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Abstract

This report summarizes the work performed under the LDRD “Fixture and Workcell Layout
for Reconfigurable Workcells.” This project spanned the period FY 91-93. The work in this
program covered four primary areas: solid modeling, path planning, modular fixturing, and
stability analysis. This report contains highlights of results from the program, references to
published reports, and, in an appendix, a currently unpublished report which has been accepted
for journal publication, but has yet to appear.

1 Program Impacts

Although this program has just completed, and there is follow on research required to bring many
of the results to maturity, early results have had impact on programs in the Intelligent Systems
and Robotics Center. Several projects within the DP and ER&WM programs are planning to
incorporate some of our results, particularly those that relate to planning paths and workholding.
These projects are funded to over $5M. As an outgrowth of this and related activities, we were
successful in competing for a TTI funded CRADA (with GM) which will extend some of the results
reported here. In addition, we have received some follow-on funding from the DP Exploratory
Systems Programs office. Our motion planning work, developed in part under this program has a
patent filing, and has been licensed to commercial firms for use in their products.

The details of most of the program have been reported elsewhere. In the balance of this report
we provide general context and reference to these materials. In one area there are a number of
issues that have not been previously reported, and these are contained in their entirety. In addition,
one of our major papers has not yet appeared in print, although it has been accepted for publication.
This paper is included as an appendix.
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2 Solid Modeling

Geometric modeling underlies many of the challenging problems in our approach to fixture and
layout planning for reconfigurable workcells. Because we are interested in using CAD models as
our input, we are constrained to working with the raw geometry of the parts and workcell. Existing
techniques for solid modeling are very time consuming, ruling out many approaches to the analysis
phase of the problem. We have attacked this problem by developing an entirely new approach
to solid modeling using a massively parallel processor (the Connection Machine). Although the
algorithms we developed are rooted in more traditional approaches, they are, in fact, entirely new
algorithms rather than ports of existing codes. We have coded and tested all the fundamental
algorithms required for solid modeling. While we have yet to optimize the performance of this
code, we have achieved speedups of 40 times or more the speed of far more costly supercomputers.
Advances in the Connection Machine system software have made some fairly simple improvements
now feasible. These improvements are expected to give speed improvements of 2-10, making the
overall performance of the code more than two orders of magnitude faster than supercomputer
implementations.

The results of this work have appeared in The International Journal of Supercomputing [9] and
have been accepted for publication in the ACM Transactions on Graphics [6]. In addition, a more
informal SIAM paper [10] has also been accepted. Because [6] represents a major exposition on
this work, and it has yet to be scheduled for print, we have included it as an appendix to this report.

3 Motion Planning

In the earlier portion of this program we devoted a portion of our resources to addressing the issue
of motion planning. In order to achieve flexibility in robotic workcells, it is necessary to automate
a large fraction of the task teaching that is involved in developing new applications. Currently
when a workcell layout is reconfigured, the robot has to be manually taught new “points” in order
to be able to carry out its task. Our goal has been to automate this process. The key problem
lies in the difficulty of finding collision-free paths among the parts, fixture, and assemblies in the
environment. Our investigations in this area have lead to the development of the SANDROS path
planner [3], a multi-resolution, hierarchical planner which is capable of solving motion planning
problems of realistic complexity in a matter of minutes, versus hours for previous methods. A patent
application is pending on this development. The code has been licensed to Deneb Robotics, which
has incorporated it in the robot off-line programming system, and to Silma, which is evaluating it
for the same purpose.

4 Modular Fixturing

In the latter part of the program we shifted our focus from the workcell layout issues to fixturing and
related topics. In fixturing, we concentrated on using modular fixturing to hold workpieces. The
advantages of modular fixturing are well established: easy re-use of components, rapid assembly



of fixturing configurations, and life-cycle economics. The difficulty in using modular fixturing
systems has been in designing the fixtures themselves. With the much more limited scope of fixture
elements, and a more constrained mounting system, fixture design can often be a time-consuming,
trial-and-error process. We have developed a technique for designing optimal fixtures from a
geometric description of the part to be held. Although the algorithm is currently limited to planar
components, extension to the full 3D components is planned. The benefit of the algorithm is that
it allows arbirtary design metrics to be easily optimized over the set of possible designs. Unlike
manual methods, in which the search is ad hoc, and fixture quality is unknown, our methods allow
the fixturing kits to be used to their greatest benefit. This work is reported in [2].

5 Stability Testing

In this final section we discuss research conducted on the stability testing problem for objects in a
gravitational field. This work was still in a preliminary stage at the conclusion of the project. It
appears to be a promising avenue for future study, and we hope to find support for its continuation.
The balance of this section is a detailed report of our work to date, as this material is not ready for
general publication, and hence has not been recorded elsewhere. We begin by defining the problem
and the goals of the study. We then discuss the state of the art, indicate errors in the seminal work
in the field, give corrections where possible, and discuss promising directions for future work.

5.1 Problem Definition and Goals

Consider an industrial setting where a single robot arm is constructing an object. The robot places
each piece in turn. It is critical that each intermediate step of the construction be stable under the
force of gravity or the subassemblies will fall down and the task can never be completed. The
goal of this research was to learn the state of the art in stability testing for sets of 2-dimensional
polygons and 3-dimensional polytopes in a gravitational field and to contribute to the state of the
art in efficiency and/or capabilities.

5.2 Previous Work

In this section we summarize the work of Palmer and Mattikalli et. al. This is not a complete
survey, but indicates some of the most recent advances. Other extremely recent results are not
included in this report at the authors’ request.

The seminal work in the area of stability testing is Palmer’s PhD thesis [8]. He considers the
computational complexity of motion detection and stability testing of 2-dimensional polygons in
the plane both with and without friction. More specifically, he considers the following problems
and obtained the following results:

e Infinitesimal mobility: is there a set of instantaneous velocities for a configuration of polygons
which corresponds to a feasible motion? A feasible motion is one where no polygon intersects
another. In the infinitesimal context, this means that in places where two polygons meet, no



point in the contact region is moving toward the interior of either polygon. Palmer shows
this problem is NP-complete.

¢ Translational mobility: Is there a real feasible translational motion for a given configuration
of polygons? A real motion has at least one pair of polygons changing relative positions and
has at least one polygon moving a finite (not infinitesimally small) distance . This problem
is shown to be NP-complete.

o General mobility: Is there a real feasible motion for a configuration of polygons? The
NP-hardness result for translational motion applies since translation is a subclass of possible
motions. There is no upper bound given.

¢ Infinitesimal instability: Is there an infinitesimal legal motion? This corresponds to potential
instability. This problem is NP-complete both with and without friction. There appear to be
errors in the proof of the upper bound for the case with friction (see below).

e Stability: is the configuration guaranteed to be stable? This problem is CO-NP-hard both
with and without friction.

o Potential stability: Is it possible that the configuration is stable? Does there exist a set of
forces that satisfy the conditions for stability? This problem can be formulated as a linear
program and therefore is in P both with and without friction. This means that the complement
of the problem, guaranteed instability, is also in P.

The NP-hardness results for infinitesimal mobility, translational mobility, and potential insta-
bility are clever and correct and provide insight into the computational complexity of the problems.
The hardness results hold even for convex polygons. They should not discourage the practitioner,
however. The result depends upon the existance of lots of polygons that are fixed in space and
disjoint from the boundary. This would imply an assembly where there are a significant number
of grippers (eg. half of all polygons in grippers). The hardness result also depends upon point
contacts and ill-defined normals, as pointed out by Palmer and others [7]. These contacts can be
eliminated in a natural way by assuming there is a tiny, but finite, edge of contact (for the 2D case,
finite area for 3D). Palmer states that by disallowing such contact points, the infinitesimal stability
problem for frictionless configurations can be solved with a linear program. Each such contact
point gives rise to a constraint of the form ¢; V ¢;, where ¢; and c; are linear inequalities. If there are
no OR connectives, the constraints form a regular LP, and if there are only a few such points (say
k), one can enumerate over the 2* possible linear programs formed by choosing either constraint
c; or constraint ¢; to be true for each such contact point.

Mattikalli et. al. [7) consider the problem of stability testing for 3-dimensional frictionless
bodies. They assume a finite area of contact to avoid the ill-defined normal problem so a linear
program solves the infinitesimal stability problem (if an assembly is infinitesimally stable then it
is stable). For an assembly to be stable, all feasible motion directions (those that do not result in
interpenetration) must result in an increased gravitational potential energy (otherwise the system
will lose gravitational potential energy resulting in kinetic energy, ie. gravity will cause motion).



Mattikalli et. al. go further than simple stability testing, however. They find a stable orientation
of the assembly, if one exists. If none exists, they find the “most stable” orientation, which
corresponds to the minimum decrease in gravitational potential (for fixed-norm velocities). It
corresponds to a minimum motion. The algorithm in [7] searches for the most stable orientation
using linear programming in the inner loop. The authors later discovered how to find the most
stable orientation with a single linear program [1].

5.3 A Technical Comment on the work of Mattikalli et. al.

This section derives an equation used by Mattikalli et. al. to model non-interpenetration constraints.
These equations are approximations that are true only infinitesimally.

Mattikalli et. al. define a virtual displacement of the ith body as ép; = (ér;,60;), where
éri,60; € R3. The vector ér; is the translational motion of the body and vector é6; represents
a rotation of magnitude |66;| about the center of mass. The direction of 40; indicates the axis of
rotation. The motion ép,, = (érn,6,,) for body m produces a motion éa,, for a point a on m.
If c,, denotes the position of the center of mass of body m in a global reference frame and p, is
the displacement from c,, to point a, then they claim that the displacement éa,, is given by the
following equation: dam, = érm + (60 X pm). To see where this comes from, consider the motion
illustrated in Figure 1. The translational portion 67, adds on directly. We now consider a small
pure rotation about the center of mass within the plane of the page (so 60, is directed out of the
page). We rotate through an angle of size |66,,|. For |66,,| sufficiently small, we have

ba, = |pm|tan|é6,,|
N lpml 1661,

since for § — 0 we have tan@ = 6. The cross product 60,, X pn has the correct direction. The
two vectors are at right angles and the right hand rule gives a vector that is tangent to the circular
motion (the da,, direction shown in Figure 1). The magnitude is given by

160, X pm| = [60m]|pm|sin(7/2)
166m] |pm]

r|bam|

5.4 Errorsin Palmer’s thesis with corrections

This section serves as a guide for others who want to study the computational complexity of
polygon motion and stability using Palmer’s thesis. Although errors/corrections will stand alone
wherever possible, the reader will sometimes need a copy of the thesis. Errors are addressed in the
order of their appearance in the thesis. There are many typographical and labeling errors, some of
which change the meaning of sentences. A reader who is on guard will notice most of these. Such
errors are addressed here only if they took a substantial effort to correct.
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Figure 1: The motion of a point on a body can be derived from the motion of the total body. Here
we assume the motion is a pure rotation in the plane of the page.

e The proof of lemma 3.1 (page 15) seems incorrect. The lemma states that any velocity
with both translational and rotational elements can be converted to an equivalent motion that
is purely rotational about an appropriate point in the plane. Velocities are represented as
(z,y,w) where z is translational motion in the z direction, y is translational motion in the y
direction, and w is a rotation. This motion is for a polygon’s frame of reference (translation
of the center of mass and rotation about the center of mass).

