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ABSTRACT

We discuss how engineering analysts can obtain greater compu-
tational resolution in a more timely manner from applications
codes running on MIMD parallel computers. Both processor speed
and memory capacity are important to achieving better perfor-
mance than a serial vector supercomputer. To obtain good perfor-
mance, a paralle] applications code must be scalable. In addition,
the aspect ratios of the subdomains in the decomposition of the
simulation domain onto the parallel computer should be of order
1. We demonstrate these conclusions using simulations conducted
with the PCTH shock wave physics code running on a Cray Y-MP,
a 1024-node nCUBE 2, and an 1840-node Paragon.

INTRODUCTION

Several studies have shown that distributed-memory parallel
computers can deliver higher performance than conventional vec-
tor supercomputers for complex scientific and engineering appli-
cation codes (see, for example, Gustafson et al. (1988), Robinson
et al. (1991), Gardner et al. (1992)). Few studies have considered
parallel computers from the point of view of an engineering ana-
lyst, whose primary concern is solving an engineering problem
with sufficient resolution to yield useful information in a reason-
able time.

In this paper we consider parallel computer performance from
the point of view of the engineering analyst, and explore the fac-
tors under the analyst’s control for improving the performance of
Multiple-Instruction, Multiple-Data (MIMD) parallel computers.
We assume that the code has already been optimized and the ana-
lyst wants to run the optimized code to get its best performance on
a MIMD parallel computer.

I'This work was performed at Sandia National Laboratories supported by

the U.S. Department of Energy under Contract DE-AC04-94AL.85000.

DIBTRIBUTION OF T

In a computer with a MIMD architecture, a collection of sophis-
ticated processors (usually tens or hundreds) execute the same or
different instructions on the data to which they have access. For
distributed memory MIMD computers, such as the Intel Paragon,
the work performed by the processors is coordinated by explicitly
passing messages from one processor to another. In shared memo-
ry MIMD computers, such as a Cray Y-MP, the work performed
by the processors may also be coordinated through the shared
memory. Usually each processor has its own operating system and
its own copy of the instruction set. Each processor may be execut-
ing the same instruction at the same time. More commonly, how-
ever, each processor executes instructions independently of the
others, and then synchronizes its execution with other processors
at various times via the passing of messages, such as the global
determination of a time step in a transient dynamics code. More
generally each processor in a processor set could be executing an
entirely different program from the other processors in the set. For
example, in an eight-processor set, four processors might be de-
voted to performing an engineering finite element analysis, while
the other four might be devoted to forming graphical images of the
analysis in parallel with the computation. Networks of worksta-
tions can also be made to function as MIMD computers.

The performance of parallel computers is commonly measured
using several metrics. The peak theoretical speed is often cited.
The results from the LINPACK benchmarks (Dongarra, 1994) or
the NAS Parallel benchmarks (Bailey et al., 1991) are more indic-
ative of the performance which may be achieved by applications
codes.

The LINPACK benchmark codes perform a factorization of a
dense matrix A into a lower triangular matrix L and an upper trian-
gular matrix U, such that A = LU. This factorization, called an LU
factorization, is used in solving dense linear systems of equations
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of the form Ax = b. The benchmark uses standard LINPACK
(Dongarra et al., 1979) routines in full-precision (64-bit) arith-
metic in a Fortran environment (there is also a set of benchmarks
for the C programming language) to perform an LU factorization.
The benchmark consist of several tests. The first is for a matrix of
order 100 using a prescribed Fortran program. The second test is
for a matrix of order 1000 using any code. The third test is to fac-
tor the matrix of largest possible order using any code on a parallel
computer. The full LINPACK benchmark results for a computer
consist of the time required to complete each test and also include
the theoretical peak speed of the computer, which represents the
upper bound on machine performance. The most commonly cited
LINPACK benchmark results provide an achievable upper bound
for speed on problems involving the solution of dense linear sys-
tems by LU factorization; achieving the benchmark results often
requires the use of special machine configurations and highly opti-
mized assembly code or other resources not normally available to
the engineering analyst.

