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ABSTRACT

The development of efficient, general-purpose software for the iterative solution
of spea'se Linear systems on a parallel MIMD computer require_ an interesting
combination of expertise. Parallel graph heuristics, convergence analysis, and basic
tinear Mgebra implementation issues must ali be considered.

In this paper, we discuss how we have incorporated recent results in these aa'e_
into a general-purpose iterative solver. First, we consider two recently developed
parallel graph coloring heuristics. We show how the method propo_d by Luby,
based on determining maximal independent sets, can be modified to run in an
asynchronous manner and give an expected running time bound for this modified
heuristic. In aAdition, a number of graph reduction heuristics are described that
are used in our implementation to improve the individual processor performance.
The effect of these various graph reductions on the solution of sparse triangular
systems is categorized. FinMly, we discuss the performance of this solver from the
perspective of two large-scale applications: a piezoelectric crystal finite-element
modeling problem, and a nonlinear optimization problem to determine the mini-
mum energy configuration of a three-dimensional, layered superconductor model.
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1. Introduction. The computational kernel of many large-scale applications

is the solution of sparse linear systems. Given the increasing performance of in-

dividual processors and the dramatic recent improvements in engineering parallel

machines composed of these processors, a scalable parallel computer is an attrac-

tive vehicle for solving these problems. In this paper we endorse a particular

perspective: (1) we note that in many applict.ttions one is interested in solving as

large a problem as can feasibly fit into the available memory of the machine, and

(2) that the underlying geometric structure of these applications is often three-

dimensional or greater. These observations, and a, simple "back-of-the-envelope"
calculation, lead one to conclude that a parallel direct factorization method is in

general not feasible for such problems, in terms of the amount of space and time

required. This perspective rnotivates one to consider an approach to the iterative

solution of sparse linear systems in a manner that ensures scalable performance.

In this paper we present an approach to solving such systems that satisfies the

above require:r'.eLts. CentrM to our method is a reordering of the matrix based

on a coloring of the symmetric graph corresponding to the nonzero structure of

the matrix, or a related graph. To determine this ordering,, we use a recently

developed parallel heuristic. However, if many colors are used, a straightforward

parallel implementation, as is described in [10], suffers poor processor performance

on a high-performaaace processor such as the Intel i860. In this paper we present

several possible graph reductions that can be employed to greatly improve the

,. performance of an implementation on high-.performance RISC processors.

Consider an implementation of any of the standard generM-purpose iterative

methods [7, 15]: consistently ordered SOR, SSOR accelerated by conjugate gra-

dients (CG), or CG preconditioned with an incomplete matrix factorization. It is

evident, that the major obstacle to a scalable implementation [6] is the inversion
- of sparse triangular systems with a structure based on the structure of the lin-

ear system. For example, the parallelism inherent in computing and applying an

incomplete Cholesky preconditioner is limited by the solution of the triangular sys-

tems generated by the incomplete Cholesky factors [20]. It was noted by Schreiber

and Tang [19] that if the nonzero structure of the triangular factors is ide_.tical

to that, of the original matrix, the minimum number of major parallel steps pos-

sible in the solution of the triangular system is given by the chron_at, ic nurnber

of the symmetric adjacency graph representing those nonzeros Thus, g;ven th_",_ , _, •

nonzero stracture of a matrix A, one can generate greater parallelism by comput-

ing a permutation matrix, P, based on a coloring of the. symmetric graph (;(A).

The incomplete Choleskv factor ./, of the permuted matrix P,.tP r i._ computed

instead of the; factor ba.sed on the original matrix A.

In this permutation, vertices of the same color are grouped and ordered se-

quentially. As a consequence, during the trianguiar system solves, the unknowns

corresponding to these vertices can be solved for in parallel, aftor the updates from

previous color groups have been performed. The result of Schreiber and Tang states

that the minimum number of inherently seq_mntial computational steps r_:quired

1
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to solve either of the triangular systems, Ly = b or [..'rx = y, is given by the

minimum possible number of colors, or chromatic number, of the graph.
For general graphs, the computation of the chromatic number is an NP-hard

probl.em. However, recent theoretical and experimental work has demonstrated

scalable heuristics for determining coloring that are close to optimal for practical

problems [14, 13]. In §2 we review these heuristics and demonstrate that they have

equivalent expected running times for bounded degree graphs.

