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ABSTRACT

The sloshing action of layered liquids in. rigid cylindrical and long rectangular tanks is

investigated considering both their free vibrational characteristics and their response

" to a horizontal component of base shaking. Special attention is given to the maxi-

mum surface displacement induced by the base motion. The analysis is formulated

for systems with N superimposed layers of different thicknesses and densitie'_, and it

is illustrated by a numerical example. In addition, comprehensive numerical data are

presented for two-layered and some three-layered systems which elucidate the under-

lying response mechanisms and the effects and relative importance of the numerous

parameters involved. It is shown that for each horizontal natural mode of vibration,

there are N distinct vertical modes, the frequencies of which are lower than the nat-

ural frequency of a homogeneous liquid of the same total depth. It is further shown

that the maximum surface sloshing displacement of the base-excited layered system is

typically larger than of the corresponding homogeneous system, and that the results

for the long rectangular and the cylindrical tanks are quite similar.
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EXECUTIVE SUMMARY

The sloshing action of layered liquids in rigid cylindrical and long rectangular l anks is

. investigated considering both their free vibrational characteristics and their response

to a horizontal component of base shaking. Special attention is given to the maxi-

mum surface displacement induced by the base motion. The analysis is formulated

for systems with N superimposed layers of different thicknesses and densities, and it

is illustrated by a numerical example. In addition, comprehensive numerical data are

presented for two-layered and some three-layered systems which elucidate tile under-

lying response mechanisms and the effects and relative importance of the numerous

parameters involved.

The principal conclusions of the studv may be summarized as follows:

1. For a liquid with N homogeneous layers, there is an infinile number of horizontal

natural modes of vibration, and corresponding to each such mode, there are ,V

distinct vertical modes. The latter modes have from zero to N- 1 points of zero

crossings, and their frequencies are lower than the corresponding frequency of

a uniform liquid of the same total depth.

2. For a specified horizontal mode of vibration, the natural frequencies of a two-

layered system are, respectively, higher and lower than those computed consid-

ering the two liquid layers to act independently.

3. The natural modes of the layered liquid satisfy simple orthogonality relations

that are identified in the text.

4. The maximum surface sloshing displacement of a base-excited layered system

is generally greater than that induced in a homogeneous system of the same

total depth. The increase is significant, however, only when the densities of

individual layers differ substantially. '['he increased response is associated with

• the fact that, in addition to the lateral component of shaking, the base of the

top layer is subjected to a rocking motion associated with the sloshing action

of the interface.

5. For large-capacity tanks subjected to earthqllake-ground motions, the funda-

mental mode of vibration is the dominant contributor Io the surface sloshing

ix



displacements of the liquid. Furthermore, the contribution of the higher hori-

zontal modes is typically larger than that of the higher vertical modes.

6. For the 2-layered system considered in tile illustrative example, the maxinmm

surface displacement along the tank wall was found to range from 3..q6 times

the maximum ground displacement when the densities of the two layers were

considered to be equal, 1,o 5.3 times the maximum ground displacement when

the density of the top layer was taken as one-tenth that of the lower l_tyer.
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SECTION 1

INTRODUCTION

" Whereas the response to earthquakes of tanks containing a llniform, homogeneous

liquid has been the subject of numerous studies in recent years, there is a paucity

of information concerning the corresponding response of tanks containing layers of

liquid of different densities. For an overview of the previous contributions, the reader

is referred to the state-of-the-art report by Veletsos [1] atm to the references of more

recent publications by Haroun [2], Haroun and Badawi [3], Lau and Zeng [4], Malhotra

et al [,5]and Veletsos et al [6, 7, 8].

Current interest in the response of tanks with layered liquids is motivated by two

factors: (1) Many waste storage tanks in nuclear facilities contain two or more layers

of liquid or liquid-like material of different densities; and (2) recent processing for the

recovery and decontamination of discharge fuel materia.ls is typically carried ollt irl

tanks containing two-layered liquids [9].

The only known study of the sloshing response of tanks with a layered liquid is the

one reported recently by Tang et al [10], who examined the free vibrational cha.ra('-

teristics and the surface sloshing action of a two-layered liquid in a rigid, circular

cylindrical tank subjected to a horizontal component of base shaking. The solutions

presented, however, are based on an incorrect characterization of the pressure ('ondi-

tion at the interface of the two liquids, and the accuracy of the reported expressions

and numerical results is questionable.

The objectives of this paper are: (1) To reformulate the analysis of the problem,

making use of the correct interface condition and considering the general case of a

system with N homogeneous liquid layers of different thicknesses and mass densities;

and (2) through comI)rehensive parametri(: studies of systems with two and three

layers, to elucidate the underlying response mechanism and the effects and relative

importance of the parameters involved.

In addition to circular cylindrical tanks, long rectangular tanks are examined, and

the interrelationship of the responses of the two systems is identit:ied. The response

quantities investigated include the nat_lra,l modes ot' vibration ot' ttle liqui(I, th(, as-
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sociated frequencies, and tile sloshing motions indu,:ed by a,horizontal component of

base shaking.

For ali the solutions reported, the tanks are presumed to be rigid. However, inasnl_lch

as the sloshing action of the liquid is normally associated with significantly longer

periods of vibration than the dominant periods of the earthquake ground motions,

based on previous ana.lyses of tanks with a homogeneous liquid [1, 7, 8], the results

are expected to be also applicable to flexible tanks thal; are either rigidly or flexibly

supported at the base.



SECTION 2

. SYSTEMS AND FUNDAMENTAL RELATIONS

. 2.1 Systems Considered

The systems investigated are shown in Fig. 2.1. They are rigid, vertical tanks that

are filled to a height H with two or more layers of liquid of different thicknesses and

densities. The tanks are either rectangular, of width 2R ill one direction and infinite

extent in the normal direction as shown in part (a) of t,h(, figure, or cylixldrica.1, witll

a circular cross section of radius R as shown in p,_rt (b) of the figure, and they are

presumed to be anchored to a rigid moving base. The liquids are considered to be

incompressible, irrotational and inviscid, and only linear actions are examined.

The liquid layers are numbered sequentially starting with 1 at the lowernaost or bot-

tom layer and terminating with N at the uppernmst or top layer. The nlass d(qlsity

I he values of pjand height of the j th layer are denoted by pj and tlj, resl)ectively. _ '

are considered to decrease witl_ increasing j. Points within the j th layer of tlm long

rectangular system are defined by the local Cartesian coordinat:es, x _md :/, shown in

part (a) of Fig. 2.1, and those for the cylindrical system are defined by the cylindrical

coordinates, r, 6, zj, shown in part (b) of the figure.

