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Theory of Nonlinear, Distortive Phenomena in Solids:
Martensitic, Crack, and Multiscale Structures—Phenomenology and Physics.

Progress Summary 1991-1994, DOE Grant # DE-FG02-88-ER45364

James P. Sethna and James A. Krumhansl

Laboratory of Atomic and Solid State PlLysics,
Cornell University, Ithaca, New York 14853-2501
(Grant Period July 1, 1991 - June 30, 1994)

ABSTRACT: Our collaboration has had remarkable success in the last three years in
applying recent techniques in theoretical condensed-matter theory to several problems of
widespread importance in materials science. First, we’ve identified the tweed precursors to
martensitic phase transformations as a spin glass phase due to composition variations, and
used simulations and exact. “replica theory” predictions to quantitatively predict diffraction
peaks and model phase diagrams, and provide real space data for comparison to transmis-
sion electron micrograph images. Second, we've used symmetry principles to derive the
crack growth laws for mixed-mode brittle fracture — explaining the known results for two-
dimensional fracture and deriving the growth laws in three dimensions. Third, we’ve used
recent advances in dynamical critical phenomena to study hysteresis in disordered systems,
explaining the return-point-memory effect, predicting distributions for Barkhausen noise,
and elucidating the transition from athermal to burst behavior in martensites. Fourth,
from a nonlinear lattice-dynamical model of a first—order transition using simulations,
finite-size scaling, and transfer matrix methods we’ve shown that heterophase transforma-
tion precursors cannot occur in a pure homogeneous system, thus emphasizing the role of
disorder in real materials. Fifth, full integration of the nonlinear Landau~Ginzburg con-
tinuum theory with experimental neutron-scattering data and first—principles calculations
has been carried out to compute semi—quantitative values of the energy and thickness of

twin boundaries in InTl and FePd martensites.



We feel gratified that this research program has successfully met and gone beyond
the objectives in our proposal submitted January 1991. Since that time our group has
published 16 papers with three in progress, and the principle investigators have given 37
invited talks at internationally recognized conferences and centers of physics. Our group
has graduated 3 Ph.D.’s, who are now enjoying post-doctoral fellowships at excellent
places (Jennifer Hodgdon, now working at AT&T Bell Labs, Jamie Morris, now at Ames
Laboratory in Iowa, and Sivan Kartha, starting this fall at the Institute for Advanced
Study at Princeton). Most importantly, we have opened fundamentally new insights and
methodology for understanding materials and applications to first-order transformations,
crack growth, twin boundaries. and hysteretic behavior of martensitic alloys and magnetic

systems.

This increased and increasing interplay between materials science and the “new” con-
densed matter physics leads both to increased opportunity and to the endemic problem of
adequate support for cross-disciplinary basic research, particularly in highly exploratory
work of the present kind. When Barsch and Krumhans! began their program a decade ago,
one saw very little mention of martensite, first—order transitions, structurally disordered
materials, etc. in the physics literature. Today, Physical Review Letters and Physical Re-
view B have frequent reports relevant to this topic. It is important in the future that our
research program be able to move easily from traditional materials science to theoretical
condensed-matter physics as the science suggests. We have been grateful for the level of
support DOE has provided to our work over the past several years; yet we strongly believe
that with this broadened scientific scope, moderately increased funding is important at

this time.

In the following sections we summarize the research accomplishments in the three
general areas proposed in 1991: i. Tweed Precursors in Martensites, ii. Crack Growth

Laws, and iii. Nonlinear Theory: Deployment in Practice. In addition, we report on the
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exciting new results in iv. Hysteresis and Disorder.

i. TWEED PRECURSORS IN MARTENSITES

In marked contrast to the liquid-gas and liquid-solid first order transitions usually
studied by theoretical physicists, first-order solid-solid structural transformations (e.g.
martensitic transformations) demonstrate pretransitional effects for as much as hundreds
of degrees above the nominal transition temperature. As witnessed in a wide-ranging va-
riety of martensitic materials, this striking pretransitional behavior takes several different
forms: anomalous streaks and “central peaks” in scattering; partial elastic softening of
g =0 as well as ¢ # 0 phonon modes; and anémalous behaviour in transport and thermal
expansion coefficients. One particularly distinctive example of such precursor phenomena
is the observation of the “tweed” pattern! (Figurei.1a) in transmission electron microscope

images of materials approaching their martensitic transformation.

