

1 of 1

(CLASSIFICATION)

~~DECLASSIFIED~~

DOCUMENT NO.

HW-79602

SERIES AND COPY NO.

PATE

11-19-63

HANFORD ATOMIC PRODUCTS OPERATION - RICHLAND, WASHINGTON

X THIS DOCUMENT CONTAINS RESTRICTED DATA AS
DEFINED IN THE ATOMIC ENERGY ACT OF 1946.
ITS TRANSMISSION, DISCLOSURE,
COMMENTS IN ANY MANNER TO AN UNAUTHORIZED
PERSON IS PROHIBITED.

TITLE

A PRELIMINARY STUDY OF PRODUCTION OF TUNGSTEN-RHENIUM ALLOYS IN N-REACTOR

OTHER OFFICIAL CLASSIFIED INFORMATION

THIS MATERIAL CONTAINS INFORMATION AFFECTING
THE NATIONAL DEFENSE OF THE UNITED STATES
WITHIN THE MEANING OF THE ESPIONAGE LAWS,
TITLE 18, U. S. C., SECS. 793 AND 794, THE TRANS-
MISSION OR REVELATION OF WHICH IN ANY MANNER
TO AN UNAUTHORIZED PERSON IS PROHIBITED BY
LAW.

AUTHOR

J. W. Riches
and
E. G. Pierick

ISSUING FILE

THIS DOCUMENT MUST NOT BE LEFT UNATTENDED OR WHERE AN UNAUTHORIZED PERSON MAY HAVE ACCESS TO IT. WHEN NOT IN USE, IT MUST BE STORED IN AN APPROVED LOCKED REPOSITORY WITHIN AN APPROVED GUARDED AREA. WHEN IT IS YOUR POSSESSION, AND UNTIL YOU HAVE OBTAINED A SIGNED RECEIPT FROM CLASSIFIED INFORMATION, IT IS YOUR RESPONSIBILITY TO KEEP THE DOCUMENTS CONTAINED WITHIN THE BOUNDS OF THE PROJECT, AND FROM AN UNAUTHORIZED PERSON. TRANSMISSIONS, AND STORED AT YOUR PLACE OF WORK. IF PROTECTED, IT IS BE DESTROYED. IF ADDITIONAL CLEARS ARE REQUIRED, REQUEST THEM FROM THE REQUESTED LEVEL. A SIGNED RECEIPT FOR THIS DOCUMENT IS REQUESTED TO SIGN IN THE SPACE PROVIDED BELOW.

ROUTE TO:

PAYROLL NO.

LOCAT

FILES ROUTE
DATE

SIGNATURE AND DATE

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

34-3000-052 (9-56)

A.E.C.-G.E.-RICHLAND, WASH.

(CLASSIFICATION)

~~RECLASSIFIED~~

DECLASSIFIED

Classification Cancelled and Changed To

DECLASSIFIED

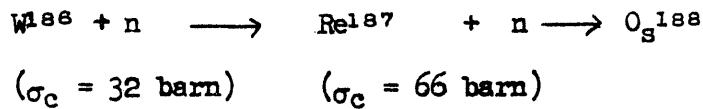
By Authority of DS Lewis,
CG-PR-2, 4-1-94

By DCHanson, 4-16-94

Verified By Jessi Mally,
4-18-94.

1. E. D. Sayre
2. M. C. Leverett
3. L. W. Lang
4. D. R. Stenquist
5. J. W. Riches
6. E. G. Pierick
- 7-9 AEC - RL00 - A. T. Gifford
10. 300 Files
11. Record Copy

November 19, 1963


This document consists of
6 pages.

A PRELIMINARY STUDY OF
PRODUCTION OF TUNGSTEN-RHENIUM
ALLOYS IN N-REACTOR

Feasibility and cost data are supplied herewith for the production of tungsten-rhenium alloys from tungsten targets in the N-Reactor. The two types of target elements assumed were: a) tungsten containing 90 a/o tungsten-186, 9 a/o tungsten-184 and 1 a/o tungsten-183 and 182, and b) tungsten of natural isotopic composition (28.4 a/o tungsten-186, 30.6 a/o tungsten-184, 14.4 a/o tungsten 183, and 26.4 tungsten-182). As per instructions, it is assumed that the average thermal neutron capture cross section for the tungsten-186 is 32 barns.

