5 e ///\\@

/gﬁﬁfi‘?ﬁ% @ Ly NS
y 2 MR 4 A owame s sy N & & 4,
4 Ty e Ao $EES
> AN \d Y &
\\\/ - \\\// //\§1/ //\Q N
Centimeter
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 mm
unhn||||nh|u||mlm||n|lluulnnI1|nluuI|ullnull|n|||||||m|||n|||||||||||1|u|m||||||||||1||||||||ulun||u||nuluullmL
TIII||II|!||II|II|||2||lI||III:|3|II||||I|‘|‘IIII||IIILIIII|IIIII
Inches 10 “he 2
e, 3
“‘“ T A
= Il
22 Il ne
N
\\W/\\ \/4’\\\
& »
» I S
%\/////@’ > 5‘3)/// //q\\\ % A \
24 \Wif //\\ AT //g\\ \
3///,357' N // MANUFACTURED TO AIIM STANDARDS /@\\ %>§*;%‘
\\ ////’}\)\\ b%i§\w'&\

N BY APPLIED IMAGE, INC. A

Conl-G303 128 - -

UCRL-JC-113517
PREPRINT

New Techniques in 3D Scalar and
Vector Field Visualization

Nelson Max
Roger Crawfis
Barry Becker

This paper was prepared for submittal to
Pacij}:c raphics ‘93
Seoul, South Korea
Aug. 30- Sept. 2, 1993

May 5, 1993

This is a preprint of a paperintended for publication inajournal or proceedings. Since
changes may be made before publication, this preprint is made available with the
understanding that it will not be cited or reproduced without the permission of the
author.

B
Gl N P

fa Ty a
ERG L

QISTRIBUTION OF‘TH'IS DOCUMENT IS UNLINITED

A
Ve

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor the University
of California nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or usefulness
of any information, apparatus, product, or process disclosed, or represents that its use
wouldnotinfringe privately owned rights. Referencehereinto any specific commercial
products, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute orimply its endorsement, recommendation, or favoring
by the United States Government or the University of California. The views and
opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or the University of California, and shall not be used for
advertising or product endorsement purposes.

New Techniques in 3D Scalar and Vector Field Visualization

Nelson Max
Roger Crawfis
Barry Becker o
Lawrence Livermore National SR I
Laboratory -
P.O. Box 808 / L-301 Ce
Livermore, California 94551, USA @] o I
(max2@1Inl.gov)

Abstract

At Lawrence Livermore National Laboratory (LLNL) we have recently developed sev-
eral techniques for volume visualization of scalar and vector fields, all of which use back-
to-front compositing. The first renders volume density clouds by compositing polyhedral
volume cells or their faces. The second is a “splatting” scheme which composites textures
used to reconstruct the scalar or vector fields. One version calculates the necessary texture
values in software, and another takes advantage of hardware texture mapping. The next
technique renders contour surface polygons using semi-transparent textures, which adjust
appropriately when the suriaces deform in a flow, or change topology. The final one ren-
ders the “flow volume” of smoke or dye tracer swept out by a fluid flowing through a

small generating polygon. All of these techniques are applied to a climate model data set,
to visualize cloud density and wind velocity.

1. Climate Modelling

The Program for Climate Model Diagnosis and Intercomparison at Lawrence Liver-
more National Laboratory (LLNL) is comparing different climate models which give dif-
fering predictions of global warming. Clouds have a significant influence on global
temperatures, because they reflect the short wave radiation from the sun, and also absorb
and reflect the longer wave radiation re-emitted by the earth. It is not certain which of
these effects is larger, hence the influence of clouds is an open research problem.

In this paper we report on a number of techniques we have developed for visualizing
climate variables, particularly clouds and wind velocities. These include volume render-
ing, textured contour surfaces, vector field rendering, and flow volume rendering.

