR SPECIES AT BATH GAS CONDITIONS:

Bath Gas Temperature = 1100. Kelvin

Number	Name	H(298 K) (kcal/mole)	H(T_bath) (kcal/mole)	Cp(T_bath) (cal/moleK)	S(T_bath) (cal/moleK)	G(T_bath) (kcal/mole)
1.	CH3	34.820	44.550	14.634	61.460	-23.056
2.	C2H6	-20.671	-2.1373	30.888	82.894	-93.321
3.	CH4	-17.898	-6.9959	18.067	60.830	-73.909

4.	H	52.093	56.076	4.9675	33.873	18.816
5.	H2	5.85426E-04	5.6653	7.3188	40.389	-38.762
6.	CH(S)	-1.85923E-04	4.8346	8.7987	7.1569	-3.0379
7.	C(S,R)	43.360	46.629	5.2408	5.1543	40.959
8.	CH3(S)	17.300	26.172	16.042	16.566	7.9494
9.	CH2(S)	-11.488	-4.6301	12.685	10.129	-15.771
10.	CH2(S,R)	50.659	57.517	12.685	10.128	46.376
11.	CH(S,R)	31.874	36.709	8.7987	7.1569	28.836
12.	D	.45374	3.7227	5.2408	5.1543	-1.9470

(GEN keyword produces this portion of printout)

SHORT DESCRIPTION OF GAS-PHASE REACTIONS

Number	Description	Gas_Mole Change	Gas_Mole Reactants
1.	2CH3 (+M) <=> C2H6 (+M)	-1	2
2.	CH4+H<=>CH3+H2	0	2
3.	CH3+H(+M) <=> CH4 (+M)	-1	2
4.	2H+M<=>H2+M	-1	2
5.	2H+H2<=>2H2	-1	3

(GEN keyword produces this portion of printout)

SHORT DESCRIPTION OF SURFACE-PHASE REACTIONS

Number	Description	Gas_Mole Change	Surf_Mole Change	Bulk_Mole Change	Surf_Site Change
1.	CH(S)+H<=>C(S,R)+H2	0	0	0	0
2.	C(S,R)+H=>CH(S)	-1	0	0	0
3.	C(S,R)+CH3<=>D+CH3(S)	-1	0	1	0
4.	CH2(S,R)+CH(S,R)<=>CH2(S)+CH(S)	0	0	0	0

(NDIM keyword produces this portion of printout)

NON-DIMENSIONAL GAS REACTION RATE CONSTANTS

AT THE BATH GAS CONDITIONS

Total Pressure = 20.0 torr

Temperature = 1100.E+00 Kelvin

Number	Description	k_star (mole/cm**3 sec)	k_star_rev (mole/cm**3 sec)	Gas_Da_For	Gas_Da_Rev
1.	2CH3 (+M) <=> C2H6 (+M)	.270	4.280E-09	6.113E+03	9.677E-05
2.	CH4+H<=>CH3+H2	4.544E-02	2.095E-03	1.027E+03	47.4
3.	CH3+H(+M) <=> CH4 (+M)	2.813E-02	1.535E-14	636.	3.470E-10
4.	2H+M<=>H2+M	2.253E-06	5.667E-20	5.095E-02	1.281E-15
5.	2H+H2<=>2H2	3.413E-05	8.585E-19	.772	1.941E-14

NOTE ON THE ABSOLUTE NUMBERS IN THIS TABLE:

The rate rate constants (mole/cm**3*sec) should be compared to rate of mass transport in order to characterize their values as being fast or slow. The nondimensionalization of the mass transport involves the following multiplicative factor, which also has the units of mole/cm**3*sec:

Total_Concentration * Diffusivity / Length_scale**2

Using the binary diffusion coefficient between H2

and CH4, the following factors are calculated at bath gas conditions:

Total Concentration = 2.916E-07 mole/cm**3

Binary Diffusion Coefficient = 256. cm**2/sec

(LSCL keyword sets this length scale)

Length scale = 1.30 cm

Therefore, the non-dimensionalization factor for gas reactions becomes:

Conc * Diff / Length**2 = 4.423E-05 mole/cm**3*sec

Note that this number is independent of pressure

(NDIM keyword produces this portion of printout)

NON-DIMENSIONAL SURFACE REACTION RATE CONSTANTS
 AT THE BATH GAS CONDITIONS
 Total Pressure = 20.0 torr
 Temperature = 1100.E+00 Kelvin

Number	Description	k_star (mole/cm**2 sec)	k_star_rev (mole/cm**2 sec)	Surf_Da_For	Surf_Da_Rev
1.	CH(S)+H<=>C(S,R)+H2	2.870E-03	5.747E-06	49.9	9.996E-02
2.	C(S,R)+H=>CH(S)	1.237E-02	[1.553E-13]	215.	[2.701E-09]
3.	C(S,R)+CH2<=>D+CH3(S)	3.516E-03	54.6	61.1	9.496E+05
4.	CH2(S,R)+CH(S,R)<=>CH2(S)+CH(S)	655.	1.362E-16	1.139E+07	2.369E-12

[] indicates that this reaction is not in mechanism

NOTE ON THE ABSOLUTE NUMBERS IN THIS TABLE:

The rate constants (mole/cm**2*sec) should be compared to rate of mass transport to the surface in order to characterize their values as being fast or slow. The nondimensionalization of the mass transport involves the following multiplicative factor, which also has the units of mole/cm**2*sec:

$$\text{Total_Concentration} * \text{Diffusivity} / \text{Length_scale}$$

Using the binary diffusion coefficient between H2

and CH4, the following factors are calculated at bath gas conditions:

$$\text{Total Concentration} = 2.916E-07 \text{ mole/cm}^{**3}$$

$$\text{Binary Diffusion Coefficient} = 256. \text{ cm}^{**2/\text{sec}}$$

$$\text{Length scale} = 1.30 \text{ cm}$$

Therefore, the non-dimensionalization factor for surface reactions becomes:

$$\text{Conc} * \text{Diff} / \text{Length} = 5.750E-05 \text{ mole/cm}^{**2/\text{sec}}$$

Note that this number is independent of pressure

(THRM keyword produces this portion of printout)