We note that this bound on the number of communication steps assumes that

only vector operations are performed during the triangular systems solves. This

assumption is equivalent to restricting oneself to e_fine-grained parallel computa-

tional model, where we assign each unknown to a, different processor. When many
unknowns eLreassigned to a single processor, it. is possible to reduce the number of

communication steps by solving non-diagonal submatrices of L on individual pro-

cessors at each step. In this case, the minimum number of communication steps is

given by a coloring of a quotient graph obtained from a partitioning of unknowns
to processors.

The remainder of the paper is organized as follows. In _3 we present several

possible graph reductions, including the clique partitions that allow for the use

of higher-level Basic Linear Algebra Subprograms (BLAS) irt the software. We

consider a general framework that can incorporate these ideas into efficient, trian-

gular system solvers in §4. Finally, in §5 we present experimental results obta.ined

for our software implementation on the InteI DELTA for problems arising in two

different applications and in §6 we discuss our conclusions.

2. Asynchronous Parallel Graph Coloring Heuristics. Irt this section

we consider two recently developed graph coloring heuristics suitable for asyn-
chronous parallel computers. Our perspective is that if a scalable iterative solver

is to be based on a matrix ordering derived from a graph coloring, then a scalable

heuristic is necessary to determine this coloring. We review two parallel heuris-

tic,,s ba.sed on Monte Carlo steps for which expected running times are known: a

syn, chronous PRAM heuristic developed by [,uby II,li, and a recent asynchronous -_

i! heuristic presented by Jones and Plassrnann [13]. The interesting aspect of the o
:i'. ,._ynchronous method is that it combines aspects of sequential greedy graph color-

ing .heuristics with a Monte Carlo step to determine independent sets. Finally, we "°

show how a modifica, tion can be made to Luby's maximal independent set, heuristic

both to make it asynchronous and to satisfy the same running time bound obtained
for the second heuristic.

I,t is important to note that we do not address the problen_ of determining

a good partitioning of the graph onto the processors. For the applications prob-

lems we consider in §5, a. physical partition can be used to generate a good vertex =

assignment to processors. When the determination of a partition is not straight.-

forward, a partitioning heuristic would have to be used. Some possibilities exist:

for exa.mple, recent adva, nces in the automat, ic partitioning of three-dimensional :--_

domains [21] or in spectral dissection methods [17] could beem.ployed. [[owever, =
2
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the parallel graph partitioning problem deserves much additional research.

First, we briefly review the graph coloring problem. Let G = (Is, E) be a

symmetric graph with vertex set V, wit, h ]VI = n, and _dge set E. We say that

the function a: V-+ {1,... ,s} is an s-coloring of G, if a(v) J. ct(w) for ali edges

(v, w) E E. We denote the minimum possible value for .s, the chromatic number

of G, by x(:;).
The question as to whether a general graph G is s-colorable is NP-complete

[5]. It is known that unless P = N P, there does not exist a polynomial ap-

proximation scheme for solving the graph coloring problem [5]. In fact, the best .'

polynomial time heuristic known [8] can theoretically guarantee a coloring of only

size c(n/log n) x(G), where c is some constant.

Given these pessimistic theoretical results, it is quite surprising that, for cer-

tain closes of graphs, there exist a number of sequential graph coloring heuristics

that are very effective in practice. For graphs arising frora a number of applica-

tions, it has been demonstrated that these heuristics are often able to find colorings

that are within one or two of a_ optimal coloring [4, I0].

These sequential heuristics are ba_sed a greedy heuristic that colors vertices

in an order determined by a cost function. Choices for the cost function that are

particularly effective are the saturation degree order (choose the most constrained

vertex [3]) or the incidence degree order (choose the vertex adjacent to the max-

imum number of previously colored vertices [4]). Unfortunately, these heuristics

do not par.:dlelize well, because they essentially represent a breadth-first search of

the graph.