Palmer first computes a point with zero velocity. Equation 2.11 gives the following value
for the velocity of a point with displacement (z,,y,) within a polygon’s reference frame:

v, = (2'(to) — ypb'(20),y'(to) + z,6'(t0)),

where v,, is the velocity of the point, z(%y) is the x translational velocity of the polygon
at time to, y'(to) is the y translational velocity of the polygon at time ¢y, and 6'(¢o) is the
rotational velocity. Equation 2.11 also has subscripts to indicate a polygon F;. The equation
assumes 8(to) = 0 where 0(t,) is the angle of the reference frame with respect to the global
reference frame at the initial time ¢o. This assumption is not explicitly stated in the lemma
or its proof, but it should pose no problems.

Representing velocity as (z,y,w) gives z'(to) = z, y'(to) = y, and 6'(¢o) = w. Substituting
into equation 2.11 gives v, = (z — wyp, ¥ + wz,). Setting each component of v, equal to
zero (to find a point of zero velocity) then yields ¢, = —y/w and y, = z/w. These are the
negations of the values given in the proof of the lemma.




Later in the proof, there are more algebraic errors. On page 16, after substituting ¢ = 0 into
equation

M'(t) = (z.(sin(wt) — y, cos(wt))w, —y,(sin(wt) — z, cos(wt))w,w),

the result should be M'(O) = (—&,y,w, T,Y,w,w), not (—y,w, —z,w,w) that is claimed. Of
course, substituting in the correct values of z, and y, (the values of z, and y, computed
above) clearly does not give back (z,y,w) as required. These algebraic errors may be
correctable.

Theorem 3.3 uses Lemma 3.1 to prove that checking the endpoints of edges of contact
suffices to verify the whole edge. The proof is not convincing because too many pieces
are explained informally (eg. there is no discussion of what the pure rotation means for the
edge in question. Perhaps more illustrations would help), and calculations are passed off
as “elementary calculus” or “straightforward”. It is plausible that a more convincing and
simpler proof could be built from the fact that the position of each point on the edge is a
convex combination of the positions of the endpoints at all times.

On page 22, the reference to equation A.11 should read 2.11. The variable x; means the
x velocity of polygon P;, w; is the rotational velocity of polygon P; and so on. There’s a
blatant typographical error near the bottom of the page, where (n — ny)- << 0 should read
(n—mn3)-€¢2>0.

On page 23, there is the following claim: “Since any real feasible motion has an infinites-
imally feasible velocity, this [the result that infinitesimal mobility is in NP] shows that the
complement of the mobility problem is in NP, and thus that the mobility problem is in
CO-NP”. There are two problems with this statement. First, Palmer distinguishes between
infinitesimal mobility and general mobility where there is a real feasible motion. Therefore,
there must be cases where there exists an infinitesimal motion, but no real motion (all exam-
ples we’ve seen, including the one on page 63, are somewhat artificial and depend upon point
contacts). Thus the “no” cases for infinitesimal mobility do not cover all the “no” cases for
general mobility, and complexity results for the former problem cannot be directly applied
to the latter. The second problem is that infinitesimal mobility is shown to be in NP, but that
does not imply that the complement is.

Given that a thesis on computational complexity will be read by computer scientists as well
as physicists, a more intuitive description of a conservative field (p. 40) may be more
appropriate. For example, an equally valid definition is that a force is conservative if the
work done in moving a particle between two points depends only upon the two points and
not upon the path taken.

Part of the proof of lemma 4.1 is incorrect. Lemma 4.1 states that reactive forces can be
considered to act only at points of node contact. The proof replaces a torce f, acting in the
middle of an edge by a pair of forces (one at each endpoint) that have the same effect. More
precisely, fi = [L/(ly + 1)) f, and f> = [li/(ly + [2)] f», where force f; is applied at endpoint



n; a distance /; away from the original point of application (similarly for f;). The proof of
no introduced torque is incorrect. The following proof shows that the torque about point p in
Figure 4.1 is zero (as it was originally). The torque from force f| has magnitude [, | f,|sin §
where [, is the distance from point p to point n, where the force is applied, and 6 is the angle
each of the parallel forces makes with edge e. The magnitude of the torque from force f,
is Iz | f>| sin(180 — @) and the direction is exactly opposite the direction of the torque from
force f,. Therefore the resultant torque has magnitude

. - Lz |fol . L |f .
l 6 —1 g = ——=Upl _ 2epl
1| fi] sin 2 | f2|sin L sin 6 L sin 0
= 0

e Theorem 4.2 (Virtual work) is stated without proof because “any introductory text in physics
or mechanical engineering contains a development of these methods”. Unfortunately, it can
require substantial effort to locate a good discussion of virtual work if one does not have the
specific reference cited in the theorem. An alternative text is Fanger [4]. To provide a little
intuition, a negative instantaneous work (power) within a gravitational field corresponds to
the case where the velocities are going uphill or the force of friction resisting motion is more
than enough to counteract gravity (and is counted as full strength in the calculations). Fanger
does not provide a proof of the theorem.

o In the equations on page 45 (and later in chapter 4), it appears that MIcm(i) is used to denote
the moment of inertia about the center of mass for polygon ¢, though in chapter 2 when
notation was defined, that quantity was to be represented as Icm(i). The reader could then
mistakenly believe that the mass itself appears in the equations, which would make no sense.
The equations for rotational work are not directly derived in Haliday and Resnick[5], the
primary physics reference. In that text angular work is derived as an integral over 6, not time
t.

e The fourth type of constraint in the LP formulation of frictionless potential stability appears
wrong. These constraints imply that if vector a is the sum of two vectors a = b + c, then
—a = d + e where vector d is perpendicular to vector b and vector e is perpendicular to vector
c. If this is true it needs a proof. The constraint can be formed correctly, however, by using
the original formulation f,, = ¢;N(e;) + caN(ei41). The normals are known and the c; are
unknown. This has the disadvantage that there are now variables that do not correspond to a
force or velocity.

e On page 56, the formulation of stability with friction as an instance of the constrained max
scalar product problem appears incorrect. The length-2m vectors V; and V, are defined such
that components 1,...,m are zero in vector V, and components m + 1,...,2m are zero in
vector V;. Thus, no matter how values are assigned to the forces and velocities, the scalar
product of V; and V, will be zero.



e The proof of lemma A.5 is incorrect. This lemma states that the constrained maximum scalar
product problem is in NP. The lemma is true, but requires a different proof. The constrained
maximum scalar product problem is defined as follows (p. 73-74): Given (V}, V,, F'), where

1. Vj and V; are equal sized vectors of variables,

2. F is a formula consisting of the connectives AND and OR and base terms ¢; where
each ¢; is a linear inequality in the variables of V = V; U V, with rational coefficients,

the solution is a pair of vectors X; = (z11,...,21k) and X; = (z2),...,72) where X, X3 =
(Tity.--yTiky T21,5- .., T2k) iS an assignment of rational numbers to the variables of V that
satisfies F' and maximizes X, - X,. It’s a laborous way of saying assign values to two vectors
so as to maximize their scalar product subject to contraints on the components of the vectors
that are linear inequalities with and’s and or’s.

In the proof given in the thesis, first the constraints to be satisfied are guessed. Itis claimed that
this yields a 2k-dimensional convex space S = S; U S, where S| has the last k components
all zero and S, has the first £ components all zero. Space .S is not convex since any nontrivial
convex combination (as; + ((1 — a)s;) for0 < a < 1, 51 € S and s; € S3) has nonzero
terms in all components. The convexity is not critical, so this is not the main problem with
the proof. The proof then claims that any optimal solution will be at extreme points of both
the S; space and the S, space. Both the form of the space S and the claim that optima are
simultaneously extreme points of Sy and 5, require that no constraint involves variables from
V) and V; simultaneously. Otherwise, fixing the variables in vector V) gives a new polytope
that may have different extreme points for V5 than the original (for example if both vectors
are length 1, the original polytope defined by choosing inequalities to be satisfied gives a
convex 2D polygon. Fixing one variable correspords to picking a line. If the line does not
pass through a vertex of the polygon, then the restricted extreme point for the second variable
is not the same as the originai. It is possible that redefining the problem to disallow such
constraints may allow this proof to go through.

Here is a proof of the fully general problem as defined (allowing interacting constraints).
First we guess the constraints to be satisfied and verify that this assignment of true/false to
the clauses yields a satisfying assignment (i.e., that the and/or structure of constraints F is
satisfied). We then need to solve the problem of maximizing X - X subject to a set of linear
constraints. This is an instance of quadratic programming that Vavasis[11] proved is in NP.

5.5 Directions for Future Research

There are several potential directions for future research. One possibility is to improve the efficiency
of what is currently done. The stability test must be solved at each step of the assembly. The linear
program for each successive step will be similar to the preceeding one. Furthermore, we know
that each preceeding step was stable. This structure could provide insight that will speed up the
processing at each stage.



Another, more useful, direction to pursue is to add friction to the current models. This is more
difficult, but real systems have friction. It has been claimed that an assembly that relies upon
friction for stability has a fragile form of stability, but with appropriate tolerances built in, this
would provide many more potential assembly steps (including some that may be much easier to
program a robot for).

A third direction of research is sensitivity analysis. If an assembly is stable, where is it’s
weakest point? What is the smallest force needed to topple the assembly and where should it be
applied? This only makes sense in the case with friction. This analysis can help plan approaches
for the robot hand (to avoid danger spots) or help to plan fixturing.
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Abstract

Solid modelling underlies many technologies that are key to modern manufacturing. These range from
CAD systems to robot simulators, from finite element analysis to integrated circuit process modelling.
The accuracy, and hence the utility, of these models is often constrained by the amount of computer time
required to perform the desired operations. In this paper we present, in detail, an efficient algcrithm
for parallel intersection of solids using the Connection Machine, a massively parallel SIMD processor.
We describe the data-structure for representing solid models and detail the intersection algorithm, giving
special attention to implementation issues. We provide performance results, comparing the parallel
algorithm to a serial intersection algorithm.

1 Introduction

Solid modelling is the representation of and reasoning about physical objects. It underlies many aspects
of computer aided design and analysis, physical process simulation, robotics, computer vision, and other
tasks. Computational experiments using analogues of real processes applied to computer representations
of physical objects reduce the need for costly and time-consuming experimentation and prototyping of
preliminary designs. These comnutational experiments often require substantial amounts of computer time.
Reducing this time allows more design alternatives to be examined in greater detail. This results in better
products faster. This paper describes techniques that enable the use of massively parallel computers to
provide faster solid modelling procedures.

A great deal of theoretical and practical work has been done in solid modelling. The Production
Automation Project at the University of Rochester produced much of the foundation of contemporary solid
modelling [12, 14]. Solids are most often represented using three fundamentally different schemes:

Constructive Solid Geometry (CSG) describes a solid as an algebraic combination of primitive solids
using set operations;

Volumetric decomposition describes a solid as a disjoint union of simple solids.

*This work was supported by the U. S. Department of Energy under Contract DE-AC04-76DP00789.



Boundary representation describes a solid by enumerating the zero-, one-, and two-dimensional boundary
sets.

Early, but still comprehensive, surveys of solid representations and solid modelling systems that use them
are found in [13, 15].

Set operations are of fundamental importance for all three kinds of representation because it is often
convenient to create the representation of complex solids using set operations on simpler solids. Furthermore,
many queries of solids can be easily phrased using set operations. (For example, interference detection
is formulated as an intersection problem.) For these reasons, algorithms for set operations and their
implementations have received a great deal of attention [9, 16, 5, 18, 17]. Independent of the basic
representation, all known set-operation algorithms require boundary representations (or implicit computation
of the boundary). These set-operation algorithms require large amounts of computation time for two reasons.
The algorithms are inherently complex and need to deal with many special cases; this alone leads to long
computation times. In addition, the computation time is necessarily a function of the size of the result, and
interesting models tend to be large.