THERMO TABLE FOR MOLECULE "CH3" IN PHASE "GAS"

Overall, this is the 1th species in the mechanism

It is the 1th species in phase GAS

Elemental Composition:

H : 3

C : 1

L-J Potential well depth = 144. K

L-J collision diameter = 3.80 Angstroms

Dipole Moment = .000E+00 Debye

Polarizability = .000E+00 Angstroms**3

Rotational Collision number at 298K = .000E+00

This molecule is linear

Heat of Formation at 298 = 34.820 kcal/mole

Molecular Weight = 15.035 gm/mole

(TRAN keyword is responsible for adding transport properties to the table)

Temp (K)	(H-H298) (kcal/mole)	(G-H298) (kcal/mole)	Cp (cal/mole*K)	S (cal/mole*K)	Viscosity (gm/cm*sec)	Therm_Cond (erg/cm*sec*K)	Dif_Co_with_H2 (cm**2/sec)
298.15	.00000E+00	-13.827	9.2137	46.375	1.069E-04	3.556E+03	28.0
300.00	1.70617E-02	-13.912	9.2313	46.432	1.074E-04	3.581E+03	28.3
700.00	4.3359	-34.449	12.198	55.406	2.032E-04	9.207E+03	119.
1100.00	9.7307	-57.876	14.634	61.460	2.767E-04	1.486E+04	253.

[Pressure for binary diffusion coeff. calc. = 20.0 torr]

THERMO TABLE FOR MOLECULE "CH4" IN PHASE "GAS"

Overall, this is the 3th species in the mechanism

It is the 3th species in phase GAS

Elemental Composition:

H : 4

C : 1

L-J Potential well depth = 141. K

L-J collision diameter = 3.75 Angstroms

Dipole Moment = .000E+00 Debye

Polarizability = 2.60 Angstroms**3

Rotational Collision number at 298K = 13.0

This molecule is non-linear
 Heat of Formation at 298 = -17.898 kcal/mole
 Molecular Weight = 16.043 gm/mole

Temp (K)	(H-H298) (kcal/mole)	(G-H298) (kcal/mole)	Cp (cal/mole*K)	S (cal/mole*K)	Viscosity (gm/cm*sec)	Therm_Cond (erg/cm*sec*K)	Dif_Co_with_H2 (cm**2/sec)
298.15	.00000E+00	-13.257	8.3985	44.465	1.143E-04	3.406E+03	28.4
300.00	1.55634E-02	-13.340	8.4268	44.517	1.148E-04	3.436E+03	28.7
700.00	4.4632	-33.078	13.701	53.630	2.167E-04	1.092E+04	121.
1100.00	10.902	-56.011	18.067	60.830	2.950E-04	1.879E+04	256.

[Pressure for binary diffusion coeff. calc. = 20.0 torr]

THERMO TABLE FOR MOLECULE "CH(S)" IN PHASE "DIAMOND"
 Overall, this is the 6th species in the mechanism
 It is the 1th species in phase DIAMOND
 Elemental Composition:
 H : 1
 C : 1
 Number of surface sites occupied by the species = 1
 Heat of Formation at 298 = .000 kcal/mole
 Molecular Weight = 13.019 gm/mole

Temp (K)	(H-H298) (kcal/mole)	(G-H298) (kcal/mole)	Cp (cal/mole*K)	S (cal/mole*K)
298.15	.00000E+00	-10.646	1.4450	.35705
300.00	2.70042E-03	-10.712	1.4744	.36608
700.00	1.6955	-8.5811	6.5202	3.6481
1100.00	4.8348	-3.0378	8.7987	7.1569

THERMO TABLE FOR MOLECULE "CH2(S)" IN PHASE "DIAMOND"
 Overall, this is the 9th species in the mechanism
 It is the 4th species in phase DIAMOND
 Elemental Composition:
 H : 2
 C : 1
 Number of surface sites occupied by the species = 1
 Heat of Formation at 298 = -11.488 kcal/mole
 Molecular Weight = 14.027 gm/mole

Temp (K)	(H-H298) (kcal/mole)	(G-H298) (kcal/mole)	Cp (cal/mole*K)	S (cal/mole*K)
298.15	.00000E+00	-15.231	2.0385	.51086
300.00	3.80869E-03	-15.327	2.0790	.52359
700.00	2.3778	-1.2092	9.1973	5.1242
1100.00	6.8583	-4.2825	12.685	10.128

THERMO TABLE FOR MOLECULE "D" IN PHASE "BULK1"
 Overall, this is the 12th species in the mechanism
 It is the 1th species in phase BULK1
 Elemental Composition:
 C : 1
 Bulk Density = 3.5150 gm/cm**3
 Activity (bath gas dependent) = 1.0000
 Heat of Formation at 298 = .454 kcal/mole
 Molecular Weight = 12.011 gm/mole

Temp (K)	(H-H298) (kcal/mole)	(G-H298) (kcal/mole)	Cp (cal/mole*K)	S (cal/mole*K)
298.15	.00000E+00	-11.272	1.4404	.37807
300.00	2.68391E-03	-11.343	1.4612	.38704
700.00	1.2896	-7.6144	4.4754	2.9301
1100.00	3.2690	-2.4007	5.2408	5.1543

(TSUM keyword produces this portion of printout)

=====
SUMMARY OF STANDARD STATE THERMODYNAMICS FUNCTIONS FOR GAS-PHASE REACTIONS:

Bath Gas Temperature = 1.100E+03

Number	Description	Delta_G (kcal/mole)	Delta_H (kcal/mole)	Delta_S (cal/moleK)
1.	2CH3 (+M) <=> C2H6 (+M)	-47.209	-91.238	-40.026
2.	CH4 + H <=> CH3 + H2	-6.7249	1.1351	7.1455
3.	CH3 + H (+M) <=> CH4 (+M)	-69.668	-107.62	-34.504
4.	2H + M <=> H2 + M	-76.393	-106.49	-27.358
5.	2H + H2 <=> 2H2	-76.393	-106.49	-27.358

(GRXN keyword produces this portion of printout)

Gas Reaction # 1 2CH3 (+M) <=> C2H6 (+M)

Change in moles in the reaction =-1
This reaction does have third body effects. 1 modified enhanced third body efficiencies were input
Species "H2", modified enhanced third body efficiency for the reaction = 2.000
This is a reversible reaction, having 2 reactant species
and 1 product species

k (cm**3/(mole sec)) = 9.0300E+16 T**(-1.180) exp(-.6540) kcal/mole / RT)

Reaction has a fall-off behavior with a 6 parameter Troe function form:
klow (cm**6/(mole**2 sec)) = 3.180E+41 T**(-7.030) exp(-2.76) kcal/mole / RT)
a = .6041
T*** = 6927.E+00 Kelvin
T* = 132. Kelvin

=====
HIGH PRESSURE GAS REACTION RATE CONSTANTS AS A FUNCTION OF TEMPERATURE

!UnifDimensnal Rate_Const!