The production and costs of rhenium will be based on the assumptions as follows:

- 1) The production chain is limited to:

And it is further assumed that:

- a) No contribution to rhenium-187 production from tungsten isotopes of mass less than 186 i.e., from tungsten-182 to tungsten-185.

MASTER

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DECLASSIFIED

- b) All tungsten-187 formed by the (n,γ) process in tungsten-186 is transformed immediately to rhenium-187 without loss, i.e., neutron absorption in the intermediate product tungsten-187 has been omitted in our formulation.
- c) The (n,γ) process in rhenium-187 leads directly to osmium-188, rather than going through the intermediate product rhenium-188.
- d) The thermal cross-sections are used instead of effective cross-sections.

2) The neutron thermal flux in the flux trap is assumed to be three times the normal reactor thermal flux.

3) The plant factor is assumed to be 84 per cent.

4) The cost of rhenium is based on "opportunity costing".

5) The costs for post irradiation treatment such as separation (mechanical or chemical), storage charges and transportation are not included.

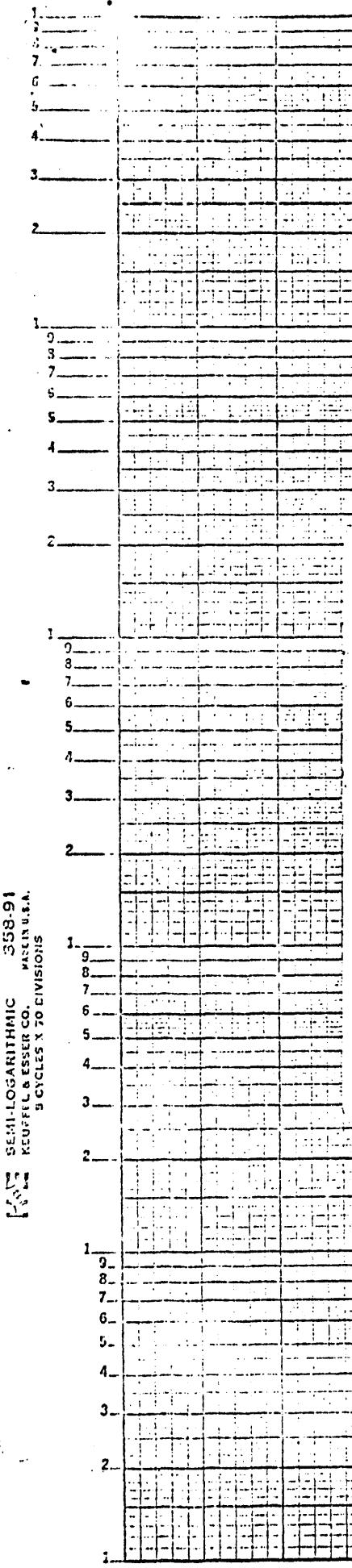
6) The burnout values for the uranium are based on HAN-85315, dated June 10, 1963. This schedule was used for the current AEC ten-year cost study.

The conceptual target design for use in the process tubes consists of a small diameter rod clad in zirconium. A more detailed study would probably reveal that there is no need for the cladding.

The formation of rhenium-187 and osmium-188 versus the exposure in the N-Reactor is shown in Figure 1. The exposures at different irradiation periods are based on using flux traps that increases the thermal flux by a factor of three above the normal N-Reactor thermal flux. The maximum atom per cent of rhenium-187 for the enriched tungsten-186 target reached after 12.5 years of irradiation is 21.6. The unit cost for this material, as shown in Figure 2, is much greater than \$1.50 per gram of rhenium-187. The costs for the rhenium includes fuel fabrication costs, burnout charges, charges for reactor space, and irradiation operating costs. We must iterate that these figures are based on the assumptions listed above. Since there is little incentive for the production of tungsten-rhenium alloys containing less than 25 atom per cent rhenium, especially if the processing time is in excess of 12 years, this study is only of academic interest. For a more reasonable irradiation period such as two years, the atom per cent of rhenium-187 and osmium-188 are 9.4 and 0.4, respectively. The unit cost is about \$73 per gram of rhenium-187. Based on a toll charge arrangement with the base load being charged to the plutonium production, the unit cost would be about \$36 per gram of rhenium. Figure 2 shows the relation of unit costs for the higher enriched tungsten-186 target versus both atom per cent of rhenium-187 and reactor residence times.