The ground motion is considered to be horizontal and uniform and to be directed

along the x- or 0 = 0 coordinate axis. The acceleration of the ground motion at

any time, t, is denoted by _g(t), and the corresponding velocity and displacement are

denoted by 5:g(t) and xy(I), respectively.

2.2 Fundamental Relations

The flow field in the j th layer must satisfy Laplace's gq.,

2v ¢.;= o (1)

in which ¢j --- a velocity potential function of time and the position coordinates, and

the operator _72 is defined by

O2 0"-
V: = + (2)' 2

?):z:'_ Oz j
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in the rectangular coordinate system, and by

0 2 1 0 1 0 2 0 2

v_ = _ + 7<5;:,.+ _ 00_ _ 0_ (a)

in the cylindrical coordinate system. If v3, is the instantaneous value of tile velocity

of an arbitrary particle in the j th layer in the direction of a generalized n-coordinate,
then

OCj (4)v_,_= On

and the corresponding hydrodynamic pressure is

0¢;
p, = .j _ (5)

The solution of Eq. (1) must satisfy the following boundary conditions:

1. At the tank base, the vertical component for the liquid velocity must vanish;

accordingly,

2. Along the tank wall, the radial or normal velocity conlponent of botll til(: lal_k

and liquid must equal the corresponding component of the groulid rnotiol_, l:or

the long rectangular system, this reqilires t.lJat

- = J._(t) (7)
z'=-'t- R

whereas for the cylindrical system, ;_ requires that

(OCj) =_(t)cosO (8)-- (_F r--R

3. At the free liquid surface, the followillg linearized pr(;ssllre boun(lary _,Oll(litioll
must be satisfied

(¢;"- =,,N=o
where dN represents the vertical surface displacement, a dot SUl)erscril)t d(_'llotes

differentiation with respect to time, and g = the gravitational acceleration. The

origin of this equation is identified under item 4.
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4. At the interface of a pair of layers, the vertical velocity of the liquid must be

continuous; accordingly,

v

Additionally, the total pressure (hydrodynamic plus the increment due to the

vertical displacement at the interface) must be continuous. If dj represents theq,

instantaneous vertical displacement of an arbitrary point at the upper interface

of the j th layer measured trom the position of static equilibrium, then assuming

that the displacements are small and that the inertia of the interfacial wave is

negligible, the pressure condition may be written in the form indicated in Lamb

[xi],
PJ

Eq. (9) may be deduced from Eq. (11) merely by letting j = N and pj+l = O.

It is clear from Eq. (11) that while the total pressures are continuous, the hydrody-

namic components are discontinuous at the interfaces of layers of different densities.

In the studies of Tang et al [10], the contribution of the pressure increment due to

the interfacial displacement was not considered, and the hydrodynamic component

of the pressure was taken as continuous. The consequences of this approximation are
identified in later sections.
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Figure 2.1 Systems considered
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SECTION 3

• METHOD OF ANALYSIS

. The solution of Eq. (1) is obtained in a manner analogous to that employ_ d by Bauer

[12] and Abramson [13]in their studies of tanks containing a homogeneous liquid, by

the superposition of two component solutions as

Cj = Xj + Cj (12)

In this expression, Xi = a velocity potential function associated with the rigid body

motion of the tank walls, and ¢i - a corresponding function providing for the relative

motion of the contained liquid and the tank walls. The function Xi represents the

solution obtained when,both the upper and lower surfaces of the j th liquid layer are

rigidly capped, whereas Cj represents a corrective solution which a.ccounts for the

difference between the actual and fully constrained (:onditions at these boundaries, lt

is important to realize that these component solutions are different from the so-called

impulsive and convective solutions used by Housner [1,i], Veletsos et al [1, 6, 15] alt(l

Haroun and Housner [16] in their studies of tanks with homogeneous liquids.

3.1 Solution for 1'_j

For the long rectangular system,

Oxj _
0-T- -_(t) (13)

whereas for the cylindrical system,

c)Xj
O---r-= -_.( t)co._O (i,l)

On integrating these expressions, one obtains

- xj = -_(t) x (1.5)

for the rectangular system, and

Xj = -ic:j(t) r co,sO (16)

for the cylindrical system.
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It is observed that the functions Xj are independent of the physical properties of the

liquid layers, and will henceforth be denoted by _. Furthermore, considering that,

Eqs. (15) and (16) are independent of the vertical coordinates zj, it follows from

Eqs. (4) and (5) that .g is associated with no vertical velocities or displacements but

represents simply a finite-sized pressure field which increases linearly in the horizontal
direction.

3.2 Solution for @j

The function ej must satisfy Laplaces's Eq. (1), the solution of which may be obtaim. '

by the method of separation of variables as follows. For the long rectangular system,

= Z(zj)X(x)T(t) (17)

and for the cylindrical system,

_,j = Z(zj)R(r)T(t)cosO (18)

in which X, /), Z and T are functions of x, r, zj and t, respectively.

Inasmuch as the boundary conditions along the walls are satisfied exactly by the l)o-

tential function X, the corresponding conditions for _j are zero at these boutldarios.

On substituting Eqs. (17) and (18) into Laplace's Eq. and m_king use of"the homo-

geneous boundary conditions along the walls, the following expressions are obtailwd

for _j. For the long rectangular system,

_2j= _ [Pm,j(t)coshlmT]j + Q,_.j(t)sinhlmT]j] sinAm( (19)
m=l

in which _ = x/R, rlj = zy/R,

_,, = (2w- 1) 7r (20)
and Pm,j(t) and Qm,j(t) are time-dependent coefficients that midst be determined from

the conditions at the lower and upper boundaries oi' the j th layer. These boundaries

will henceforth be referred to as the (j - 1)th and j th interfaces, respectively. The

corresponding expression for the cylindrical tank is

ffzj = _ [Pm,j(t)co.sh_mqj + Q,_,j(t)sinhlmqj] Y_ ()_m_)co.sO (21) .
m--1

in which _ now stands for the normalized radial distance, r/R; ,11= the Bessel function

of the first kind and first order; and _-_ = the mth zero of the first derivative of Jt,
t

i.e., the m th root of J1(I) = 0. The first three of these roots are

1_ = 1.841 t2 = 5.331 A:3= 8.536 (22)
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Note that the meaning of _ and the values of A,_, P,,,j(t) and Qmd(t) are different irl

Eqs. (19) and (21).