The global climate simulation for 10 days in January was run on a Cray 2 at the Nation-
al Energy Research Supercomputer Center at LLNL. The computational grid was defined
by 320 evenly spaced longitudes, 160 unevenly spaced latitudes, and 19 unevenly spaced
surfaces of constant “geopotential”, nearly a million grid points. The surfaces of constant
geopotential were not at constant altitude, but curved over the mountains, so that the bot-
tom level corresponds to the height of the terrain,

The partial differential equations for weather propagation were solved in the spatial fre-
quency domain, and the resulting spherical harmonic expansions of the climate variables

were sampled at the computational grid. The solver only output the requested data vari-

ables at one hour intervals, and we interpolated this output to produce animation frames
every fifteen minutes.

2. Polyhedron Compositing

There are two chief ways to visualize a scalar function in a volume: (1) draw contour
surfaces, or (2) integrate a continuous volume density along viewing rays. The polyhedron
compositing scheme of Max, Hanrahan, and Crawfis! combines both of these techniques
by subdividing the volume cells at contour surfaces, and compositing the resulting polyhe-
dral pieces and surface polygons in back-to-front order. We first divide any volume cell
crossed by a contour surface into tetrahedra, and then slice each tetrahedron crossed by a
contour surface into two parts. This allows the color and opacity to change discontinuous-
ly across a surface, whether or not the surface itself is to be rendered. Also, the sorting al-
lows multiple transparent contour surfaces to be composited in the correct order.

The basic compositing algorithm takes an object (a volume cell or a surface polygon)
with color / and transparency T, and combines it with a background frame-buffer color
Fy14 10 give an updated color F,,,, :

Frp =T F,+1.

For the volume cells, we used the density-emitter model of Sabella?. Assume a volume
is filled with a variable density p(x) of particles, which absorb a fraction tpdx of the light
along a differential length dx, and emits an amount cpdx of colored light of its own. Then
it can be shown! by integration that the transparency along a segment of length L is

L
T = exp (—tjp (x) dx).
0

The extra colored intensity added by the glowing particles, but attenuated by the opacity
of the closer particles, is

I'= (c/7) (1-T).
If payg is the average value of p along the segment, then

T = exp(-tme).

These equations assume that ¢ is constant in each volume cell. More complex formulas
for I and T are given by Williams and Max!, for the case that ¢ and p both vary lineariy
along a ray. However, in our current implementation, we just take c to be the average color
along the ray segment, which gives a fairly good approximation to the accurate formula.

We input the quantities C = ¢/t and a = pt at each vertex of the volume cell. (Note that
in the above formulas, ¢, C, I, B, and F are all vectors, with red, green, and blue compo-
nents.) We use bilinear interpolation across the polygons bounding the cell, as in Gouraud
shading, to scan convert C, a, and the depth z into temporary buffers. There are two sets of
buffers for each quantity, one for the front facing polygons, and one for the back facing

ones. For each pixel (i, j) in the projection of the cell, the following computations achieve
the results of the formulas above:

L = zback(i,3j) - zfront (i, j)

a = (aback(i,3j) + afront(i,j))/2.
C = (Cback(i,3j) + Cfront(i,j))/2.
T = exp(-L*a)

I =C*x(1. - T)

F

(i,3) = T*F(i,3) + I

It appears that the six temporary buffers must be the size of the whole image, to allow
for large cells, but in fact we scan convert all the faces of the cell together, one scan line at
a time, so only one line’s worth of temporary buffers are required. As in the usual imple-
mentation of Gouraud shading, we use incremental methods across the scan line, and also
yTom one scan line to the next. In addition, the closed-form analytic integration along the
ray segments eliminates the need to sample along the ray. Thus we take advantage of the
area coherence across each face, and the volume coherence in the cell.

The above formula for L assumes orthogonal projectiom For perspective projection, the
quantity to interpolate should be* -1z, so

L = (1./zfront(i,j) = 1./zback(i,j))*sqrt(l. + x*x + y*y)

where x and y give the coordinates where the ray from the eye through the pixel (i, j) inter-
sects the plane z = 1, and are easily computed from i and j.

This method requires that each ray intersect the volume cell in a single segment, so that
there is a single front and a single back entry for each interpolated variable at each pixel. If
the cell is convex, this is always true. We can also guarantee that it will be true for certain
non-convex cells which arise in our atmosphere subdivision.