(TLOW keyword makes the table start at 300 K; the printout at 298.15 K is automatically given)

(TDEL keyword determines the 400 degree increment between lines of printout)

(THIG keyword cuts off the table at the last temperature below 1200, in this case 1100 K)

T (K)	k (cm**3/(mole sec))	A_factor (kcal/mol)	Ea (kcal/mol)	DeltaG (kcal/mol)	DeltaH (kcal/mol)	DeltaS (cal/moleK)	k_rev (sec-1)	A_factor_rev (sec-1)	Ea_rev (kcal/mol)	k_star (mole/cm**3*sec)	k_star_rev (mole/cm**3*sec)
298.15	3.60E+13	3.34E+13	*****	-79.15	-90.31	-37.41	1.38E-49	7.55E+16	89.67	39.	1.38E-55
300.00	3.60E+13	3.31E+13	*****	-79.09	-90.32	-37.45	3.52E-49	7.59E+16	89.68	38.	3.50E-55
700.00	2.48E+13	1.22E+13	-9873	1 -63.30	-91.51	-40.30	7.41E-12	5.02E+16	89.13	2.8	1.85E-18
1100.00	1.73E+13	7.15E+12	-1.925	1 -47.21	-91.24	-40.03	7.96E-02	1.63E+16	87.13	.27	4.28E-09

(TFAL keyword produces this portion of printout)

FALL-OFF BEHAVIOR AS A FUNCTION OF TEMPERATURE: Reaction # 1
Bath Gas Pressure = 20.0 torr

Temperature (K)	k (cm**3/(mole sec))	A_factor (kcal/mole)	Ea (kcal/mole)	k/kinf	klow (cm**6/(mole**2 sec))	Reduc_Press	F	C_eff (mole/cm**3)	k_rev (sec-1)	A_factor_rev (kcal/mole)	Ea_rev
298.	3.3493E+13	2.644E+13	-1402	.930	1.209E+22	686.	.931	2.04E-06	1.2869E-49	5.983E+16	89.58
300.	3.3443E+13	2.615E+13	-1466	.929	1.191E+22	672.	.931	2.03E-06	3.2697E-49	5.992E+16	89.58
700.	1.3480E+13	1.279E+12	-3.276	.544	4.355E+20	15.3	.579	8.71E-07	4.0297E-12	5.264E+15	86.84

(PFAL keyword produces this portion of printout)

FALL-OFF BEHAVIOR AS A FUNCTION OF PRESSURE: Reaction # 1
 Bath Gas Temperature = 1100.E+00 K
 Low Pressure Limiting Reaction Rate = klow = 3.7379E+19 (cm**6/(mole**2 sec))

(PHIG keyword controls the maximum pressure in this table)

(PLOW keyword controls the minimum pressure in this table)

(PNUM keyword controls the number of pressures included in this table)

Pressure (torr)	k (cm**3/(mole sec))	A_factor (kcal/mole)	Ea	k/kinf	klow*C_eff	Reduc_Press	F	C_eff (mole/cm**3)	k_rev (sec-1)	A_factor_rev	Ea_rev (kcal/mole)
700.	1.1510E+13	1.447E+12	-4.532	.667	7.247E+14	42.0	.683	1.94E-05	5.3126E-02	3.306E+15	84.52
265.	9.1063E+12	5.942E+11	-5.966	.528	2.739E+14	15.9	.561	7.33E-06	4.2032E-02	1.357E+15	83.09
100.	6.4504E+12	2.165E+11	-7.419	.374	1.035E+14	6.00	.436	2.77E-06	2.9773E-02	4.945E+14	81.63

Gas Reaction # 2 CH4+H<=>CH3+H2

Change in moles in the reaction = 0
 This reaction does not have any third body effects
 This is a reversible reaction, having 2 reactant species
 and 2 product species

$$k \text{ (cm}^{\text{3}}/\text{mole sec}) = 2.2000\text{E+04} T^{\text{2}}(3.000) \exp(-8.750 \text{ kcal/mole / RT})$$

HIGH PRESSURE GAS REACTION RATE CONSTANTS AS A FUNCTION OF TEMPERATURE

T (K)	k (cm**3/(mole sec))	A_factor (kcal/mol)	Ea	DeltaG (kcal/mol)	DeltaH (kcal/mol)	DeltaS (cal/moleK)	k_rev (cm**3/(mole sec))	A_factor_rev	Ea_rev (kcal/mol)	k_star (mole/cm**3*sec)	k_star_rev	UnifDimensnal Rate_Const
298.15	2.25E+05	1.17E+13	10.53	-1.083	.6252	5.731	3.61E+04	6.55E+11	9.902	2.60E-07	4.17E-08	
300.00	2.51E+05	1.19E+13	10.54	-1.094	.6303	5.748	4.00E+04	6.61E+11	9.908	2.86E-07	4.57E-08	
700.00	1.40E+10	1.52E+14	12.92	-3.810	1.310	7.313	9.04E+08	3.82E+12	11.61	2.94E-03	1.90E-04	
1100.00	5.35E+11	5.88E+14	15.31	-6.725	1.135	7.145	2.46E+10	1.61E+13	14.17	4.54E-02	2.10E-03	

Gas Reaction # 3 CH3+H(+M)<=>CH4(+M)