Before proceeding to the formulation of the equations of motion, it, should be noted

that if Eq. (12) is substituted into Eq. (11) and tile resulting terms are rearranged

and normalized with respect to pl, the pressure condition for the j th interface may

be expressed in terms of the potential functions '4'j and X as

- gdj = -
Pl px pa pl

3.3 Equations of Motion for System

In formulating the equations of motion for the multi-layered system, ii, is dc, llable

to use as generalized coordina,tes the modal values of the vertical displacements a,t

the junctions of the tank wall and the interfaces of the liquid la,yers, rather than

the quantities P,_,j and Qm,y. To this end, let Dm,j(t) be the displacement at the

intersection of the j th liquid interface and the wall when tlle system is vibrating

in its ruth horizontal mode of vibration. For the cylindrical tanks, for which these

displacements are functions of the circumferentiM coordina.te 0, Dm,j(t) r(-:[ers to the

value at 0 = 0. The sloshing displacement dj(4, t) ['or an arbitrary point of lhc j th

interface may then be expressed as follows. For the long rectangular system,

'_ sinA,_( (24)= D....j(t)rn=l

and for the cylindrical system,

dj((,O,t) = y_ Dm,/(t)J'('\"_() coso (25)
m=l Jl( )_m )

It should be recalled that the values of/_m for the rectangular system are defined by
t

Eq. (20), whereas those for the cylindrical system are defined by the roots of .]1()_)
--0.

In order to relate P_.j(t) and Qm,j(t) to D.,_,j(t), the vertical velocities of the liq,_id

at the j th and (j - 1)th interfaces evaluated from Eq. (4) are equated to t,tlos(-'

obtained by differentiating with respect to time the interfacial displacem(mts defined

by Eqs. (24) and (25). On solving the resulting equations and back substituting, the

potential functiort g,j lnay be rewritten as

_ t_ [D,,.j(t)co.sh_m'qj- l')m,j_t(t)co.sh._,,_(ctj--.qj)] ._in/_,,_m=l
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for the long rectangular system, and as

_"J=- _ /_m L sinh,\maj j J_(Am)m--1

(27)

for the cylindrical system. In these expressions, _j = Hj/R.

The equation of motion for the j th interface of the rectangular system may now be

derived from Eq. (23) by substituting the expressions for ,_, dj and _bjdefined by Eqs.

(15), (24) and (26), respectively. The left-hand member of the expression obtained in

this manner involves an infinite sum of horizontal sinusoidal modes. On multiplying

both sides of this expression by sin)_r_ and integrating from 0 to 1, all but one of

the terms on the left side cancel because of the orthogonality of the trigonometric

functions involved, and the equation reduces to

Ai,j-1 Dm,j-1 + Aj,j Dm,j + Aj,j+I Dm,j+1 + _ Bj,j Dm,j = --era /_m Cj Xg(t) (28)

where

Aj,j = pj cothAmc_j+ Pi+---Z1cot,hA,_cU+1 (29)
pl Pl

Ai,j-1 = PJ [
pl sinh,_,_aj (30)

Aj,j+I = Pj+l 1
Pl sinhAmc_5+l (31)

Pj Pj+l
Bj,j = cj - (32)

Pl Pl

and em is a dimensionless factor defined by

2

It is shown later thai. the factor em appears in the expression tbr the surface sloshing

motion of a homogeneous liquid, and to higlfiight its meaning, is kept separately from

,_m. Note that Dm,0 = 0; hence, both Dm,j-1 and [)m,j-1 in Eq. (28) vanish for j =
1.

The equation of motion for the j th interface of the cylindrical system is obt,ained

similarly by substituting gqs. (16), (25) and (27) into Eq. (23). The two sides of the

resulting expression are then multiplied by _ Jl()_m_)d_ and integrated from 0 to 1.

Because of the orthogonality of the Bessel functions, the infinite summation of terms

again reduces to Eq. (28) with Ai,j-I, Ai,j, Aj,j+l, 13j,j and cj defined, as I)ct'orc, t)y
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Eqs. (29) through (32), except that the values of A_ are different in the two cases.

Additionally, the factor em for the cylindrical system is given by

2

1 (a4)
d

rather than by Eq. (33).

. The complete set of equations for the multilayered system is obtained by repeated

application of Eq. (28) to ali interfaces. The resulting set of equations may be written

&8

[A] {b,_} +-_ [Bl {Dm} =-era _,,, {c} _g(t) (35)

_t

where {Ota} and {c} are vectors of size N, the j th dements of which are D,,_,jand

cj, respectively; [AI is a tri-diagonal, symmetric matrix of size N x N, for which the

elements of the j th row are given by Eqs. (29), (30) and (31); [E¢]is a diagonal matrix

of the same size, with its j th element given by Eq. (32); and em is defined by Eq.

(33) for the long rectangular system and by Eq. (34) for the cylindrical system.
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SECTION 4

- FREE VIBRATION

• The equations for free vibration are deduced from Eq. (:35) by setting its right-hand

member equal to zero. The solution of these equations is obtained in the usual manner

by letting

{Dm(t)} = {Dm} e '_°mt (36)

and solving the resulting characteristic value problem,

2R
[B] {Dm} - w,_ [ml{/)m} (37)

Amg

in which i = x/-Z_, and wm = the circular frequency associated with the mth horizon-

tal mode of vibration. For the long rectangular system, lhc latter mode is deft,led by

the function sinking, whereas for the cylindrical system, ii, is defined by the funcl:ioll

Jl(Am{).

It is clear from Eq. (37) that, for each horizontal mode of vibration, there exist

N vertical modes, each associated with a distinct frequency. This t'undarnental fa('t

was not revealed in the solutions presented by Tang et al [10], which led to a. single

frequency and a single vertical mode of vibration for each vahle of m.

The n th circular natural frequency of the system for the mth horizontal mode of

vibration is denoted by C0m_,the corresponding vector of interfacial displacement

amplitudes is denoted by {/)m_}, and the j th element of the latter vector is denoted

by Dmn,j. The ordering of these frequencies and modes is identified later. The

characteristic vectors are real-valued and satisfy the orthogonality relations

{.Dmr}T[A]{Oms} = 0 (38)

and

{/)mr}r[B]{bm } = 0

for r -J: s. Furthermore, both lA] and [B] can be sh()wn to be positiw, definite,

ensuring that all natural frequencies are real and positive.
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4.1 Two-Layered System

For the special case of a two-layered system, for which the matrices [A] and [B] in Eq.

(37) are of size 2 × 2, the resulting frequency equation, after multiplying through by

tanh Areal tanh Area2, becomes

1 + P__22tanhA,_ch tanhAma2 wm - (tanhAmch + tanhA,_a2) --_-a: mpl

+ 1 - P2 tanhAmch tanhAma2 = 0 (40)

Witk _he natural frequencies of the system, wmt and win2, determined from this equa-

tion, the ratio of the interfacial to the surface modal displacement amplitudes for tile

(mn) th mode of vibration is determined from Eq. (37) to be

Dm,,,1 Amg sinhA., c_2 (41 )
Dmn,2 -" coshAma2 W2mnR

Finally, the orthogonMity relation defined by Eq. (39) can be written as

(42)
\ Pl / Pl

Provided one uses the appropriate values of l_ as previously indicated, Eqs. (40),

(41) and (42) are applicable to both the long rectangular and the cylindrical systems.