The first alternative, described above, requires a face between two cells to be scan con-
verted twice: once as the front face of the rear cell, and once as the rear face of the front
cell. A second alternative method scan converts most faces only once. Faces which have a
volume cell to their rear are marked as front faces, to indicate that the cell is to be rendered
when they are scan-converted. If there is to be a discontinuity in opacity or color across a
face, two copies must appear, one marked and one unmarked, each with their own ¢ and C
values. Instead of sorting the cells, we sort the faces, taking care to put the duplicate cop-
ies of any faces in the order corresponding to the cells they bound. Then, for all polygons
in back to front order, the second algorithm is

For each pixel (i, j) in polygon({
Interpnlate anew, Cnew, and znew

at (i,y)
If polygon is a front surface{
L = ztemp(i,j) - znew
a = (atemp(i,j) + anew)/2.
C = (Ctemp{(i,j) + Cnew)/2.
T = exp(-L*a)

I =C*(1.-T)

F(i,3) = T*F(i,9) + I
}
ztemp (i, j) = znew
Ctemp (i, j) = Cnew
dtemp (i, j) = dnew

}

This requires only one set of temporary arrays, but now they must be the size of the
whole image. In addition, this version can deal with cases where a viewing ray intersects a
cell in two or more segments. However it requires a valid sort on the polygons, which is
not always possible. Lucas’, who has published this alternative, for constant a and C, pro-
posed sorting the faces by the z value of their centroids. He remarked that sorting errors re-
sult in incorrect negative values of L, which are mostly compensated by an equal incorrect
increase in an adjacent positive value of L.

In our climate work, we used the first alternative, and sorted the cells. Figure 1, show-
ing clouds color coded by altitude, was rendered in this way.

Figure 1. Volume rendered clouds wrapped around a globe with a large vertical exaggeration. The terrain
and the clouds are color coded by altitude, using two different scales. Reprinted with permission from “Fo-
cus on Scientific Visualization”, H. Hagen, H. Miiller, G. Nielson editors, Springer Verlag, Berlin

3. Splatting

Westover® introduced an alternative method of volume rendering, called “splatting”,

which approximately interpolates the volume densities by using a rotationally symmetric
reconstruction kernel (a “splat”) for each data point. The kernels are multiplied by the col-
or and opacity values for the data point, and the results are composited in back to front or-
der. Crawfis and Max' made two changes to this method. First, instead of a Gaussian
kernel, we used a piecewise quadratic kernel®, which optimally reconstructs a flat field of

constant data values in 2D. Second, we added a representation of vector fields. We drew
anti-aliased line segments, whose direction represented the projected vector direction at a
sample point, and whose iniensity and opacity represented the vector’s magnitude. In or-
der to remove any blocky visual patterns from regular sampling, the segments are made
long enough to interleave, and the sample positions at the segment centers are jittered. The
result of many such vectors is a fine texture as in figure 2, which indicates wind direction.

Even though the segments do not progress, the texture appears in animation to move and
swirl with the wind.

Figure 2. Global winds, drawn with a vector texture color coded by altitude. Reprinted by permission of the
Association for Computing Machinery from reference 7.

Figure 3 shows a combination of scalar splats, representing cloud density at an atmo-
spheric layer, and vector line segments, representing wind velocity. The colors of the vec-
tors represent altitude. The compositing alternated layers of scalar splats with layers of
vector splats, but the two can also be combined into a single 1ayer7, so that they partially
hide each other.

At first, we used software to evaluate the color and opacity for the piecewise quadratic
reconstruction kernel and the anti-alised vector segment, and to do the compositing. Fig-
ure 2 took 30 seconds at HDTV resolution (1920 x 1035) on an SGI Personal Iris 4D/35,
and figure 3 took one minute.

Recently, we have improved this technique to take advantage of the hardware composit-
ing and texture mapping in the SGI VGX graphics rendering system. We stored an intensi-
ty/opacity texture map of the reconstruction kernel, and of a windowed directional vector
texture. Then for each sample data point, we composited in hardware a polygon which ac-
cessed this texture. We arranged for the polygon to always face the viewer, so that the tex-
ture would not be foreshortened.