Parallel computation is often seen as a panacea for time-consuming computations since it offers a
way to increase the amount of computation power available as problem sizes increase. Special-purpose
parallel computers have been built for modelling-related applications in computer graphics (e.g., [31), but
have not been shown to be useful for solid modelling applications. These computers have been designed
primarily to assist in the rendering of computer graphics images and not for the manipulation of the
underlying representation of the geometric objects. A specialized parallel architecture for manipulating
CSG representations has been built in prototype versions [7]. This approach shows promise for certain
modelling applications but not enough experience is available yet to form a judgement. Recently a parallel
architecture and related algorithms for solid modelling have been proposed [10]. The technique described
uses load-balancing to distribute the work over a small number of very powerful processors and so does not
appear to be scalable with problem size. Another algorithm for polyhedral intersection using load balancing
is presented in [11]. This algorithm is also restricted to polyhedra with manifold boundaries.

Theoretical results in computational geometry have attempted to address some of the simpler geometric
problems in solid modelling [2, 1, 4]. Singular configurations are frequently ignored in these treatments,
yet must be addressed in practical applications. (Edge-edge and edge-vertex intersections are examples of
singular configurations. In general, singular configurations are those cases in which two solids intersect in
such a way that small perturbations in location changes the topology of the boundary of the intersection
solid.) More limiting are the models of parallel computation used to derive these results — they rarely
correspond to physically realizable architectures.

In an earlier paper [19] we presented an overview of the techniques we developed for parallel solid
modelling, including very efficient algorithms for generating primitives, and for rigid transformations. By
utilizing DeMorgan’s Law, we need only implement two of the four set operations. We chose intersection
and complementation. Qur parallel representation allows very efficient and simple implementation of
complementation, which was also covered in [19].

In this paper we present the data-structure for representing solids and discuss in detail the intersection
algorithm. We explicitly address the issues of algorithmic complexity, singular configurations, and realistic
machine models. We have implemented this algorithm on Thinking Machines Incorporated’s Connection
Machine-2 in *lisp (pronounced “star-lisp”’) and discuss implementation issues as well as the general design
of the parallel algorithm. We also present results comparing performance with serial algorithms.

In the next section we define what we mean by solids, how solids are represented on computers by
their boundaries, and how we store the representation on the Connection Machine. We follow with a




section describing the Connection Machine architecture and certain details regarding our programming of
the machine. The remaining sections describe the intersection algorithm, with each section corresponding to
a major section of the code. We begin with the mainline routine, which gives an overview of the algorithm,
then proceed through the major phase- of constructing the intersection solid. After the algorithm is presented
we provide performance comparisons between our parallel code and a serial algorithm on a supercomputer.

We have adopted a number of stylistic conventions to (we hope) simplify the reading of this paper.
Rather than dwell on identifying which processor carries out an operation, we will refer to a piece of
data performing the operation. For example, we might describe an operation in which an edge calculates
its tangent. Thix of course really means that the processor containing the data for the edge performs the
computation. Unless it is ambiguous as to which processor is meant, we will use this smoother style of
description. Because this paper is intended to give an in-depth description of a fairly complex algorithm,
we have adopted a technique used by Knuth [8] to clearly identify sections that might well be skipped on a
first reading. Paragraphs marked by the dangerous bend sign
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contain material that describes some subtle aspect of the algorithm which, while important to implementation,
breaks up the flow in understanding the overall algorithm. These sections may be safely skipped on a first
(or even second) reading. Paragraphs marked by the double dangerous bend
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are somewh=t more obscure than those marked with a single symbol. What was said for the dangerous bend
paragraphs goes double here. Finally there are paragraphs marked by a little Connection Machine symbol

which contain material that is specific to implementation on the Connection Machine, or a very similar
architecture. These may be skipped if you are interested only in the more general problem

2 Defining Solids

A physical object is represented by a “solid,” an object whose boundary consists of planar pieces. (Physical
objects whose boundaries have curved surfaces can be approximated using planar facets.) A solid can be
described by the planar pieces, called faces, the line segments where faces meet, called edges, and the
points where edges meet, called vertices. The descriptions of complex solids are often formed by combining
simpler solids using operations such as union, intersection, and difference.

A boundary representation (B-rep) is an organized enumeration of the vertices, edges, and faces of a
solid. Practical computations on solids operate on the b-reps of the solids. A face f of solid § is a two-
dimensional set on the surface of S. Disconnected faces are allowed as shown in Figure 1. The interior of the
solid, Interior(S),is below f. More precisely, if f is contained in plane P(z,y,2) = az+by+cz+d =0,
then Below is the half-space defined by {(z,y,z) : P(z,y,z) < 0}, and for every neighborhood Nbhd of
every point of f, Nbhd N Below N Interior(S) is non-empty. Plane P is called the oriented plane of f,
and the vector N = (a, b, ¢) is called the (outward) normal to f. Note that if () is the plane coincident with,
but oriented opposite to P then the face contained in @) is distinct from f. The edges of a solid are the line
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Figure 1: Vertex, edge, and face of a solid.

segments defined by the intersection of two or more faces, and the vertices of a solid are the points defined
by the intersection of three or more faces. (See Figure 1.)

The relationships among the vertices, edges and faces are called adjacencies. Given a face f,
BoundaryOf(f) is a set of edges and vertices; given an edge e, Bounding(e) is a set of faces. Sol-
id modelling operations require efficient access to all the boundary elements adjacent to a given boundary
element. For this reason, serial implementations of boundary representations generally use (complicated)
multi-linked data structures that provide access while insuring consistency and reducing memory usage.

The Star-Edge data structure [6] is typical of such serial boundary representations. An edge e with
initial vertex v and terminal vertex v can bound many faces. For each adjacent face f, it is necessary to
describe whether the interior of f is to the right or left of e. This is implemented using directed edges
e}’ and €. A directed edge, or d-edge (rthymes with hedge) is the fundamental entity of the Star-Edge
representation. D-edge e}L exists if the interior of f is to the right of €, e exists if to the left. (We say that
d-edge e}* is positively oriented and €5 is negatively oriented.) More precisely, if N is the outward normal
of f, then e}' exists if (v — u) X N points from the interior of e into the interior of f. Similarly, €} exists
if (u — v) x N points from the interior of e into the interior of f. Directed edge e"; has InitialVertex u
and TerminalVertex v. Directed edge € has Initial Vertex v and Terminal Vertex u. The Tangent vector of
ad-edge is (T'erminalVertex — InitialVertex) The FaceDirection vector of a d-edge is Tangent X N.
We denote a d-edge with unspecified orientation as €}; the subscript is omitted when the face is unspecified.
Edge e is referred to as the underlying edge of all the ef.

The d-edges of an edge e are ordered by radially ranking their face direction vectors on a plane
perpendicular to e. (See Figure 2a.) Likewise, the d-edges incident to a vertex v and contained in a face
f are ordered by radially ranking their tangents in the plane of f. (See Figure 2b.) If the interior of the
solid lies between two adjacent faces, we refer to the two faces as a volume-enclosing pair. (If there are
only two faces in the entire radial ordering, we need to specify which face is “first” and the direction of the
ordering to determine whether a pair encloses volume.) We also refer to two adjacent d-edges of a face as
volume enclosing if the interior of the face lies between the two d-edges. (The added complication of these
orderings can be omitted if the domain of the representation is restricted to manifold solids. This restriction
is common in modellers, but severely constrains the use of the modeller, particularly in the intermediate
steps that are encountered when building a complex solid through set operations on more basic solids.)

The key adjacency relationships of the Star-Edge representation are shown in Figure 3. The Star-Edge
representation is conceptually straightforward, yet its realization as a data structure is complicated and
difficult to implement and maintain efficiently.
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Figure 2: (a) Radial ordering of faces around edges; (b) Radial ordering of edges around vertex.
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Figure 3: Adjacency relationships in the Star-Edge boundary representation.

3 The Connection Machine

The data-structure and algorithms we describe in this paper were designed for, and implemented on, the
Connection Machine (commonly referred to as the CM), a massively parallel processor designed and built
by Thinking Machines, Incorporated. The CM consists of up to 65,536 bit-serial processors interconnected
with a hypercube communication network. Each processor has its own memory. The CM is a single
instruction stream, multiple data stream (SIMD) architecture; a front-end processor (in our case a Symbolics
Lisp Machine or Sun 3 or 4) executes a program and broadcasts instructions that the CM processors execute
simultaneously. Conditional execution is achieved by maintaining a context flag in each CM processor.
Depending on the state of that flag, the individual processor either carries out the broadcast instruction, or
does nothing. Processors whose context flag enables execution are referred to as the active set. The CM
contains a powerful communication facility allowing communication in either regular patterns (along the
arcs of the hypercube) or general communication (arbitrary association of processais).

For problems for which 65K processors are not enough, the Connection Machine provides a virtual
processor facility. The memory of a physical processor is divided into two or more segments, one segment
for each virtual processor. The system software then automatically executes each instruction multiple



times, once for each virtual processor of the physical processor. Since the code on the front-end processor
is executed only once, regardless of the number of virtual processors per physical processor (known as
the virtual-processor (VP) ratio), and for some technical reasons relating to the internal pipelining of
instructions, the time to execute grows sublinearly in the VP-ratio. Asymptotically, the growth becomes
linear.

In our analyses of complexity, results will be given in terms of times for machines with an infinite
number of physical processors. In practice this means that the execution time of an actual problem on a
machine with a bounded number of processors grows as a step function corresponding to the multiplier for
the next vp-ratio, which is (currently) constrained to be a power of two. For our purposes we will greatly
simplify the treatment of communications time as a measure of complexity. The Connection Machine
communications can be fit into a fairly simple hierarchy. The most efficient communications are those along
the “natural” edges of the embedding hypercube. We call these “nearest-neighbor” communications. Next
in complexity are general communications of a 1:1 nature (a “collision-free” communication in Connection
Machinz parlance). Finally we have many-to-1 and 1-to-many communications. We have taken great
pains to organize data in the machine to facilitate use fi€itint meshedl possible for the required
operation. The first-class of communications is essentially constant time, regardless of machine size.
Because of the manner in which the virtual processor system is constructed, time growth is substantially
sub-linear in vp-ratio. General permutation operations require logyn time, where d is the dimension of the
hypercube. The most general communications have a more complex time behavior, but typically behave in
the same manner as the permutations, just with a larger constant. Hence, for the purposes of algorithmic
complexity, we treat communications as being constant time operations, but respect the differences in
placement in the hierarchy.