The NAS Parallel benchmarks are a collection of eight preb-
lems designed to study the parformance of parallel supercomput-
ers. They consist of five kernels, emphasizing a particular type of
numerical computation (e.g., fast Fourier transforms), and three
simulated computational fluid dynamics applications. The bench-
marks are specified functionally, independent of the details of im-
plementation, with specified operation counts. While the times
required to complete the NAS Parallel benchmark tests provide a
more realistic assessment of the performance of a parallel comput-
er, the tests are still highly idealized compared to real applications
codes.

The intent of our work reported here is to report performance
results for an application code running a realistic simulation on
several high-performance computers. In this work we demonstrate
that while a MIMD parallel computer may provide greater compu-
tational speed than a vector supercomputer, it must also have suffi-
cient memory capacity to provide equal or greater resolution. A
simulation with less resolution obtained more quickly may not be
as useful to the analyst as a simulation with greater resolution. We
also demonstrate that when a parallel computer has enough mem-
ory, simulations of greater resolution can be obtained in less time
than with a serial vector supercomputer. In addition, we demon-
strate the scalability of the parallel computers for the PCTH code
for one through 1840 nodes. By scalability we mean that the exe-
cution speed of the code running a specific problem on a parallel
computer increases (or, equivalently, the execution time per com-
putational cell per time step decreases) linearly with the number of
nodes when the computational load per node is fixed. Finally we
demonstrate that naively using more nodes on a parallel computer
may not always result in solving a problem faster or with greater
resolution and explain how to avoid this situation.

In the following sections we describe the computing hardware
we used, the performance metrics we used, the PCTH shock wave
physics code, and the test problem. Then we present and discuss
our performance results and their significance and finally present
our conclusions.

DESCRIPTIONS OF THE COMPUTERS

In this work we compare the performance of an eight-processor
Cray Y-MP vector supercomputer, a 1024-processor nCUBE 2
MIMD parallel computer, and Sandia’s 1840-processor Paragon
X/PS MIMD parallel computer. We briefly describe each machine
below.

Sandia’s Cray Y-MP (manufactured by Cray Research Inc.) has
eight processors, each with a 6.0- nanosecond clock, and a shared-
memory architecture; every processor has uniform access to all
available memory. The memory is organized in eight memory
banks, with a total main memory size of 64 Megawords of high-
speed static RAM. The system has a Solid State Disk (SSD) with
256 Megawords of memory. The peak performance of the system
is 333 Megaflop/s per processor and 2.66 Gigaflop/s for an eight-
processor system.

Sandia’s nCUBE 2 (manufactured by nCUBE Corporation) has
1024 proprietary nodes which integrate both communications and
memory control. Each node operates at 50 MHz and has 4 Mega-
bytes of memory. The nodes are connected via a hypercube com-
munications topology. All coordination among nodes is performed
via explicit message passing calls. The bi-directional communica-
tion channels have an asymptotic bandwidth of 4.4 Megabytes/s in
full duplex mode. Each node runs the Vertex ™ operating system,
which occupies fewer than 64 kilobytes of memory per node. The
proprietary processor is rated at 2.7 Megaflop/s for double-preci-
sion (64-bit) floating point operations. Typical performance is 1.5
to 2 Megaflop/s (double precision) per node for both Fortran and
C. The 1024-node system has a total memory of approximately
four Gigabytes and a theoretical peak speed of 2.8 Gigaflop/s; it
achieves 1.5 to 2 Gigaflop/s (double precision) on applications
that scale well.

Sandia's nCUBE 2 is shared among multiple users via space
sharing, in which each user gets the exclusive use of a subset of
the total available nodes called a subcube. A subcube is restricted
by the hypercube architecture to consist of a power-of-two number
of processors. Single-processor subcubes are allowed. The
nCUBE 2 represents relatively mature parallel computing technol-

ogy.

