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ABSTRACT

The sloshing action of layered liquids in rigid cylindrical and long rectangular tanks is
investigated considering both their free vibrational characteristics and their response
to a horizontal component of base shaking. Special attention is given to the maxi-
mum surface displacement induced by the base motion. The analysis is formulated
for systems with N superimposed layers of different thicknesses and densities, and it
is illustrated by a numerical example. In addition, comprehensive numerical data are
presented for two-layered and some three-layered systems which elucidate the under-
lying response mechanisms and the effects and relative importance of the numerous
parameters involved. It is shown that for each horizontal natural mode of vibration,
there are N distinct vertical modes, the frequencies of which are lower than the nat-
ural frequency of a homogeneous liquid of the same total depth. It is further shown
that the maximum surface sloshing displacermnent of the base-excited layered system is
typically larger than of the corresponding homogeneous system, and that the results

for the long rectangular and the cylindrical tanks are quite similar.
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EXECUTIVE SUMMARY

The sloshing action of layered liquids in rigid cylindrical and long rectangular tanks is

investigated considering both their free vibrational characteristics and their response

to a horizontal component of base shaking. Special attention is given to the maxi-

mum surface displacement induced by the base motion. The analysis is formulated

for systems with /V superimposed layers of different thicknesses and densities. and it

is illustrated by a numerical example. In addition, comprehensive numerical data are

presented for two-layered and some three-layered systerns which elucidate the under-

lying response mechanisms and the effects and relative importance of the numerous

parameters involved.

The principal conclusions of the study may be summarized as follows:

1.

o

For a liquid with V homogeneous layers, there is an infinite number of horizontal
natural modes of vibration, and corresponding to each such mode, there are .V
distinct vertical modes. The latter modes have from zero to N — 1 points of zero
crossings, and their frequencies are lower than the corresponding frequency of

a uniform liquid of the same total depth.

For a specified horizontal mode of vibration, the natural frequencies of a two-
layered system are, respectively, higher and lower than those computed consid-

ering the two liquid layers to act independently.

The natural modes of the layered liquid satisfy simple orthogonality relations
that are identified in the text.

. The maximum surface sloshing displacement of a base-excited layered system

is generally greater than that induced in a homogeneous system of the same
total depth. The increase is significant, however, only when the densities of
individual layers differ substantially. The increased response is associated with
the fact that, in addition to the lateral component of shaking, the base of the
top layer is subjected to a rocking motion associated with the sloshing action

of the interface.

For large-capacity tanks subjected to earthquake-ground motions, the funda-

mental mode of vibration is the dominant contributor o the surface sloshing

1X



displacements of the liquid. Furthermore, the contribution of the higher hori-

zontal modes is typically larger than that of the higher vertical modes.

5. For the 2-lavered system considered in the illustrative example. the maximum
surface displacement along the tank wall was found to range from 3.96 times
the maximum ground displacement when the densities of the two lavers were
considered to be equal, to 5.3 times the maximum ground displacement when

the density of the top layver was taken as one-tenth that of the lower layer.
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SECTION 1
INTRODUCTION

Whereas the response to earthquakes of tanks containing a uniform, homogeneous
liquid has been the subject of numerous studies in recent years, there is a paucity
of information concerning the corresponding response of tanks containing layers of
liquid of different densities. For an overview of the previous contributions, the reader
is referred to the state-of-the-art report by Veletsos (1] and to the references of more
recent publications by Haroun [2], Haroun and Badawi [3], Lau and Zeng [4], Malhotra
et al [5] and Veletsos et al [6, 7, 8].

Current interest in the response of tanks with layered liquids is motivated by two
factors: (1) Many waste storage tanks in nuclear facilities contain two or more layers
of liquid or liquid-like material of different densities; and (2) recent processing for the
recovery and decontamination of discharge fuel materials is typically carried out in

tanks containing two-layered liquids [9].

The only known study of the sloshing response of tanks with a layered liquid is the
one reported recently by Tang et al [10], who examined the free vibrational charac-
teristics and the surface sloshing action of a two-layered liquid in a rigid, circular
cylindrical tank subjected to a horizontal component of base shaking. The solutions
presented, however, are based on an incorrect characterization of the pressure condi-
tion at the interface of the two liquids, and the accuracy of the reported expressions

and numerical results is questionable.

The objectives of this paper are: (1) To reformulate the analysis of the problem,
making use of the correct interface condition and considering the general case of a
system with N homogeneous liquid layers of different thicknesses and mass densities;
and (2) through comprehensive parametric studies of systems with two and three
layers, to elucidate the underlying response mechanism and the effects and relative

importance of the parameters involved.

In addition to circular cylindrical tanks, long rectangular tanks are examined, and
the interrelationship of the responses of the two systems is identified. The response

quantities investigated include the natural modes of vibration of the liquid, the as-
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sociated frequencies, and the sloshing motions induced by a horizontal compouent of

base shaking.

For all the solutions reported, the tanks are presumed to be rigid. However, inasmuch
as the sloshing action of the liquid is normally associated with significantly longer
periods of vibration than the dominant periods of the earthquake ground motions,
based on previous analyses of tanks with a homogeneous liquid [1, 7, 8], the results
are expected to be also applicable to flexible tanks that are either rigidly or flexibly
supported at the base.



SECTION 2

SYSTEMS AND FUNDAMENTAL RELATIONS

2.1 Systems Considered

The systems investigated are shown in Fig. 2.1. They are rigid, vertical tanks that
are filled to a height H with two or more layers of liquid of different thicknesses and
densities. The tanks are either rectangular, of width 2R in one direction and infinite
extent in the normal direction as shown in part (a) of the figure, or cylindrical, with
a circular cross section of radius R as shown in part (b) of the figure, and they are
presumed to be anchored to a rigid moving base. The liquids are considered to be

incompressible, irrotational and inviscid, and only linear actions are examined.

The liquid layers are numbered sequentially starting with 1 at the lowermost or hot-
tom layer and terminating with N at the uppermost or top layer. The mass density
and height of the jth layer are denoted by p; and H;, respectively. The values of p;
are considered to decrease with increasing j. Points within the j th layer of the long
rectangular system are defined by the local Cartesian coordinates, x and z;, shown in
part (a) of Fig. 2.1, and those for the cylindrical system are defined by the cylindrical

coordinates, r, 6, z;, shown in part (b) of the figure.