Because the Connection Machine has a SIMD architecture, programming is facilitated through a data
model in which each processor has its own copy of a variable, each copy of which may have a different
value. These are called parallel variables, or pvars. A pvar may be of any data type, such as float or integer,
or may be a data structure. *lisp programming convention is to suffix a variable name with !! to denote a
pvar. *lisp functions that return pvar values are also suffixed with !!, while those that return scalar values,
or no values, are prefixed with a *.

m Communication on the Connection Machine is handled using the *pset, pref!!,
nl news!!, and *news operators. *pset and pref!! allow communications between
arbitrary nodes in the network, while the news!! and *news are for regular communications
along the edges of the network hypercube. pref!! and news!! read data from another
processor, while *news and *pset place data in another processor. Because the *pset and
pref!! allow arbitrary communications patterns, there is the possibility of “collisions” in
reading or writing the data. The router software handles these collisions automatically.
However, if a given communication can be guaranteed to be collision-free, the router can
operate more efficiently. Hence there is substantial value to arranging “collision-free”
communications. The efficiency of the *pset and pref!! operators is not the same; *pset
is much more efficient that pref!!. (’tis better to give than receive.) Complicating matters,
the reverse is true for the structured nearest neighbor operators news!! and *news. The
upshot is that it pays to structure the data in a manner that insures the communications can
be carried out efficiently. Hence, there are times when it may appear more natural to read
from another processor, but through a little effort and planning a write can be used instead.
Pseudo-code descriptions of *lisp procedures given in the remainder of this paper will
simplify the somewhat painful *lisp syntax. Rather than write



(*pset :no-collisions source!! destination!! address!!),

which means “send the value of the pvarcalled source!! to the pvar called destination!!
at processor numbered by address!!, with no collisions expected”, we will write

*pset source!! to destination!! at address!! {noCollisions} .
Instead of writing

(*set destination!! (pref!! source!! address!!
:collision-mode :collisions-allowed)),

which means “read pvar source!! from processor numbered by address!!, with colli-
sions expected, and store the result into pvar destination!!”, we will write

destination!! = pref!! source!! at address!! {collisionsAllowed} .

H@ *lisp contains a scan!! which is analogous to the reduce operator in Common-Lisp

or APL. Instead of operating on a vector or sequence, though, scan!! operates on
the instances of a pvar distributed across the machine. For example, if a!! =0, 1,2, ...
on processors 0, 1, 2, ... respectively, then scan!! applied to a!! with operator +!! results
in processor ¢ containing the sum of the integers from zero to 7. *lisp also supports a
segmented-scan capability. The scan can be broken into multiple segments, with each
segment operating independently of the others. That is, data does not flow into or out of a
segment. Thus in the scan!! +!! example, if we were to put a scan-segment boundary at
5, the value of the scan!! on processor 4 would be 1+2+3+4=10, while it would be 5 or. 5,
54+6=11 on 6, and so on.

We often wish to rank many independent clusters of data. We would like to do this
17 simultaneously for reasons of efficiency. We achieve this goal by prefixing the rank
key with a cluster identifier.

T Several parts of the algorithm deal with radial orderings, e.g., the d-edges of a face
I f incident to a vertex v are radially sorted around v on the plane of f. We will
often want to scan information around the ordering. We do this by using a scan to copy
the processor number of the lowest ranked object to the highest ranked one. Then we use a
collision-free *pset to send the data of interest from the highest ranked object to the lowest
one, completing the circularity. Finally, another scan propogates the data values.
Just as we segment scans, we can segment circular scans to do many independent,
circular scans simultaneously.

m Many steps in our algorithm rely on ranking the data according to some pvar. The

I *]isp rank!! operator provides direct support for ranking a pvar across all active
processors. The rank!! operator returns a value from 0 to (number of active processors)
based upon a key of arbitrary, but specified length. We extended the language to include
multiple key ranks by the simple expedient of concatenating the bit fields together. We also
created extensions that return tie values based on an e criterion for floating point keys. These
extensions are implemented via macros, not through actual extensions in the underlying
CM assembly language. Once ranked, we frequently reassign data to different processors
tc allow nearest neighbor (news) communication among consecutively ranked items, or to
permit scan!! operations that occur in the rank order.



Although we describe our algorithm in terms of Connection Machine idioms, any massively parallel
SIMD machine with a virtual processor facility, nearest neighbor communication, and independent processor
context-selection flags can be programmed to perform this algorithm.

4 A Parallel Data Structure for Representing and Manipulating Solids

Efficient parallelization of algorithms depends on providing, at as low a cost as possible, each processor
with the data needed to carry out the computations assigned to it. Unlike serial machines on which all data
in “memory” has the same access cost, parallel machines can incur a large penalty for accessing data in
another processor’s memory. Therefore, data structures that are efficient for algorithms on serial :nachines
may turn out to be very inefficient for parallel ones. The traditional linked data structures that represent
solids on serial machines are a case in f »int.

Massively parallel architectures like the Connection Machine achieve maximum performance on large
sets of independent, identical computations. This uniformity can be attained by homogeneous data repre-
sentation. Rather than describing vertices, edges, and faces with linked data structures, we use a single
distributed data structure, called a parallel d-edge.

The fields of a parallel d-edge are:

o Initial Vertex o Edge
- Label — Label
—~ Coordinates - Successor
-~ Successor e Face

o TerminaiVertex - Label
~ Label - Normal
- Coordinates - Distance
~ Successor e SolidLabel

For example, if the faces of the solid are labeled 0,. .., F, then FaceLabel is simply the number assigned
to the face of this d-edge. In the previous section we showed that d-edges are radially ordered around vertices
and edges. Let the d-edges of a solid be labeled 0,...,D and let €* be a d-edge. Then EdgeSuccessor is the
label of the radially counterclockwise d-edge around its edge e, Initial VertexSuccessor is the label of the
d-edge of f that is radially counterclockwise around the initial vertex, and TerminalVertexSuccessor is the
label of the d-edge of f that is radially counterclockwise around the terminal vertex. The equation of the
plane of f is represented by FaceNormal, the unit outward normal, and FaceDistance, the signed distance
of the plane from the origin. Each d-edge of a solid is represented as a parallel d-edge, with one parallel
d-edge per processor. A d-edge’s label corresponds to the name of the processor containing the d-edge. For
example, a cube is defined by 12 edges and 24 d-edges, and so 24 parallel d-edges (hence 24 processors)
are used to describe the cube.

This data structure allows us to easily associate a processor with each entity of the solid, providing a
natural assignment of work among processors for certain tasks. For example, solid modelling computations
often require other information about d-edges, such as d-edge tangents, face-direction vectors, and so on.
Parallel d-edges allow such quantities to be computed without interprocessor communication. The tangent
is computed from a parallel d-edge as




Tangent!! = €*.TerminalVertexCoordinates!! — e*.InitialVertexCoordinates!!

Contrast this with the calculation for the serial representation which requires accessing a total of four
instances of three different data structures:

e = EdgeO f(e*)
if €* is oriented with e then
TerminalVertex = e.TerminalVertex
InitialVertexr = e.InitialVertex
else
TerminalVerter = e.InitialVertex
InitialVerter = e TerminalVertex
end if
Tangent = Coordinates(TerminalVertex) — Coordinates(InitialVertex)

Solid modelling algorithms also require the selection of boundary elements that satisfy certain require-
ments. When calculating the intersection of two solids, for example, we need to select the d-edges of a
given face f. In the serial algorithm this requires iterating through several data structures. In cont.ast,
computation on a massively parallel processor is doie by selecting a set of processors for a calculation
and then performing the calculation on that set of active processors. For the example of the d-edges of a
face, selection is accomplished by activating those processors whose FaceLabel matches the given face.
Associative selection is an important property of parallel d-edges.

5 Canonically Labelling Boundary Elements for Efficient Computation

The particular assignment of parallel d-edges to processors impacts the efficiency of algorithms that use
the representation. There are several different schemes for assignment. For example, the processors can
be viewed as a spatial mesh — each processor represents a volume — and each vertex is assigned to the
processor for the containing volume. This assignment only works well if a solid’s vertices are uniformly
spatially distributed. Alternatively, because each boundary element is labelled by an integer, we can simply
assign the vertex, edge, and face labelled i to processor ¢. This assignment works well if processor 7 does
not need to operate on more than one of its boundary elements simultaneously. For example, if we wish to
enumerate the boundary elements containing point p then this assignment works well if at most one of the
boundary elements labelled i contains p.

Each parallel d-edge contains the coordinates of two vertices, the line segment of an edge, and the plane
of a face. Unless the edge labelled ¢ is described by the parallel d-edge assigned to processor i, another
data structure on processor ¢ is required. (Similarly the vertex labelled j and the face labelled & should
be described by the parallel d-edges assigned to processors j and k respectively.) Given an assignment of
d-edges to processors, we need to label vertices, edges, and faces so that additional data structures are not
needed. Furthermore, we would like to compute this boundary element labelling efficiently.

The intersection algorithm that motivates the parallel d-edge data structure requires that a boundary
element labelling have the following properties:

Uniqueness Property No two distinct boundary elements of the same type have the same label. (This is
the minimal requirement for a labelling).



Incidence Property Each boundary element is labelled by an incident d-edge.

Intersection Property Given A, a canonically labelled solid, and €2, a point, line, or plane, no two distinct
boundary elements of A with the same label have point intersections with . (For example, a plane
cannot transversely intersect an edge and a vertex with the same label.)

The importance of the uniqueness property is self-evident.

The incidence property insures that the data describing a boundary element labelled ¢ is present in the
parallel d-edge contained in processor i. This guarantees that no additional data structures are needed.

The intersection property allows a significant reduction in complexity and communications costs of
parallel solid modelling procedures. Consider the problem of labelling the vertices of a solid C' formed by
intersecting solid A with solid B. Some of the vertices of C' are vertices of A or B. The others arise from
boundary intersections. Suppose that we need to label a vertex that is the point intersection of an edge of
A with an edge of B. If the edge of A has m adjacent faces and the edge of B has n of them, then at Jeast
n + m processors contain paralle! d-edges incident to the point. All of these processors can label their copy
of the point identically using the label (o, 3), where « is the label of the edge of 4 and 3 is the label of the
edge of B. Similarly, any point intersection of a boundary element of A with a boundary element of B can
be labelled analogously using the labels of the intersecting boundary elements. This computation can be
done efficiently, with no interprocessor communication. The incidence property of the labelling guarantees
that any other object of A labelled « is incident to edge a. A case analysis using the intersection property
shows that only one point common to both solids is labelled (a, 3).

There is a simple algorithm for computing the canonical labelling from an assignment of parallel d-edges
to processors. First label each parallel d-edge by the processor to which it is assigned. Then

1. label face f with the largest label of a d-edge of f;
2. label edge ¢ with the largest label of a d-edge of ¢; and

3. label vertex v with the largest label of a d-edge with TerminalVertex ». (One could also choose
Initial Vertex.)

The uniqueness and incidence properties of the canonical labelling follow directly. The intersection
property holds because:

1. aplane, line, or point transversely intersects an edge iff it does not contain either endpoint;
2. aline or point transversely intersects a face iff it does not intersect an edge or vertex of the face; and

3. the boundary elements labelled ¢ are incident to one another.

An example of the canonical labelling is shown in Figure 4.

W The Connection Machine router provides a simple and efficient way to compute

I the canonical labelling. One of the collision modes provided by the *lisp *pset
command is {max} — processor i receives the maximum of the data values sent to it. Using
this mechanism, it is very easy to canonically label a solid. Given a solid with faces labelled
1...F,edges1... E, and vertices labelled 1..V, the following code computes the canonical
face labelling:
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Initial Vertex.Label 15

Initial Vertex.Coordinates (1,0,0)

Initial Vertex.Successor 12

Terminal Vertex.Label 9

Terminal Vertex.Successor 8

Terminal Vertex.Coordinates | (0, 0, 0)

Edge.Label 15

SuccessorAroundEdge 15 6 2
Face.Label 12

Face.Normal 0,0, 1)

Face.Distance 0 Y
SolidLabel 6

Figure 4: Canonical labels for boundary elements referenced in d-edge 9.

*pset Processor Number!! to temp!! at e*. Face.Label!! {max}
e*.Face.Label!! = pref!! temp!! at €*. Face.Label!! {manyCollisions}

The canonical edge and vertex labels can be similarly computed.