DECLASSIFIED

Figure 3 gives the production for rhenium-187 produced from natural tungsten. The maximum atom per cent of rhenium-187 for a natural tungsten target is only 6.8.


As a matter of interest, if one was to load the graphite cooling cross channel with limited quantity of tungsten, some flattening of the reactor from the front to rear could be achieved. Also, the tungsten is compatible with the environs of the cooling channels. The tungsten, as a wire without cladding, therefore could be placed in the channel with no other costs than that necessary to place the tungsten wire into the channel and to pay for the absorbed neutrons. Hence, the charges for reactor space is not applicable. Preliminary estimates of the unit costs with the target in the cooling channel for a two year exposure period is about \$30 per gram of rhenium. The rate of rhenium production and the composition of the target after irradiation would be about the same as that produced in the process tube because the flux level in the graphite cooling channels is not much different than that in the flux trap.

Based on assumptions given in the reference letter, the irradiation period necessary to achieve the maximum atom per cent of rhenium of 21.6, which is below the percentage of real market-interest, is prohibitively long for a product that has a market value of about \$1.50 per gram. Consequently, the product costs were treated on a cursory basis because any error in the cost figures would not materially change the conclusion.

If, after your review of this subject, it is concluded that additional data or more refinement is deemed necessary let us know.

DECLASSIFIED

SEMI-LOGARITHMIC
KODAK SAFETY FILM
5 CYCLES X 20 DIVISIONS

Formation of Re-187 & Os-188
with Exposure

Target Composition:

Isotope	%/o
W-186	90
W-184	9
W-183-182	1

25

20

15

10

RECEIVED

Formation of Re-187

6 mos. 1 yr. 2 yr.