These solid-solid transitions are distinctly first—order: what can be driving these large
fluctuations? Disorder turned out to be the driving force. The disorder needn’t be gross:
we estimate that the simple statistical compositional disorder intrinsic to alloys is more
than enough to drive small regions prematurely into the low temperature phase. The
diffraction results and the tweed morphology both show local modulations consistent with
the incipient phase transformation. The exotic cross-hatched pattern in Figure i.1, and
the history-dependent, hysteretic nature of the modulations, indicate that these precursors

are a nonlinear, collective response to the disorder.

In recent times, lots of progress has been made in the study of disordered systems: a
bewildering variety of methods have been applied to a bewildering variety of exotic, tech-

nologically unimportant materials.* It is interesting to note that most applications are to

Spin glasses, pinned charge—density waves, localization, percolation, and random magnets
have been studied with renormalization—group methods, numerical simulations, scaling,
replica theory, mean—field theories, cluster expansions, supersymmetry, .. ..
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Figure i.1 Tweed. (a) Tweed as experimentally observed in transmission elec-

tron microscopy of Fej_,Pdy. Tweed is identified by its diagonal striations, which
reflect some aperiodic lattice deformation with correlations on the scale of some
tens of atomic spacings. (b) Tweed as seen in our model. The two colors reflect the
two martensitic variants (tall-and-skinny vs. short-and-fat). All materials parame-
ters in our model are determined from independent experimental measurements in
Fej_pPdy, except for the coupling to impurities. We set the coupling to impurities

to fit the temperature range for the tweed deformation.

new materials or to systems at high magnetic fields or low temperatures. Obviously, this
reflects the myopia of the theorists: dirt is everywhere, and we should look to ordinary
materials for inspiration and motivation as well. We're delighted to report not only that
disordered systems theory is useful for studying martensities, but that the precursor fluc-
tuations (in one limit) form a distinct spin glass phase. so-called because it was studied
first in dilute magnetic alloys. This work formed Sivan Kartha's doctoral research, and a

preprint of one of our publications is attached.

Kartha's model for tweed is a two-dimensional Landau-Ginzburg theory? for the strain
field of an anisotropic. nonlinear elastic medium coupled to a random concentration field.

The model undergoes a structural phase transformation from a square lattice to a rect-
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angular lattice as temperature is lowered32, The two dimensional square — rectangular
transition corresponds to the tetragonal — orthorhombic transition seen in planar com-
pounds such as the YBaCuO-type and LaCuO-type high-T, superconducting oxides. Con-
ceptually, this is also the two dimensional analog of the cubic — tetragonal transition seen
in many materials, such as certain ferrous steels, shape memory alloys such as FePd and
certain Indium alloys, and the superconducting A-15 compounds NbgSn and V3Si. Fig-
ure i.1b shows a local ground state of our model, found by slow Monte—~Carlo annealing
from an initial random ground state. The cross-hatched tweed modulations show a striking

similarity to the experimental ones.

Why do these systems have cross-hatched tweedy patterns? Kartha explained this
using the elastic anisotropy typically associated with martensitic transformations. The
elastic constants for rectangular and diagonal shear in these materials are rather different:
elastic anisotropies of between five and twenty are common. (This is natural: the material
is about to spontaneously stretch in the rectangular direction!) The deformations which
make best use of the soft rectangular shear are superpositions of modulations along the
two diagonals. Indeed, in the limit of infinite elastic anisotropy, these are the only allowed
deformations: it is easily shown that in this limit the allowed rectangular deformations
phi(x,y) can be written as the sum ¢(z,y) = ¢+(z +y) + ¢-(z —y). These infinitely long
stripes along thé diagonal directions correspond to the long-range diagonal correlations

seen in the experiment and the model in Figure i.l.

These long-range diagonal correlations lead to frustration. Frustration is a concept
first introduced in spin glasses: it reflects the competition of forces along closed paths in
a material. Consider the three spins on the right side of Figure i.2. Imagine each can
either point up or down; imagine the F bonds favor aligned spins (ferromagnetic) and the
A bonds favor antiparallel spins (antiferromagnetic). Since there are an odd number of A

bonds in the loop, no configuration of spins can make all bonds happy. This frustration
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Figure i.2 Frustration: Tweed and Spin Glass. A schematic representation

of frustration in the tweed system (left) and the spin glass system (right). Each

loop has a odd number of A bonds, and therefore must have an unsatisfied bond.
leads large systems of spins with random bonds to have a spin-glass phase, which unlike
traditional magnetic and structural phases has no long-range patterns in space but instead

has long-range order in time.

