

Gen. 9130537-13

2
SSCL-Preprint-297
May 1993
Distribution Category: 414

V. Ganni
S. Abramovich
T.V.V.R. Apparao

Operating Modes of the SSC Sector Station Cryogenic System

Superconducting Super Collider
Laboratory

Disclaimer Notice

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government or any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Superconducting Super Collider Laboratory is an equal opportunity employer.

Operating Modes of the SSC Sector Station Cryogenic System*

V. Ganni, S. Abramovich, and T.V.V.R. Apparao

Superconducting Super Collider Laboratory†
2550 Beckleymeade Ave.
Dallas, TX 75237

May 1993

*Presented at the Fifth Annual International Symposium on the Super Collider, May 6–8, 1993 San Francisco, CA.

†Operated by the Universities Research Association, Inc., for the U.S. Department of Energy under Contract No. DE-AC35-89ER40486.

MASTER

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

gr

OPERATING MODES OF THE SSC SECTOR STATION CRYOGENIC SYSTEM

V. Ganni, S. Abramovich, and T. V. V. R. Apparao

SSC Laboratory,* ASD, Cryogenics Department, Dallas, TX 75237-3997

INTRODUCTION

The magnets in the Collider rings and in the HEB (High Energy Booster) ring are refrigerated by single phase helium flow controlled at a temperature of 4 K to maintain the magnet windings in the superconductive state. To minimize the heat load into the 4 K loop, the magnet cryostats are designed to provide high quality thermal insulation achieved by a high vacuum with multilayer insulation (MLI) and by two thermal shields at a nominal temperatures of 84 K and 20 K, respectively.

An extensive cryogenic system capable of normal operation of the superconducting magnets and handling transient conditions such as quenches, beam activation, ring filling, and beam ramping is required. The cryogenic system must also have the capability to perform other services such as cleanup, cooldown, and warmup, to allow for maintenance and repair of the superconductive components throughout the ring.

The refrigeration system is designed with a specific capacity to meet each of the various loads viz. 4 K refrigeration, 4 K liquefaction and 20 K shield cooling, to meet all the loads during normal and upset conditions and possess some extra capacity. The static heat leak and dynamic load to the 4 K components are the 4 K refrigeration load. It is handled by the latent heat of vaporization in the helium coolers. The 4 K helium used for cooling the electrical leads returned at 300 K to the refrigerator, is the liquefaction load. The 20 K shield that absorbs part of the radiation and the static heat leak above 20 K is the 20 K refrigeration load. This load is handled by supplying 200 g/s, 3.0 bar helium at 14 K and returns the helium to the refrigerator at a temperature depending on the load. The refrigeration system has one spare compressor. It is capable of delivering 4 K and 20 K refrigeration and part of the liquefaction load in the nominal mode of operation given in Table 1 even when any one of the expanders fail.

Figure (1) is a block diagram showing the major components and their relative locations in the Sector Station Cryogenics System (SCS) which are the Sector Refrigeration Surface System (SRS), Sector Refrigeration Tunnel System (SRT) and the Sector Refrigeration Control System (SRC). There are many operating modes for the SCS and for each mode of operation there is a different scheme for the cryogen flows. The SCS is reconfigured each time by switching and by activation/deactivation of specific sets of equipment that allow for adjusting the process conditions, capacity and the throughput. The line numbers shown in Figure 1 as well as a detailed description of the plant operation is given in Reference.¹

This paper summarizes the operating modes of the SCS, the various states and processes.

THE OPERATING MODES OF THE SCS

The various modes of operation are defined as follows: Design Mode, Nominal Mode, Standby Mode, Assist Mode, and Utility Modes. Figure 2 shows the various system states and plant operational modes.

The refrigeration capacity required for a sector in four different modes of operation is given in Table 1. The design mode loads have a design margin of 25% for the 4 K loads and 50% margin for the 20 K load compared to the nominal mode. These margins account for the variation in the loads from sector to sector due to the difference in the lengths of the actual sectors and provide extra capacity required in the Assist Mode. The SCS is operated in the Nominal Mode when the collider is at full normal operation. This means the system is cold and the beam is on. The dynamic heat load on the system depends on the beam intensity. The 20 K shield cooling load remains unchanged in the Nominal, Standby and Assist modes of operation. The heat load budgets for each individual sector in the collider as well as the HEB sectors are given in Reference.¹

The SCS is operated in the Standby Mode when the collider is cold at nominal temperatures, with no beam operating. Hence the refrigeration and liquefaction loads are lower than in the nominal mode. In this mode of operation the refrigeration load depends only on the "static load." The liquefaction load used for the electrical leads may be reduced since there is no electrical current. The excess liquid produced in the assist mode is transferred to a neighboring sector where the refrigeration plant is operating below nominal capacity.