6 Overview of the Intersection Algorithm

Calculating the intersection of two solids represented by their boundaries is a complex task, requiring many
special case tests to handle the various configurations that can arise. Thus any algorithm is, of necessity,
complex. In the remainder of this paper we sketch our parallel intersection algorithm. We begin with an
overall view of the major phases of the algorithm and then we provide a more detailed description. We hope
that this approach facilitates both a general understanding of the overall algorithm and a feel for the details.
Where appropriate, we compare or contrast our parallel approach to the more common serial techniques.
We finish with some performance comparisons between our parallel algorithm and a serial algorithm on a
supercomputer.

Figure S shows the intersection of two solids and the result of the intersection. The edges of the new
solid can be divided into three groups; part (a) of the figure shows the edges that lie on the boundary of both
input solids, (i.e., they lie on the “intersection curve” of the two input solids); part (b) shows the edges that
meet the intersection curve at one or two points; and part (c) shows the edges that lie on the boundary of one
of the input solids and are completely contained in the interior of the other. The three major phases of the
algorithm correspond to these three classes of edges. For each major phase there are numerous subcases,
depending on how the edges and faces of the input solids meet. The challenge is to find a way to arrange
the data and computations efficiently on a SIMD architecture.
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Figure 5:

(a) Phase I: Construct d-edges of the intersection curve.

(b) Phase II: Construct d-edges incident to the intersection curve. Edges that are incident to the intersection
curve are constructed by testing to see if either segment of the d-edge incident to the intersection point
lies in the interior of the other solid.

(¢) Phase I1I: D-edges of one solid that are contained in the interior of the other are identified by ray-casting
and added to the intersection-solid.

6.1 Preprocessing

Before we start identifying the d-edges of the output solid, we carry out a preprocessing step that calculates
how the d-edges of each solid intersect the planes of the faces of the other. This is carried out in our algorithm
by assigning each d-edge/face pair to a (virtual') processor, and then having that processor calculate the
intersection of the d-edge with the face. This step can be viewed as creating two matrices of processors.
Each matrix is indexed by d-edges of one solid (“rows”) and faces of the other solid (“columns”). A d-edge
can intersect the plane of the face, it can be parallel, or a projection (ray) of the d-edge can intersect the
plane of the face. Eventually we will be interested in whether those that intersect the plane actually intersect
the interior of the face, the boundary of the face, or not at all.

We construct axis-aligned bounding boxes for each solid and use these boxes to eliminate intersections
that are outside the bounding boxes.

"Throughout the algorithm we assume that the machine has enough processors. This often requires very many processors, ie.,
millions. We assume that the SIMD machine provides a means of simulating more processors than are physically available. In the
remainder of the paper we drop the modifier “virtual.”
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We classify the intersections of the d-edges with the face planes and then create a sparse-matrix
representation for the d-edge/face pairs of interest. Typically the remaining set is much smaller than the
complete d-edge/face matrix. In addition, it becomes more sensitive to output size than input size, which is
important in bounding the number of processors required for the remainder of the intersection algorithm.

6.2 Phase I — Constructing D-Edges of the Intersection Curve

The first group of d-edges of the new solid that we identify are those that lie on the boundary of both of the
input solids. (See Figure 5(a).) These d-edges are formed by the intersecting faces of the two input solids.
Recall that each processor is associated with a d-edge/face pair. Let f be a face of solid A and g a face
of B. Denote an intersection of d-edge e} with the plane of g as €} /9. The intersection points e /g and
ey / f lie along the line defined by the intersection of the planes of f and g. We reassign these intersection
points to processors whose physical adjacency reflects this ordering along the line. Communication between
neighboring intersection points along these intersection lines becomes a nearest neighbor communication,
which is particularly efficient. We then identify those regions of the intersection line that are on both
faces, and create the new d-edges that lie on the intersection curve. Determining which d-edges get built
requires analyzing many cases, depending on whether or not the faces intersect in their interiors or on
their boundaries. The key to efficient implementation is to structure the cases so that as much as possible
is in common. While this step is conceptually similar to that used in a serial algorithm, there are major
implementational differences, especially in how we use the ordering of points along the intersection line to
make the computation efficient.

When the first phase of the algorithm is complete, we have identified precisely which d-edges intersect
the faces (as opposed to the planes) of the other solid. This allows us to further refine the number of
intersection points that we carry around. This in turn reduces the number of processors required (and
hence possibly the virtual processor ratio) to one more tightly bounded by output size, and reduces the time
required for future computations.

6.3 Phase 11 — Constructing D-Edges Incident to the Intersection Curve

The seccid group of d-edges of the new solid to be identified are those that are incident to the intersection
curve at one or two points (see Figure 5(b)). These output d-edges are segments of d-edges of one of
the input solids that intersect boundary elements of the other. In Phase I of the intersection algorithm we
determined which of the d-edge/plane intersections actually intersect the solid boundary. Furthermore, we
determined whether each d-edge intersects a vertex, edge, or face. What remains to be determined is which
portions of the d-edge are in the interior of the other solid, and which are not. The most difficult of these
occurs when a d-edge intersects a vertex. This case is refined to an equivalent d-edge/edge or d-edge/face
test. The d-edge/face incidence test is simple (just a dot product). For a d-edge/edge test, we determine
if the d-edge points between a volume-enclosing pair of faces incident to the edge. While conceptually
similar to algorithms used at this stage on serial machines, the parallel implementations of the d-edge/edge
and d-edge/vertex incidence tests are necessarily quite different.

6.4 Phase III — Construct D-Edges Interior to an Input Solid

The final set of d-edges of the new solid that we identify are those d-edges of one input solid contained
in the interior of the other, as shown in Figure 5(c). These are built in a manner completely unlike that
typically used on serial machines. We can divide these d-edges into two groups; those contained in lines
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that intersect the other solid, and those that are not. For the first group, we use the results of the incidence
tests already computed in Phase 11 to determine whether the d-edge is interior or exterior to the solid. If in
the second group, it is sufficient to know whether the other input solid is unbounded.

This ray-casting approach contrasts with the methods typically used in serial algorithms. Since the
incidence tests of Phase II of the algorithm are comparatively expeusive, they are not, in general, applied
to rays. Instead, in a serial algorithm, Phase III is done using a transitive closure. It is possible that isolated
regions of the input solid boundaries cannot be classified by transitive closure. In that case, the serial
algorithm must use a ray-casting procedure to classify some point on that isolated portion of boundary.
Then another transitive closure step is needed to classify the rest of that portion. Transitive closure is very
inefficient on a parallel machine, since its execution time is proportional to the distance (in a graph sense)
of a d-edge from the closest d-edge intersecting the boundary.

Sections 7 through 10 describe the details of the intersection algorithm.

7 Preprocessing Details

The goal of the preprocessing step is to intersect the d-edges of each input solid with the planes of the faces
of the other. This computation can be viewed as constructing two matrices. The rows of each matrix are
indexed by the d-edges of one of the solids. The columns are indexed by the faces of the other. This is
shown below.

(€8/fo) | (e§/f1) | (e§/ ) (e8//n)
(e3/fo) | (e3/f1) | (€1/)2) (e}/fa)
(C:n/fo (C:n/fl) (E‘:n/fz ((:n/fn)

The first stage of the preprocessor constructs axis-aligned bounding boxes for each of the input solids.
Then the d-edge/plane intersections are calculated by building matrices containing the intersection points.
Intersection points are characterized as to how the d-edge intersects the plane. We then use the bounding
boxes then to cull intersection points. Finally, we construct a sparse-matrix representation for the surviving
intersection points.

7.1 Calculating the Bounding Box of a Solid

The bounding box of a solid is an axis-aligned box containing it. The box is found by taking the extrema of
the 2, y, and z components of the coordinates over the vertices of the solid.

:;:ﬁg The Connection Machine provides global min and max operators. The function

I smax(a!!) obtains the maximum value, over all active processors, returning a
value on the front-end processor. Using the min and max operators, the bounding box
calculation is:

*when (¢*.SolidLabel = SolidA)
ABoxMin.xz = xmin(e®.InitialVertex.C'oordinates.z!!)
ABoxMaz.2 = smax(e®.InitialVertex.Coordinates.z!!)

end when
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*when selects the active context of the Connection Machine. Thus, the first line select-
s as the active set all processors storing a d-edge of solid A. The next two statements find the
extremal values of the & coordinate of the parallel variable (pvar) e®.InitialVertex.Coordinates!!.
This operation is performed in constant time.

Serial implementations of solid modellers calculate bounding boxes of each face, and then cull non-
intersecing face-pairs by intersecting the bounding boxes. This reduces the expected time to compute the
intersection curve (Phase I of our algorithm). This is a common algorithmic strategy on serial machines —
cheap culling of most candidates, followed by expensive testing of the remainder. On a SIMD machine this
strategy increases overall computation time. In fact, we do our bounding-box calculations to reduce the size
of the virtual processor set, and hence reduce the computaticn time.

7.2 Intersecting D-Edges with Planes

In order to intersect two solids we intersect the d-edges of one with the faces of the other and vice-versa.
The first step in doing this is interesecting the d-edges of one with the planes of the faces of the other (and
vice versa, which we will stop saying now). We construct two matrices containing the Cartesian product of
the d-edges and planes of the two solids.

The matrix containing the d-edges of solid A and the planes of B is constructed using the following
procedure:

I. Allocate (number of d-edges of A) x (number of faces of B) processors for the matrix.

2. Copy d-edge i to the first column of the 7** row. This is done using the *pset communications operator
and is collision-free.

3. Use the segmented-scan operator to propagatc the d-edge across the row.

{{m? Although the Connection Machine supports two dimensional (cr higher) processor

g addressing, the size of each dimension is constrained to be a power of two. Because
our matrices do not, in general, satisfy this condition, we model our matrices as two-
dimensional arrays of data, but program the Connection Machine as a one-dimensional
array.

The plane data is placed in the array in a similar manner.

m Since we do not use the two-dimensional processor addressing, we cannot scan
""" down columns. We circumvent this by copying the planes to the first column of the
matrix “transpose.” We then scan the plane data across the rows of the transpose. Finally

we transpose the plane data in place using a collision-free *pset.

The only data we need in order to calculate the intersection of a d-edge with a plane are two endpoints
and a plane equation. Hence the (single processor) data reyairement for each matrix entry is 40 bytes.
(If a matrix entry is €*/ f, then four 4-byte floating point numbers represent the plane equation of f, and
three 4-byte floating-point represent the coordinates of each vertex of €®.) A full-up Connextion Machine
processor contains 128K bytes; A VP ratio of 1024 (which doesn’t even begin to tax the memory available)
allows matrices with 64M entries. This allows us to intersect solids with many thousands of faces.
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7.3 Characterizing the Intersection Points

Subsequent phases of the intersection algorithm require knowledge about the way in which a d-edge
and plane intersect. Each matrix element (processor) intersects its d-edge with its plane, computing an
intersection point (unless the d-edge is parallel to the plane). We classify the intersection in one of six ways
(see also Figure 6).

transverse The interior of the d-edge intersects the plane at a point.
ray The line containing the d-edge intersects the plane at a point but the d-edge does not intersect the plane.

@ Isolated vertices don’t have a second vertex to define a line. For isolated vertices we
use the ray rooted at the isolated vertex, pointing in the + 2 direction.

contained The d-edge is contained in the plane
vertex] The initial vertex of the d-edge lies in the plane.
vertex2 The terminal vertex of the d-edge lies in the plane.

extraneous Initially these are the d-edges not contained in, but parallel to the planes. This will later be
expanded.