A different approach was suggested by Luby [14]. His observation was that if'

one can determine a maximal independent set efficiently in parallel, then a partition

of the vertices of the graph into maximal independent sets yields a coloring. Luby's

algorithm for determining an independent set, I, is based on the following Monte

Carlo rule. Here we denote the set of vertices adjacent to vertex v by adj(v).

1. For each vertex v E V' determine a distinct, random number p(v).

2. v E ] _=>p(v) > p(w), 'v' w E adj(v).

In the Monte Carlo algorithm described by Luby [14], this initial independent set,

is augmented to obtain a maximal independent set. The approach is the following.

After the initial independent set is found, the set of vertices adjacen; to a vertex in

I, the neighbor set N(I), is determined. The union of these two sets is deleted fron,

V', the subgraph induced by this smaller set is constructed, and the Monte Carlo

step is used to choose an. augmenting independent set,. This process is repeated

until the candidate vertex set is empty and a maximal independent set (MIS) is

obtained. The complete Monte Carlo algorithm suggested by Luby for generating

an MIS is shown in Fig. 1. In this figure we denote by G(V') the subgraph of G

induced by the vertex set V'. Luby shows that an upper bound for the expected

time to compute an MIS by this algorithm on a C,RCW P-RAM is EO(log(n)). The

algorithm can be adapted to a graph coloring heuristic by using it t,o determine a

sequence of distinct maximal independent sets and by coloring each MIS a different
3
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color. Thus, this approach will solve the (A + 1) vertex coloring problem, where

A is the maximum degree of G, in expected time EO((_ + 1)log(n)).

V'_V;

G'_--G;

While G' _ 0 do

Choose an independent set I' in G';

I_IUI';

X +- I'tJ N(I');

V',--- V'\X;

G' G(V');
enddo

FIG. 1. Lubyb Monte Carlo algorithm for determining a mazimal independent set

A major deficiency of this approach on currently available parallel comput-

ers is that each new choice of random numbers in the MIS algorithm requires

a global synchronization of the processors. A second problem is that each new

choice of random numbers incurs a great deal of computational overhead, because

the data structures associated with the random numbers must be recomputed.

The asynchronous heuristic proposed by Jones and Plassmann [13] avoids both of

these drawbacks. This heuristic is presented in Fig. 2. The heuristic is written

assuming tha, t each vertex v is assigned to a different processor and the processors

communicate by passing messages.

With the asynchronous heuristic the first drawback (global synchronization)

is eliminated by choosing the independent random numbers only at the start of

the heuristic. With this modification, the interprocessor communication (:an pro-

ceed asynchronously once these numbers are determined. The second drawback

(computational overhead) is alleviated because with this heuristic, once a proces-
sor knows the values of the random numbers of the vertices to which it is adjacent,

the number of messages it needs to wait for can be computed and stored. Like..

wise, each processor computes only once the processors to which it needs to send a

message once its vertex is colored. Finally, note that this heuristic ha_ more of the

"flavor" of the sequential heuristic, :;ince we choose the smallest color consistent

with the adjacent vertices previously colored.

An upper bound for the expected running time of a synchronous version of

this algorithm of EO(log(n)/loglog(n)) can be obtained for graphs of bounded

degree [13]. The central idea for the proof of tl-,ls bound is the observation that the

running time of the heuristic is proportional to the maximum length monotonic

path irt (.;. A monotonic path of length t is defined to be a path of t vert_ices

{v,,v_,...,v_} in G' such that p(v,) > p(v_) > ... > p(t,,).

4
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Choose p(v);

n-wait = 0;

send-queue = O;

For each w E adj(v) do

Send p(v) to processor responsible [or w;

Receive p(w);

if (p(w) > p(v)) then n-wait = n-wait + 1;

else send-queue _-- send-queue U {w);
enddo

n-recv = 0;

While (n-recv < n-wait) do

Receive a(w);

n-recv -- n-recv + 1;
enddo

_r(v) = smallest available color consistent with the

previously colored neighbors of v;

For each w E send-queue do

Send a(v) to processor responsible for w;
enddo

FIG. 2. An asynchronous parallel coloring heuristic

We now show that the Luby's MIS algorithm can be modified to obtain the

same bound. Consider the following modification to the asynchronous coloring

heuristic given in Fig. 2. Let the function 7(v) equal one if v is in the independent

set I, two if v is in N(I), and let it be undefined otherwise. We have the following

asynchronous algorithm to determine the set I.