The plant is operated in special modes for other types of collider configurations such as single ring cryogenic operation. The plant is said to operate in maximum capacity mode when the sector loads are high, or when assisting a neighboring sector, or when handling additional liquefaction load. It is operated in minimum capacity mode when the sector heat loads are low such as in a standby condition of the ring.

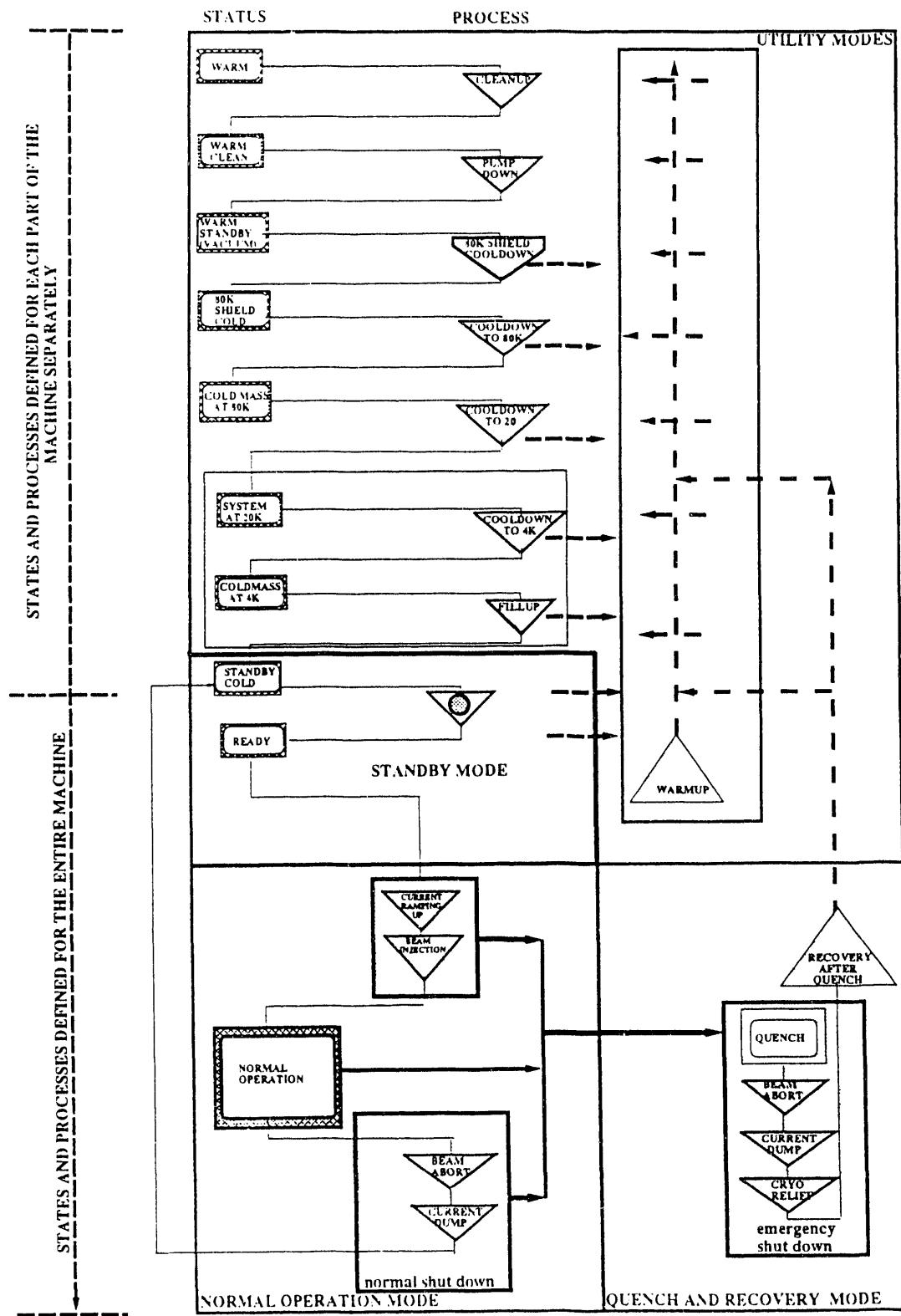


Figure 2. The System States and the Operational Modes.