The ground motion is considered to be horizontal and uniform and to be directed
along the z- or = 0 coordinate axis. The acceleration of the ground motion at
any time, t, is denoted by i,(t), and the corresponding velocity and displacement are
denoted by Z,4(t) and z,(t), respectively.

2.2 Fundamental Relations
The flow field in the j th layer must satis{ly Laplace’s L.,
Vigi =10 (1)

in which ¢; = a velocity potential function of time and the position coordinates, and
the operator V2 is defined by
, 0 a?

- Y Y 9
da? - 0z? (2)

e
=



in the rectangular coordinate system, and by

9 10 10  0?

(3)

in the cylindrical coordinate system. If v,, is the instantaneous value of the velocity
of an arbitrary particle in the j th layer in the direction of a generalized n-coordinate,
then

J9;
Vjn = "*(—9-;] (4)
and the corresponding hydrodynamic pressure is
do
P =g (5)

The solution of Eq. (1) must satisfy the following boundary conditions:

1. At the tank base, the vertical component for the liquid velocity must vanish;

do,
_— = 6
(8:1)21::0 ’ ())

2. Along the tank wall, the radial or normal velocity component of both the tank

accordingly,

and liquid must equal the corresponding component of the ground motion. For

the long rectangular system, this requires that

aé} o I

(_ (r}l')zz;tn‘lym )
whereas for the cylindrical system, i. requires that
d¢; : ..

(—7?;—),=R— T,(t) cosl (8)

3. At the free liquid surface, the following lincarized pressure boundary condition

must be satisfied
(6x — gdx) =0 (9)

an=Hy
where dy represents the vertical surface displacement, a dot superscript denotes
differentiation with respect to time, and ¢ = the gravitational acceleration. The

origin of this equation is identified under item 4.

|34
0
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4. At the interface of a pair of layers, the vertical velocity of the liquid must be

continuous; accordingly,

3¢j) (a¢j+1)
—_— = | —— 10
(azJ z;=H, aZj+l z,41=0 ( )

Additionally, the total pressure (hydrodynamic plus the increment due to the
vertical displacement at the interface) must be continuous. If d; represents the
instantaneous vertical displacement of an arbitrary point at the upper interface
of the j th layer measured from the position of static equilibrium, then assuming
that the displacements are small and that the inertia of the interfacial wave is
negligible, the pressure condition may be written in the form indicated in Lamb

[11], as
Pj (‘1.51')2]___;11 —~Pigd; = pin (‘Jsj+l) o ~Pi+19 d; (11)

Z)+41

Eq. (9) may be deduced from Eq. (11) merely by letting j = N and p;4, = 0.

It is clear from Eq. (11) that while the total pressures are continuous, the hydrody-
namic components are discontinuous at the interfaces of layers of different densities.
In the studies of Tang et al [10], the contribution of the pressure increment due to
the interfacial displacement was not considered, and the hydrodynamic component
of the pressure was taken as continuous. The consequences of this approximation are

identified in later sections.

o
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SECTION 3

METHOD OF ANALYSIS

The solution of Eq. (1) is obtained in a manner analogous to that employ::! by Bauer
[12] and Abramson [13] in their studies of tanks containing a homogeneous liquid, by

the superposition of two component solutions as

¢;=Xj+¥; (12)

In this expression, x; = a velocity potential function associated with the rigid body
motion of the tank walls, and %; = a corresponding function providing for the relative
motion of the contained liquid and the tank walls. The function x; represents the
solution obtained when.both the upper and lower surfaces of the j th liquid layer are
rigidly capped, whereas 1, represents a corrective solution which accounts for the
difference between the actual and fully constrained conditions at these boundaries. It
is important to realize that these component solutions are different from the so-called
impulsive and convective solutions used by Housner [14]. Veletsos et al [1, 6, 15] and

Haroun and Housner [16] in their studies of tanks with homogeneous liquids.

3.1 Solution for x;

For the long rectangular system,

ax; .
—5‘; = —zy(t) (13)
whereas for the cylindrical system,
ox; :
—a—rl = —2,(t) cosl (14)

On integrating these expressions, one obtains
Xj = —g(t)x (15)
for the rectangular system, and
X; = —&,(t)rcosl (16)

for the cylindrical system.
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It is observed that the functions x; are independent of the physical properties of the
liquid layers, and will henceforth be denoted by y. Furthermore, considering that
Egs. (15) and (16) are independent of the vertical coordinates z;, it follows from
Eqgs. (4) and (5) that x is associated with no vertical velocities or displacements but
represents simply a finite-sized pressure field which increases linearly in the horizontal

direction.

3.2 Solution for v;

The function 1; must satisfy Laplaces’s Eq. (1), the solution of which may be obtainc '

by the method of separation of variables as follows. For the long rectangular system,
¥ = 2(z;) X(x) T(t) (17)
and for the cylindrical system,
w; = Z(z;) R(r) T(t) cosh (18)
in which X, R, Z and T are functions of z. r, z; and t, respectively.
Inasmuch as the boundary conditions along the walls are satisfied exactly by the po-
tential function x, the corresponding conditions for %; are zero at these boundaries.
On substituting Egs. (17) and (18) into Laplace’s Eq. and making use of the homo-

geneous boundary conditions along the walls, the following expressions are obtained

for ;. For the long rectangular system,

i =Y [Pn;(t) coshAmn; + Qunj(t) sinhAmn;] sinAn € (19)
m=1
in which ¢ = z/R, n; = z;/R,
Am = (2m — 1)% (20)

and P, ;(t) and @, ;() are time-dependent coefficients that must be determined from
the conditions at the lower and upper boundaries of the j th layer. These boundaries
will henceforth be referred to as the (7 — 1)th and j th interfaces, respectively. The

corresponding expression for the cylindrical tank is

o0

Y; = D [Pmi(t) coshAmn; + Qunj(t) sinhAnn;] Ji (Ané) cosd (21)

m=1
in which € now stands for the normalized radial distance, r/ R; J; = the Bessel function
of the first kind and first order; and >~ = the mth zero of the first derivative of J;,
i.e., the mth root of J;(A) = 0. The first three of these roots are

3-2



Note that the meaning of ¢ and the values of A, P, ;(t) and Q. ;(t) are different in
Eqgs. (19) and (21).