Sandia’s Intel Paragon X/PS L-140 parallel supercomputer
(manufactured by Intel Corporation) has 1840 computational
nodes, each with an i860 XP RISC processor for computation and
an additional i860 XP processor devoted to inter-node communi-
cation. 512 of the computational nodes have 32 Megabytes of
memory each; the remaining 1328 nodes have 16 Megabytes of
memory each, for a total memory of approximately 38 Gigabytes.
The processors are connected via a two-dimensional mesh com-
munications topology. All coordination among processors is per-
formed via explicit message passing calls. The bi-directional
communication channels have an asymptotic bandwidth of 200
Megabytes/s in full duplex mode. Each node runs its own copy of
the operating system. The i860 XP processor is rated at 75 Mega-
flop/s for double-precision (64-bit) floating point operations. Typi-
cal performance is four to eight Megaflop/s (double precision) per



node for both Fortran and C. The 1840-node configuration has a
total memory of approximately 38 Gigabytes and a peak theoreti-
cal speed of 138 Gigaflop/s.

Sandia’s Paragon is shared among multiple users via spacc
sharing, in which each user gets the exclusive use of a subset of
the total avaiiable nodes.

The standard operating system supplied with the Paragon is the
Distributed OSF/1 operating system. Release 1.2 of OSF/1 re-
quires approximately 7 Megabytes of memory per node, and sup-
plies far more functionality than we in general require. Sandia’s
Paragon is run with the Sandia/UNM Operating System (SUN-
MOS). SUNMOS is an early implementation of the Performance-
oriented, User-managed Messaging Architecture, PUMA (Wheat
et al. 1994). SUNMOS is designed to provide high-performance
message-passing and process service on nodes of massively paral-
lel MIMD computers such as the nCUBE 2 and the Paragon while
requiring only a small amount of memory (less that 250 Kilobytes
per computational node).

PARALLEL CTH

An important class of shock wave physics problems is charac-
terized by large material deformations. These problems involve
penetration, perforation, fragmentation, high-explosive initiation
and detoration, and hypervelocity impact. These phenomena
arise, for example, in armor/antiarmor research and development,
the design of impact shielding for spacecraft, the modeling of
lithotripsy for the disintegration of kidney stones, and hyperveloc-
ity impact problems. The most important of such problems are in-
trinsically three-dimensional and involve complex interactions of
exotic materials, including alloys, ceramics and glasses, geologi-
cal materials (e.g., rock, sand, or soil), and energetic materials
(e.g., chemical high explosives).

Multidimensional computer codes with sophisticated material
models are required to realistically model this class of shock wave
physics problems. The codes must model the multiphase (solid-
liquid-vapor), strength, fracture, and high-explosive detonation
properties of materials. Three-dimensional simulations may re-
quire millions of computational cells to adequatcly model the
physical phenomena and the interactions of complex systems of
components. At Sandia we currently use Eulerian shock physics
codes such as Sandia’s CTH code (McGlaun and Thompson,
1990; Hertel et al., 1993) to model such problems. CTH is a serial
code which runs on Cray vector supercomputers and on worksta-
tions. Owing to the expense of high-speed memory, vector super-
computers do not have enough memory to model problems which
require more than a few million computational cells. Many prob-
lems of interest require tens of millions of cells. Even the inade-
quately resolved problems often require tens or hundreds of CPU
hours to complete. Traditional vector supercomputers are too slow
and have too littlc memory to allow us to study many important
weapon safety problems, or to study complex design problems,
such as the effects of materials selection and design parameters on
the performance of modern armor.