Change in moles in the reaction = -1
 This reaction does have third body effects. 1 modified enhanced third body efficiencies were input
 Species "H2", modified enhanced third body efficiency for the reaction = 2.000
 This is a reversible reaction, having 2 reactant species
 and 1 product species

$$k \text{ (cm}^{\text{3}}/\text{mole sec}) = 6.0000\text{E+16} T^{\text{2}}(-1.000) \exp(-.00E+00 \text{ kcal/mole / RT})$$

Reaction has a fall-off behavior with a Lindeman function form:
 $k_{\text{low}} \text{ (cm}^{\text{6}}/\text{mole}^{\text{2}} \text{ sec}) = 8.000\text{E+26} T^{\text{2}}(-3.000) \exp(-.000E+00 \text{ kcal/mole / RT})$

HIGH PRESSURE GAS REACTION RATE CONSTANTS AS A FUNCTION OF TEMPERATURE

T (K)	k (cm**3/(mole sec))	A_factor (kcal/mol)	Ea	DeltaG (kcal/mol)	DeltaH (kcal/mol)	DeltaS (cal/moleK)	k_rev (sec-1)	A_factor_rev	Ea_rev (kcal/mol)	k_star (mole/cm**3*sec)	k_star_rev	UnifDimensnal Rate_Const
298.15	2.01E+14	7.40E+13	-.5924	-96.08	-104.8	-29.30	3.05E-61	2.82E+15	103.6	55.	7.69E-68	
300.00	2.00E+14	7.36E+13	-.5961	-96.02	-104.8	-29.33	8.96E-61	2.84E+15	103.6	53.	2.22E-67	
700.00	8.57E+13	3.15E+13	-1.391	-83.30	-106.7	-33.40	1.46E-17	4.04E+15	103.9	.42	1.55E-25	
1100.00	5.45E+13	2.01E+13	-2.186	-69.67	-107.6	-34.50	8.68E-06	2.84E+15	103.3	2.81E-02	1.53E-14	

(TFAL keyword produces this portion of printout)

FALL-OFF BEHAVIOR AS A FUNCTION OF TEMPERATURE: Reaction # 3
Bath Gas Pressure = 20.0 torr

Temperature	k	A_factor	Ea	k/kinf	klow	Reduc_Press	F	C_eff	k_rev	A_factor_rev	Ea_rev
(K)	(cm**3/(mole sec))	(kcal/mole)			(cm**6/(mole**2 sec))		(mole/cm**3)	(sec-1)		(kcal/mole)	
298.	4.7217E+13	1.748E+12	-1.953	.235	3.018E+19	.307	1.00	2.04E-06	7.1502E-62	6.660E+13	102.3
300.	4.6263E+13	1.696E+12	-1.971	.231	2.963E+19	.301	1.00	2.03E-06	2.0730E-61	6.537E+13	102.3
700.	1.9834E+12	3.894E+10	-5.467	2.314E-02	2.332E+18	2.369E-02	1.00	8.71E-07	3.3862E-19	4.990E+12	99.82

(PFAL keyword produces this portion of printout)

FALL-OFF BEHAVIOR AS A FUNCTION OF PRESSURE: Reaction # 3
Bath Gas Temperature = 1100.E+00 K
Low Pressure Limiting Reaction Rate = klow = 6.0105E+17 (cm**6/(mole**2 sec))

Pressure	k	A_factor	Ea	k/kinf	klow*C_eff	Reduc_Press	F	C_eff	k_rev	A_factor_rev	Ea_rev
(torr)	(cm**3/(mole sec))	(kcal/mole)			(cm**3/(mole sec))		(mole/cm**3)	(sec-1)		(kcal/mole)	
700.	9.6022E+12	2.982E+11	-7.588	.176	1.165E+13	.214	1.00	1.94E-05	1.5272E-06	4.228E+13	97.85
265.	4.0756E+12	9.340E+10	-8.253	7.472E-02	4.405E+12	8.075E-02	1.00	7.33E-06	6.4820E-07	1.324E+13	97.18
100.	1.6155E+12	3.234E+10	-8.549	2.962E-02	1.665E+12	3.052E-02	1.00	2.77E-06	2.5694E-07	4.585E+12	96.89

Gas Reaction # 4 2H+M<=>H2+M

Change in moles in the reaction ==1
This reaction does have third body effects. 1 modified enhanced third body efficiencies were input
Species "H2", modified enhanced third body efficiency for the reaction = .0000E+00
This is a reversible reaction, having 3 reactant species
and 2 product species (including the third body)

k (cm**6/(mole**2 sec)) = 1.0000E+18 T**(-1.000) exp(-.00E+00 kcal/mole / RT)

HIGH PRESSURE GAS REACTION RATE CONSTANTS AS A FUNCTION OF TEMPERATURE

T	k	A_factor	Ea	DeltaG	DeltaH	DeltaS	k_rev	A_factor_rev	Ea_rev	k_star	k_star_rev	UnifDimensnal Rate_Const
(K)	(cm**6/(mole**2 sec))	(kcal/mol)		(kcal/mol)	(kcal/mole)	(cal/moleK)	(cm**3/(mole sec))	(kcal/mol)	(kcal/mol)	(mole/cm**3*sec)		
298.15	3.35E+15	1.23E+15	-.5924	-97.16	-104.2	-23.57	8.16E-61	2.63E+15	103.0	4.18E-04	9.44E-74	
300.00	3.33E+15	1.23E+15	-.5961	-97.12	-104.2	-23.59	2.38E-60	2.62E+15	103.0	4.07E-04	2.72E-73	
700.00	1.43E+15	5.26E+14	-1.391	-87.11	-105.4	-26.09	1.58E-17	1.70E+15	102.6	1.37E-05	3.31E-31	
1100.00	9.09E+14	3.34E+14	-2.186	-76.39	-106.5	-27.36	6.67E-06	1.30E+15	102.1	2.25E-06	5.67E-20	

(GTHB keyword produces this portion of printout)