Before proceeding to the formulation of the equations of motion, it should be noted
that if Eq. (12) is substituted into Eq. (11) and the resulting terms are rearranged
and normalized with respect to p;, the pressure condition for the j th interface may
be expressed in terms of the potential functions ¢; and x as

ﬁzﬁj—””‘m-[—”—’—f’ﬁ‘—]gdj=-[&—fiﬂ]x" (23)
P1 P1 £ ~ m P

3.3 Equations of Motion for System

In formulating the equations of motion for the multi-layered system, it is desirable
to use as generalized coordinates the modal values of the vertical displacements at
the junctions of the tank wall and the interfaces of the liquid layers, rather than
the quantities P ; and Q,,;. To this end, let D, ;(t) be the displacement at the
intersection of the jth liquid interface and the wall when the system is vibrating
in its mth horizontal mode of vibration. For the cylindrical tanks. for which these
displacements are functions of the circumferential coordinate 0, Dy, ;(t) refers to the
value at § = 0. The sloshing displacement d;(¢,t) for an arbitrary point of the jth

interface may then be expressed as follows. For the long rectangular system,

o sinAné
di&t) =Y D, (1) 2om 9
i(&8) :L; wilt) sinA,, (24)
and for the cylindrical system,
d;(€,0,¢) = Z Dm,j(t)MCOSB (25)
m=1 Ji(Am)

It should be recalled that the values of A, for the rectangular system are defined by
Eq. (20), whereas those for the cylindrical system are defined by the roots of .J,(\)
= 0.

In order to relate P, ;(t) and Qn ;(t) to D, ;(t), the vertical velocities of the liquid
at the jth and (7 — 1)th interfaces evaluated from Eq. (4) are equated to those
obtained by differentiating with respect to time the interfacial displacements defined
by Eqs. (24) and (25). On solving the resulting equations and back substituting, the

potential function v; inay be rewritten as

2 R [ Dpj(t) coshhmn; = Do iy (8) coshAn(eg — ;)] sinAmé
‘l’j = - Z X—
m=1 M

stnh g o SN,

(26)
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for the long rectangular system, and as

>~ R Dm,~t c0shAmn; — Dii—1(1) coshAm(a; = n;)] J1 (Amé)
TEEDY s(t) coshAnn; j-1(t) cos (o —m;)| Ji(

“~= Am stnhAy, o Ji(Am)

cost
(27)
for the cylindrical system. In these expressions, a; = H;/R.
The equation of motion for the j th interface of the rectangular system may now be
derived from Eq. (23) by substituting the expressions for x, d; and 9; defined by Eqs.
(15), (24) and (26), respectively. The left-hand member of the expression obtained in
this manner involves an infinite sum of horizontal sinusoidal modes. On multiplying
both sides of this expression by sinA,€ and integrating from 0 to 1, all but one of

the terms on the left side cancel because of the orthogonality of the trigonometric

functions involved, and the equation reduces to

. . ) A i
Ajj-1 Dmjo1 + Ajj Dmj + Ajjv1 D + “‘R‘g- Bjj Dm,j = —€m Amc; Z4(t)  (28)
where
Aj;= bi cothA, o; + Pitl cobhApctjqy (29)
P1 1
pi | .
A= 11 3
-1 P sinhAg o (30)
Pi+i 1
Aiiy = — 31
hi+l /)1 SinhAnla]‘.{.l ( )
Pi  Pit1 s
B,,=¢ == —-=— 32
wEGE o1 (32)
and €., is a dimensionless factor defined by
2
€Em = _A—gn— (‘33)

It is shown later that the factor e, appears in the expression for the surface sloshing
motion of a homogeneous liquid, and to highlight its meaning, is kept separately from
Am. Note that D, o = 0; hence, both D, ;_; and l")m,J'_l in Eq. (28) vanish for j =
1.

The equation of motion for the jth interface of the cylindrical system is obtained
similarly by substituting Eqgs. (16), (25) and (27) into Eq. (23). The two sides of the
resulting expression are then multiplied by € Ji(A,.€) d€ and integrated from 0 to 1.
Because of the orthogonality of the Bessel functions, the infinite summation of terms

again reduces to Eq. (28) with A;;_, A;;, Aj;+1, B, and ¢; defined, as before, by
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Eqgs. (29) through (32), except that the values of A, are different in the two cases.
Additionally, the factor ¢, for the cylindrical system is given by

€m = (34)

rather than by Eq. (33).

The complete set of equations for the multilayered system is obtained by repeated
application of Eq. (28) to all interfaces. The resulting set of equations may be written
as

(4] {Dn} + 222 [B] (D} = —m A {c} 85(0) (39)

where {D,,} and {c} are vectors of size N, the jth elements of which are D,, ; and
c;, respectively; [A] is a tri-diagonal, symmetric matrix of size N x N, for which the
elements of the j th row are given by Eqgs. (29), (30) and (31); [B] is a diagonal matrix
of the same size, with its j th element given by Eq. (32); and ¢, is defined by Eq.
(33) for the long rectangular system and by Eq. (34) for the cylindrical system.



SECTION 4

FREE VIBRATION

The equations for free vibration are deduced from Eq. (35) by setting its right-hand
member equal to zero. The solution of these equations is obtained in the usual manner
by letting

{D(t)} = { D} e (36)

and solving the resulting characteristic value problem,
\ w2 R - -
[B){Dn} = S22 4] D) (37)

in which ¢ = v/-1, and w,,, = the circular frequency associated with the m th horizon-
tal mode of vibration. For the long rectangular system, the latter mode is defined by
the function sinA,,€, whereas for the cylindrical system, it is defined by the function

J1(Am&).

It is clear from Eq. (37) that, for each horizontal mode of vibration, there exist
N vertical modes, each associated with a distinct frequency. This fundamental fact
was not revealed in the solutions presented by Tang et al [10], which led to a single

frequency and a single vertical mode of vibration for each value of m.