The following lemma proves tile correctness of the a.synchronous algorithm.

LEMMA 2.1. At the termination of the algorithm given in Fig. 3, the .function

"7(v), v E V defines a maximal independent set.

Proof: At the completion of the algorithm in Fig. 3, 7(v) is defined for each v E V.

Thus, each vertex v E V satisfied one of the following based on the definition of 7:

1. vE I, or

2. N(I).
It is clear that the set I is independent, and each member of N(I) must be adjacent

to a rnember of I. Thus, the above two conditions imply that the independent set
I is maximal. []

Based on Theorem 3.3 and Corollary 3.5 given in [13], we have tile following

corollary.

COROLLARY 9.9. For graphs of bounded degree A, the expected running time is

5



Choose p(v);
n-wait - 0;

send-queue = 0;
For each w e adj(v) do

Send p(v) to processor responsible for w;

Receive p(w);

if (p(w) > p(v)) then n-wait = n-wait + 1;

else send-queue _- send-queue tj {w};
enddo

n-racy = 0;

While (n-racy < n-wait) do
Receive 7(w);

n-recv = n-racy + 1;
enddo

if (ali the previously assigned neighbors w of v

have 7(w) -- 2), then 7(v) - 1;

else 7(v) - 2;
endif

For each w E send-queue do

Send 7(v) to processor responsible for w;
enddo

FIG. 3. An asynchronous algorithm to determine a maximal independent set

EO(log(n)/ log log(n)) for the maximal independent set algorithm given in Fig. 3.

Proof: As for the bound for the asynchronous parallel coloring heuristic, the

expected running time for the a.synchronous maximal independent set algorithm is

proportional to the expected length of the longest monotonic path. By Theorem 3.3

and Corollary 3.5 in [13] this length is bounded by EO(log(n)/log log(n)), t3

Finally, we note that this maximal independent set algorithm can be used in

piace of Luby"s MSI algorithm to generate a sequence of maximal independent sets,
each of which can be colored a different color. The running time of this coloring

heuristic would again be bounded by EO(log(n)/log log(n)) because the maximum
number of colors used is bounded by _ + 1, and we have assumed the maximum

degree & of the graph is bounded.

3. Graph Reductions. In this section we present several graph reductions
that are used in our iterative solver implementation. These reductions are em-

ployed in §4 to describe several possible alternatives for the solution of the triam

gular systems involving the preconditioned systems.
It is often observed that the sparse systems arising in many applications have

a great deal of special local structure, even if the systems are described a.s "un-
6
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structured." We have attempted to illustrate some of this local structure, and how

it can be identified, in the following sequence of figures.

In Fig. 4 we depict a subsection of a graph that would arise from a two-

dimensional, linear, multicomponent finite-element model with three degrees of

freedom per node point. We illustrate the three degrees of freedom by the three

dots at each node point; the linear elements imply tha_ the twelve degrees of

freedom sharing the four node points of each face are completely connected. In the

figure we show edges only between the nodes, these edges represent the complete
interconnection of all the vertices on each element or face.

oo -- __. _

............ .......< , .....
× × >(

--'-1 lb _ I -- b l

......._,, _-. -_,":,i),_:........' _ _<_ _...._____>_, ,,..................,,_@
: :
: •

FIG. 4. A subgraph generated by a two-dimensionat', linear/in_te element model with three

degrees of freedom per node point. The geometric partition shown by the dolled line._ yields an

assig;_ment of the vertices in the enclosed subregion to one processor.

The dashed lines in the figure represent a geometric partitioning of the grid;

we assume that the vertices in the central region are all assigned to one processor.

We make several observa.tions about the local structure of this subgral ' First,

we note that the adjacency structure of the vertices at the same geometric node

(i.e., the nonzero structure of the associated variables) are identical, and we call

such vertices ider_tical vertices. It was noted by Schreiber and Tang [19] that a

coloring of the graph corresponding to the geometric nodes results in a system with

small dense blocks, of order the number of degrees of freedom per node, along the

diagonal. We note that this observation can also be used to decrease the storage

required for indirect indexing of the matrix rows since the structures are identical.