Incidentally, with the appropriate reinterpretation of the meaning of the va.rio_ls sym-

bols, Eqs. (40) and (41) can be shown to be identical I.o those presented by l,amb

[11] for the sloshing frequencies and the associated modal ralios of two sup(:rposcd

liquids flowing in a long rectangular channel.

For a homogeneous liquid with p2/pl = 1, on neglecting the trivial solution of zero

frequency, Eq. (40) yields the well known expression (e.g., Reference 1) for tl_e mth

circular natural frequency of sloshing motion,

wm = C., _/AR g (43)

in which

Furthermore, for the limiting case of p2/pl = 0, which corresponds either to a system

without the upper layer or to one with a very heavy, pr_ctically immobile lower layer,

the two frequencies reduce, as they should, to those obtain,'d f'roln E¢I. (43) for

homogeneous liquids with depths Hl and lt,z, respectiwJy.
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4.2 Numerical Solutions for Sloshing Frequencies and Modes

The circular natural frequency corresponding to the mth horizontal and n,th verticM

mode of vibration may conveniently be expressed in a generalized form of EcI. (.,':3)

as

• i_omn= Cm_ Amg (45)R

• in which Cm_ is a dimensionless factor that depends on the tank shape and slender-

ness, H/Ii, the number, relative thicknesses and relative densities of the liquid layers,

and, of co:_rse, on the order of the frequency or mode under consideration. As already

indicated, the values of Am in this expression are defined by Eq. (20) for the long

rectangular system, and by Eq. (22) for the cylindrical system.

4.2.1 Two-Layered Systems. The frequency coefficients Cll and C12 for two-

layered liquids in long rectangular tanks are presented in Fig. 4.1, and those for the

corresponding cylindrical systems are shown in Fig. 4.2. The results are plotted as

a function of the slenderness ratio, H/R, for two values of the layer thickness ratio,

H2/B1, and several values of the density ratio, p2/pl. These coefficients and the

• associated natural frequencies and modes ot' vibration are numbered in le v .rs.• _ e 'e order,

starting with n = 1 for the highest frequency and terminating with n = N = 2 for the

lowest frequency. The rationale for this numbering is that, the modes corresponding

to the lower natural frequencies are associated with a higher order of waviness (larger

number of points of zero crossings) in the w_.rtical direction. This matter is exa.min('d

further later in this section. It is observed that both the freque_cy coefficients and the

associated natural frequencies for the cylindrical tanks are larger than those for the

corresponding rectangular tanks; however, the differences are not significant, and the

general trends of the results for the two systems are quite similar. Incidentally, the

corresponding plots for the second horizontal mode of vibration, m = 2, also exhibit

the same general trends and are not shown.

The uppermost curves in Figs. 4.1 and 4.2 are for a homogeneous liquid with a

depth H equal to the total depth of the layered system, lt is noteworthy that both

frequency coefficients for the layered system are smaller than that for the associated

homogeneous syste'n. The effect of the heavier bottom layer is to decrease the effectiw_

total depth of the layered system and, as would be expecte(l from Eqs. (43) and

(44), this reduction leads to a corresponding reduction in the values of the frequency

coefficient and of the associated natural frequency.

The interrelationship of the natural frequencies of tlm lay(:red and tlm holnogeneous
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systems can more clearly be seen in Fig. 4 3, in which the frequencies oJll and w12

for the cylindrical systems examined in Fig. 4.9 are plotted normalized with respect

to ¢01,the fundamental natural frequency for a homogeneous liquid of the same total

depth, lt is observed that the results, particularly those corresponding to tile lower

values of H/R, are substantially less than unity.

The dotted curves in Figs. 4.1 and 4.2, which refer to systems of P2/Pl = 0, also

represent the frequency coefficients for homogeneous liquids with depths Hl aI_,'lH2

when they are considered' to act independently. For tile systems with equal layer

thicknesses considered in the left-hand plots, there is naturally a single such curve,

whereas for the systems with unequal depths considered in the right-hand plots, there

are two distinct curves. Note that the highest natur_l frequency of the layered systeln

is higher than the higlmr of these curves, whereas the lowest frequency is lower than

the lower curve. This result is consistent with the well known interrelationship of the

natural frequencies of systems having one and two degrees of freedom. If a single-

degree-of-freedom system with a natural frequency fl is augmented by the addition

of another such systenl, it is well known th_Ltthe natural frequencies of the resultillg

two-degree-of-freedom system lie on either side of fl. SiIlce the systems in the right-

hand plots of Figs. 4.1 and 4.2 w_y be formed either from the lower laye,' by the

addition of an (apper layer, or t¥om the upper layer by the insertion of a lower layer,

their natural frequencies must lie on either side of the pair of d_tted curves, and there

will be no frequencies in the region between.

Further insight into the free-vibrational cllara.cl.eristics of the two-layered systems

may be gained from the natural modes of vibration {D,,.,,} shown in Figs. 4.4 and

4.5. The results displayed in these figures are for cylindrical systems with values of

H/R = 0.5 and 2, respectively. Two values of H2/H1 and several values of p2/pl

are considered in each case. The modes on the left correspond to the first or higher

of the two natural frequencies and are normalized with respect to the free-surface

dispta,'ornent, whereas those on the right correspond to the s_'.condor lower natural

frequency and are norlnalized with respect to the interfacial displacement. Note tl_a.t

the first or fundamental mode is associated with no zero crossings, while the second

mode is associated with a single such crossing. These modes naturally satisfy b6th the

orthogonality relation defined by Eq. (42) and the somewhat more involved relation

defined by Eq. (38). For a multi-layered system, the n th vertical lnode of vibra.tion
,e

is associated with n - 1 zero crossings.

It is noteworthy that, tbr the fundamenl,al mode of vibration, tlm displacement am pli-

4-,1



tude at the interface of the two layers for the layered system is lower than that for the

homogeneous system, the difference increasing with decreasing values of p2/pl. This

result confirms the earlier statement to the effect that the larger density of the lower

layer decreases the effective total depth of the layered system leading to a reduction

- in frequency.