The nth circular natural frequency of the system for the mth horizontal mode of
vibration is denoted by wpmy,, the corresponding vector of interfacial displacement
amplitudes is denoted by {D,.,}, and the j th element of the latter vector is denoted
by Dmnj. The ordering of these frequencies and modes is identified later. The

characteristic vectors are real-valued and satisfy the orthogonality relations
{Dmr}" [A] {Dms} =0 (38)

and
{Dmr}T[B]{Dms} =0 (39)

for r # s. Furthermore, both [A] and [B] can be shown to be positive definite,

ensuring that all natural frequencies are real and positive.
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4.1 Two-Layered System

For the special case of a two-layered system, for which the matrices [A] and [B] in Eq.
(37) are of size 2 x 2, the resulting frequency equation, after multiplying through by

tanh M\poq tanh A, ay, becomes

\
(1 + 2 tanhAnay tanh/\maz) W, = (tanhdpnon + tanhAnaz) A—}r}g“‘ﬁz
P1 '
2
+ ( - fﬁ) (/\—mg) tanhAnoq tanhA,a, =0 (40)
P1 R

Witk the natural frequencies of the system, wp; and wp,2, determined from this equa-
tion, the ratio of the interfacial to the surface modal displacement amplitudes for the
(mn)th mode of vibration is determined from Eq. (37) to be

A

Dmn A .
mil cosh, as - = 9 sinh\,a; (41)

mn,2 mn

Finally, the orthogonality relation defined by Eq. (39) can be written as

( - &) f)ml,l Dm?.l + Ez D1n1,2 Dm'z,'Z = 0 (42)
\ M P1

Provided one uses the appropriate values of A, as previously indicated, Eqs. (40).
(41) and (42) are applicable to both the long rectangular and the cyliﬁdrical systems.
Incidentally, with the appropriate reinterpretation of the meaning of the various sym-
bols, Eqs. (40) and (41) can be shown to be identical to those presented by Lamb
[1i] for the sloshing frequencies and the associated modal ratios of two superposed

liquids flowing in a long rectangular channel.

For a homogeneous liquid with p2/p; = 1, on neglecting the trivial solution of zero
frequency, Eq. (40) yields the well known expression (e.g., Reference 1) for the m th

circular natural frequency of sloshing motion,

W = O\ 5~ (43)

Am H
',,n: t,, m p9a
C \Janz( 7 ) (44)

Furthermore, for the limiting case of p2/p; = 0, which corresponds either to a system

in which

without the upper layer or to one with a very heavy, practically immobile lower layer,
the two frequencies reduce, as they should, to those obtained from Iiq. (43) for

homogeneous liquids with depths H; and H;, respectively.
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4.2 Numerical Solutions for Sloshing Frequencies and Modes

The circular natural frequency corresponding to the m th horizontal and n th vertical
mode of vibration may conveniently be expressed in a generalized form of Eq. (43)

as
Amg
R

in which C,, is a dimensionless factor that depends on the tank shape and slender-

Wmn = Cmn

(45)

ness, H/ R, the number, relative thicknesses and relative densities of the liquid layers,
and, of course, on the order of the frequency or mode under consideration. As already
indicated, the values of A, in this expression are defined by Eq. (20) for the long
rectangular system, and by Eq. (22) for the cylindrical system.

4.2.1 Two-Layered Systems. The frequency coefficients Cy; and C;; for two-
layered liquids in long rectangular tanks are presented in Fig. 4.1, and those for the
corresponding cylindrical systems are shown in Fig. 4.2. The results are plotted as
a function of the slenderness ratio, H/R, for two values of the layer thickness ratio,
H,/H,, and several values of the density ratio, pz/p;. These coefficients and the
associated natural frequencies and modes of vibration are numbered in reverse order,
starting with n = 1 for the highest frequency and terminating with n = N = 2 for the
lowest frequency. The rationale for this ﬁumbering is that the modes corresponding
to the lower natural frequencies are associated with a higher order of waviness (larger
number of points of zero crossings) in the vertical direction. This matter is examined
further later in this section. It is observed that both the frequency coefficients and the
associated natural frequencies for the cylindrical tanks are larger than tliose for the
corresponding rectangular tanks; however, the differences are not significant, and the
general trends of the results for the two systems are quite similar. Incidentally, the
corresponding plots for the second horizontal mode of vibration, m = 2, also exhibit

the same general trends and are not shown.

The uppermost curves in Figs. 4.1 and 4.2 are for a homogeneous liquid with a
depth H equal to the total depth of the layered system. It is noteworthy that both
frequency coeflicients for the layered system are smaller than that for the associated
homogeneous syste'n. The effect of the heavier bottom layer is to decrease the effective
total depth of the layered system and, as would be expected from Egs. (43) and
(44), this reduction leads to a corresponding reduction in the values of the frequency

coefficient and of the associated natural frequency.

The interrelationship of the natural frequencies of the layered and the homogencous
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systems can more clearly be seen in Fig. 4 3, in which the frequencies wy; and wis
for the cylindrical systems examined in Fig. 4.2 are plotted normalized with respect
to wy, the fundamental natural frequency for a homogeneous liquid of the same total
depth. It is observed that the results, particularly those corresponding to the lower

values of H/R, are substantially less than unity.

The dotted curves in Figs. 4.1 and 4.2, which refer to systems of py/p; = 0, also
represent the frequency coefficients for homogeneous liquids with depths H, an H,
when they are considered to act independently. For the systems with equal layer
thicknesses considered in the left-hand plots, there is naturally a single such curve,
whereas for the systems with unequal depths considered in the right-hand plots, there
are two distinct curves. Note that the highest natural frequency of the layered system
is higher than the higher of these curves, whereas the lowest frequency is lower than
the lower curve. This resull is consistent with the well known interrelationship of the
natural frequencies of systems having one and two degrees of freedom. If a single-
degree-of-freedom system with a natural frequency f; is augmented by the addition
of another such system, it is well known that the natural frequencies of the resulting
two-degree-of-freedom system lie on either side of f;. Since the systems in the right-
hand plots of Figs. 4.1 and 4.2 may be formed either {rom the lower layer by the
addition of an upper layer, or from the upper layer by the insertion of a lower layer,
their natural frequencies must lie on either side of the pair of dotted curves, and there

will be no frequencies in the region between.

Further insight into the free-vibrational characteristics of the two-layered systems
may be gained from the natural modes of vibration {D,,} shown in Figs. 4.4 and
4.5. The results displayed in these figures are for cylindrical systems with values of
H/R = 0.5 and 2, respectively. Two values of Hy/H; and several values of py/p;
are considered in each case. The modes on the left correspond to the first or higher
of the two natural frequencies and are normalized with respect to the free-surface
displacement, whereas those on the right correspond to the second or lower natural
frequency and are norinalized with respect to the interfacial displacement. Note that
the first or fundamental mode is associated with no zero crossings, while the second
mode is associated with a single such crossing. These modes naturally satisfy hoth the
orthogonality relation defined by Eq. (42) and the somewhat more involved relation
defined by Eq. (38). For a multi-layered system, the n th vertical mode of vibration

is associated with n — 1 zero crossings.