Formation of Os-188

10⁻³

10⁻²

10⁻¹

10⁰

10¹

10²

10³

10⁴

10⁵

10⁶

10⁷

10⁸

10⁹

10¹⁰

10¹¹

10¹²

10¹³

10¹⁴

10¹⁵

10¹⁶

10¹⁷

10¹⁸

10¹⁹

10²⁰

10²¹

10²²

10²³

10²⁴

10²⁵

10²⁶

10²⁷

10²⁸

10²⁹

10³⁰

10³¹

10³²

10³³

10³⁴

10³⁵

10³⁶

10³⁷

10³⁸

10³⁹

10⁴⁰

10⁴¹

10⁴²

10⁴³

10⁴⁴

10⁴⁵

10⁴⁶

10⁴⁷

10⁴⁸

10⁴⁹

10⁵⁰

10⁵¹

10⁵²

10⁵³

10⁵⁴

10⁵⁵

10⁵⁶

10⁵⁷

10⁵⁸

10⁵⁹

10⁶⁰

10⁶¹

10⁶²

10⁶³

10⁶⁴

10⁶⁵

10⁶⁶

10⁶⁷

10⁶⁸

10⁶⁹

10⁷⁰

10⁷¹

10⁷²

10⁷³

10⁷⁴

10⁷⁵

10⁷⁶

10⁷⁷

10⁷⁸

10⁷⁹

10⁸⁰

10⁸¹

10⁸²

10⁸³

10⁸⁴

10⁸⁵

10⁸⁶

10⁸⁷

10⁸⁸

10⁸⁹

10⁹⁰

10⁹¹

10⁹²

10⁹³

10⁹⁴

10⁹⁵

10⁹⁶

10⁹⁷

10⁹⁸

10⁹⁹

10¹⁰⁰

10¹⁰¹

10¹⁰²

10¹⁰³

10¹⁰⁴

10¹⁰⁵

10¹⁰⁶

10¹⁰⁷

10¹⁰⁸

10¹⁰⁹

10¹¹⁰

10¹¹¹

10¹¹²

10¹¹³

10¹¹⁴

10¹¹⁵

10¹¹⁶

10¹¹⁷

10¹¹⁸

10¹¹⁹

10¹²⁰

10¹²¹

10¹²²

10¹²³

10¹²⁴

10¹²⁵

10¹²⁶