Figure 3. Global winds and clouds, composited together in the same image. Reprinted by permission of the Association
for Computing Machinery from reference 7.

When used in this way, the texture should be the 2-D projection of a 3-D reconstruction
kernel. For the kernel, we found® a C! piecewise cubic function of 3-D radius, which opti-
mally reconstructs a flat field from constant data values at the 3-D integer lattice. The re-
sulting 2-D splat is then the line integral of this function along rays perpendicular to the

projection plane. These can be computed in closed form. Figure 4 shows the cloud data
rendered with this technique.

Figure 4. Clouds over North America, rendered by texture mapped splats. Reprinted from reference 9.

To render vector fields, we use an anisotropic texture which indicates the vector direc-
tion, as shown in figure 5. In order to rotate the texture direction, it is only necessary to
change the orientation of the polygon accessing the texture map. The texture could also be
moved during animation by translating the texture coordinates along the direction of the
vectors. However, we needed to multiply the texture by a window function similar to the
scalar reconstruction filter, so that adjacent texture samples would blend together when
composited. Our hardware could not multiply two separate textures before compositing,
so we used the windowed version in the texture map. To achieve animation, we stored

windowed versions of the texture in sixteen different translations, and cycled between
them.

= . .) . . : . F
Aot ety 450 Delty

Zean

Figure 5. Clouds and wind field over North America, rendered using textured splats. Reprinted from refer-
ence 9,

Laur and Hanrahan!? have implemented an octree lierarchy of splats, by grouping to-
gether eight volume cells if their data values are within an error tolerance of their average.
They use a piecewise linear approximation to a gaussian splat, which is implemented as a
net of polygons. The hardware rendering pipeline interpolates and composites the colors
and opacities specified at the polygon vertices. We obtained the source to an SGI Explor-
er™ module implementing this technique, and replaced the piecewise linear splats by our
smooth texture mapped splats, to give a smoother reconstruction. In the case of many
small splats, where the per-polygon overhead outweighs the texturing cost, it is also faster.

4. Cloud Texturing

The grid cells in our climate model are 1.125 degrees on a side, or about 100 kilometers
square at the equator, so the cloud density variable does not represent the density within
individual clouds, but rather the percent cloud cover at a particular altitude level. The
cloud rendering method of Gardner!! creates transparency where the texture function is
below a threshold, and can thus create partial cloud cover detail within a single grid ele-
ment. It therefore gives a more faithful representation of the meaning of the cloud density
variable in the simulation than does the direct volume rendering in figure 1.

Figure 6. Contour surface of 15% cloudiness from a climate model, rendered with haze. Reprinted with per-
mission from reference 12.

Figure 7. Contour surface after the cloudiness function has been smoothed by a 3x3x3 filter. Reprinted with
permission from reference 12.

We found that when the original cloud density from the simulation was contoured. the
surface was too rough and bumpy, as in figure 6. Theretore we applied a 3x3x3 smoothing
kernel to the density before contouring, giving figure 7. The corresponding textured
clouds are shown in figure 8. Figures 6 through 8 all show the contour surface of 15%
cloud cover.

Figure & Smoothed contour surface of 15% cloudiness, rendered with a 3D ransparency texture. Reprinted
with permission from reference 12,

Since the contour surfaces have complicated shape and topology, which change tor ev-
ery frame of animation, it is difficult to assign 2D texture coordinates to the vertices.
Theretore, like Gardner, we used a 3D volume texture tunction, evaluated at surface
points, to determine both the color and opacity of the clouds. When this function is below
a threshold, the clouds become completely transparent and colorless. The 3-D texture co-
ordinates («.v.w) range from 0 to 1, and are initialized proportional to longitude, latitude,
and altitude, respectively. The longitude wraps around at the Greenwich meridian, which
corresponds to both = 0 and u = 1. The next section explains how these texture coordi-
nates are advected by the wind to produce, for each frame of the animation, new (1.1
coordinates at each of the grid vertices. Once these are known, they can be interpolated
across grid edges to the vertices of a contour polygon, and then across the polvgon during
scan conversion, texturing, and shading. We used a variant of Gardner’s “*poor man’s {rac-
tal texture™ with a sum (instead of a product) of & small number of 3-D plane sine waves.
As suggested by Gardner, we perturbed the phase ¢f each of these waves by another sine
wave of longer wavelength in a perpendicular direction, to break up the regularity in the
texture pattern. The texture function is thus of the form

flu,v,w) = Za‘»cos (bu+cyv+dw+q,)

where the phase perturbation is

q; = 2-sin (0.5b;u~0.5ay).