[t is noteworthy that, for the fundamental mode of vibration, the displacement ampli-
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tude at the interface of the two layers for the layered system is lower than that for the
homogeneous system, the difference increasing with decreasing values of p;/p;. This
result confirms the earlier statement to the effect that the larger density of the lower
layer decreases the effective total depth of the layered system leading to a reduction

in frequency.

The very low frequency values of the second natural modes may also be explained
by the location of the sections of zero modal amplitudes (points of zero crossings)
near the top. Since the vertical motion of the liquid is zero at these sections, the
natural frequency of the system for this mode must be equal to that of a homogeneous
liquid with a depth equal to the distance from the free surface to the section of zero
amplitude. As an illustration, it is noted that for the cylindrical system with values
of H/IR = 0.5, Hz/H; = 1 and py/p1 = 0.5 considered in Fig. 4.4, the section of zero
crossing for the second mode of vibration is located at a distance 0.140 H from the
top. This leads to an effective depth-to-radius ratio for the homogeneous liquid of
0.070. If this ratio is substituted into Eq. (44), the value of the resulting frequency
coeflicient turns out to be C; = 0.358, which is precisely the value of '3 reported in
Fig. 4.2.

In concluding this section on two-layered systems, it should be noted that the fre-
quency coefficients for the systems with H,/H; = 2 considered in the right-hand plots
of Figs. 4.1 and 4.2 also apply to systems with H;/H, = 2. This follows from Eq.
(40), which shows that interchanging the dimensionless thicknesses a; and «y does
not alter the equation. However, the natural modes are different in the two cases, as

may well be appreciated from Eq. (41).

4.2.2 Three-Layered Systems. As an illustration of the free vibrational char-
acteristics of systems with more than two layers, in Fig. 4.6 are shown the natural
frequency coefficients for the fundamental horizontal mode of vibration, m = 1, of
a cylindrical system with three layers of identical depths. The mass densities of the
layers are presumed to increase from top to bottom in proportion to 1:2:3, and a
range of H/R values is considered. Also shown are the natural modes of the system
for the special case of H/R = 1, with each mode normalized to a unil maximum
amplitude. The dashed curves in this figure represent the corresponding results for a

homogeneous system with a depth equal to the total depth of the layered system.

It is observed that all three frequencies are lower than that of the associated ho-

mogeneous system, that the highest frequency is associated with a vertical mode of



vibration which has no zero crossing and is similar to that of the associated homoge-

neous system, whereas the modes of the next two lower frequencies have one and two

zero crossings, respectively.

In Figs. 4.4 through 4.6, the modal displacement ordinates for sections between the
liquid interfaces have been evaluated by substituting Eq. (36) for the mode under
consideration into Eq. (27), differentiating the resulting expression with respect to

n; and integrating the resulting modal velocity with respect to time.
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P2 = 0.75
0.5

0.25
0.1

D,;(m) D, (M)

Figure 4.4 Vertical displacement configurations for fundamental hori-
zontal mode of vibration of two-layered liquids in cylindri-
cal tanks with H/R = 0.5
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Figure 4.5 Vertical displacement configurations for fundamental hori-
zontal mode of vibration of two-layered liquids in cylindrical
tanks with H/R = 2.0
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SECTION 5

FORCED VIBRATION

With the natural frequencies and modes of vibration of the system established, its re-
sponse to an arbitrary lateral excitation may be obtained by the modal superposition
method. In this approach, the vector {D,(t)} of the interfacial vertical displace-
ments of the liquid along the tank wall is expressed as a linear combination of the

characteristic vectors, { D}, as

N A
{Dm(t)} = " {Dunn} Gun(t) (46)

n=1

in which g, (2) is a generalized time-dependent coordinate corresponding to the m th
horizontal and nth vertical mode of vibration. On substituting Eq. (46) into Eq.
(35), premultiplying the resulting expression by {lb,,,,.}'l'. and making use of Fq. (37)
and of the orthogonality properties of the natural modes defined by Egs. (38) and

(39), the resulting system of Eqs. is uncoupled, leading to

{ Ik)mn }lr{‘?}
{Don } [A} { Do}

(.[.mn(t) + W;Znn (/mn(lf) =~ At l:/(’) (17)
It is convenient to replace the tri-diagonal matrix [A] on the right-hand member of
th.s expression by the diagonal matrix [B]. On making use of 13q. (37), Eq. (47) may

be rewritten as

Gmn(t) + "‘-’fnn Gun(t) = —€m wrznnl mn It 9!5 ! (48)
in which 'y, is a dimensionless factor given by
= {Drrtrz}T{"} (19)
{Donn}C (B { Do }
The solution of Eq. (48) is then given by
Al ‘4717.!1 t
q"m(t) = €t l mn R ( ) (50)
)
in which An,(t) represents the pseudoacceleration function defined by
t
A ) = =wm [ 3y(7) sinwnalt = 7) dr (51)
JO
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For a base-excited single-degree-of-freedom oscillator with a circular frequency wp,,,
the pseudoacceleration A,,,(t) represents the product of the square of w,, and the
deformation of the oscillator, U/, (¢). The maximum value of A,.(1) is the quantity

displayed on a pseudoacceleration response spectruimn.

The interfacial displacements at arbitrary points are finally determined from Eq. (24)
or (25) by making use of Egs. (46) and (50). For the long rectangular system, they

are given by :
SINARE Amn(t)

c© N
{d&0}=R 3 3 {dunn}

()
m=1 n=1 Si‘n”\m g (5“)
and for the cylindrical system, by
© N
(0,0} = R Y S (dpe} Tmd) Amnll) (53)
m=1 n=1 ( m) g
where
{dmn} =€n 'mn {Dmn} (54)

It must be recalled that the factors A,, and the expressions for ¢, are different for

the two systems. The same is also true of {bmn}, Uins {dimn}y Wiy and A,,n(t).

For a single-layered system with a homogeneous liquid, the only interfacial displace-
ments are tAhose at the surface. In this case, {Dnn} and {dmn} reduce to the scalars
Dy, and dp; {d} reduces to the surface displacement, d(¢,0,1); the matrix [B] and
vector {¢} become unit scalars; and the product T, {l),,m} in Eq. (54) reduces to
unity. It can then be concluded from Eq. (54) that the factors €,,, which are defined
by Eq. (33) for the long rectangular system and by Eq. (34) for the cylindrical sys-
tem, represent the displacement coefficients for the surface sloshing motion along the
tank wall of the homogeneous liquid. The latter factors can be shown [Reference 1]
to satisfy the relation

o~

Z €m =1 (HH)

m=1
Because of their special meaning, these factors were not absorbed into the '), factors

but were retained as multipliers in the expressions for the layered systems as well.