We also consider another graph reduction based on the local clique structure

of the graph. In Fig. 5 the dotted lines show one possible way the vertices assigned

to the shown partition and its neighbors can be partitioned into cliques. Denote

such a partition by Q. If we associate a super vertex with each clique, the quotient
7



: • : - : Z :

®ii® ®i ® ®)!®I,,.,..ol,,**o_o "_em,oe,,oHio,o*,,4,oo,l* o.,,o,,! -_oo,owo ,oi oi,Qoo,**ooo i,o,oooo.*- _ :...,..,..., t...

m,k1 n mmm mmlm amm n lmu mmmmi_m 0mmlm i lmn wmmmmomm a m lmI I m m mmmmm m e m I m _ I a m o I I _ m n m I m m i_ I a a m m I a u _ i m m m ml

• ..

®))il) ®i))®
...............:'=. : i i:)
............... '. : i ": = " ":: • :

®)li® ®))® ®)))®
" umq ;" ...... "°" ....... ' ........ "'= :'''"' ..... ' ................... _' •m :' .... ' ..........

• : ..-............................... t. :-............................... ... :: ................

i® ...............
m (mmmmmm mm mmmmmmm]immmmm m*mmw m mmwm m m m m mmmem,mm mmm mm mm mm m mm mmm m mm)m m m mmmm mmmma mml

................ • _,............................... :. .-,............................... . , : ................

!:)®i i® ®
.: :_ = _ :

FIG. 5. A partition of the vertices into cliques

graph G/Q can be constructed based on the rule that there exists an edge between

two super vertices v and w if and only if there exists an edge between two vertices

of their respective partitions in G. The quotient graph constructed by the clique

partition shown in Fig. 5 is shown in Fig. 6.

Of course the quotient graph reduction is not limited to the choice of a maxi-

mal clique partition; any local partitiora of the subgraph assigned to a processor can

be used to generate the reduced graph. We use a clique decomposition because the

submatrix associated with the clique is dense, thus allowing for the use of higher

level dense linear algebra operations (BLAS) in an implementation. The aspect

of the graph reduction is discussed in more detail in §4. Finally, we note that the

efficient determination of identical nodes, and a local maximal clique decomposi-

tion, is straightforward. Since the adjacency structure of the vertices assigned to

a processor is known locally, no interprocessor communication is required, and a

greedy heuristic can be used to determine a clique partition.

4. The Inversion of Triangular Systems. In this section we review the

problem of the parallel inversion of a sparse triangular system. The triangular sys-

tem solution is the central problem in the parallelization of the standard iterative

methods. For example, it is involved in the application of a preconditioner derived

from an incomplete factorization, or in an SOIl or SSOR iteration.

Consider the lower triangular matrix L decomposed into the following block
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FIG. 6. The quotient graph given the clique partition shown in Fig. 5

For i= 1,...,xdo
1. Local Solve (requires no interprocessor communication):

Li,iy+ = bi
2. Update (communication without interdependencies):

bj_ _ b.l, --LJ+,K, yK+
enddo

FIo. 7. A general framework for the parallel forward elimination of the lower triangular
system Ly = b

structure.

Lt,x 0 0 0

(4.1) L2,1 L2,2 0 0 .• : "'. 0

L×,I L×,2 "" L×,×

In Fig. 7 we present a general framework for the forward elimination required to
solve the system Ly = b. By yi and bi we mean the partition of components implied
by the block partition of L given above. The index sets J_ and Ki can be anything
equivalent to the standard forward elimination algorithm. With this framework we
divide the solution in two phases. In phase 1, the diagonal block solution phase,
we assume tha,t no interprocessor communicatiort is required. In the second phaze,
when the partial updates to the right hand side are performed, we include ali

9



the interprocessor communication, but we assume that this communication can be

performed in any order. Thus, the number of major communication step required

in this framework is X.