The very low frequency values of the second natural modes may also be explained

by the location of the sections of zero modal amplitudes (points of zero crossings)

near the top. Since the vertical motion of the liquid is zero at these sections, the

natural frequency of the system for this mode must be equal to that of a homogeneous

liquid with a depth equal to the distance from the free surface to the section of zero

amplitude. As an illustration, it is noted that for tile cylindrical system with va,lues

of H/R = 0.5, H2/H1 = 1 and p2/Pl = 0.,5 considered in Fig. 4.4, the section of zero

crossing for the second mode of vibration is located at a distance 0.140H from the

top. This leads to an effective depth-to-radius ratio for the homogeneous liquid of

0.070. If this ratio is substituted into Eq. (44), the value of the resulting frequency

coefficient turns out to be C1 = 0.358, which is precisely the value of C12 reported in

Fig. 4.2.

In concluding this section oil two-layered systems_ it should be noted that the fre-

quency coefficients for the systems with H2/H3 = 2 considered in the right-hand plots

of Figs. 4.1 and 4.2 also apply to systems with Hl/H2 = 2. This follows from Eq.

(40), which shows that interchanging the dimensionless thicknesses c_1and ct2 does

not alter the equation. However, the natural modes are different in the two (:ases, as

may well be appreciated from Eq. (41).

4.2.2 Three-Layered Systems. As an illustration of the free vibrational char-

acteristics of systems with more than two layers, in Fig. 4.6 are shown the natural

frequency coefficients for the fundamental horizontal mode of vibration, m = 1, of

a cylindrical system with three layers of identical depths. Th_ mass densities of the

layers are presumed to increase from top to bottom in proportion to 1:2:3. and

range of H/R values is considered. Also shown are the. natural modes of the system

for the special case of H/R = l, with each mode. normalized to a unit, maximum

amplitude. The dashed curves in this figure represent the corresponding results for a

homogeneous system with a depth equal to the. total depth of the layered system.

It is observed that all three frequencies are lower than that of tile associated ho-

mogeneous system, that the highest fr¢_'quencyis associa,ted with a w_rtical lllode of
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vibration which has no zero crossing and is similar t.o that of the associated homoge-

neous system, whereas the modes of the next two lower frequellcies have one and two

zero crossings, respectively.

In Figs. 4.4 through 4.6, the modal displacement ordinates for sections between the
p

liquid interfaces have been evaluated by substituting Eq. (36) for the mode under

consideration into Eq. (27), differentiating the resulting expression with respect to

r/i and integrating the resulting modal velocity with respect to time.
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Figure 4.4 Vertical displacement configurations for fundamental hori-
zontal mode of vibration of two-layered liquids in cylindri-
cal tanks with H/R - 0.5
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Figure 4.5 Vertical displacement configurations for fundamental hori-
zontal mode of vibration of two-layered liquids in cylindrical
tanks with H/R = 2.0
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SECTION 5

• FORCED VIBRATION

. With the natural frequencies and modes of vibration of the system established, its re-

sponse to an arbitrary lateral excitation rnay be obtained by the modal superposition

method. In this approach, the vector {Dm(t)} of the interfacial vertical displace-

rnents of the liquid along the tank wall is expressed as a linear combination of the

characteristic vectors, {D,_n }, as

N

{Dm(t)} = _ {b,_n} q,,.,,(t) (46)
n--I

in which qmn(t) is a generalized tirne-depen(lent coordinate corresponding to the mth

horizontal and nth w;rtical mode of vibration. On sllt)stituting Lq. (46) illto ,q.

(35), premultiplying the resulting expressio_ by {[),,,,. }'r. a_d Jn**king ,as(; of l);(I. (:.{7)

und of the orthogon_dity prop(.'.rties of the n_tl,ural nlo(les d('fined by 1,3qs. (:18) _l,rl(l

(39), the resulting system of Eqs. is ullcoupled, leadillg to

._ {&,,,}"'{,:'}0m_(t)+w,,,,,qm,,(t)= -_,, ,:m ._.,,(_,) (4r)
{/),_,,}','[Al{/).,,,_}

lt is convenient to replace the tri-diagon_fl matrix [AI on t,ile rigtll,-imnd lll(,llib('r of

th.s expression by the diagonal matrix [/_]. On making use of I¢(1. (aT), lCq.(/17) ma.y

be rewritten as

2 (t) -e.,, 2 I',,,,,1_._g(t)
g

in which Pm,_ is a dimensionless factor given by

r m_= {b"_"}r{c} (4._))
' {b.,,,}"'[*_1{b,,,._}

The solution of Eq. (48) is then giwm by

q,,,,,(t)= ,,,,l',,,,,_ Am,,(t____) (._0)
g

in which Am=(t) r(.pr"e.s(.nts'_' the pseudoacceleration filn(:l,ioll defined by

A.,,_,_(t) = -w_,,.,_ .?:_(r) ,sinw,,_,_(t.- r),lr (51)
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For a base-excited single-degree-of-freedom oscillator with a circular frequency wmo,

the pseudoacceleration Am,a(t) represents the product of the square of wm_ and the

deformation of the oscillator,/;_,,(t). The maximuln value of Am,_(/) is tile quantity

displayed on a pseudoacceleration response spectrmn.

The interfacial displacements at arbitrary points are finally determined from Eq. (24)

or (25) by making use of Eqs. (46) and (,50). For the long rectangular system, they

are given by

oo N sinAm{ Am,(t) (52)
{d(sX,t)} = R E E {dm,,} si'nAm gm=l n=l

and for the cylindrical system, by

oo N al(Am{) Amn(t) coso (53)
{d(_,O,t)} =R E E {dmn} Jl(._m) grr_-- 1 n=l

where

{dm,,} = em I'mn {bm,_} (54)

It must be recalled lhat the factors A.m and the expressi(ms for e,, are different tbr

the two systems. The same is also true of {/),,_ }, ['m_, {dm_ }, w,_,,, and A,,.,_(t).

For a single-layered system with a homogeneous liquid, the only interfacial displace-

ments are those at the surfa.ce. In this case, {D,,_ } and {d_ } reduce to the scalars

Dm and dm; {d} reduces to the surface displacement, d(_,0, t); the ma.trix [B] and

vector {c} become unit scalars; and the product F,,,, {D,,,,} in Fq. (54)reduces to

unity, lt can then be concluded ft'ore Eq. (54.) that the factors e.,,, whicll are defined
Pby Eq. (aa)for the long rectangular system and by Lq. (34) for the cylindrical sys-

tem, represent the displacement coefficients for the surface sloshing motion along the

tank wall of the homogeneous liquid. The latter factors can be shown [Reference 1]

to satisfy the rela,tion
OC,

E eta-1 (55)
7_--- l

Because of their special meaning, these factors were not absorbed into the I',,,,_ fact.ors "

but were retained a.s nlultipliers in the expressioiis for the layered systems as weil.