The surface displacement of the uniform system may then be determined from the

following specialized forms of Eqgs. (52) and (53), of which the second has been

reported previously, e.g., Reference 1:

= simAné An(l)

t)=R Z €m

m=]

31N, g (56)
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and -
- ]1 /\ £) Am( )

d(,0,t) =R Y en

m=1 ]l ()\"‘") g

In these expressions, A,,(t) represents the instantaneous pseudoacceleration of a sim-

cost) (57)

ple oscillator with a natural frequency equal to that of the m th sloshing mode of

vibration of the actual system when it is subjected to the prescribed ground motion.

If the contribution of only the fundamental mode of vibration is considered, the surface
displacement along the tank wall, d,,, for a homogeneous liquid in a cylindrical tank

reduces to the well known expression

Ai(t)
g

d,(0,t) =0.83TR cost (!

T
oL
~—

On replacing A;(t) by wi U,(t), where U;(l) = the instantaneous deformation of the
single-degree-of-freedom oscillator, and making use of Eq. (45), Eq. (58) can also be
written as

dw(0,t) = 1.54 CE U, (t) cosd (59)
in which € is the dimensionless frequency coefficient defined by Lq. (44).
For a multi-layered system. it can be shown that

Z {dmn = 6m.{ } (()U)

n=1

and by virtue of Eq. (55), it can further be concluded that

o N
Z Z mn} - {l (01)

Equation (60) is proved in the following by examining the hydrodynamic pressure
difference at the jth interface of the system, Ap;. The instantaneous value of this

difference is determined from Eq. (11) to be

Ap;(€,t) = (p; — piw1) 9 d;(&, 1) (62)
in which d; is deﬁnod by Eq. (52) for the long rectangular system, and by I3q. (53)

for the latter system. For the cylindrical system, Fq. (62) may thus be written as

Apj(f,g,t) = ( /)J-H R Z Z d,,mj ‘-]——(-T"-lé)—) Amn(i’) cosl) (().;)
m=1 n=I 1 m

Now, if the natural frequencies of the systemn are very high compared to the dominant

frequency of the ground motion, all the pseudoacceleration functions A, (t) will
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reduce to the ground acceleration &,(¢), the liquid will respond as a rigid body, and
the resulting expression for Ap; will reduce to the pressure induced by the inertia of
a rigid disk which has unit depth, radius r, mass density p; — p;j+1 and is subjected

to a horizontal motion with acceleration Z4(t). The latter pressure is given by

Ap;(€,0,t) = (pj — pj+1) T Z4(t)cos b (64)
On equating the right-hand members of Egs. (63) and (64) and cancelling the common
termc, one obtains

(An€)
Z Z dmn,J m f (65)

m=1 n=1
Finally, on multiplying through by ¢ J; (A €) d€ and integrating from 0 to 1, by virtue
of the orthogonality of the Bessel functions, the double summation on the left-hand
side reduces to a single summation over n only, and the final expression reduces to the
7 th element of Eq. (60). The validity of Eq. (60) for the long rectangular system can
be demonstrated in a similar manner working with trigonometric rather than Bessel

functions.

5.1 Sloshing Displacement Coefficients

Of special interest in practice is the sloshing motion of the liquid at its [ree sur-
face, as the maximum surface displacement is needed to define the freeboard that
must be provided to prevent the liquid from overflowing or impacting the roof. This

displacement is defined by the top elements of Eqgs. (52) and (53).

In Table 5.1 are listed the surface values of the displacement coefficients d,,,,.» for two-
layered, long rectangular and cylindrical tanks. Systems with two different slenderness
ratios, H/R, two liquid thickness ratios, H,/H,, and several mass density ratios,
p2/p1, are considered. Results for the first two horizontal modes of vibration, m = 1
and 2, and for each of the two vertical modes are presented. The following trends are

worth noting:

1. The results for the two vertical modes of vibration are of opposite signs, and
their numerical values increase with decreasing p;/p;; the increase is particularly
large for the lower values of H/R, especially for Hy/H, = 1, for which the
natural frequencies of the individual layers are equal. The larger displacement
coefficients for the fundamental vertical mode of vibration of the layered systems
are attributed to the fact that, in addition to being excited laterally, the upper
layers of these systems are excited at their base by the rocking motion of the

interfacial sloshing.



2. For a specified horizontal mode of vibration, the sum of the displacement coef-
ficients for the two vertical modes is equal to that obtained for a honiogeneous

liquid of the same total depth. This is in agreement with Eq. (60).

3. The values of the coefficients for the second horizontal mode of vibration, m =

2, are significantly smaller than those for the fundamental mode, m = 1.

4. Provided a sufficiently large number of horizontal modes of vibration is con-

sidered, the algebraic sum of the coefficients is unity, in agreement with Eq.
(61).

5. The results for the long rectangular and cylindrical systems are very similar.

In Table 5.2, the top values of the displacement coefficients, d,,,, for the two horizontal
modes of vibration of the three-layered cylindrical system examined in the right part
of Fig. 4.6 are compared with those obtained for a homogeneous liquid of the same
total depth. As before, the larger numerical values are obtained for the layered system,

and the reported values satisfy both Equations (60) and (61).

Notwithstanding the importance of the displacement coefficients, it must be realized
that the relative contribution of the various modes of vibration to the total response
depends also on the relative values of the pseudoaccelerations, An..(¢). The latter
quantities depend, in turn, on the characteristics of the ground motion and the natural
frequencies of the system itself. This matter is considered further in the following

section.

5.2 Hydrodynamic Pressures

The main focus of this paper has been on the sloshing motion of the system. With
the information presented, however, it is also possible to determine the magnitude
and distribution of the hydrodynamic pressures induced by the ground shaking. The
hydrodynamic pressure at any point in the j th layer may be evaluated from Eq. (5)
making use of the expression for the velocity potential function ¢; defined by Eq.
(12). The functions x and %; in the latter Eq. may be evaluated from Iigs. (15) and
(26) for the long rectangular system and from Egs. (16) and (27) for the cylindrical
system. The final expressions, along with numerical solutions that elucidate the

interrelationship of the hydrodynamic pressures for layered and homogeneous syvstems,

will be presented in a later publication.