ANALYSIS OF THIRD BODY REACTIONS: LUMPING [M] WITH RATE CNST

Reaction # 4
Bath Gas Pressure = 20.0 torr

Temperature	k	A_factor	Ea	Concentration	C_eff	k_rev	A_factor_rev	Ea_rev
(K)	(cm**3/(mole sec))	(kcal/mole)		(mole/cm**3)	(mole/cm**3)	(sec-1)	(kcal/mole)	
298.	3.6079E+08	4.883E+07	-1.185	1.076E-06	1.076E-07	8.7743E-68	1.040E+08	102.4
300.	3.5635E+08	4.823E+07	-1.192	1.069E-06	1.069E-07	2.5477E-67	1.030E+08	102.4
700.	6.5453E+07	8.858E+06	-2.782	4.582E-07	4.582E-08	7.2218E-25	2.861E-07	101.2
1100.E+00	2.6506E+07	3.587E+06	-4.371	2.916E-07	2.916E-08	1.9437E-13	1.395E+07	99.93

Gas Reaction # 5 2H+H2<=>2H2

Change in moles in the reaction =-1
 This reaction does not have any third body effects
 This is a reversible reaction, having 3 reactant species
 and 2 product species

$$k \text{ (cm}^{*6}/(\text{mole}^{*2} \text{ sec})) = 9.2000E+16 T^{*}(-.6000) \exp(-.00E+00 \text{ kcal/mole / RT})$$

HIGH PRESSURE GAS REACTION RATE CONSTANTS AS A FUNCTION OF TEMPERATURE

T (K)	k (cm ^{*6} /(mole ^{*2} sec))	A_factor (kcal/mol)	Ea (kcal/mol)	DeltaG (kcal/mol)	DeltaH (kcal/mole)	DeltaS (cal/moleK)	k_rev (cm ^{*3} /(mole sec))	A_factor_rev (cm ^{*3} /(mole sec))	Ea_rev (kcal/mol)	UnifDimensnal Rate_Const	
										k_star (mole/cm ^{*3} sec)	k_star_rev (mole/cm ^{*3} sec)
298.15	3.01E+15	.65E+15	-3555	-97.16	-104.2	-23.57	7.33E-61	3.52E+15	103.2	3.75E-03	8.48E-73
300.00	3.00E+15	1.65E+15	-3577	-97.12	-104.2	-23.59	2.15E-60	3.52E+15	103.2	3.67E-03	2.45E-72
700.00	1.81E+15	9.91E+14	-8345	-87.11	-105.4	-26.09	1.99E-17	3.20E+15	103.1	1.74E-04	4.18E-30
1100.00	1.38E+15	7.56E+14	-1.311	-76.39	-106.5	-27.36	1.01E-05	2.94E+15	103.0	3.41E-05	8.58E-19

(TSUM keyword produces this portion of printout)

SUMMARY OF STANDARD STATE THERMODYNAMICS FUNCTIONS FOR SURFACE-PHASE REACTIONS:

Bath Gas Temperture = 1.100E+03

Number	Description	Delta_G (kcal/mole)	Delta_H (kcal/mole)	Delta_S (cal/moleK)
1.	CH(S)+H<=>C(S,R)+H2	-13.581	-8.6166	4.5127
2.	C(S,R)+H=>CH(S)	-62.813	-97.871	-31.871
3.	C(S,R)+CH3<=>D+CH3(S)	-11.901	-61.285	-44.895
4.	CH2(S,R)+CH(S,R)<=>CH2(S)+CH(S)	-94.022	-94.022	8.88178E-16

(SRXN keyword produces this portion of printout)

Surface Reaction # 1 CH(S)+H<=>C(S,R)+H2

Change in gas moles in the reaction = 0
 Change in surface moles in the reaction = 0
 Change in bulk moles in the reaction = 0

This reaction has 1 species whose surface coverage modify the rate constant

Each of these species has three parameters that multiplicatively modify the rate constant as follows:

$$k_{\text{prime}} = k * 10^{**} (Z_k * \nu_{\text{ki}}) * Z_k^{**} \mu_{\text{ki}} * \exp(-\epsilon_{\text{ki}} * Z_k / R_c * T)$$

where Z_k = Site Fraction of species k

Species = CH(S)

$$\nu_{\text{ki}} = .1000 \text{ (cm}^{*2}/\text{mole})$$

$$\mu_{\text{ki}} = .0000E+00$$

$$\epsilon_{\text{ki}} = -.2500 \text{ (cal} \cdot \text{cm}^{*2}/\text{mole}^{*2})$$

This is a reversible surface reaction, having the following types of reactant species:

1 gas-phase species
 1 surface-phase species
 0 bulk-phase species

and the following types of product species:

1 gas-phase species
 1 surface-phase species
 0 bulk-phase species

The reaction rate constant was input via a sticking coefficient in the interpreter input file

$$\text{Sticking Coeff} = \text{MIN}(2.140 \exp(-7.300 \text{ kcal/mole / RT}), 1)$$

It can be fit to the following general rate constant form:

$$k \text{ (cm}^{*3}/\text{mole sec}) = 5.3977E+11 T^{*}(-.6423) \exp(-7.180 \text{ kcal/mole / RT})$$

The reverse rate constant can be fit to the following form:

$k(\text{rev}) \text{ (cm}^{\text{-3}} \text{ mole sec)} = 1.4822 \text{E+11} T^{\text{-0.5045}} \exp(-15.83 \text{ kcal/mole / RT})$

The reverse rate constant can also be expressed in a sticking coefficient form:

Sticking Coeff(rev) = .3031 $T^{\text{-0.39764E-03}} \exp(-15.83 \text{ kcal/mole / RT})$

FORWARD AND REVERSE SURFACE REACTION RATE CONSTANTS								Bath Gas Dependent			
T	k	A_factor	Ea	DeltaG	DeltaH	DeltaS	k_rev	A_factor_rev	Ea_rev	k_star	k_star_rev
(K)	(cm ⁻³ /mole sec)	(kcal/mol)	(kcal/mol)	(kcal/mol)	(kcal/mol)	(cal/moleK)	(cm ⁻³ /mole sec)	(cm ⁻³ /mole sec)	(kcal/mol)	(mole/cm ⁻² sec)	(mole/cm ⁻² sec)
298.15	1.14E+08	4.23E+13	7.596	-9.878	-8.732	3.842	6.5	6.12E+12	16.33	6.66E-07	3.82E-14
300.00	1.14E+08	4.24E+13	7.598	-9.885	-8.729	3.854	7.8	6.10E+12	16.33	7.17E-07	4.50E-14
700.00	2.08E+11	6.71E+13	8.037	-11.70	-8.327	4.919	4.62E+07	5.94E+12	16.36	5.16E-04	1.15E-07
1100.00	1.81E+12	9.63E+13	8.681	-13.58	-8.617	4.513	3.63E+09	9.94E+12	17.30	2.87E-03	5.75E-06