10¹²⁷

10¹²⁸

10¹²⁹

10¹³⁰

10¹³¹

10¹³²

10¹³³

10¹³⁴

10¹³⁵

10¹³⁶

10¹³⁷

10¹³⁸

10¹³⁹

10¹⁴⁰

10¹⁴¹

10¹⁴²

10¹⁴³

10¹⁴⁴

10¹⁴⁵

10¹⁴⁶

10¹⁴⁷

10¹⁴⁸

10¹⁴⁹

10¹⁵⁰

10¹⁵¹

10¹⁵²

10¹⁵³

10¹⁵⁴

10¹⁵⁵

10¹⁵⁶

10¹⁵⁷

10¹⁵⁸

10¹⁵⁹

10¹⁶⁰

10¹⁶¹

10¹⁶²

10¹⁶³

10¹⁶⁴

10¹⁶⁵

10¹⁶⁶

10¹⁶⁷

10¹⁶⁸

10¹⁶⁹

10¹⁷⁰

10¹⁷¹

10¹⁷²

10¹⁷³

10¹⁷⁴

10¹⁷⁵

10¹⁷⁶

10¹⁷⁷

10¹⁷⁸

10¹⁷⁹

10¹⁸⁰

10¹⁸¹

10¹⁸²

10¹⁸³

10¹⁸⁴

10¹⁸⁵

10¹⁸⁶

10¹⁸⁷

10¹⁸⁸

10¹⁸⁹

10¹⁹⁰

10¹⁹¹

10¹⁹²

10¹⁹³

10¹⁹⁴

10¹⁹⁵

10¹⁹⁶

10¹⁹⁷

10¹⁹⁸

10¹⁹⁹

10²⁰⁰

10²⁰¹

10²⁰²

10²⁰³

10²⁰⁴

10²⁰⁵

10²⁰⁶

10²⁰⁷

10²⁰⁸

10²⁰⁹

10²¹⁰

10²¹¹

10²¹²

10²¹³

10²¹⁴

10²¹⁵

10²¹⁶

10²¹⁷

10²¹⁸

10²¹⁹

10²²⁰

10²²¹

10²²²

10²²³

10²²⁴

10²²⁵

10²²⁶

10²²⁷

10²²⁸

10²²⁹

10²³⁰

10²³¹

10²³²

10²³³

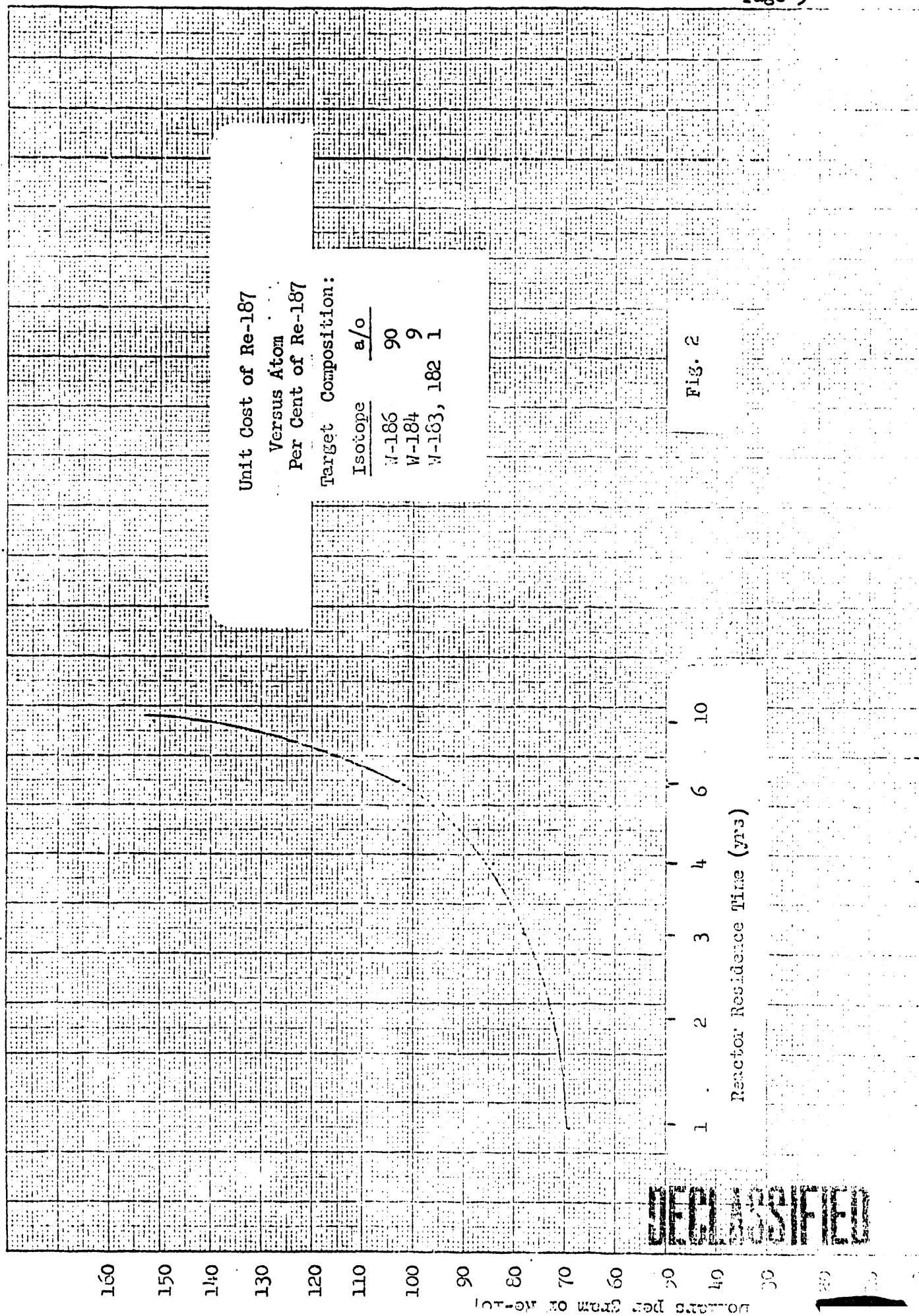
10²³⁴

10²³⁵