Table 5.1: Surface-displacement coefficients for two-layered long rectangular and
cylindrical systems

Values of dyp 2 for Values of dyn 2 for
long rectangular systems cylindrical systems
H/R | p2/p m =1 m =2 m =1 m =2

n=1ln=2n=1|n=2{n=1|n=2|n=1|n=2
(a) Hy/H, =1

0.5 1.0 | 0.811 0.090 0.837 0.073
0.75 | 0.873 | -0.062 | 0.096 | -0.006 | 0.901 | -0.064 | 0.077 | -0.004
0.50 | 0.978 | -0.167 | 0.106 | -0.016 | 1.009 | -0.172 | 0.085 | -0.012
0.25 | 1.215 | -0.405 | 0.132 | -0.042 | 1.254 | -0.417 | 0.105 | -0.032
0.10 | 1.687 | -0.876 | 0.184 |-0.094 | 1.741 | -0.904 | 0.148 | -0.075
0.01 | 4.458 | -3.647 | 0.494 | -0.404 | 4.602 | -3.765 | 0.399 | -0.326

2.0 1.0 | 0.811 0.090 0.837 0.073
0.75 | 0.853 | -0.042 | 0.090 | 0.000 | 0.873 |-0.036 | 0.073 | 0.09
0.50 | 0.932 | -0.121 | 0.091 |-0.001 | 0.942 | -0.105 | 0.073 | 0.000
0.25 | 1.138 | -0.327 | 0.092 | -0.002 | 1.130 |-0.293 | 0.074 | -0.001
0.10 | 1.598 | -0.787 | 0.097 | -0.007 | 1.579 | -0.742 | 0.076 | -0.003
0.01 | 4.415 | -3.604 | 0.168 | -0.078 | 4.507 | -3.670 | 0.108 | -0.035

(b) Hy/H, =2

0.5 1.0 | 0.811 0.090 0.837 0.073
0.75 | 0.863 | -0.052 | 0.094 | -0.004 | 0.890 |-0.053 | 0.076 | -0.003
0.50 | 0.944 |-0.133 | 0.101 | -0.011 | 0.973 |-0.136 | 0.081 | -0.008
0.25 | 1.099 | -0.289 | 0.115 | -0.025 | 1.132 | -0.295 | 0.091 | -0.018
0.10 | 1.303 | -0.493 | 0.137 | -0.047 | 1.342 |-0.505 | 0.109 | -0.036
0.01 | 1.573 | -0.762 | 0.173 | -0.083 | 1.623 |-0.786 | 0.139 | -0.066

2.0 1.0 | 0.811 0.090 0.837 0.073
0.75 | 0.836 | -0.025 | 0.090 | 0.000 | 0.857 |-0.020 | 0.073 | 0.000
0.50 | 0.881 | -0.070 | 0.090 | 0.000 | 0.893 |-0.056 | 0.07:3 | 0.000
0.25 | 0.986 | -0.176 | 0.091 | -0.001 | 0.983 |-0.146 | 0.073 | 0.000
0.10 | 1.170 | -0.360 | 0.092 | -0.002 | 1.156 |-0.319 | 0.074 | -0.001
0.01 | 1.533 | -0.722 | 0.104 | -0.014 | 1.560 | -0.723 | 0.078 | -0.005
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Table 5.2: Surface-displacement coefficients for three-layered cylindrical system

with f]/RI 1 and H1 = Hz = H3

Values of dyn 3

p3/p2/p1 m =1 m=2
n=1|n=2n=3|n=1|n=2|n=23
1/1/1 0.837 0.073
1/2/3 1.101 | -0.295 | 0.031 { 0.085 | -0.013 | 0.001
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SECTION 6

NUMERICAL EXAMPLE

The surface sloshing displacements induced by the lateral component of an earthquake
ground motion are evaluated for two-layered liquids in a cylindrical tank of 60-ft
radius. The depths of the lower and upper layers are taken as 12 ft and 24 ft,
respectively, and several different values are used for the relative mass densities of
the two layers. System damping for each mode of vibration is considered to be of the

viscous type, and is taken as 0.5 percent of the critical value.

The ground motion is specified by the response spectrum shown in Fig. 6.1. which
refers to viscously damped single-degree-of-freedom systems with the designated amount
of damping. The spectrum is displayed in a tripartite logarithmic format with the
abscissa representing the natural frequency of the system, f, and the pseudoaccel-
eration, A, plotted on the right-hand diagonal scale. The vertical scale represents
the pseudovelocity of the system, V., and the left-hand diagonal scale represents the

associated deformation, U. The three spectral quantities are interrelated by
A=2nfV =4n?f (66)

The maximum values of A, V and U/ are 1.68¢, 61 in./sec and 31 in., respectively,
and the maximum values of the acceleration, velocity and displacement of the ground
are 0.33 ¢, 15.9 in./sec and 10.2 in., respectively. The response spectrum considered

is the same as that used for the illustrative example in Reference 1.

The cyclic natural frequencies of the liquid for the first two horizontal and each of the
two vertical modes of vibration are listed in Table 6.1 along with the corresponding
values of the surface displacement coefficients, d,, 2. Several values of pa/p, in the
range between unity and 0.10 are considered. Note that all frequency values fall in
the left-hand, displacement-sensitive region of the response spectrum, and that, for
all cases considered, the frequencies fi; and fz; fall within the segment for which the
deformation U attains its maximum value. Note further that the largest displacement

coeflicients are associated with the fundamental mode of vibration, m = n = 1.

Table 6.2 lists the maximum values of the components of the surface displacements

along the tank wall contributed by each of the four modes of vibration. The results
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are normalized with respect to the maximum ground displacement, (z;)mqsr. Also
listed are the corresponding values of the total displacement computed by taking the
square root of the sum of the squares of the component terms. The following trends

are worth noting:

1. The displacements of the layered liquid are larger than those cf the homoge-
neous liquid of the same total depth. However, as would be expected from the
information presented in the preceding sections, the increase is not particularly

significant for values of p3/p; > 0.5.

2. The fundamental mode of vibration, which corresponds to values of m = n =
1, is the dominant contributor to the response. The contribution of the remain-
ing modes is minor due to the smallness either of the relevant displacement

coeflicients or of the associated pseudoaccelerations or both.