(SCOV keyword produces this portion of printout)

ANALYSIS OF FORWARD AND REVERSE COVERAGE DEPENDENT SURFACE RATE CONSTANTS AT BATH GAS CONDITIONS:

T	k_prime	A_factor	Ea	k	Cov_fac	k_rev	krev_prime	A_factor_rev	Ea_rev
(K)	(cm ⁻³ /mole sec)	(kcal/mol)	(cm ⁻³ /mole sec)	(cm ⁻³ /mole sec)	(cgs)	(cm ⁻³ /mole sec)	(cm ⁻³ /mole sec)	(kcal/mol)	(kcal/mol)
298.15	1.186E+08	4.394E+13	7.575	1.1417E+08	1.039	6.550	6.806	6.3545E+12	16.33
300.00	1.284E+08	4.408E+13	7.577	1.2357E+08	1.039	7.763	8.067	6.3362E+12	16.33
700.00	2.159E+11	6.975E+13	8.016	2.0772E+11	1.039	4.6164E+07	4.7972E+07	6.1700E+12	16.36
1100.00	1.886E+12	1.0001E+14	8.660	1.8148E+12	1.039	3.6340E+09	3.7762E+09	1.0327E+13	17.30

(STCK keyword produces this portion of printout)

BREAKDOWN OF FORWARD REACTION'S STICKING COEFFICIENT

Surface site density divisor = 5.1200E-09 mole ⁻¹ /cm ⁻²									
T	Stck_Coeff	A_factor	Ea	Eff_Veloc	Veloc_Corr	Sden_Ratio	k*	k	
(K)	(unitless)	(cm/sec)	(cm/sec)	(cm/sec)		(cm/sec)	(cm/sec)	(cm ⁻³ /mole sec)	
298.15	9.5263E-06	2.140	7.300	6.2562E+04	1.000	1.000	.5960	1.1417E+08	
300.00	1.0278E-05	2.140	7.300	6.2756E+04	1.000	1.000	.6450	1.2357E+08	
700.00	1.1248E-02	2.140	7.300	9.5861E+04	1.006	1.000	1084.	2.0772E+11	
1100.00	7.5843E-02	2.140	7.300	1.2017E+05	1.039	1.000	9473.	1.8148E+12	

BREAKDOWN OF REVERSE REACTION'S STICKING COEFFICIENT

Surface site density divisor = 5.2200E-09 mole ⁻¹ /cm ⁻²									
T	Stck_Coeff	A_factor	Ea	Eff_Veloc	Veloc_Corr	Sden_Ratio	k*	k	
(K)	(unitless)	(cm/sec)	(cm/sec)	(cm/sec)		(cm/sec)	(cm/sec)	(cm ⁻³ /mole sec)	
298.15	7.7283E-13	.4377	16.03	4.4238E+04	1.000	1.000	3.4189E-08	6.550	
300.00	9.1318E-13	.4351	16.03	4.4375E+04	1.000	1.000	4.0522E-08	7.763	
700.00	3.5551E-06	.2773	15.67	6.7784E+04	1.000	1.000	.2410	4.6164E-07	
1100.00	2.2322E-04	.3700	16.20	8.4971E+04	1.000	1.000	18.97	3.6340E+09	

Surface Reaction # 2 C(S,R)+H=>CH(S)

Change in gas moles in the reaction =-1
 Change in surface moles in the reaction = 0
 Change in bulk moles in the reaction = 0

This is an irreversible surface reaction, having the following types of reactant species:

1 gas-phase species
1 surface-phase species
0 bulk-phase species

and the following types of product species:

0 gas-phase species
1 surface-phase species
0 bulk-phase species

The reaction rate constant was input via a sticking coefficient in the interpreter input file

Sticking Coeff = MIN(.3000 exp(- .0000E+00 kcal/mole / RT) , 1)

It can be fit to the following general rate constant form:

$k \text{ (cm}^{*3} \text{/ mole sec)} = 2.4498E+11 T^{**}(-.5000) \exp(-121.25E-13 \text{ kcal/mole / RT})$

Even though this reaction is IRREVERSIBLE, the reverse rate constant will also be analysed:

The reverse rate constant can be fit to the following form:

$k(\text{rev}) \text{ (1 / sec)} = 9.0324E+10 T^{**}(-1.096) \exp(-94.69 \text{ kcal/mole / RT})$

T (K)	k (cm ^{*3} / mole sec)	FORWARD AND REVERSE SURFACE REACTION RATE CONSTANTS						Bath Gas Dependent UnifDimensnal Rate_Const	
		(note: reverse rate constant is not in mechanism)			k_rev	A_factor_rev	Ea_rev	k_star	k_star_rev
		A_factor	Ea	DeltaG					
		(kcal/mol)	(kcal/mol)	(kcal/mol)	(cal/moleK)	(1 / sec)	(kcal/mol)	(mole/cm ^{*2} sec)	
298.15	4.23E+12	6.97E+12	.2962	-87.28	-95.45	-27.41	1.79E-56	1.03E+14	95.16
300.00	4.24E+12	7.00E+12	.2981	-87.23	-95.46	-27.44	4.83E-56	1.04E+14	95.16
700.00	6.48E+12	1.07E+13	.6955	-75.41	-97.04	-30.91	3.22E-16	3.90E+14	96.35
1100.00	8.12E+12	1.34E+13	1.093	-62.81	-97.87	-31.87	2.98E-05	5.05E+14	96.78

BREAKDOWN OF FORWARD REACTION'S STICKING COEFFICIENT

Surface site density divisor = 5.2200E-09 mole^{*1}/cm^{*2}

T (K)	Stck_Coeff (unitless)	A_factor	Ea	Eff_Velcc (cm/sec)	Veloc_Corr	Sden_Ratio	k* (cm/sec)	k (cm ^{*3} / mole sec)
298.15	.3000	.3000	.0000E+00	6.2562E+04	1.176	1.000	2.2081E+04	4.2300E+12
300.00	.3000	.3000	.0000E+00	6.2756E+04	1.176	1.000	2.2149E+04	4.2431E+12
700.00	.3000	.3000	.0000E+00	9.5861E+04	1.176	1.000	3.3833E+04	6.4814E+12
1100.00	.3000	.3000	.0000E+00	1.2017E+05	1.176	1.000	4.2412E+04	8.1249E+12