Table 2. Collider Sector Fluid Inventory.

	I.D. mm	Pressure MPa	Temperature K	Volume liters	Warm clean	Warm standby	80K shield cold	20K shield at 80 K	Coldmass at 80 K	Coldmass at 20 K	Nominal mode	Quench and recovery	Gas description
LINF1-4K He feed	0.4	4.05	13.3702	21.73	21.73	21.73	240.13	49.79	966.40	18758	-	-	kg
LINF2-4K He Return	0.35	4.3	277.20	4.50	4.50	4.50	4.50	4.50	200.36	3690	-	-	kg
LINF3-GHe return	86.5	0.08	4.05	101500	16.49	16.49	16.49	182.29	733.64	-	-	-	kg
Recooler (shell)	0.08	4.05	259.2	0.42	0.42	0.42	0.42	0.42	18.73	-	-	-	kg
LINF4-20 K shield	82.6	0.3	14.28	9.5549	44.52	44.52	44.52	167	669	-	-	-	kg
LINFS-80K LN2	57.2	0.7	84	44380	49.84	49.84	34620	34620	34620	34620	-	-	kg
LINFS-80K GN2	57.2	0.14	64	44380	49.84	49.84	245	245	245	245	-	-	kg
Warm He gas return	127	0.11	300	218787	35.55	35.55	35.55	35.55	35.55	35.55	-	-	kg
total helium				123.22	123.22	123.22	245.70	679.41	2623.63	24778	-	-	kg
total nitrogen				99.68	99.68	34865	34865	34865	34865	34865	34865	-	kg
<i>HELIUM PLANT AND VERTICAL TRANSFER LINES NOT INCLUDED</i>													
Pumpout 192 half cells 22,000 liters each to rough vacuum					●	▲	●	●	●	●	●	●	kg
insulating vacuum after pumpdown = 0.013 Pa. Expected pump down time including leak check = 38 hours.													kg
Colddown the 80 K shield from 300 to 80 K (LN2 flow = 20 g/s up to nominal flow, 3-4 days/km minimum.					●	●	●	●	●	●	●	●	kg
+4.530 MJ (2.577 kJ/m) to be removed from the shield : 197.760 kJ LN2/sector (12.360 kg LN2/sector, 16 sections/sector)													kg
Colddown the 20 K shield from 300 to 20 K (20 g/s up to nominal flow),					●	●	●	●	●	●	●	●	kg
27.270 MJ (1.578 kJ/m) to be removed from the shield : First colddown is performed together with the colddown of the cold mass, approximately 22 days to colddown to 80 K. Additional 24 hours to colddown to 20 K.													kg
Coldmass colddown from 300 to 80 K (400 g/s divided into 4 strings), 22 to 23 days.					●	●	●	●	●	●	●	●	kg
8.55 E08 KJ to be removed from the cold mass :													kg
Coldmass colddown from 80 to 20 K (140 g/s divided into 4 strings) 3 to 4 days													kg
4.46 E07 KJ to be removed from the cold mass:													kg
Coldmass colddown from 20 to 4 K (400 g/s divided into 4 strings) 1 to 2 days													kg
4. E05 KJ to be removed from the cold mass:													kg
Up to 7 MJ transferred into heat, 100 kg + 4 K helium vented into the 20 K shield line. Half cell warmed up to 7 to 10 K. Time = 20 minutes.					●	●	●	●	●	●	●	●	kg
Colddown 1/2 cell (4 K, 4.5 MJ/oules/heat) + 45 minutes static load (3.2 MJ). Refill 100kg with 100 g/s = 20 minutes. Control loop activation (the whole sector) 15-20 minutes					○	○	○	○	○	○	○	○	kg
Warmup the sector to 20 K by pumping 100g/s 20 K helium (total heat = 4 E05 MJ), 10-15 hours.					●	●	●	●	●	●	●	●	kg
Colddown: the sector to 4 K (total heat = 4 E05 MJ) increase inventory by 22,000 kg, fillup with 400 g/s = 15 hours.					○	○	○	○	○	○	○	○	kg

REFERENCES

1. R. Than, S. Abramovich, V. Ganni, "The SSC Cryogenic System Design and Operating Modes."

* Operated by the Universities Research Association, Inc., for the U. S. Department of Energy under Contract No. DE-AC35-89ER40486.

END

DATE
FILMED
9/15/93