Parallel shock physics codes running on current-generation
massively parallel computers are beginning to provide the high
resolution and short turnaround time we require for these shock
wave physics problems. Three years ago, work at Sandia demon-
strated that massively parallel SIMD and MIMD computers run-
ning parallel versions of the CTH code were highly competitive
with vector supercomputers such as a Cray Y-MP (Robinson et
al.,. 1991; Gardner and Fang, 1992). Current-gencration parallel
computers, such as the Paragon X/PS, are demonstrating even bet-
ter performance, both in terms of problem size and speed.

Sandia scientists have developed a parallel version of the CTH
shock physics code. The parallel code, called PCTH, is a multidi-
mensional, multimaterial, finite-difference shock physics code
which models large deformation and shocks, and the multiphase
behavior, strength, and fracture of materials. In PCTH, the equa-
tions governing the conservation of mass, momentum and energy
are integrated explicitly in time using a two-step Eulerian scheme.
The first step is a Lagrangian step in which the computational cells
distort to follow the material motion, using an algorithm which is
second-order accurate in space and time. The second step is an ad-
vection or remapping step in which the distorted cells are mapped
back to the Eulerian mesh using a second-order van Leer advec-
tion scheme. The algorithms are implemented using modern ob-
ject-oriented numerics techniques in the C++ programming
language. PCTH is designed to be easily portable to message-
passing parallel computers, and currently runs on the nCUBE 2,
the Intel iPSC/860, the Paragon, and networks of workstations
{Budge et al., 1992; Fang and Robinson, 1993; Wong and Fang,
1993).

A three-dimensional Cartesian computational mesh is imple-
mented in PCTH. Within the simulation domain, each coordinate
axis is divided into mesh regions, with a constant or regularly
varying interval size within each region. The global mesh is
mapped to the nodes in a parallel computer by dividing it into
blocks in such a way that each node has nearly the same number
of mesh points (the maximum number of cells that any node has is
minimized). When a block of the global mesh is mapped to a
node, it is surrounded by a layer of ghost cells. These cells are
used for enforcing physical boundary conditions when the block
boundary corresponds to a physical boundary or for communicat-
ing results from logically adjacent nodes when the block boundary
falls in the interior of the simulation domain. This is illustrated for
a two-dimensional domain in Figure 1.

PERFORMANCE EVALUATIONS FOR MIMD PARALLEL
COMPUTERS

In this paper we consider computational rate, memory size, and
scalability as metrics of parallel computer performance.

In reporting the performance of a computer, a computational
rate is most commonly cited, whether it be theoretical peak com-
putational rate, benchmark results or simulation computational
rate for a custom application. Yet computational rate and size are
distinct though related aspects of performance. Analysts usually
want to perform simulations as quickly as possible—for example,
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FIGURE 1: ILLUSTRATION OF THE MAPPING OF PCTH MESH BLOCKS TO PARALLEL COMPUTER NODES.

when conducting a parameter study—and distributing a problem
on a parallel computer allows the net speed of some massively
parallel computers with individually slower processors to match
or exceed that of the fastest vector supercomputcrs on sufficiently
large simulations. Vector supercomputers must use expensive
high-speed memory to achieve high speed, and the cost of that
memory places a practical limit on the memory size of the ma-
chine, and hence on the size of the simulations which can be per-
formed with it. Distributed memory parallel computers use slower,
less expensive memory, and hence, for the same cost as a vector
supercomputer, a parallel computer with much larger total memo-
1y can be acquired. Thus it is practical for a distributed memory
parallel computer to run much larger simulations than can be per-
formed on existing vector supercomputers. From this point of
view, the issue is not so much speed w.; memory size: if a computer
does not have enough memory to perform the simulation, it does
not matter how fast it is. Both computational rate and size should
be considered when measuring the performance of a computer.

The grind time is a useful measure of the computational rate of
a mesh-based, time-marching computer code, such as PCTH. The
grind time, t grind " is the execution time for the code calculating a
given problem divided by the product of the number of time steps
and the number of computational cells:
Ty(m)
tg,rinr.l = “mn

where Ty(m) is the execution time on N nodes for a problem of m
computational cells run for n time steps. The grind time depends
on the number of cells and the number of nodes, and also on the
specific simulation.