We sorted the volume cells from back to front, and then rendered in order the front-fac-
ing cloud contour surfaces they contained, using Phong shading, with the Gardner color
and transparency texture. In order to make the clouds appear more opaque where they are
thicker, and more transparent and tenuous near their edges, we added a term proportional
to the cloud thickness to the texture function before comparing it to the threshold. When
an opaque terrain polygon or a back-facing contour polygon is scan converted, the z-buff-
er is set to the polygon’s depth at each pixel. Then when a front-facing contour polygon is
rendered, its <epth can be subtracted from ihe depth in the z-buffer to get the length of the
viewing ray inside the volume bounded by the contour surface.

This cloud thickness effect assumes that the cloud density is constant inside the cloud
contour surface. We can take into account the variable density by scan converting the vol-
ume: cells using one of the methods described in section 2, and accumulating their integrat-
ed densities aL in a special density buffer. When a front-facing contour polygon is scan
converted, the accumulated density is used to modify the transparency threshold, and the
buffer is reset to zero. Unfortunately, this technique did not seem to add to the realism or
the information content of our cloud images.

One thing that does add to the realism is haze, which also serves as a depth cue to distin-
guish the cloud layers. We used a haze density in figures 7, 8, and 9 which decreases expo-
nentially with altitude. It could be integrated analytically along any ray segment to give an
c:xpression12 involving the normal error function, which was stored in a table.

5. Advection of texture coordinates

The best way we discovered to make the texture move appropriately as our clouds de-
formed in the wind, was to advect the cloud texture coordinates by the wind. When the
cloud surface is being pushed by the wind, the texture and geometry will move coherently,
while in a standing wave at a mountain range, the texture will move across the cloud, indi-
cating the wind velocity. However when a cloud grows quickly as in a thunderstorm, or in
the daily rain cycle over the Amazon rainforest, it will spread through the 3-D texture
space, causing a “boiling” appearance.

Initially, in frame 1 of an animation, the three texture coordinates at a grid vertex are
proportional to the longitude, latitude, and altitude indices, and vary between 0 and 1. The
Euler method for integrating ordinary differential equations can be used to move the grid
vertices forward along the streamlines of the wind flow field. In frames after the first, grid
vertices move into the interiors of grid cells, so the velocity must be interpolated from the
eight surrounding grid vertices.

Since the advectea grid becomes distorted, the texture coordinates must be resampled
into the standard fixed grid at which the other simulation data is defined. Unless the in-

verse of the advection mapping is known, it is hard to decide which distorted cell contains
a given grid vertex. In fact, the grid cells could become so distorted that their surfaces self-
intersected, making the decision even more difficult. We therefore computed the inverse
advection mapping for each grid vertex, instead of the forward mapping. For each grid
vertex P in frame n, we found the point Q in frame 1 which would end up at P, by integrat-
ing backwards along the streamline through P. The texture coordinates at P are then pro-
portional to the longitude, latitude, and altitude at Q.

The streamlines through the grid points for frame n do not pass through the grid points
for frame n-1, so a separate backwards integration is needed for each frame. This makes
the number of steps in the Euler integration quadratic in the number of frames. It is also
necessary to have the velocities for all the time steps available to compute the backwards
integration for the last frame. This was impractical for us, since the data output for each
24-time-step day takes 380 megabytes. In addition, the wind will eventually twist and
stretch the cloud texture until it contains only high spatial frequencies, which will spoil the
intended visual effect.