The ray and extraneous classes are used only to determine whether d-edges that do not intersect the
boundary of the other solid are contained in the intersection-solid. As will be explained in Section 10, most
of the ray intersections are superfluous. We can identify most of these superfluous matrix entries at this
stage of the algorithm, possibly reducing the VP ratio required to perform further computations.

@ The superfluous rays are: (1) The intersection point is outside the bounding box of

the other solid. (Thus, they do not intersect a face.); (2) Either vertex of the d-edge
inducing the ray lies outside the bounding box. (The d-edge either lies outside the other
solid (.X') or intersects the boundary of .X. In the first instance the d-edge is copied to the
output solid only if X is unbounded.); (3) The intersection point lies beyond vertex 2. (We
define the ray to be rooted at vertex 1 and points backwards along the line containing the
d-edge.)

7.4 Creating a Sparse-Matrix for the Intersection Points

@ It is generally the case that a large fraction of the d-edge/plane intersections are

extraneous. By discarding them we can reduce the number of processors required
for the remainder of the intersection algorithm. At this point we construct a sparse matrix
representation of the two matrices, with each matrix element containing a d-edge and a
face. The combinatorial structure of the d-edges is obtained from the input solids, and
the intersection points from the full matrix. (Recall that the full matrix created in the
preprocessor contained only geomtric data.)

We use a segmented-scan operation to find the non-extraneous matrix entries. We
enumerate them in order to generate the addresses of the processors that will contain them
in the sparse matrix representation. With each sparse matrix entry we record the row and
column of the original matrix entry.
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Figure 6: Characterizing d-edge/plane intersections
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Figure 7: Reducing collisions in the matrix.

@ The combinatorial structure of a solid is given by the processor numbers in d-edge

fields like InitialVertex.Successor!!. Suppose the d-edge (processor) labelled ¢
in Figure 7(a) accesses a datum from d-edge j, its Successor!!. For the input solids, this is
always collision-free because every d-edge is the successor of exactly one other. In creating
the matrix representation, we create many copies of d-edge . In part (b) of the figure, these
many copies of ¢ collide when they access j. In fact there are many copies of 7 in the matrix
as well. In part (c) of the figure we show that by associating i/ f with j/f, etc., we can
eliminate the collisions. This means that in creating the matrix we have to update processor
references to refer to processors in the same column.

In creating the sparse matrix, we must guarantee that these processor references are
again updated and that they point to sparse matrix entries. Serendipitously, any pointer
reference needed by the remainder of the intersection algorithm indeed points to a valid
sparse matrix entry.

8 Phase I Details

The first major phase of the algorithm generates the portion of the output solid that lies on the intersection
curve of the two input solids. We refer to these d-edges as cross-face d-edges. In Figure 8, we show the
intersection of face f of solid A with face g of solid B. Cross-face d-edges are the result of these face-face
intersections. The endpoints of the cross-face d-edges are the intersections of the d-edges of face f with
face ¢ and vice versa. (These are the intersections found earlier in the preprocessing step).
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Figure 8: The intersection points of the two faces lie along the line [ defined by the intersection of the two
faces. Each dedge/face intersection point e% /g is marked as to whether it might begin a cross-face (¢ points
into the interior of the face of the intersection-point d-edge).

8.1 Classifying Intersection Points

Consider the line [, shown in Figure 8, defined by the intersection of f and g, and the direction 7 defined by
normal( f) X normal(g). For each intersection of a d-edge of f (respectively g) with g (f), the intersection
point lies on [, and may either begin or end a cross-face d-edge in direction ¢. Given an intersection point
% /g, we wish to determine whether the point may begin a cross-face d-edge along [ in direction t. There
are two cases:

1. If the intersection point is transverse and ¢ points into the interior of f, then it may begin a cross-face
d-edge.

2. If the intersection €% /g is at the initial vertex of €%, and €% is the d-edge that is immediatedly
counterclockwise to 2, then the intersection point may begin a cross-face d-edge. (See Figure 9.)

Intersection points that meet either of the above criteria only begin cross face d-edges if they are interior to
the face of the other solid. We show how to test this containment is Section 8.3.

@ This is not quite correct. In fact, these intersection points can also either lie in the

interior of edges of the other solid or coincide with intersection points from the
other solid. We show how to deal with the first case in Section 8.2. The second case is dealt
with by recognizing the coincidence (see Section 8.3.1) and then arbitrarily ordering the
coincident points along the intersection line. Thus only one point can appear to be interior
to the face of the other point.

The first case is dealt with by computing the sign of #. - face Direction(e}).

The second case is more complicated. If vertex v of face f lies on the plane of face g, there are two or
more d-edges of f that intersect g at v. Each of these intersection points constructs a local 2D coordinate
system in which t is the z-axis and normal( f) X t is the y-axis. Each intersection point then computes
the angle counterclockwise from the z-axis to its d-edge. The intersection point e} /g whose d-edge is the
first counterclockwise from the z-axis determines whether ¢ points into f, and hence whether v begins a
cross-face d-edge. Intersection point e} /g begins a cross-face d-edge if its initial vertex is v.
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Figure 9: At vertex u, the d-edge that is immediately counterclockwise to ¢ (on the plane of f) has an
intersection point (% /¢) at its initial vertex, and so may begin a cross-face d-edge. On the other hand, the
one counterclockwise to t at v (i} /g) intersects g at its terminal vertex, and so does not begin a cross-face
d-edge.

Intersection points that have determined whether or not they may begin a cross-face d-edge are called
classifiers. (In Figure 9 the two classifiers are i} /g and j§/g.)

Although the above procedure is described in terms of angle computation, it is unnecessary to do the
work implicit in the inverse trigonometric calculation. Because the angle is used to radially order the
d-edges, any function that provides this ordering will suffice. We use the psuedo-angle of [6]. Given a local
coordinate system with axes = and y, the pseudo-angle of a vector v is

sign(v-y)(1+v-zx).

The pseudo-angle is used every place in the algorithm where an angle is needed for creating a radial ordering.

m As described above, only vertex1 intersection points may begin cross-face d-edge:.
“I" Furthermore, each vertex1 intersection point tests to see if vector ¢ lies radially
between it and its radial predecessor (around its initial vertex). Although there is no radial
predecessor field in the paralle! d-edge data structure, a d-edge is the radial successor to
its radial predecessor. Thus in the actual implementation, a vertex2 intersection point
computes the angle and sends that angle using a collision-free *pset to its successor. This
demonstrates how (1) “back-pointers” are eliminated from the data structure, and (2) careful
structuring of the implementation allows the more efficient *pset operation to be used in
place of a pref!! operation.

In fact, there is an additional complication when an intersection point €% /g lies in
l. If tangent(e®) = —t, then e;/g behaves as a vertex1 intersection in the manner just
described. However, if tangent(e}) = t, the vertex1 intersection point that receives its
angle from e}/ g gets the wrong angle (¢} computed its angle with respect to the other
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Figure 10: D-Edges contained in the intersection curve can be oriented either with or against the curve.

Backward

vertex). This case is specially handled by the vertex! interesection point recognizing the
(impossible) angle and adding =. (See Figure 10.)

(1‘22 Isolated vertices actually are simple for once. They always begin a cross-face
d-edge.

8.2 Classifying D-Edges that Overlap the Intersection Curve

Intersection c} /g is called a contained segment if e} is (partially) contained in the intersection curve. A
contained segment may contribute to the intersection curve at most one d-edge in the plane of f and at most
one in the plane of g. The d-edge on the plane of f is built if €% is interior to ¢ and the face direction
of ¢} points below the plane of g. There is another d-edge ey. of the underlying edge that is oppositely
oriented and forms a volume enclosing pair with €}. The processors associated with these intersections
each calculate a pseudo-face-direction using the plane of ¢ and their d-edge tangent. By radially classifying
these pseudo-face-directions against the volume-enclosing pair [e}, €5,] we decide whether or not to build
output d-edges on the plane of ¢. (See Figure 11.) These intersections are also referred to as classifiers.

@ If €% /g overlaps a d-edge of face g, ¢} does not determine whether to build a d-edge
on the plane of f, as described above. In fact, e}/ g determines whether to build a

d-edge of the plane of g, and d-edge ¢}/ f decides whether to build a d-edge on the plane
of f.

g‘zg There is a special case if f and g are coincident. This special case is further broken

down by whether f and ¢ are identicaily or oppositely oriented. If oppositely
oriented, there is no volumetric overlap, and hence no d-edges to build. If the faces are
identically oriented, it is necessary to decide on which face to build the output d-edge. The
choice is arbitrary, so we always select the face (f) of solid A.

@ There is an additional complication associated with these tests. The classifier of an

intersection d-edge is the intersection point that is at the beginning of the segment
(with respect to direction t). However if a d-edge is contained 1n ! but oriented oppositely
to ¢ then this test is done at the “wrong end” of the segment. If processor e$ /g contains
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Figure 11: Edge e lies in the plane of g, and so induces two intersections €%/g and e},/g. The two
processors associated with these intersection points classify pseudo-face-directions with the plane of g in
order to determine whether or not to build d-edges on the plane of g. Here vector fd shows one of the
pseudo face-directions. The other points in the opposite direction, into the interior of the volume enclosing
face-pair.

such an intersection, it recognizes this case, and sends the result of the test, collision-free,
to ¢%,/g, the processor named by (¢§/g).TerminalVertex.Successor!!.

8.3 Finding Endpoints of D-edges of the Intersection Curve

Before we can build d-edges of the intersection curve we need to determine whether an intersection point
lies in the interior of the other solid’s face. An intersection point interior to the other solid’s face begins a
cross-face d-edge along [ in direction ¢ that ends at the next intersection point. Thus, if we sort the points
along / we can easily access all the information required to build the new d-edge.

In order to construct the correct combinatorial structure of the intersection solid, we have to recognize
that different intersection points correspond to the same vertex.

We begin by ranking the intersection points along the line [ in direction 7. In the event of ties (coincident
points), it is necessary to insure that the highest ranked intersection point of a cluster is a classifier. (Recall
that classifiers are the intersection points that can mark the beginning of a d-edge of the intersection curve.)
Because communication is much more efficient when the routing corresponds to the physical connectivity
of the underlying network, we reassign the ranked intersection points to neighboring processors.

8.3.1 Naming Vertices of the Intersection Curve

We need to insure that all copies of an intersection point are given the same name. By naming the
intersection point with the concatenation of the names of the intersecting boundary element of solids A and
B, each intersection point has a unique name because of the intersection property of the parallel d-edge
representation. This requires recognizing the boundary element of the other solid with which the point
coincides.

Recall that the intersection points have been sorted along lines of plane-plane intersection. We use
the coordinates of the intersection points to determine whether points adjacent in the rank are different.
Numerical differences between point coordinates delimit clusters of identical points (see Figure 12). We
use a segmented scan to propagate the boundary element names contributed by each input solid to each




Figure 12: The intersection of faces f and g has four clusters of intersection points. Initially each intersection
point is named by an (A-name, B-name) pair — one of the names corresponds to a face of the other solid,
and the naming procedure may refine that name to be the name of a vertex or an edge. For example, after
the naming procedure the name-pair of the first intersection point is el/e2.

intersection point in the cluster. We concatenate the computed names of the intersection points to form a
key, rank the keys, and count off the number of different keys using a segmented scan. The index in this
count becomes the new name for this vertex.

@ This procedure fails to recognize intersection points interior to d-edges of the other

solid which are contained in the line of intersection, /. This case is detected by
ranking the intersection points according to the inducing edge of each solid as the primary
key and the name of the intersected face of the other solid as the secondary key. Withina
cluster, intersection points that recognize themselves as coincident with an edge of the other
solid are forced to be first. (Because edges are defined by at least two planes and vertices
by at least three, every cluster of intersection points in the interior of an edge of the other
solid has one intersection point that recognizes itself as coincident.) We use a segmented
scan to propagate its name as well as the name of the containing edge to all intersection
points in the cluster.