Surface Reaction # 3 C(S, R) + CH3 <=> D + CH3 (S)

Change in gas moles in the reaction = -1
Change in surface moles in the reaction = 0
Change in bulk moles in the reaction = 1

This is a reversible surface reaction, having the following types of reactant species:

1 gas-phase species
1 surface-phase species
0 bulk-phase species

and the following types of product species:

0 gas-phase species
1 surface-phase species
1 bulk-phase species

A sticking coefficient was not used though the forward reaction could have used one

$k \text{ (cm}^{*3} \text{/ mole sec)} = 4.0000E+12 \exp(-1.200 \text{ kcal/mole / RT})$

The forward rate constant can be fit to the following sticking coefficient expression:

Sticking Coeff = 13.56 T^{**}(-.4623) exp(-1.082 kcal/mole / RT)

The reverse rate constant can be fit to the following form:

$k(\text{rev}) \text{ (1 / sec)} = 1.0000E+13 T^{**}(-6.8718E-12) \exp(-15.00 \text{ kcal/mole / RT})$

$k(\text{rev}) (1 / \text{sec}) = 1.0000E+13 \exp(-15.00 \text{ kcal/mole / RT})$

FORWARD AND REVERSE SURFACE REACTION RATE CONSTANTS								Bath Gas Dependent				
T	k	A_factor	Ea	DeltaG	DeltaH	DeltaS	k_rev	A_factor_rev	Ea_rev	k_star	k_star_rev	UnifDimensnal Rate_Const
(K)	(cm**3/mole sec)	(kcal/mol)		(kcal/mol)	(kcal/mole)	(cal/moleK)	(1 / sec)		(kcal/mol)	(mole/cm**2*sec)		
298.15	5.28E+11	4.00E+12	1.200	-47.78	-60.43	-42.42	1.01E+02	1.00E+13	15.00	2.96E-03	5.27E-07	
300.00	5.34E+11	4.00E+12	1.200	-47.70	-60.44	-42.46	1.18E+02	1.00E+13	15.00	2.98E-03	6.16E-07	
700.00	1.69E+12	4.00E+12	1.200	-29.94	-61.57	-45.19	2.07E+08	1.00E+13	15.00	4.04E-03	1.1	
1100.00	2.31E+12	4.00E+12	1.200	-11.90	-61.28	-44.89	1.05E+10	1.00E+13	15.00	3.52E-03	55.	

BREAKDOWN OF FORWARD REACTION'S STICKING COEFFICIENT

Surface site density divisor = 5.2200E-09 mole**1/cm**2

T	Stck_Coeff	A_factor	Ea	Eff_Veloc	Veloc_Corr	Sden_Ratio	k*	k
(K)	(unitless)			(cm/sec)			(cm/sec)	(cm**3/mole sec)
298.15	.1567	.6394	.8330	1.6199E+04	1.085	1.000	2754.	5.2767E+11
300.00	.1581	.6369	.8307	1.6249E+04	1.086	1.000	2789.	5.3430E+11
700.00	.3015	.4103	.4285	2.4821E+04	1.178	1.000	8811.	1.6880E+12
1100.00	.3246	.3383	8.9753E-02	3.1114E+04	1.194	1.000	1.2058E+04	2.3101E+12

Surface Reaction # 4 CH2(S,R)+CH(S,R)<=>CH2(S)+CH(S)

Change in gas moles in the reaction = 0
Change in surface moles in the reaction = 0
Change in bulk moles in the reaction = 0

This is a reversible surface reaction, having the following types of reactant species:

0 gas-phase species
2 surface-phase species
0 bulk-phase species

and the following types of product species:

0 gas-phase species
2 surface-phase species
0 bulk-phase species

$k (\text{cm}^{**2}/\text{mole sec}) = 6.0000E+19 \exp(-2.000 \text{ kcal/mole / RT})$

The reverse rate constant can be fit to the following form:

$k(\text{rev}) (\text{cm}^{**2}/\text{mole sec}) = 5.9991E+19 T^{**(-2.0901E-05)} \exp(-96.02 \text{ kcal/mole / RT})$

FORWARD AND REVERSE SURFACE REACTION RATE CONSTANTS								Bath Gas Dependent				
T	k	A_factor	Ea	DeltaG	DeltaH	DeltaS	k_rev	A_factor_rev	Ea_rev	k_star	k_star_rev	UnifDimensnal Rate_Const
(K)	(cm**2/mole sec)	(kcal/mol)		(kcal/mol)	(kcal/mole)	(cal/moleK)	(cm**2/mole sec)		(kcal/mol)	(mole/cm**2*sec)		
298.15	2.05E+18	6.00E+19	2.000	-94.02	-94.02	*****	2.43E-51	6.00E+19	96.02	56.	6.63E-68	
300.00	2.09E+18	6.00E+19	2.000	-94.02	-94.02	.0000E+00	6.62E-51	6.00E+19	96.02	57.	1.80E-67	
700.00	1.42E+19	6.00E+19	2.000	-94.02	-94.02	4.4409E-16	6.26E-11	6.00E+19	96.02	3.88E+02	1.70E-27	
1100.00	2.40E+19	6.00E+19	2.000	-94.02	-94.02	8.8818E-16	5.0	6.00E+19	96.02	6.55E+02	1.36E-16	

Continuation Command Lines Read from surfkey.inp:

(CNTR keyword controls printout of this second set of tables; in this case we changed the pressure of the bath gas and printed another set of non-dimensional rates)

KEYWORD INPUT
 PBTH 1000.
 NDIM ALL
 END

=====
 NON-DIMENSIONAL GAS REACTION RATE CONSTANTS

AT THE BATH GAS CONDITIONS
 Total Pressure = 1000.E+00 torr
 Temperature = 1100.E+00 Kelvin