Here we say a code is scalable if the execution speed (or, equiv-
alently, grind time) of the code running a specific problem on a
parallel computer increases linearly with the number of nodes
when the computational foad per node is fixed.

THE TEST PROBLEM AND CONDITIONS

For our test problem we used a projectile impacting a water-
filled canister at a velocity of 1.75 km/s along the axis of the can-
ister (Figure 2). This problem is representative of a variety of mul-
timaterial shock wave physics problems. The problem has five
materials: 1080 and 4130 stainless steels, 2024 T-4 aluminum,
polyproplux (a plastic), and water. Mie-Griineisen equations of
state were used for all the materials. Elastic-plastic constitutive
models and fracture models based on tensile pressure with void in-
sertion were used for the aluminum, the polyproplux, and the
stainless steels. These models are described in detail in Wong and
Fang (1993). All the simulations we used for this work were fully
three-dimensional and were conducted in double-precision (64-
bit) arithmetic with standard optimized versions of PCTH for each
machine (Table 1). In this problem an analyst might be interested
in the global evolution of the impact, or in examining details such
as the response of the canister wall during the impact.

The problems run on the Cray Y-MP were run with the serial
Fortran-77 version of CTH, under UNICOS, The problems run on
the nCUBE 2 and the Paragon were run with PCTH under Ver-
tex™ and SUNMOS, respectively; the specific operating system
versions are given in Table 1. The problems run were the largest
which would fit on each machine or on the number of nodes used
for the calculation.

PERFORMANCE RESULTS AND DISCUSSION

Peak processor speed may be an inadequate measure of com-
puter performance. For example, for double-precision (64-bit)
arithmetic, the Cray Y-MP processor is rated at 333 Megaflop/s
per CPU, the nCUBE 2 processor is rated at 2.5 Megaflop/s per
node, and the 1860 XP processor is rated at 75 Megaflop/s per
node. The peak theoretical speed of a 1024-node nCUBE 2 is thus
2.56 Gigaflop/s and the peak theoretical speed of an 1840-node
Paragon is 138 Gigaflop/s. Both the nCUBE 2 and the Paragon are
rated at higher theoretical peak speeds and both can attain higher
actual computational rates than the Cray Y-MP (Gardner e al.,
19922). However, this is only true if the problem is sufficiently




Table 1: Compiler Versions and Optimization Levels for

Table 2: Maximum Size and Computational Time for the

PCTH Projectile-Canister Problem
. Compiler . .
. Compiler and L . CPU Grind Time
Computer | Operating System Version Optimization Computer Maxunl.xm Mesh Time w sicell/
Level Size hou .
rs timestep
Cray Y-MP | UNICOS 7.04 | cft 6.0 Fully -
Optimized Single-CPU 80 x 80 x 640 31.8 58.5
- Cray Y-MP
nCUBE 2 ( Vertex™ f5.41 nce 3.2 -0
- - 1024-node 64 x 64 x512 11.5 27.6
Paragon OSF/1 R1.2 with | icc/Paragon (None) uCUBE 2
X/PS SUNMOS 1.4.7 | Sun4 Version
R4.5 1840-node 150 x 150 x 1200 | —" ~4.2
Paragon

large. Based on the theoretical peak speeds, 256 nodes of the
nCUBE 2 and five nodes of the Paragon are equivalent in compu-
tational rate to a single-processor Cray Y-MP.