The surface displacement of the uniform system may then be determined from the

following specialized tortus of Eqs. (52) and (53), of which the second has been

reported previously, e.g., Reference 1"

sinAm_ a,.,.( t ) (56)t) = .sin£m= 1
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and
oo .A(:_m._)A,,,(_)

,/.(_,o,t) = R _ _..,,, ,,o._0 (,57)
,.=,',S_(X.,,,.)g

In these expressions, Am(t) represe.nts the irlstanlalleous l)se,udoac.celera.tioii of a. silli-

. pie oscillator with a natural frequency equal to that ot' the 'm,th sloshing lll()(le of

vibration of the actual system when ii; is subjected to rh(.' prescribed grouiid inotioli.

. If tile contribution of only tile fun(lamental mode of vibration is considere(l, 1,lie surface

displacement along the tank wall, d,o, for a homoge.neous liquid in a cylindrica.I t_mk

reduces to the well known expression

dw(O,t) = 0.837 t7 A,(t_____)co.s0 (58)
9

On replacing A_(t) by w_ U_(t), where U_(I) = the insl.anl, ane,ms deformatioi_ of l,l_e

• single-degree-of-fi'eedom oscillator, and makirig use of Eq. (45), Eq. (58) tail a,lso be :

written as

<s,,,(o,_)= 1.54c,_u,(t)co._O (,_.<))

iii which Cl is l,he diniensionless frequellcy coe[fici(,nt defined by Eq. (44).

For a multi-layered system, it Call l)e showll tliat

N

{d.,,,,}= {l)
7t= 1

and by virtue of Eq. (55), ii, can further be colicluded ttiat

,.-,o N

m=l n=l

Equation (60) is proved in the following by examining the hydrodyilamic pressure

difference at the j th interlace of the system, Api. Tlm instantaneous va,llie of tills

difference is determined fi'orn t)'q. (11) to be

. Api(f, t) = (p_- p;+,)ssdJ(_,#.) (_i2)

in which d i is defined by Eq. (52) for l,he long rectailgular sysl,enl, an(t t)y l:](i. (53)

for the latter systeril. For the cylindrical systeln, li;(t. (62) may l,hus t)e writt, e.n as

Apj(_,O,t)=(pj-pj+,)l_. _ _ d,,,,,j ilm,_(t) co.,_O (63),,,=l,,=l ' ,/l(,\,_)

Now, if the natural frequencies of the systelli a,re very tligh coinpa.red to l,ll(, ([oiiliiiaiil,

frequency of the. ground niotion, ali the pselidoacceleratioli ['lilicl,ioils A,,<,,(l) will
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reduce to the ground acceleration 5?g(t), the liquid will respond as a rigid body, and

the resulting expression for Apj will reduce to the pressure in(luced by the inertia of

a rigid disk which has unit depth, radius r, mass density pj - pj+l and is subjected

to a horizontal motion with acceleration 5?g(t). The latter pressure is given by

,Spj( ,o,t)= (pi- pi+,) 0 (64)

On equating the right-hand members of Eqs. (63) and (64) and cancelling the common

terrnc, one obtains

E dmn,j - _ (6.5)
m=l n=l J1()_m)

Finally, on multiplying through by _ Jl()_m_)d_ and integrating from 0 to 1, by virtue

of the orthogonality of the Bessel functions, the double summation on the left-hand

side reduces to a single summation over n only, and the final expression reduces to the

j th element of Eq. (60). The validity of Eq. (60) for the long rectangular system can

be demonstrated in a similar manner working with trigonometric rather than Bessel

functions.

5.1 Sloshing Displacement Coefficients

Of special interest in practice is the sloshing motioll of the liquid at its free SUl'-

face, as the maximum surface displacement is needed to define the freeboard that

must be provided to prevent the liquid t'ronl overflowing or impacting the roof. This

displacement is defined by the top elements of Eqs. (52) and (53).

In Table ,5.1 are listed the surface values of the displacement co _fficl(.ntsd,,_,,,_for two-

layered, long rectangular and cylindrical tanks. Systems with two different slenderness

ratios, H/R, two liquid thickness ratios, H2/HI, and several mass density ratios,

p2/pa, are considered. Results for the first two horizontal modes of vibration, m = 1

and 2, and for each of the two vertical modes are presented. The following trends are

worth noting:

1. The results for the two vertical modes of vibration are of opposile siglls, a ll(l

their numerica.1 values increase with decreasing p2/pl; the increase is parti(:lilarly

large for the lower values of H/R, especially for tt2/H1 = [, for which the

natural frequencies of the individual layers are equal. The larger displa.cement

coefficients for the fundamental vertical mode of vibration of the layered systems

are attributed to the fact that, irl addition to being exciled laterally, thf, upper

layers of these svstems are ex(:ited a.t their base by the. rocking niotion oi"the

interfacial sloshing.
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2. For a specified horizontal mode of vibration, the sum of the displacement coef-

ficients for the two vertical modes is equal to that obtained for a hon_ogeneous

liquid of the same total depth. This is in agreement with Eq. (60).

3. The values of the coefficients for the second horizontal mode of vibration, m =

2, are significantly smaller than those for the fundamental mode, m = 1.

4. Provided a sufficiently large nmnber of horizontal modes of vibration is con-

sidered, the algebraic sum of the coefficients is unity, in agreement with Eq.

(61).

5. The results for the long rectangular and cylindrical systems are very similar.
,j

In Table 5.2, the top va.lues of the displacement coefficients, d,_,,, for the two horizontal

modes of vibration of the three-layered cylindrical system examined in the right part

of Fig. 4.6 are compared with those obtained for a homogeneous liquid of the same

total depth. As before, the larger numerical values are obtained for the layered system,

and the reported values satisfy both Equations (60) and (61).

Notwithstanding the importance of the displacement coefficients, it, nlust be realized

that the relative contribution of the various modes of vibratio_l to the total response

depends also on the relative values of the pseudoaccelerations, A,_,,(t). The latter

quantities depend, in turn, on the characteristics of the ground inotion and the nal,_lral

frequencies of the system itself. This matter is considered further in the following
section.

5.2 Hydrodynamic Pressures

The main focus of this paper has been on the sloshing motion of the system. With

the information presented, however, it is also possible to determine the magnitude

and distribution of the hydrodynamic pressures induced by the ground shaking. The

hydrodynamic pressure at any point in the j th layer may be evaluated t'rom Eq. (5)

, making use of the expression for the velocity potential function _j defined by Eq.