8.3.2 Constructing the D-Edges on the Intersection Curve

The preceeding sections described how to identify endpoints of potential cross-face d-edges. Only those
candidates which are interior to the face (as opposed to the plane of the face) of the other solid cause d-edges
to be built. Additionally d-edges lying on /, the intersection of a pair of planes may overlap a d-edge of the
other solid. Recall that intersection points are sorted along /. The last point in a cluster of coincident points
is a classifier; that is, it determines whether the segment of  in direction ¢ is interior to its face or edge. By
using a segmented scan we propagate classification tags (“in face” and “in edge”) along [ to the intersection
points of the other solid (see Figure 13).

One endpoint of a cross-face d-edge is a classifier whose own classification tag is true, and who received
a true tag from an intersection point of the other solid. The other endpoint is the next point along the line /
that is not a ray intersection. This is found using a scan in direction ¢ along .

Finally, we build the d-edges. There are three classes of d-edges that can be built at this stage; cross-face
d-edges (those that are interior to faces of both solids), d-edge/face segments (those that are interior to
an edge of one solid and a face of the other solid), and d-edge/d-edge segments (those that are interior
to edges of both solids). Based on the propagated classification tags, each intersection point determines
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Figure 13: (a) In order to know whether to construct a d-edge of the intersection curve, we scan the classifier

tags (“in face,” “in edge”) along the intersection curve between two faces. (b) the classifier tags have been
propagated to the intersection points of the other solid by a segmented scan.

how many and what kind of d-edges to build. It then builds the d-edges to the endpoint identified in the
reverse scan described above. Orientation of the contructed d-edges is defined to be positive for d-edges
with terminal-vertex name greater than initial-vertex name.

@ It is very difficult to identify isolated vertices of the intersection solid. An isolated

vertex arises in two ways, it was isolated in one of the input solids (and remained
s0), or it was a vertex of an input solid incident to the interior of a face of the other. The
second case cannot occur if a d-edge built at this stage is incident to the vertex. Therefore,
we record the faces incident to each vertex of the intersection solid, and whether or not
there is a d-edge incident to the vertex each of these faces. This is stored as two bits in a
“matrix” with rows corresponding to the d-edges of one solid and columns being the faces
of the other. One bit indicates a vertex/face incidence, and the other indicates that a d-edge
was built incident to the vertex on the face.

8.3.3 Eliminating Extraneous Intersection Points

To this point, we have not distinguished between d-edges of one solid (say A) that intersect the boundary
of solid B and d-edges of A that merely intersect planes of faces of B. In the steps just completed, we
made this distinction. We can now identify extraneous intersections, and eliminate them from the sparse
intersection-point matrix. This reduces the processor requirements to an output sensitive size. In practice
this leads to a dramatic reduction in the virtual processor ratio.

There are a number of places in the algorithm where the virtual processor ratio
is reduced. The operation is conceptually simple, although there are a few tricks
required to implement it. All relevant elements of the pvar are identified and marked. We
then count them up and determine whether they can be fit into a smaller vp-set, and what
that set’s size is. We then create a new vp-set of that size, create a duplicate pvar in the
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Figure 14: The kinds of edge-incidence tests that are necessary are edge/face, edge/edge, and edge/vertex
tests.

new vp-set, and copy the marked elements into the new set. Depending upon how this data
is represented and uti'ized it is sometimes necessary to update pointers in the pvar. Other
times the data is accessed associatively, and no pointer updates are required. There are
some subtleties in creating and destroying improperly nested vp-sets, but it can be done.

9 Phase Il Details

The second phase of the intersection algorithm constructs d-edges of the intersection-solid that have one
or both endpoints on the intersection curve, but whose interiors are contained in the interior of the other
solid. Each intersection point is the intersection of a d-edge (or vertex) of one solid with a vertex, edge,
or face of the other. These three cases are shown in Figure 14. Once this incidence testing is complete,
the intersection points are sorted along the input d-edges, and the intersection d-edges are constructed. The
incidence tests are intricate; the d-edge construction is straighforward. Note that vertex/boundary incidence
tests are incorporated into the d-edge/boundary tests, and so they are not described explicitly.

The result of any of these incidence tests is a “build forward” bit associated with the intersection point.
If the bit is set on, then we will eventually construct a d-edge from the intersection point either to the next
intersection point along the d-edge or to the terminal vertex.

9.1 Face Incidence Testing

An intersection point €*/g in the interior of face g builds a d-edge of the intersection solid on that portion
of ¢* which is below g (see Figure 15). The vector tangent(e®) points below g if tangent(e®) - normal(g)
is negative. This is a local computation. As a result of this test, the “build forward"” bit associated with the
intersection point is set on or off.

9.2 Edge Incidence Testing

Edge incidence testing uses the radial ordering of the faces around an edge to determine if an incident d-edge
points into the interior of the subtended volume. For intersection point €*/g incident to an edge E, Phase
I of the algorithm has identified the intersected edge, the name of that edge, and its tangent. It is necessary
to determine whether or not £tangent(e®) points into the interior to the other solid at E (see Figure 16).
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Figure 16: The vector —tangent(e®) does not point between a volume-enclosing face pair adjacent to edge
E, but vector +1angent(e®) might.

Because there is always another d-edge €'® with the same underlying edge as ¢® but oriented in the opposite
direction, we only test in the direction +tangent(e®).

In order to determine whether the d-edge €* enters the interior of the other solid it is necessary to
determine whether ¢* lies between a pair of volume-enclosing faces incident to the intersected edge E.
Let E}, E3,..., EY be the d-edges of edge E. We create a local coordinate system in which the z-axis
is tangent( E'). For each E? we calculate the angle counterclockwise from the local z-axis to vector
faceDirection( E?). Candidate d-edge €°® calculates the counterclockwise angle from the local z-axis to
the projection of tangent(e*®) onto the local zy-plane. We rank the intersection point e® /g and the d-edges
of E by this angle. If the d-edge of E that preceeds €® in the rank is positively oriented, then €® points into
the solid (see Figure 17). The result of this test is used to set “build forward” on or off.

All candidate d-edges e® that intersect £ must create the same local coordinate

system as the d-edges of E. We do this by selecting the component of tangent(E)
with the smallest magnitude, and setting the z-axis to the projection of the corresponding
principal direction onto the plane with normal tangent(E). The y-axis is obtained from
tangent( E) x z.
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+tangent(e ')

Figure 17: The vector —tangent(e®) is preceded in the rank by a vector that is the face-direction vector of
a postively oriented d-edge of E, and so the “puild forward” tag of the candidate intersection point to be
true.

m Although there may be many copies of the d-edges of E, we only need one copy

: of each d-edge to compute the angle from the z-axis to its face direction vector
and then participate in the circular scan. In creating the sparse matrix representation of the
intersection points, we guarantee that at least one such d-edge survives. If there is more
than one, the edge incidence test uses only a single copy. This allows us to reduce the size
of the virtual processor set for the edge incidence test. Experience has again shown that
this is a valuable savings.

@ Because the E®’s and the ¢*’s that intersect £ are radially arranged, there is cir-

cularity in the ranking. In fact, the radial predecessor of the object with smallest
rank is the one with largest rank. A scan is needed for an €® to obtain the orientation of the
preceeding £7. This is because many d-edges ¢* may lie radially between consective d-
edges of E. In order to deal with the circularity we use a segmented circular scan described
earlier.

9.3 Vertex Incidence Testing

The vertex incidence test finds the edge or face that is angularly closest to the candidate d-edge. Then an
incidence test with this closest object determines the containment of the d-edge. For intersection point €® /g
incident to a vertex V', Phase 1 of the algorithm has identified the intersected vertex and the name of that
vertex. It is necessary to determine whether or not +tangent(e®) points into the interior of the other solid
at 1. Just as for edge-incidence testing, we only need to test in direction +tangent(e®) (see Figure 18).
Face g is one of the faces incident to vertex V'. Let EJ,, EZ,, ... be d-edges of g incident to V. The
angular distance from €* /g to g is the solid angle from tangent(e®) to the plane of g if the tangent projects
into the interior of g. Otherwise, it is the minimum of the solid angles from the tangent to each E7 ;. Just
as we did for edge incidence testing, we find the solid angle by constructing a local coordinate system on
g. We calculate the angle counterclockwise from the local z-axis to each d-edge Ej; and to the projection
P(1) of the tangent onto g. We rank the angles. By looking at the the radially closest d-edge of g to the
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Figure 18: We need to determine whether or not +tangent(c*®) points into the interior of the solid of vertex
1". We do this by finding the edge or face bounded by V" that is angularly closest to +-tangent(e® ), and then
using an edge- or face-incidence test.

Figure 19: The projection (!) of tangent(€*®) points from 1’ into the interior of g, and so the radial angle
between ¢ and tangent(e®) is the angle between t and tangent(¢®). If t had pointed outside of g, then
the radial distance to g would have been the angle from tangent(e®) to E7 , or E? ,, the d-edges of g that
bracket { in the radial ordering.

projection, we can determine whether P(t) points interior to g, or which d-edge of g is closest. From this
we can calculate the solid angle.

By selecting the minimum over all the faces g incident to 1", we obtain the face or edge that is closest
to ¢*. If the closest is a face, we perform a face-incidence test. If the closest is an edge, we perform the
edge-incidence test. The result of these tests is used to set the “build forward” but on or off.

fIF The SIMD implementation of the intersection algorithm does all vertex-incidence
"I testing before any edge or face-incidence testing, so that the vertex-incidence-
induced edge- or face-incidence testing can be done with the other testing.

@ Just as for the edge incidence test, there may be many d-edges e® intersecting vertex
}", and because the radial ordering is circular, we again use a segmented circular
scan.

TI%  Although there may be many copies of the d-edges of g incident to V', we only
"I need two copies of each d-edge — one for calculating angles around the initial
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vertex, and one for the terminal vertex. In creating the sparse matrix representation of the
intersection points, we guarantee that at least two such d-edge survives. If there are more
than two, the vertex incidence test uses only two copies. This allows us to reduce the size
of the virtual processor set for the vertex incidence test. Experience has again shown that
this is a valuable savings.

9.4 Sorting Intersection Points Along D-Edges

Once one endpoint of each Phase II d-edge has been identified by the incidence tests, we need to identify
the other endpoint and then build the d-edge. The other endpoint is either the terminal vertex of the d-edge
inducing the intersection point, or the next intersection point along the d-edge (towards the terminal vertex).
We sort all the non-extraneous intersection points along their inducing d-edges using as a key the d-edge
name (i.e., the row number of the matrix entry containing the intersection point), the distance along the
d-edge, and the build forward tag. By making the build forward tag the low order bit of the key, we guarantee
that an intersection point with the bit set (one that builds a d-edge) is last in a cluster of identical points and
is therefore adjacent (in the rank) to the intersection point that defines the other endpoint of the d-edge to be
built.

9.5 Constructing D-Edges Incident to the Intersection Curve

We have seen that the incidence tests provide a tag indicating whether there is a d-edge to be built in the
“forward” direction along an input d-edge. It is also possible that we may need to build backward along the
input d-edge. (This only occurs if the initial vertex of the input d-edge is interior to the solid.) Any d-edge
with the build forward tag set notifies its radial successor around its underlying edge. A d-edge receiving
such a message determines (based on the sort along the d-edge) whether it is the first intersection point. If
50, it sets a build backward tag.