We classify a number of possible approaches to solving these triangular systems

based on the choice of the diagonal blocks L_,i as follows:

Pointwise colorings - Given a coloring of the graph G(A) for the incomplete

factorization matrix A, we order unknowns corresponding to same colored

vertices consecutively. An implementation based on this approach and

computational results are given in [10].

Partitioned inverse - One can determine a product decomposition of L; for

example,

(4.2) L = 1"[ L, ,
i--1

where the nonzero structure, S, of the product elements satisfy 5'(L_) -

S(L71) [1, 2]. The inversion of L can be performed with _¢matrix products

once the partitioned inverse is formed. We note that this can always done

with a pointwise coloring, where _ is the number of colors used. It has been

observed by Robert Schreiber [18] that the partitioned inverse approach

can reduce the steps in pointwise coloring approach by a factor of two.

Suppose two colors axe used. We write the pointwise system as

L2,1 D2,2 '

where D1,1 and D2,2 are diagonal. Schreiber makes the following observa-
tion.:

[ °1(4.4) L"' D,,I D -_ -1 ,= -D_,_L2,1 1,1 D_.,2

where the structures of L and L -1 are identical. Thus, one can group pairs

of colors together and form the inverse of the combined diagonal block by

a simple rescaling the off-diagonal part.

Nodewise colorings - Identify adjacent vertices with identical structure. As

described in §3, such vertices often arise in finite element models for inde-

pendent degrees of freedom defined at the same geometric node. Let the

set I identify identical nodes. A matrix ordering based on a coloring G/I,

where identically colored nodes are ordered consecutively, yields a system

where Lid is block diagonal, with dense blocks the size of the number of

identical nodes at each node point. Given a geometric partition of the

nodes, these dense blocks are local to a processor. In addition, the ob-

servat, ion made by Schreiber and illustrated in Equation 4.4 can be used

10



to decre,._se the aurnber of major communic._tion step by a factor of two

for a .rmdewise coloring. The inverse formula given in Equation 4,4 with

D:,_ and D_,2 block diagonal will still preserve the nonzero structure of
L, because the nonzero structure of the columns in each dense block are

identical.

Quotient graph colorings derived frona a local clique partition- This

approach is used ia our implementation. The local cliques correspond

'_,o local dense diago_:al blocks in Li,_. The inverses of these blocks axe

computed. Thus the local solve, step 1 in Fig. 7, can be implemented

using Level..2 BLAS. Usually the number of colors required to color the

quotient, graph will t,e smaller than the number of colors required for

the original _;aph. However, if fewer colors are used, recent theoretical

results [11] indicate that rbe convergence of the iterative algorithm could

suffer. This aspect is discussed more fully in §5.

Quotient graph colorings derived from general local systems - Any local

structure can. chosen for the diagonal systems L_,i. However, if generM

sparse systems are used, the processor performance is not necessarily im-

proved over a pointwise coloring. In addition, load balancing becomes
more difficvIt as laxger partitions axe chosen.

Given the above possibilitie:s, we have chosen to implement a method hazed

on quotient graph colorings derived from a local clique partition. I'als approach

enables our software to take advantage of both asay identical node structure and

local clique partitions. The former "allows for a .:eduction in. the indirect indexing

required; the l_tter allows for the use of larger dense blocks and consequentially

better performance with the Level-2 BLAS. The software is designed so that the

maximum size of the identical node sets, the maximum clique size, and maximum

number of cliques per color can ali be set by the user in ca.se of load balancing

or convergence problems. However, for the results presented in §5, no such limits

were imposed.

5. Computational Results, In this section we present computational re-

suits obtained on the Intel DELTA with the software we have developed, We

consider two applications" a piezoelectric crystal modeling problem, and a three-

dimensional superconductivity mcJdeling problem. These problems are described

in more depth in [12]; we give only' a brief description of them here.