(12). The functions X and _/:jin the latter Eq. may be evaluated from l!;qs. (15) ail(t

• (26) for the long reclangular system and from Eqs. (16) and (27) for the cylindrical

system. The final expressions, along with nunaerical solutions that elucidate the

interrelationship of the hydrodynamic pressures for layered and homogeneous systems,

will be presented in a later publication.
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Table 5.1: Surface-displacement coefficients for two-layered long rectangular and
cylindrical systems

Values of dme,2 for Values of dme,2 for "
long rectangular systems cylindrical systems

H/R p2/pl m= 1 m = 2 m = 1 m =2
-n=l n=2 n=l n=2 n=l n=2 n=l n=2

(a) H2/H1 = 1

0.5 1.0 0.811 0.090 0.837 0.073
0.75 0.873 -0.062 0.096 -0.006 0.901 -0.064 0.077 -0.004
0.50 0.978 -0.167 0.106 -0.016 1.009 -0.172 0.085 -0.012
0.25 1.215 -0.405 0.132 -0.042 1.2541 -0.,117 0.105 -0.032
0.10 1.687 -0.876 0.184 -0.094 1.741 -0.904 0.148 -0.075
0.01 4.458 -3.647 0.,i94 -0.404 4.602 -3.765 0.399 -0.326

2.0 1.0 0.8 ll 0.090 ! 0.837 0.073
0.75 0.853 -0.042 0.090 0.000 ().873 -0.1)36 0.07"] O.0qO
0.50 0.!)32 -0.121 0.091 -0.001 0.942 -0.105 0.073 0.000
025 1.1:38 -0.327 0.092 -0.002 1.130 -0.293 0.'074 -0.001
0.10 1.598 -0.787 0.097 -0.007 1.579 -0.7,12 0.076 -0.()03

0.0i 4.415 -3.604 0.168 -0.078 4.507 -3.1i70 0.108 -0.0:15

(b) ti2/I-I1 = 2

0.5 1.0 0.811 0.090 I 0.837 0.073
0.75 0.863 -0.052 0.094 -0.004 I 0.890 -0.053 0.076 -0.003
0.50 0.9,14 -0.133 0.101 -0.011( 0.973 -0.136 0.081 -0.008
0.25 1.099 -0.289 0.115 -0.025 I 1.132 -0.295 0.091 -0.018
0.10 1.303 -0.493 0.137 -0.047 I 1.342 -0.505 0.109 -0.036
0.01 1.573 -0.762 0.173 -0.083 / 1.623 -0.786 0.139 -0.0662

/

2.0 1.0 0.8 [1 0.090 / (I.837 0.07:3
0.75 0.836 -0.025 0.090 0.000 / 0.857 -0.1)20 0.073 0.000
0.50 0.881 -0.070 0.090 0.000 / 0.893 -0.1)56 0.073 0.000

0.25 0.986 -0.176 0.091 -0.001 [ 0.983 -0.1,16 0.073 0.000
0.10 1.170 -0.360 0.092 -0.002 / 1.1,56 -0.:119 0.074 -0.001
0.01 1.533 -0.72'20.104 -0.014 / 1.560 -0.7230.078 -0.005
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Table 5.2: Surface-displacement coefiqcients for three-layered cylindrical system

with H/R = 1 and H1 = H2 = Ha

Values of d,..,_,a

• Pa/P2/Pl m = 1 m = 2.....

n=l n=2 n=3 n=l n=2 n=3
.......

o.s37 0.073
1/2/3 1.101-0.295 0.031 0.08,5-0.013 0.001....
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SECTION 6

• NUMERICAL EXAMPLE

. The surface sloshing displacements induced by the lateral component of an earthquake

ground motion are evaluated for two-layered liquids in a cylindrical tank of 60-ft

radius. The depths of the lower and upper layers are taken as 12 ft and 24 ft,

respectively, and several different values are used for the relative mass densities of

° the two layers. System damping for each mode of vibra,tion is (:onsi:lered to b(_of the

viscous type, and is taken as 0.5 percent of the critical value.

The ground motion is specified by the response spectrum shown in Fig. 6.1. which

refers to viscously damped single-degree-of-fi'eedom systems with the designated amount

of damping. The spectrum is displayed in a tripartite logarithmic format with the

abscissa representing the natural frequency of the sysl,em, J', mid the pseudoa(:cel-

eration, A, plotted on the right-hand diagonal scale. The w:rtical scale rel)r(,sents

the pseudovelocity of the system, V, and tile left-hand diagonal scale t'('presents tile

associated deformatio_l, U. The three spectral quantities are interrelated by'

A = 2Tr.fV = 47r2.f2U (66)

The maximum values of A, V and U are 1.68g, 61 in./sec ait(l al in., resl)e(:tiv_:ly,

and the maximum values of the acceleration, velocity and displacement of the ground

are 0.33g, 15.9 in./sec and 10.2 in., respectively. The response spectrum considered

is the same as that used for the illustrative example in Reference 1.

The cyclic natural frequencies of the liquid for the first two horizontal and each of the

two vertical modes of vibration are listed in Table 6.1 along with the corresponding

values of the surface displacement coefficients, d,,,,_,2. Several values ot' p2//)1 in the

range between unity and 0.10 are considered. Note that. ali fi'equertcy values fall irl

the left-hand, displa(:ement-sensitiw: region of the response Slmctrum , and that, for

all cases considered, the frequencies fll and f21 fall within the segme.nt for which the

deformation U attains its maximum value. Note further that the largest displacement

coefficients are associated with the fundamental mode of vibration, m = n = 1.

Table 6.2 lists the maximum values ot' the conlpon(.'nts of tim surface disl)lac(-,ments

along the tank wall contribute_l by each of the f()ur modes ot' vibral, ion. Th(, results
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are normalized with respect to the maximum ground displacement, (xg)m_x. Also

listed are the corresponding values of the total displacement computed by taking the

square root of the sum of the squares of the component terms. The following trends

are worth noting:
b

1. The displacements of the layered liquid are larger than those ct" the homoge-

neous liquid of the same total depth. However, as would be expected from the

information presentcd in the preceding sections, the increase is not particularly

significant for valucs of p2/pl >_0.5.

2. The fundamental mode of vibration, which corresponds to values of m = n =

1, is the dominant contributor to the response. The contribution of the remain-

ing modes is minor due to the smallness either of the relevant displacement

coefficients or of the associated pseudoaccelerations or both.