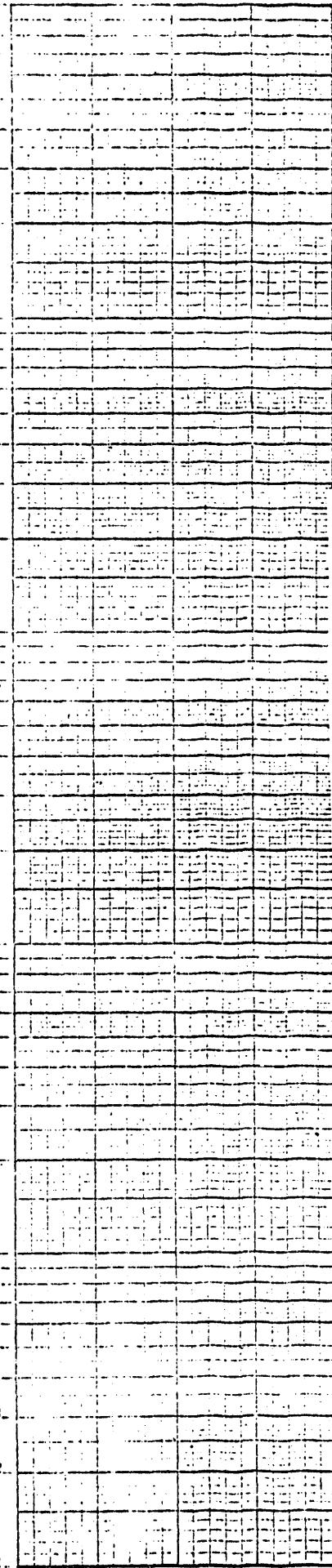
10²³⁶

10²³⁷

10²³⁸


10²³⁹

10²⁴⁰


10²⁴¹

10²⁴²

10²⁴³

SEMI-LOGARITHMIC
KUFFEL & ESKE CO. MARTIN 55A
5 CYCLES X 70 DIVISIONS

Formation of Re-187 & Os-188
with Exposure

25

20

15

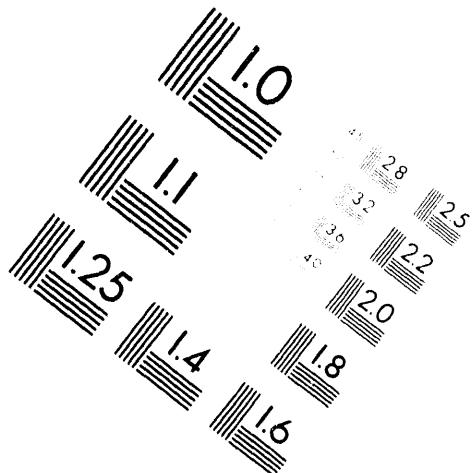
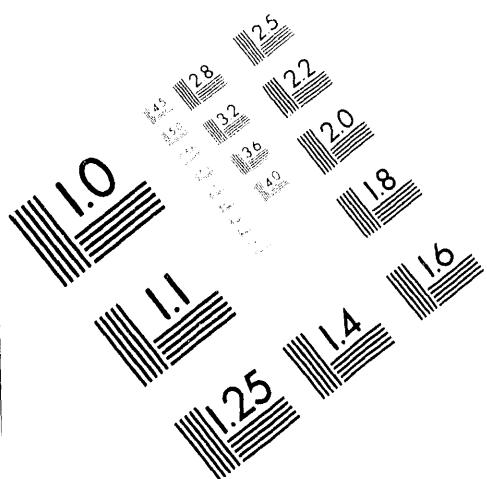
10

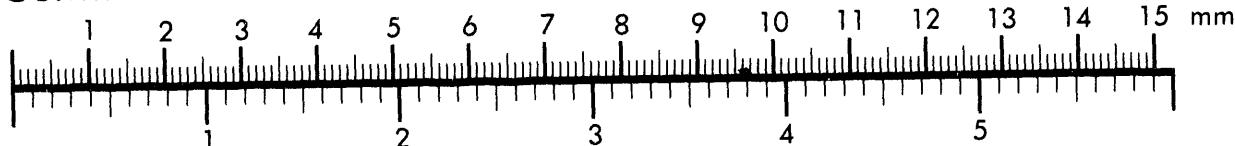
Target Composition:

Isotope	a/o
W-186	28.4
W-184	30.6
W-183	14.4
W-182	26.4

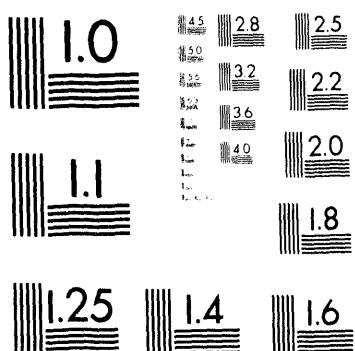
Fig. 3

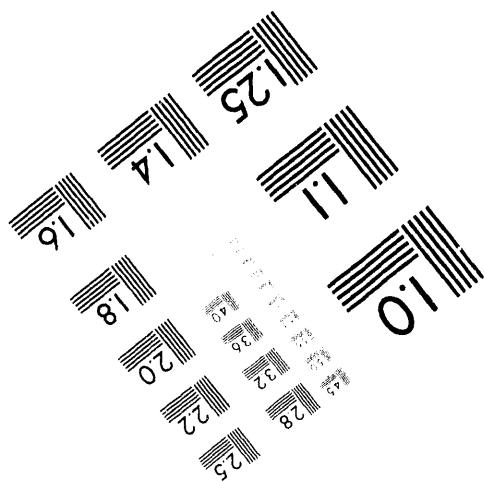
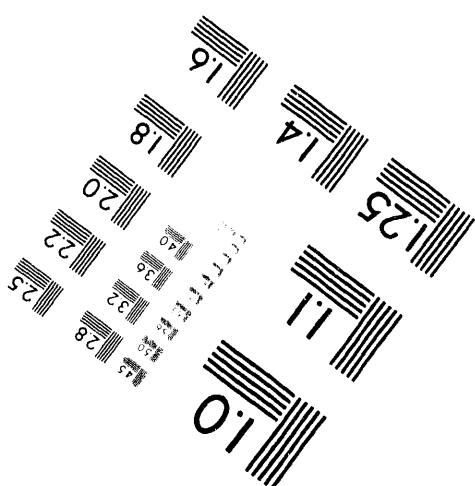
CLASSIFIED



10⁶ o10⁶ o


AIM

Association for Information and Image Management


1100 Wayne Avenue, Suite 1100
Silver Spring, Maryland 20910
301/587-8202



Centimeter

Inches

MANUFACTURED TO AIIM STANDARDS
BY APPLIED IMAGE, INC.

1964-11-11

DATE
FILED
RECEIVED
NOV 11 1964