3. The response contributed by the mode corresponding to m = 2 and n = 1 is

greater than that contributed by the mode corresponding to m = 1 and n = 2.
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Table 6.1: Natural frequencies and surface-displacement coeflicients for system
considered in numerical example

Natural frequency, fnn Surface-displacement
p2/ p1 in cps coefficients, dimn,2
Ju fi2 Sz foo [ dugz | diza | dap | dazg
1.00 | 0.142 0.269 0.837 0.073

0.75 | 0.140 | 0.039 | 0.269 | 0.094 | 0.888 | -0.051 | 0.075 | -0.002
0.50 | 0.137 | 0.058 | 0.268 | 0.142 | 0.970 | -0.133 | 0.079 | -0.006
0.25 | 0.133 ] 0.075 | 0.268 | 0.188 | 1.127 | -0.290 | 0.088 | -0.015
0.10 | 0.129 | 0.086 | 0.267 | 0.217 | 1.337 | -0.500 { 0.105 | -0.032

Table 6.2: Maximum values of surface displacements of liquid along tank wall for
system considered in numerical example

Values of (dw)mar/(2y)mar

Component contributed by Total

p2/p1 m =1 m =2 computed by
n=1|n=2|n=1|n=2| RMSrule

1.00 | 3.775 1.181 3.956
0.75 | 3.893 | 0.006 | 1.213 | 0.004 4.078
0.50 | 4.071 | 0.047 | 1.269 | 0.028 4.265
0.25 | 4.459 | 0.263 | 1.414 | 0.119 4.687
0.10 | 4.975 | 0.706 | 1.673 | 0.337 5.307
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SECTION 7

CONCLUSIONS

With the information presented herein, the free vibrational characteristics and the
sloshing action of base-excited, layered liquids both in long rectangular and in cylin-
drical tanks may be evaluated readily and accurately. The comprehensive numerical
data that have been presented provide valuable insights into the underlying response
mechanisms and into the effects and relative importance of the numerous parameters

involved. The principal conclusions of the study may be summarized as follows:

1. For a liquid with N homogeneous layers, there is an infinite number of horizontal
natural modes of vibration, and corresponding to each such mode, there are N
distinct vertical modes. The latter modes have from zero to N —1 points of zero
crossings, and their frequencies are lower than the corresponding frequency of

a uniform liquid of the same total depth.

&

For a specified horizontal mode of vibration, the natural frequencies of a two-
layered system are, respectively, higher and lower than those computed consid-

ering the two liquid layers to act independently.

3. The natural modes of the layered liquid satisfy simple orthogonality relations
that are identified in the text.

4. The maximum surface sloshing displacement of a base-excited layered system
is generally greater than that induced in a homogeneous system of the same
total depth. The increase is significant, however, only when the densities of
individual layers differ substantially. The increased response is associated with
the fact that, in addition to the lateral component of shaking, the base of the
top layer is subjected to a rocking motion associated with the sloshing action

of the interface.

5. For large-capacity tanks subjected to earthquake-ground motions, the mode of
vibration corresponding to m = n = | is the dominant contributor to the surface
sloshing displacements of the liquid. Furthermore, the contribution of the mode
corresponding to m = 2 and n = 1 is generally greater than that of the mode

corresponding tom = 1 and n = 2.
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6. For the 2-layered system considered in the illustrative example, the maximum
surface displacement along the tank wall was found to range from 3.96 times
the maximum ground displacement when the densities of the two layers were
considered to be equal, to 5.3 times the maximum ground displacement when

the density of the top layer was taken as one-tenth that of the lower layer.
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SECTION 9

NOTATION

maximum or spectral value of pseudoacceleration for a simple oscillator
tri-diagonal, symmetric matrix of size N x N with the elements of the j th
row defined by Egs. (29), (30) and (31)

instantaneous pseudoacceleration for m th horizontal mode of vibration of
homogeneous system

instantaneous pseudoacceleration for m th horizontal and n th vertical mode
of vibration of layered system

diagonal matrix of size N x N with its j th element given by Eq. (32)
dimensionless factor given by Eq. (32)

dimensionless coefficient in expression for w,,

dimensionless coefficient in expression for wp,,

instantaneous value of surface vertical displacement of homogeneous liquid
value of d along tank wall ;

instantaneous values of interfacial vertical displacements, measured from
position of static equilibrium

7 th element of {d}

vector of displacement coefficients in expression for {d}, given by Eq. (54)
vector of interfacial vertical displacements of liquid along the tank wall
when the system is vibrating in its m th horizontal mode of vibration

J th element of {D,,} '

vector of amplitudes of interfacial vertical displacements for the m th hor-
izontal and n th vertical natural mode of vibration

j th element of { Dy}

natural frequency, in cycles per second, of a simple oscillator

= Wpn /27 = the nth cyclic natural frequency of layered system for m th
horizontal mode of vibration

acceleration due to gravity

total depth of liquid in tank

thickness of j th liquid layer

Bessel function of first kind and first order
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P;
gmn(t)

6771

nj

Pj
};

Y;

Wm

number of superposed liquid layers of different densities

hydrodynamic pressure in j th liquid layer, given by Eq. (5)
time-dependent generalized coordinate corresponding to the m th horizon-
tal and nth vertical mode of vibration

radial distance for cylindrical tank

radius of cylindrical tank and half-width of long rectangular tank

time

spectral value of deformation for simple oscillator

instantaneous deformation of a simple oscillator the natural frequency of
which is equal to the m th sloshing frequency of a homogeneous system
instantaneous deformation of a simple oscillator with a natural frequency
equal to that of the m th horizontal and nth vertical mode of vibration of
the layered system

instantaneous value of liquid velocity in j th layer, given by Eq. (4)
spectral value of pseudovelocity for simple oscillator

horizontal distance for long rectangular tank

instantaneous value of free-field ground acceleration

vertical coordinate within the j th liquid layer

= H;/R = ratio of layer height to radius of tank

dimensionless factor defined by Eq. (49)

dimensionless factor defined by Eq. (33) for long rectangular tanks and by
Eq. (34) for cylindrical tanks

= z;/ R = normalized vertical distance coordinate for j th liquid layer
circumferential angle

m th root of J; for cylindrical tank, and factor defined by Eq. (20) for long
rectangular tank _

dimensionless horizontal distance coordinate, defined as a/R for long rect-
angular tank and as r/R for cylindrical tank

mass density of j th liquid layer

velocity potential function for j th liquid layer

velocity potential function associated with rigid body motion of tank walls
velocity potential function associated with relative motion of liquid and
tank walls, given by Egs. (19) and (21) for long rectangular and cylindrical
tanks, respectively

circular natural {requency of homogeneous system for m th sloshing mode

of vibration
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