3. The response contributed by the mode corresponding to m = 2 and n = 1 is

greater than that contributed by the mode corresponding to m = 1 and n = 2.
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Table 6.1" Natural frequencies and surface-displacement coefficients for system
considered in numerical example

Natural frequency, finn Surface-displacement
P2/Pl in cps coefficients, drnn,2 .

faa f12 f21 f22 d11,2 d12,2 d21,2 d22,2

1.00 0.142 0.269 0.837 0.073
0.75 0.140 0.039 0.269 0.094 0.888 -0.051 0.075 -0.002
0.50 0.137 0.058 0.268 0.142 0.970 -0.133 0.079 -0.006
0.25 0.1:33 0.07,5 0.268 0.188 1.127 -0.290 0.088 -0.015

,tru • --0.10 0.129 0.086 0.26t 0.217 [ 337 0.500 0.10,5 -0.032

Table 6.2: Maximum values of surface displacements of liquid along tank wall for
system considered in numerical exanlple

Component contributed by Total

P2/Pl m = 1 ! rn, = "2 computed by
n= 1 n=2 n= 1 n =2 RMS rule

1.00 3.775 I 1 181 3.956I "
0.75 3.893 0.006 I 1.213 0.004 4.078
0.50 4.071 0.047 1.269 0.028 4.265

0.25 4.459 0.263 i 1.,i14 0.119 4.687

0.10 4.975 0.706 [ 1.673 0.337 5.307

6-4



SECTION 7

" CONCLUSIONS

" With the information presented herein, the free vibrational characteristics and the

sloshing action of base-excited, layered liquids both in long rectangular and irl cylin-

drical tanks may be evaluated readily and accurately. The comprehensive numerical

data that have been presented provide valuable insights into the underlying response

mechanisms and into the effects and relative importance of the numerous parameters

involved. The principal conclusions of the study may be summarized as follows:

1. For a liquid with N homogeneous layers, there is an infinite number of horizontal

natural modes of vibration, and corresponding to each such mode, there are N

distinct vertical modes. The latter modes have from zero to N- 1 points of zero

crossings, and their frequencies are lower than tile corresponding frequency of

a uniform liquid of the same total depth.

2. For a specified horizontal mode of vibration, the natural frequencies of a two-

layered system are, respectively, higher and lower than tllose ('omputed consid-

ering the two liquid layers to act independently.

3. The natural rhodes of the layered liquid satisfy simple orthogonality relations
that are identified in the text.

4. The maximum surface sloshing displacement of a base-excited layered system

is generally greater than that induced in a homogeneous system of the same

total depth, The increase is significant, however, only when the densities of

individual layers differ substantially. The increased response is associated with

the fact that, in addition to the lateral component of shaking, the base of the

" top layer is subjected to a rocking motion associated with the sloshing action
of the interface.

5. For large-capacity tanks subjected to earthquake-ground motions, the nLode of

vibration corresponding to ra = n = 1 is the dominant contributor to the surface

sloshing displacements of the liquid. Furthermore, the co||tribution of the mode

corresponding to ra = 2 and n = 1 is gelleral]y greater than that of the mode

corresponding to ra = 1 and n = 2.
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6. For the 2-layered system considered in tile illustrative example, the maximum

surface displacement along the tank wall was found to range from 3.96 times

the maximum ground displacement when the densities of the two layers were

considered to be equal, t,o 5.3 times the maximum ground displacement when

the density of the top layer was taken as one-tenth that of the lower layer.
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SECTION 9

° NOTATION

. A maximum or spectral value of pseudoa.cceleration for a simple oscillator

[AI tri-diagonal, symmetric matrix of size N x N with the elements of the j th

row defined by Eqs. (29), (30) and (31)

Am(t) instantaneous pseudoacceleration for ra th horizontal mode of vibration of

homogeneous system

Am,_(t) instantaneous pseudoacceleration for rn til horizontal and n th vertical mode

of vibration of layered system

[B] diagonal matrix of size N x N with its j th element given by Eq. (32)

cj dimensionless factor given by Eq. (32)

Cm dimensionless coefficient in expression for ¢o.,_

Cmn dimensionless coefficient in expression for aam_

d instantaneous value of surface vertical displacement o[' homog(-,neous liquid

dw value of d along tank wall

{d} instantaneous values of interfacial vertical displacements, measured from

position of static equilibrium

d/ j th element of {d}

{dmn} vector of displacement coefficientsin expression for [d}, give.n by Fq. (,54)

{Dm} vector of interfacial vertical displacements of liquid along i,he tank wall

when the system is vibrating in its ra th horizontal mode of vibration

Dm,j j th element of {Dm }

{/)m,_} vector of amplitudes of interfacial vertical displacements for the m th hor-
izontal and n th vertical natural mode ot"vibration

, /)mn,j j th element of {Dm_}

f natural frequency, in cycles per second, of a simple oscillator

fm,_ = Wm,_/2rr = the n th cyclic natural frequency of layered syst(:m f(,r rn tll

horizontal nlode of vibration

g acceleration due to gravity

H total depth of liquid in tank

Hj thickness of j th liquid layer

J1 Bessel fun(:tion of first kind and tirst order
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N number of superposed liquid layers of different, densities

pj hydrodynamic pressure in j th liquid layer, given by Eq. (,5)

qmn(t) time-dependent generalized coordinate corresponding to the m t,h horizon-
tal and n th vertical mode of vibration

r radial distance for cylindrical tank

R radius of cylindrical tank and half-width of long rectangular tank

t time ,

U spectral value of deformation for simple oscillator

Urn(t) instantaneous deformation of a simple oscillator the natural frequency of

which is equal to the mth sloshing frequency of a homogeneous system

Umm(t) instantaneous deformation of a simple oscillator with a natural "e efr _qu.ncy

equal to that of the mth horizontal and n th vertical mode of vibration ot"

the layered system

vj instantaneous value of liquid velocity in j th layer, given by Eq. (4)

V spectral value of pseudovelocity for simple oscillator

x horizontal distance for long rectangular tank

$g(t) instantaneous value of free-field ground acceleration

zj vertical coordinate within the j th liquid layer

aj = ttj/R = ratio of layer height to radius of tank

F,_n dimensionless factor defined by Eq. (49)

em dimensionless factor defined by Eq. (33) for long rectangular tanks and by

Eq. (34) for cylindrical tanks

rlj = zj/R = normalized vertical distance coordinate for j th liquid layer

0 circumferential angle

)_m m th root of J_ for cylindrical tank, and factor defined by Eq. (20) for long

rectangular tank

oimensionless horizontal distance coordinate, define,t as a'/R for long rect-

angular tank and as r/R for cylindrical tank

pj mass density of j th liquid layer

Cj velocity potential function for j th liquid layer

X velocity potential function associated with rigid body motion of tank walls ,

Cj velocity potential function associated with relative motion of liquid and

tank walls, given by Eqs. (19) arm (21) for long rectangular and cylindrical

tanks, respectively

w_ circular natural frequency of homogeneous system for mth sloshing l,lode
of vibration
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