For all these reasons, we used each set of texture coordinates for only 24 hours of simu-
lation time. To keep a continuous appearance, we rendered the clouds using a linear com-
bination of 3-D textures computed from two sets of coordinates. We increaved the weight
of each set from zero to one in 12 hours, and then back to zero in another 12, so that a new
set replaced an old one every 12 hours. For hour » of a 12 hour cycle, one set of coordi-
nates is obtained by integrating backwards for n-1 steps along the streamlines, and the oth-
er by integrating along the same streamlines for a further 12 backward steps. These
integrations took an hour of CPU time, but were done only every four frames; we interpo-
lated the coordinates in between. We have produced a HDTV animation of 960 frames
from our 10 day climate simulation, and figure 9 is a sample frame. The average frame
took 45 minutes, including texture advection integration, rendering, and data I/O.

If we had used linear interpolation between two shaded cloud images, the overlap of
cloud patterns would have been obvious. Instead, we combined the two 3-D textures be-

fore applying the non-linear transparency threshold, so only one cloud pattern will be vis-
ible.

6. Flow Volumes

Engineers often visualize flows by releasing visible smoke into a gas flow, or dye into a
.. liquid. We developed a computer simulation of this effect by volume rendering a “flow
volume”, the volume swept by the flow through a small generating polygon P which re-
leases the colored tracer. At present, we are using only steady flows, where the velocity is
independent of time, so that we can achieve near real time interaction. Rapid imaging is
possible because we need only render the small cells inside the flow volume, instead of ac-
cessing the whole data volume, and because we use the hardware pipeline for shading and
compositing.

At any time step ¢, the flow volume is bounded by the generating polygon P, the position
P, to which its points are carried by the flow by time ¢, and the stream ribbons! generated
by the sides of P. Thus flow volumes are a volume generalization of stream ribbon surfac-

es, and involve the same sort of subdivision considerations as described by Hultquist 13
Max Becker and Crawfis'4 give the details of the adaptive 3-D subdivision into tetrahedra
Without too much extra work, compared to stream ribbons, stream volumes give a visual
impression which is similar to the familiar engineering physical experiments.

The polyhedron compositing algorithms described in section 2 required software scan
conversion, in order to compute the transparency T = exp(-L*a), involving an exponential
at each pixel. However, by using the tetrahedron projection method of Shirley and Tuch-
man!? , together with a hardware texture map for the exponential, we are now able to
achleve hardware compositing. The method of Shirley and Tuchman divides the projec-
tion of each tetrahedron into triangles. The two non-degenerate cases, shown in figure 9,
result in three or four triangles. In both these cases, the quantity L*a is non-zero only at
the “thick” interior vertex marked A, since L is zero at the other profile vertices. (In the de-
generate cases, the thick vertex may also lie on the profile.)

b
// J \ \
// A N
/ \ \ \
K e

Figure 9. Two non-degcnerate tetrahedal projections divided into triangles. Reprinted from reference 14,

Shirley and Tuchman computed T = exp(- L*a) at the thick vertex A, and the corre-
sponding color I = C*(1 - T). They then used the shading and transparency features in the
hardware to linearly interpolate T and / across the triangles and do the compositing. This
produces artifacts, since the exponential function is not actually linear. In order to remove
these artifacts, while still taking advantage of hardware rendering, we put the function 1 -
exp(-u) in a 1-D texture table, and used the quantity L*a as the texture coordinate u at each
vertex. The hardware then linearly interpolates this texture coordinate across each trian-
gle, and accesses the texture table to get the “alpha’ value 1 - T used in the hardware com-
positing.

As discussed above, volume rendering by polyhedron compositing nsually requires that
the volume cells be sorted in back to front order, so that they can hide eac other appropri-
ately when composited. Such somng for a twisted flow volume could slow down the inter-
action. However we can provc1 that if the smoke has a constant color C, which is the case
for our flow volumes, the resulting image is independent of the compositing order, so no
sorting is necessary. Using the flexible z-buffer options on the SGI hardware, it is still pos-
sible to have opaque objects hide the flow volume cells. First all opaque surface polygons
are rendered. Next the triangles in the projections of the flow volume tetrahedra are com-
posited. Their z is compared at each pixel with the z-buffer to determine whether to com-

posite, but the z-buffer is not updated. Figure 10 is an application of our flow volumes to
climate data, showing the effect of a typhoon over the Pacific.