5.1. The piezoelectric crystal modeling problem. The first set of sparse

systems that we consider arise from a second-order finite element of a piezoelectric

crystal strip oscillator. These cryst.als are thin strips of quartz that vibrate at a

fixed frequency when an electric forcing field is applied to the crystal, A diagram

of a strip oscillator affixed to an aluminum substrate with epoxy is shown in Fig. 8.
Second-order. '_,i-node finite elements are _:_e_edt,o model the crystal Higher-
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FIG. 8. Piezoelectric crystal strip oscillator

of the crystad. 'There are four degrees of freedom at each geometric node point:

three mechanical displacements and an electric field potential. The solution phase

haz two steps. First, the deformation of the crystal caused by thermal displacement

is found. For example, if the crystal was mounted on aluminum at 25°C, it will

deform when the temperature is raised to 35°C. This requires solving a nonlinear

static tbermal stress problem. Second, to find the vibrational, modes of interest for

the deformed crystal, we solve a linear vibration problem-a generalized eigen-

problem.

To solve the nonlinear static thermal stress problem, a series of linear systems

of the form Ku = f must be solved, where K represents the stiffness matrix, u

represents the displacements, and f represents the forces due to thermal loads and

displacement constraints. The major task here, of course, is the solution of very

large, sparse systems of equations.

To solve the linear vibration problem, we must solve a generalized eigenprob-

lem of the form Kz = cv2Mz, where K represents the stiffness matrix, M represents

the mass matrix, z is a vibrational modeshape, and w is a vibrational mode. We

use a shifted, inverted variant of the Lanczos algorithrn to solve this eigenproblem

[16]. This method has been shown to be very efficient for the parallel solution of

the vibration problem [9]. Again, the major computational task is the solution of

large sparse systems of linear equations.

The three-dimensional finite element grid needed to model the crystals is much

more refined in the length and width directions than it is in the thickness direction.

We can take advantage of this fact and partition the grid among the processors in

only the length and width directions. This approach reduces communication and

maps nicely onto the DELTA architecture. Each processor is assigned a rectangular

solid corresponding to a portion of the three-dimensional grid. Each processor is

responsible for evaluating the finite elernents in its partition and for' maintaining

' ali relevant geometric and solution data for its partition.

We have solved problems consisting of over 480,000 equations with 161,150,990

ncmT,orn._ cm .512 prnces._or._ c_f t.he lntel DEl,TA. Over 99 percent of the time is spent

2.1_ t2
_U
-.|
=i
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in solving the linear systems and evaluating the finite elements. The solution of the
linear systems has achieved speeds of approximately 2 gigaflops on 512 processors.
This speed is scalable; the individual processor performance degrades only from
4.16 Mflops per processor to 3.83 Mflops per processor when one goes from 12,8
processors to 512 processors and keeps the sub-grid size fixed.

5.2. The layered superconductor modeling problem. The sparse lin-
ear systems for the superconductivity problem arise in the determination of the
damped Newton step in the inner loop of an optimization algorithm. The opti-
mization algorithm attempts to determine the minimizer of a free energy functional
that is defined on a three-dimensional rectangular mesh with the geometric layout
depicted in Fig. 9. The structure of the sparse linear system is determined by the
Hessian of free energy given a linear finite difference discretization of the model.

X
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FIG. 9. The 3-dimensional layered superconductor model partitioned in 2-dimensions

Shown in the figure are alternating layers of superconducting and insulating
material. The independent variables are two vector fields, one defined in the su-
perconducting sheets, and the other in the insulating layer. The two fields are
coupled in the free energy formulation. When the model is discretized a finer de-
gree of resolution is generally given to the insulating layers. For the problems of
interest, the number of grid points necessary to represent the model in the direc-
tion perpendicular to the layers (the X-axis in Fig. 9) is smaller than the number
of points required in the two directions parallel to the layers (the Y-axis and Z-axis
in Fig. 9). We make use of this property and partition the grid in the Y and Z
directions. For example, in Fig. 9 the Y-Z domain is shown partitioned anaong 9
processors.

We denote the discretization in the X, Y, and Z directions by NX, NY, and
NZ, respectively. As the discretization within an insulating layer, NK, varies, the
size of the loca} cliques changes, and therefore so does the individual processor



performance. In Table I we note the effect of varying the layer discretization
on the i860 processor performance during the solution of the linear systems. For
these numbers we have used 128 processors and fixed the local problem size to be
roughly equivalent. The second column shows the number of identical nodes found
in the graph by the solver; the third column shows the average clique size [bund.
The final column shows the average computational rate per processor during the
solution of the linear systems.