Available processor memory is an important measure of super-
computer performance. For many computers, the memory avail-
able for data, M gy, can be represented by the equation

NP
Mdn(u = 2 (m(otal - mcodc)
1

where my, is the available memory for code and data per node,
Mg 18 the memory required by the operating system and the ap-
plications code, and Ny, is the number of nodes. Sandia’s Cray Y-
MP, using its full Solid State Disk, has 200 Megawords or 1.6 Gi-
gabytes of memory, minus the memory required for the operating
system and applications code, available for data. Sandia's 1024-
node nCUBE 2 has a tota] memory of 4.096 Megabytes (4 Mega-
bytes per node times 1024 nodes); but the memory available for
data is reduced by the memory occupied by the 1024 copies of the
operating system and applications code which must also be stored.
Similarly, Sandia’s 1840-node Paragon has a total memory of 37.6
Gigabytes (32 Megabytes per node for 512 nodes and 16 Mega-
bytes per node for 1328 nodes) minus the memory required by the
1840 copies of the operating system and applications code which
must also be stored. Thus for application codes, for example, the
nCUBE 2 may have less available memory for running simula-
tions than the Cray Y-MP. In particular, this is true of PCTH,
which has an executable size of approximately 1.6 Megabytes on
the nCUBE 2.

We noted above that 256 nodes of an nCUBE 2 and five nodes
of a Paragon have the same peak theoretical computational rate as
a single-processor Cray Y-MP. However, they have less memory
than a Cray Y-MP. 512 nCUBE 2 nodes or 100 Paragon nodes are
required to match the total memory of the Cray Y-MP. Both these
configurations will provide greater computational speed than the
Cray Y-MP as well.

We turn now to specific simulations conducted with PCTH. We
put the largest computational mesh possible on each computer in
order to provide the greatest possible resolution to an analyst, and

* Owing to machine availability, this calculation was not run to completion.

measured the computational time required to reach a simulation
time of 15.0 p s. The results are summarized in Table 2.

Simulation on the Cray Y-MP

The largest problem size for the test problem described above
which would fit in our SSD is 4,096,000 computational cells (a
80 x 80 x 640 -cell mesh), which uses 181444608 words of mem-
ory and ran for 31.8 CPU hours. The grind time was 58.5 ps/cell/
timestep. The resolution afforded by this mesh was sufficient to
provide a global picture of the evolution of the impact but not suf-
ficient to allow an analyst to examine the response of the canister
wall.

Simulation on the nCUBE 2

The largest problem size for the test problem described above
which would fit on Sandia’s 1024-node nCUBE 2 is 2,097,152
cells (a 64 x 64 x512 -cell mesh) and ran for 11.5 CPU hours.
The grind time was 27.6  s/cell/timestep. The nCUBE 2 demon-
strated greater computational speed than the Cray Y-MP but the
more limited memory results in poorer resolution. In other words,
although the simulation runs faster on nCUBE 2 than Cray Y-MP,
the calculated results are less useful to an analyst.

Simulation on the Intel Paragon

The largest problem size for the test problem described above
which would fit on Sandia’s 1840-node Paragon running the SUN-
MOS operating system is 27,000,000 cells (a 150 x 150 x 1200 -
cell mesh); owing to machine availability, the simulation was not
run to completion. The grind time was 4.2 p s/cell/timestep for the
standard production version of PCTH (a more highly optimized
version achieved a grind time of 3.3 W s/cell/timestep). Both high-
er computational speed and higher resolution were obtained on the
Paragon than on the Cray Y-MP or the nCURE 2.

Scalability

A parallel code will be scalable if the communications overhead
is small compared to the total execution time. As shown in the
next subsection, a parallel code may be scalable for one problem
decomposition, but not for another. The scalability of PCTH on
the Paragon is demonstrated by the data in Figure 3, where we
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FIGURE 2: THE INITIAL CONFIGURATION FOR THE TEST PROBLEM.

have plotted grind time and the scaled speedup as a function of the
number of nodes for a simulation of the explosive welding of a
copper tube to a steel plate (Gardner and Fang, 1994). Scaled
speedup is the ratio of the time required to solve a problem of size
Nm on a single node, T{(Nm), to the time required to solve the
same problem on N nodes with a subdomain of size m on each
node, Tpy(Nm), when the work per node is fixed (Gustafson et al.,
1988). Since T{(Nm) cannot be measured directly, we estimate it
by the NT(m), the CPU time that would be required for a single
node to solve the problem serially, assuming that no time is re-
quired to swap the subdomains in memory and that there is suffi-
cient memory to store all the subdomains. Thus, the scaled
speedup, Sy, is given by,
NT, (m)
N Ty (Nm)'