The user interface for the flow volume was built using the SGI Inventor™ tools and
C++ classes. In addition to specifying the viewing parameters, the user can interactively
position the generating polygon P, which always orients itself normal to the flow velocity.
The color and opacity of the smoke can also be specified, using Inventor sliders and color
design tools. Puffs of smoke can be animated moving along the flow volume, by making
the opacity vary with the cell’s time step index. Finally, compressible flow can be visual-
ized by making the opacity vary inversely with the volume of the tetrahedral cell.

Figure 10. Flow volume for the wind from the climate simulation, showing the effects of a typhoon in the In-
dian Ocean. Reprinted from reference 14.

7. Acknowledgments

This work was performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under contract number W-7405-ENG-48, with
specific support from an internal LDRD grant and also from the High Performance Com-
puting and Communications Program directed to Visualization For Global Climate Mod-
eling. The terrain was rendered using subroutines of Michael Allison and Chris Anderson,
and data from Brian Cabral. The simulation output came from Bob Mobly and Chris "
Anderson. We thank Dean Williams and Gerald Potter for useful conversations.

References

1. N.Max, P. Hanrahan and R. Crawfis (1990) “Area and Volume Coherence for Efficient
Visualization of 3D Scalar Functions”, Computer Graphics Vol. 24 No. 5, pp 27-33

2. P. Sabella (1988) “A Rendering Algorithm for Visualizing 3D Scalar Fields”, Comput-
er Graphics Vol. 22 No. 4 (Siggraph ’88 Proceedings) pp 51 - 55

10.

11.

12.

13.

14.

15.

P. Williams and N. Max (1992) “A Volume Density Optical Model”, Proceedings of
the 1992 Workshop on Volume Visualization, ACM, New York, pp 61 - 68

W. Newman and R. Sproull (1979) “Principles of Interactive Computer Graphics”,
McGraw-Hill, New York

B. Lucas (1992) “A Scientific Visualization Renderer”, Proceedings of Visualization
’92, IEEE Computer Society Press, Los Alamitos CA, pp 227 - 234

L. Westover (1989) “Interactive Volume Rendering”, Proceedings of the Chapel Hill
Workshop on Volume Rendering, ACM, New York, pp 9 - 16

R. Crawfis and Max N. (1992) “Direct Volume Visualization of Three-Dimensional
Vector Fields”, Proceedings of the 1992 Workshop on Volume Visualization, Kaufman
and Lorensen (eds), ACM SIGGRAPH, NY

N. Max (1991) “An Optimal Filter for Image Reconstruction”, in “Graphic Gems II ”,
James Arvo (ed), Academic Press, Boston, pp 101 - 104

R. Crawfis and N. Max (12) “Texture Splats for 3D Vector and Scalar Field Visual-
ization”, UCRL JC 11328, Lawrence Livermore National Laboratory, Livermore CA-
submitted to Visualization '93

D. Laur and P. Hanrahan (1991) “Hierarchical Splatting: A Progressive Refinement
Algorithm for Volume Rrendering”, Computer Graphics Vol. 25 No. 2 (Siggraph '91
Proceedings) pp 285 - 288

G. Gardner (1985) “Visual Simulation of Clouds”, Computer Graphics Vol. 9 No. 3
(Siggraph ‘85 Proceedings) pp 297-303

N. Max, R. Crawfis and D. Williams (1992) “Visualizing Wind Velocities by Advect-

ing Cloud Textures” Proceedings of Visualization '92, IEEE Computer Society Press,
Los Alamitos CA, pp 179 - 184

J. Hultquist (1992) “Constructing Stream Surfaces in Steady 3D Vector Fields”, Pro-

ceedings of Visualization 92, IEEE Computer Society Press, Los Alamitos, CA pp
171-178

N. Max, B. Becker and R. Crawfis (1992) “Flow Volumes for Interactive Vector Field
Visualization”, UCRL JC 113 awrence Livermore National l.aboratory, Liver-
more CA submitted to Visualization 93

P. Shirley and A. Tuchman (1990) “A Polygonal Approach to Direct Volume Render-
ing”, Computer Graphics Vol. 24 No. 5 pp 63 - 70