In order to build the intersection d-edge, an intersection point with the build forward tag set looks at
the next-ranked intersection point. When the build backward tag is set we are always building to the initial
vertex, and hence have no dependence on the sort order. The intersection points with the build-tags set build
d-edges on the plane of their face using the appropriate endpoints.

<'{> S, There are certain configurations where our incidence tests might determine that a

d-edge should be built, when in fact the d-edge has already been built by Phase I
of the intersection algorithm. Such a configuration is shown in Figure 20. In order to deal
with this case, the d-edge construction part of Phase I of the algorithm saves the names
of all constucted d-edge endpoints. Then in Phase II, if an incidence test indicates that a
d-edge should be constructed, we test to see if the d-edge was constructed in Phase I of the
algorithm.

10 Phase III Details

In Phase 111 we identify d-edges of the input solids that do not touch the boundary of the other solid, but are
part of the intersection solid. These d-edges are of two types, distinguished by whether their rays contact
the boundary of the other solid or not. If the ray contacts the boundary, the ray intersection has already
been classified by one of the boundary incidence tests. Since we restricted rays to those whose intersection
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Figure 20: Because d-edge €*® is collinear with an edge of the other solid, the only intersection point that
participates in the vertex-incidence test with 1" is €®/f. We evetually do a face-incidence test with f, and
set the “build forward” tag to be true. We must check for this case and prevent the d-edge from being
constructed — the d-edge was constructed, if necessary, in Phase I of the intersection algorithm

immediately preceeds its initial vertex (i.e., there are no other intersections between the ray intersection and
the initial vertex), the positive result of the incidence test implies that the entire d-edge is interior to the
other solid. (See Figure 21).

Any d-edge that neither touches the boundary nor has a ray that touches the boundary of the other solid
survives if and only if the other solid is unbounded.

We can finally determine which vertices of the intersection solid are isolated. If

vertex v is isolated in the input solid, then v is isolated in the output solid if and
only if it is interior to the other solid (which is determined by the ray test — we use the
ray +z for isolated vertices) or if the face of the input solid on which it is isolated is
coplanar with a face of the other input solid, and is interiui .0 that face. (That it is interior
to the coplanar face is determined from data stored during the initial cross-face building
process.) A non-isolated vertex of one of the input solids may become an isolated vertex
of the intersection solid. This occurs when the vertex is interior to a face of the other solid,
the local neighborhood of the face surrounding the vertex survives, and there are d-edges
incident to the vertex, but not in the face. Determining that there are incident d-edges is
done by saving a bit when d-edges are built. (One bit is saved for d-edges built on the face
in question, and another bit for d-edges out of the face.) That the neighborhood survives
is determined using a test similar to the edge-incidence test. The edge of the vertex that
is angularly closest to the face in question is used to classify a vector pointing from that
edge to the plane of the face. If the vector points into the solid bounded by the edge, then
the local neighborhood of the face survives. The face-neighborhood classification required
for this isolated vertex computation in intermingled with the edge incidence tests done in
Phase 11 of the algorithm. This is done for efficiency on a SIMD processor.

There is asmall amount of post-processing that we have not implemented — namely eliminating redundant
edges and vertices. These are edges that are not defined by the intersection of two or more faces and vertices
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Figure 21: The ray intersection of d-edge e® of the inner cuboid (B) is in the interior of bottom face f of
the other solid, and so d-edge e® is interior to that other solid. On the other hand, no ray intersections of
solid A intersect the boundary of B, and so the d-edges of A are part of the intersection if and only if B is
unbounded.

that are not defined by the intersection of three or more.

11 Performance Measurements

The parallel solid modelling algorithm described in this paper has been implemented on a Connection
Machine CM-2. (Since these tests were made (1990), a faster model of the CM-2 has appeared.) In
order to evaluate the performance of our algorithms, we compared our modeller to GDP, a production
modeller internally developed at IBM Research. GDP is executed on an IBM/3090 600S. (This is the only
supercomputer for which we have been able to identify a general purpose polyhedral solid modeller.)

This comparison is very difficult to perform, as it is in many respects an “apples and oranges” kind of
comparison. The CM-2 is constructed of a large number of very simple (bit-serial) processors connected
by a powerful routing capability. On the other hand, the IBM/3090 is a classic “big-iron” supercomputer
which achieves it's speed through the use very high speed components, pipelines, vector-processors, etc.
We believe the points to focus on are cost effectiveness and pathways to higher throughput. Machines like
these are notoriously difficult to price accurately. Nonetheless, it is safe to assume that the IBM/3090 is the
more expensive of the two machines tested here, by a factor of probably 2 to 5. In terms of achieving higher
throughputs, the CM-2 offers continued growth possibilities, at least by several factors of 2, at roughly linear
cost for the overall machine. In addition, the CM-2 does not use aggressive IC technology, so processor
speed (though perhaps not communications speed) can be increased by more aggressive use of high speed
IC technology. The IBM/3090 already uses some of the most aggressive technology to achieve high speed.
Future speed increases come at the cost of sigficant complexity and high-risk technology.

Algorithm comparison is also an apples and oranges case. The algorithm presented here is designed
specifically for a SIMD architecture massively parallel processor. It would be pointless to attempt to
execute a version of it on a single processor machine. We believe the relevant issues are that GDP is a highly
optimized modeler executing essentially the same functionality in these tests. That is, the representation
is a vertex, edge, and face boundary representation, and the intersection is calculated by intersecting the
boundary components of the two input solids. GDP development represents more than 100 times the effort
devoted to the new algorithm presented in this paper.
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Figure 22: Toolpath test problem — block - spiral.

Because the performance of an intersection algorithm is so dependent on the two input solids, it is hard
to define a representative problem for benchmarking purposes. The algorithm causes the vp-ratio to grow
roughly proportionally to the product of the number of faces in the two input solids. In tumn, run-time
is a function of the vp-ratio. In addition, the code will skip (large and time-consuming) portions if no
intersections of certain types occur, such as edge-vertex intersections). To show the range of performance,
we have generated two examples at roughly opposite ends of the range. The first example has all the faces
of one solid intersecting a single face of the other. Thus, “complexity” grows linearly with the problem
size. In addition, all the intersections are in “general position.” That is, they are all edge-face intersections,
and therefore particularly easy to analyze. The second example balances the sizes of the two solids, so the
number of face-face pairs grows like n2. In addition, all the intersections are edge-edge intersections, which
require many of the time-consuming procedures to be executed.

The first example is chosen to idealize a toolpath verification problem or a technique used for robot
motion pianning. In this problem, we take a faceted approximation of a toolpath and use it to “mill” a path
in the top of a cube. A sample toolpath are shown in Figr:re 22, and the results of comparing our algorithm
to GDP is shown in Figure 23(a). The graph shows speedups of up to 35 times. For 65K processors,
performance has not even reached the linear domain since the machine is not yet being fully utilized. If
we were to extrapolate performance of GDP to larger problems (which it cannot execute because of array
addressing restrictions in the current implementation), speedups of 50 or better are predicted. For problems
which fully occupy the machine, the data as well as data for 32K prrocessors (which is not shown here)
show a nearly perfect linear speedup in the number of processors.

The “milling” problem is easy for both serial and parallel intersection algorithms because all of the
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Figure 23: (a) “Milling” a path on a cube with a n-faceted approximationto a spiral. (b) Making a 2n-faceted
approximation to a cylinder by intersecting two n-faceted ones.

intersection points are non-singular, edge/face intersections. As the number of singular intersections
increases, both serial and parallel intersection algorithms will slow down. We generate our second, somewhat
pathological case by taking a faceted approximation to a cylinder, duplicating it, rotating the duplicate one
half-facet, and then intersecting the two solids, obtaining a faceted approximation to a cylinder with twice
the number of facets. All of the intersection points are singular — they are all edge/edge intersection points.
As the number of singular intersection points increases, we expect our algorithm to degrade relative to a
serial intersection algorithm because more interprocessor communication is necessary. Performance of the
parallel algorithm compared to GDP is shown in Figure 23(b). The intersection algorithm is still faster on
the Connection Machine, but the disparity is smaller. The discontinuities induced by changing VP-ratio are
very apparent for this example. (The spike in the Connection Machine data is be due to a known router
utilization bug for n = 512 facets.)

It is common in analyzing parallel algorithms to try to determine a speedup factor in comparison to
execution on a single processor. Because our algorithm is designed explicitly for execution on a massively
parallel SIMD processor, this sort of comparison is not possible. In the future, just as specialized parallel
algorithms with no serial analog become more common, so will the sort of functional comparison we use.
Nonetheless, our results do show nearly linear speedup in the number of processors as we move from 16K
to 64K processors. We believe that the most relevant comparison will be computational cost effectiveness.
On that score, our implementation compares very favorably with a more traditional serial aigorithm on a
serial supercomputer.
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12 Conclusions

Solid modelling is acomputationally demanding technology that underlies many key technologies in modern
engineering design. We have shown in this paper how an intersection algorithm for solid modelling can be
implemented on a massively parallel processor. Computational experiments have demonstrated the speed
of this algorithm compares favorably to that of a serial algorithm on a supercomputers.

There are three main contributions to this work. First is the parallel d-edge data structure. In contrast
to the multi-linked data structures common to serial solid modellers, we have shown how to embed the rich
combinatorial structure in a distributed, uniform structure appropriate to a massively parallel processor. Our
implementation of solid modelling algorithms is tailored to this data structure so as to frequently reduce or
eliminate interprocessor communication. Second, we have dealt with all of the singularities that arise in an
intersection algorithm. Dealing with them is difficult even for serial solid mdellers, and we have presented
algorithms that efficiently incorporate the treatment of singular cases into a SIMD algorithm. Third, our
avoidance of transitive closure procedures anywhere in the intersection algorithm allows us to have an
algorithm whose execution time is independent of input solid topology. We use a variety of techniques
whose efficiency is attributable directly to the SIMD nature of our algorithm as well as the data structures
that we use.

Because the best implementations of solid modelling algorithms are primarily combinatorial, there is no
meaningful measure of the megaflop throughput achieved. Furthermore, our implementation is structurally
different from that used in serial algorithms, substituting a larger, homogeneous data-structure for serial
computations. Hence, the only meaningful comparison of performance between these two approaches
requires the use of benchmark comparisons of standard problems. Since many of the applications built on
solid modeling are interactive in nature, the most important measure is how fast the algorithm runs, not an
abstraction like megaflops or mips.

We have shown in our tests that our parallel intersection algorithms outperforms a serial one by a
factor of 35 or better. As the models become bigger, the disparity increases. Furthermore, the nature
of our intersection algorithm and the architecture of the Connection Machine allow scaling to essentially
arbitrarily large arrays of processors with linear scaling in algorithm performance. To provide a reference
point on model size, we have examined applications in a variety of industries. Solid models are used in
integrated circuit process modeling. These models require tens to hundreds of facets per transistor. Thus,
even small models of very limited portions of chips contains hundreds to thousands of facets. Ideally one
might want to model a complete integrated circuit. A complete chip can have as few as several hundred
transistors in the case of very simple “glue chips” to as many as a million transistors or more in state of
the art microprocessors and memory chips. Obviously these chips are not currently modeled because of the
impossibility using existing technology. In the aerospace field solid models are used to represent aircraft
and their various components. Applications of these models range from finite element analysis to testing
feasiblity of maintenance procedures. These models, even for small aircraft such as cruise missles, can have
a hundred thousand facets or more. Thus, there are industrially interesting models in the size range at which
our modeler appears to have a major advantage.
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