! TABLE 1
The effect of varying the layer' discretization on the processor perform_ance in solving the

linear ,systems

[ rK IX-Nod si,+Avg. CliqueSize Avg. Mtlo /Processor

8 32.0 2.97
4 14 44.8..... 5.42

" 6 - ' ....... .20 60.0 6.71
....8 26 78.0[ 8.96

In Table 2 we present results for the linear solver on three problems with
differing geometric configurations on 512 processors.

'][.'ABLE2

Computational results obtained for three different problem configurations on 51g processors

PROBLEM-1 PROBLEM-2 PROBLEMV_I

NX ...... 24 64 20
'NK ........ 8 4 ........ __2L

NY 80 6,1 150
NZ 96 96 150
N 6.0 × 105 1.6 × 106 1.8 × 106

......

NNZ 2.0 x l0 s 1.7 x l0 s 1.9 x l0 s

GFlops 3125 "' 2.-55 1.38

In the solution of both of these systems, the diagonal of the matrix was scaled
to be one. If the incomplete factorization fails (a negative diagonal element cre-
ated during the factorization), a small multiple of the identity is added to diagonal,
and the factorization is restarted. This process is repeated until a successful fac-
torization is obtained [15]. The average number of conjugate gradient iterations
required to solve one nonlinear iteration of the thermal equilibrium problem f'or
the crystal model to a relative accuracy of 10-7 is approximately 700. The average
number of conjugate gradient iterations required per nonlinear iteration for the

superconductivity problem is approximately 250. The linear systems arising in the
superconductivity problem are solved to a relative accuracy of 5.0 × 10-4. However,
it should be noted that these are special linear systems: they are highly singular
(more than one-fifth of the eigenvalues are zero, because of physical symmetries).
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However, they are consistent near a local minimizer because a projection of the

right hand side (the gradient of the free energy function) onto the null space of the
matrix is zero near the minimizer.

6. Conclusions. In this paper we have i)resented an implementation of a

generM-purpose iterative solver for MIMD machines. The scalable performance of

the solver is based on a reordering of the sparse system according to a graph col-

oring of a reduced graph obtained from the nonzero structure of the sparse linear

system. This approach is effective for any of the standard iterative methods; how-

ever, the experimental results we present are for the conjugate gradient algorithm

with an incomplete matrix factorization preconditioner.

We have emphasized an approach where ali tile manipulations required by

the solver are ali done in parallel. In this ;pirit, we have presented two recently

developed parallel heuristics for determining a graph coloring• We have shown that

the synchronous heuristic proposed by Luby, based on determining a sequence of

maximal independent sets, can be modified to run in an asynchronous manner.

Furthermore, we show that the expected running time of the rnodified heuristic is

EO(log(n)/log log(n))for bounded degree graphs using the bounds developed for

the oti ter coloring heuristic.

A number of possible approaches toward the solution of the sparse triangular

system solutions are classified. We have chosen to use a graph reduction based on

a clique partition in our implementation for two reasons: (1) to allow for the use of

higher-level BLAS in a triangular system solver, and (2) to reduce the number of

required colors and the size of the quotient graph. The implementation allows the

user to specify the maximum clique size and the maximum number of cliques per

color, in case load-balancing or convergence problems arise. In the experimental

results section we demonstrate the improvement, in processor performance for larger

clique sizes for the superconductivity problem. In addition, the concentration of the

basic computation in the BLAS allows for an efficient, portable implementation.

Finally, we note that recent theoretical results have shown that for a model

problem, the convergence rate improves as the number of colors is increased [11].

This possibility was investigated for the piezoelectric crystal problem, and a def-

inite, but moderate, decrease in the convergence rate was found in going from a

pointwise coloring (_ 108 colors) to a clique coloring (_ 10 colors), ttowever, the

increase in efficiency of the implementation for the clique coloring more than offset

the convergence differences.

Overall, we feel that this approach represents an effective approach for' ef-

ficiently solving large, sparse linear systems on massively parallel rnachines. We

have demonstrated that our implementation is able to solve general sparse systems

from two different applications, achieving both good processor performance and

convergence properties.
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