For the calculations used to produce Figure 3, the computation-
al load per node remained fixed at the largest cubical subdomain
which would fit in node memory. The scalability of PCTH on the
Paragon is shown by the linear relationship between the number of
nodes and the scaled speedup and grind time in Figure 3. To ap-
preciate the significance of this, consider running a simulation on
eight nodes of the Paragon. If we increase the resolution by a fac-
tor of two in every coordinate direction and rerun the simulation
on 64 nodes, the execution time increases by only a factor of ap-
proximately two. Since PCTH is an explicit code and the time step
is limited by the computational cell size, increasing the resolution

by a factor of two will result in requiring approximately twice as
many time steps to reach the same physical time. In contrast, to in-
crease the resolution by the same factor using CTH on a serial
computer would require eight times the memory and approximate-
ly 16 times the execution time of the original problem because
there would be eight times as many computational cells and twice
as many time steps. This illustrates that an applications code must
be scalable in order to produce more precise results in a more
timely manner.

Spatial Decomposition

To run a problem, the analyst may be tempted to use all of the
available nodes in a parallel computer, thinking that the more
nodes used, the larger the problem which can be solved and the
faster it can be solved. However, under some circumstances a larg-
er problem may require fewer processors. To motivate this discus-
sion, consider running a simple two-material problem requiring
240 x 240 X 240 computational cells with PCTH on the Paragon.
With the SUNMOS operating system and 1264 processors there
are 14 x 109 bytes of memory available per computational node
for the code and its data. To run this problem on 1264 nodes, the
domain decomposition will be 4 X 4 X 79 (4 nodes in the x-coordi-
nate direction, 4 nodes in the y-coordinate direction, and 79 nodes
in the z coordinate direction). This implies that there are 60 X 60 X
3computational cells per node (60 cells in the x-coordinate direc-
tion, 60 cells in the y-coordinate direction, and 3 cells in the z-co-
ordinate direction) for all but three layers of nodes (which have 60
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FIGURE 1: PCTH PERFORMANCE ON THE Paragon AS THE COMPUTATIONAL MESH IS REFINED.

X 60 x 4 computational cells), or 62 X 62 X 5 or 62 X 62 X 6 total
cells per node (computational cells plus ghost cells), requiring a
total of 14.4 x 10 bytes per node for some of the nodes. The same
problem decomposed for 1024 processors results in a domain de-
composition of 8 X 8 x 16, with 30 x 30 X 15 computational cells
per processor and 32 X 32 x 17 total cells per node, requiring a to-
tal of 10.8 x 10° bytes per processor. The net result is that the
1264-processor decomposition will not run, while the 1024-pro-
cessor decomposition will.

The difficulty lies in the aspect ratio of the decomposition. If the
prime factorization of the number of processors includes a large
prime number (such as 79 in the example above), then one dimen-
sion of the problem domain will be divided by that large prime in
allocating subdomains to processors. While this may be appropri-
ate for problem domains which are long and narrow (i.e., have a
large aspect ratio), more commonly problems have aspect ratios of
order one, i.e., they resemble cubes, For the more cubical do-
mains, one domain dimension will be divided by the large prime
creating subdomains which have a large aspect ratio. This subdivi-
sion causes two problems, both of which degrade the performance
of the code. One problem is that the number of ghost cells increas-
es dramatically. A second problem is that the communication
overhead also increases.