Number	Description	k_star (mole/cm**3 sec)	k_star_rev (mole/cm**3 sec)	Gas_Da_For	Gas_Da_Rev
1.	2CH3 (+M) <=> C2H6 (+M)	2.602E+03	8.239E-07	2.057E+08	6.514E-02
2.	CH3+H <=> CH3+H2	114.	5.24	8.982E+06	4.141E+05
3.	CH3+H (+M) <=> CH4 (+M)	2.711E+03	2.957E-11	2.143E+08	2.338E-06
4.	2H+M <=> H2+M	.282	1.417E-16	2.227E+04	1.120E-11
5.	2H+H2 <=> 2H2	4.27	2.146E-15	3.373E+05	1.697E-10

NOTE ON THE ABSOLUTE NUMBERS IN THIS TABLE:

The rate rate constants (mole/cm**3*sec) should be compared to rate of mass transport in order to characterize their values as being fast or slow. The nondimensionalization of the mass transport involves the following multiplicative factor, which also has the units of mole/cm**3*sec:

$$\text{Total_Concentration} * \text{Diffusivity} / \text{Length_scale}^{**2}$$

Using the binary diffusion coefficient between O2 and N2, the following factors are calculated at bath gas conditions:

$$\text{Total Concentration} = 1.458E-05 \text{ mole/cm}^{**3}$$

$$\text{Binary Diffusion Coefficient} = 1.47 \text{ cm}^{**2}/\text{sec}$$

$$\text{Length scale} = 1.30 \text{ cm}$$

Therefore, the non-dimensionalization factor for gas reactions becomes:

$$\text{Conc} * \text{Diff} / \text{Length}^{**2} = 1.265E-05 \text{ mole/cm}^{**2}/\text{sec}$$

Note that this number is independent of pressure

=====
 NON-DIMENSIONAL SURFACE REACTION RATE CONSTANTS

AT THE BATH GAS CONDITIONS
 Total Pressure = 1000.E+00 torr
 Temperature = 1100.E+00 Kelvin

Number	Description	k_star (mole/cm**2 sec)	k_star_rev (mole/cm**2 sec)	Surf_Da_For	Surf_Da_Rev
1.	CH(S)+H <=> C(S,R)+H2	.144	2.874E-04	8.727E+03	17.5
2.	C(S,R)+H <=> CH(S)	.618	[1.553E-13]	3.760E+04	[9.445E-09]
3.	C(S,R)+CH3 <=> D+CH3(S)	.176	54.6	1.069E+04	3.320E+06
4.	CH2(S,R)+CH(S,R) <=> CH2(S)+CH(S)	655.	1.362E-16	3.982E+07	8.282E-12

[] indicates that this reaction is not in mechanism

NOTE ON THE ABSOLUTE NUMBERS IN THIS TABLE:

The rate rate constants (mole/cm**2*sec) should be compared to rate of mass transport to the surface in order to characterize their values as being fast or slow. The nondimensionalization of the mass transport involves the following multiplicative factor, which also has the units of mole/cm**2*sec:

$$\text{Total_Concentration} * \text{Diffusivity} / \text{Length}$$

Using the binary diffusion coefficient between O2 and N2, the following factors are calculated at bath gas conditions:

$$\text{Total Concentration} = 1.458E-05 \text{ mole/cm}^{**3}$$

$$\text{Binary Diffusion Coefficient} = 1.47 \text{ cm}^{**2}/\text{sec}$$

$$\text{Length scale} = 1.30 \text{ cm}$$

Therefore, the non-dimensionalization factor for surface reactions becomes:

$$\text{Conc} * \text{Diff} / \text{Length} = 1.644E-05 \text{ mole/cm}^{**3}/\text{sec}$$

Note that this number is independent of pressure

REFERENCES

1. R. J. Kee, F. M. Rupley, and J. A. Miller, Sandia National Laboratories Report, SAND89-8003 (1989).
2. S. Gordon and B. J. McBride, NASA SP-273 (1971).
3. M. E. Coltrin, R. J. Kee, and F. M. Rupley, Sandia National Laboratories Report, SAND90-8003 (1990).
4. M. E. Coltrin, R. J. Kee, and F. M. Rupley, *Int. J. Chem. Kinet.*, **23**, 1111 (1991).
5. R. J. Kee, G. Dixon-Lewis, J. Warnatz, M. E. Coltrin, and J. A. Miller, Sandia National Laboratories Report, SAND86-8246 (1986).

UNLIMITED RELEASE

INITIAL DISTRIBUTION

1100 F. L. Vook, MS0335
1126 M. E. Bartrum, MS0601
1126 W. G. Breiland, MS0601
1126 M. E. Coltrin (15), MS0601
1126 J. R. Creighton, MS0601
1126 P. Esherick, MS0601
1126 P. Ho, MS0601
1126 K. P. Killeen, MS0601
1126 H. K. Moffat (15), MS0601
1421 J. N. Shadid, MS 1111
1512 A. C. Ratzel, MS 0834
1553 W. L. Hermina, MS.0826
1812 R. J. Buss, MS.0367
6422 J. E. Brockmann, MS0834
8347 W. L. Hsu, MS9162
8353 C. F. Melius, MS9214
8353 J. A. Miller, MS9055
8361 M. D. Allendorf, MS9052
8745 G. H. Evans, MS9043
8745 J. F. Grcar, MS9043
8745 W. G. Houf, MS9043
8745 R. J. Kee (75), MS9043
8745 R. S. Larson, MS9043
8745 A. E. Lutz, MS9043
8745 E. Meeks, MS9043
8745 F. M. Rupley, MS9043

7613-2 Document Processing for DOE/OSTI (2), MS0100
7141 Technical Library (5), MS0899
7151 Technical Publications (1), MS0619
8523-2 Central Technical Files (1), MS 9018

A vertical stack of three abstract black and white images. The top image features two vertical rectangles: a black one on the left and a white one on the right, separated by a narrow white gap. The middle image is a large, dark, irregular shape with a diagonal white line running from the bottom-left to the top-right. The bottom image is a dark, irregular shape with a large, solid white semi-circular cutout at the bottom, resembling a crescent moon.

∞
—
e
—
5
—
9
—
4

THE
LAW
OF
THE
LAND

DATA