To understand the problem of increased numbers of ghost cells,
recall that each subdomain is surrounded by a layer of ghost cells,
which are used in storing and communicating intermediate results
(Figure 1). These cells require memory, and consequently we want
to use as few ghost cells as possible. For the problem described
above decomposed on 1264 processors, most nodes havel0,800
computational cells and 8420 ghost cells, a ratio of 0.80 ghost
cells per computational cell. For the same problem decomposed
on 1024 processors, there are 13,500 computational cells and 3908
ghost cells per node, a ratio of 0.29 ghost cells per computational
cell. Thus, in this example, in decomposing the problem onto a
larger number of nodes, we are incurring a greatly increased mem-
ory overhead due to the ghost cells resuiting from the aspect ratio.

In addition, since the primary purpose of the ghost cells is to
store communicated results from other processors, an increased
number of ghost cells also indicates an increase in the communi-
cations overhead. For a fixed problem, the number of communica-
tion calls per node will be fixed, but the communication traffic will
depend on the decomposition: the more ghost cells, the greater the
communication traffic and hence the greater the communication
overhead.

Thus, in some circumstances, using a larger number of nodes
will not guarantee being able to solve a larger problem and it may
also increase the run time owing to the increased communication
overhead. To avoid this problem on a machine like the Paragon,
the analyst should avoid using a number of nodes whose prime
factorization includes large primes.

SUMMARY AND CONCLUSIONS

In this paper we have discussed the performance of multiple-in-
struction, multiple-data (MIMD) distributed memory parallel
computers from the point of view of an engineer or scientist seek-
ing to model complex physical systems using a standard version
of an analysis code. To provide illustrative data for our discussion,
we modeled the hypervelocity impact of a projectile with a water-
filled canister using the CTH shock wave shock wave physics
code running on the Cray Y-MP, and the parallel version of CTH,
PCTH, running on a 1024-node nCUBE 2 and an 1840-node Intel
Paragon. As the basis for our comparison, we modeled the projec-
tile-canister problem using the highest resolution uniform grid
possible on each computer, as limited by memory. Using these
simulations, we demonstrated that while a parallel computer may
provide greater computational speed than a vector supercomputer,
it must also have sufficient memory capacity to provide equal or
greater resolution. In particular, for our simulations, the 1840-
node Paragon provided both higher resolution and greater compu-
tational speed than the 1024-node nCUBE 2 or the Cray Y-MP for
problems which essentially filled the memory of each computer. In
contrast, owing to memory constraints, the nCUBE 2 provided
greater computational speed but lower resolution than the Cray Y-



~ MP. Thus both computational speed and the memory available for
applications code data must be considered in evaluating parallel
computer performance. On a distributed memory parallel comput-
er the memory available for applications data is significantly re-
duced because the operating system and the applications code
must be stored on each node.

We also demonstrated the scalability of the PCTH code on the
Paragon as the simulation size is increased with a fixed computa-
tional load per node. An applications code must be scalable in or-
der to increase the resolution without unreasonably increasing the
execution time as more nodes are used and so provide an analyst
with more precise and, presumably, more useful information in a
more timely manner. Scalability depends on the domain decompo-
sition used, as well as on the efficiency with which inter-processor
communications are effected within the code.

Finally we demonstrated that naively using more nodes on a
parallel computer may not always result in solving a problem fast-
er or with greater resolution. For applications codes which use
ghost cells for communicating results among nodes, the aspect ra-
tio of the individual subdomains is also an important consider-
ation. In some cases, increasing the number of subdomains also
increases the number of ghost cells and decreases the memory
available for real computational cells. Increasing the number of
ghost cells also corresponds to increasing the communications
overhead. The number of ghost cells may be increased unneces-
sarily either through placing fewer real computational cells on
more processors or through subdividing the computational domain
in such a way as to produce subdomains with large aspect ratios.
The latter situation can arise when the number of nodes used con-
tains a large prime factor. In general, the analyst should use num-
bers of nodes without large prime factors to avoid incurring
unnecessarily high memory and communication overhead costs.
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