In a complete analogy, notice the closed loop connecting four regions of our metallic
alloy model on the left side of Figure i.2. In each region, the local disorder favors either
rectangular martensite M or square austenite A. To form martensite (¢ = +¢g), the strains
along the two intersecting diagonals must be in the same direction (yielding a net strain
that is tall-and-skinny, +¢q, or short-and-fat, —¢g), to form austenite, the strains must be
in opposing directions. Again, the loop shown cannot satisfy all four regions: there are an
odd number of A's along the loop. The analogy extends farther than pictures: indeed, in
the limit of infinite elastic anisotropy we have shown that a rigorous mathvmatical mapping
exists from our two-dimensional tweed model onto an infinite-range bipartite Sherrington-
Kirkpatrick spin-glass model. This model can be solved exactly, giving predictions for

phase diagrams and correlation functions.

Kartha used his numerical simulation extensively, both to elucidate the relationship
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Figurei.3. Diffuse Streaking: around three bragg points is shown. (a) Exper-

imental x-ray scattering data? for YBagCu(Al)307_s around the indicated Bragg
peaks. (b) Corresponding diffraction data extracted from the computer simulation
of tweed (using FePd parameters) faithfully reproduce important features of the
experimental data. i.e. the diffuse streaking is highly anisotropic, most pronounced

in the (11) directions. and asymmetrically depends on the Bragg peak index.

to spin glasses and the relationship to real experiments. We've confirmed that the tweed
phase diagram in our model agrees with that predicted by the spin-glass model. and that

our model has long-range order in time (static tweed = spin glass). We've extracted
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diffraction patterns from our simulation, and compared them with X-ray scattering data
(Figure 1.3). Not only do the contour plots look qualitatively similar, the quantitative
dependences on the wave-number of the Bragg peak and the asymptotics of the tails of
the individual peaks also check. Finally, we've introduced a method for extracting the two

characteristic diagonal (L) and transverse (£) correlation lengths.

To summarize, we've discovered and developed an elegant and intellectually satisfying
explanation for the tweed precursors in martensitic phase transformations, and brought the
concepts and tools developed in the last decade for the study of spin glasses and disordered

systems into the real world of metallurgy.

ii. CRACK GROWTH LAWS

How do cracks grow? Many have studied the problem of the growth of flat, straight
cracks: there are constituitive relations for viscoelastic cracks,® crossovers from brittle
to ductile fracture,® atomistic simulations,7’8 fracture in disordered media, .... Little or
no attention has been spent on more realistic mixed~mode fracture with curved fronts,
for the obvious reason that the calculations of the stress fields around the crack become
onerous. Recent progress in finite element methods for the study of brittle fracture, and
(more importantly) recent developments in computational processing power, have made
the study of real fracture possible. For example, Tony Ingraffea’s group here at Cornell
now can model the stresses at the crack edge in a turbine blade: however they need to

know where the crack will grow next!

Jennifer Hodgdon’s doctoral work used symmetry and gradient expansions to derive
" the differential equations for three-dimensional crack growth. Probably the roots of our
methods lie back in the days of Euler and Stokes, when equations for everything from
wave motion and fluid flow were discovered/derived. However, in the last decade the art

of deriving evolution equations has undergone a renaissance as physicists have moved from
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the study of equilibrium statistical mechanics to non—equilibrium dynamics, growth and
interface problems. After uncovering the power of symmetry in understanding the equilib-
rium and static behavior of exotic phases of helium, liquid crystals, and superconductors,
we're now exploring how symmetry and Ginzburg-Landau style gradient expansions can
be applied to dynamics. Hodgdon used these methods to develop the general law for

mixed-mode three-dimensional brittle crack growth (reprint enclosed).

Hodgdon focused on growth laws for smooth, slowly growing cracks valid on length
scales large compared to the graininess of the material and large compared to the nonlin-
ear zone. In this limit. the cracks can be taken to be nearly flat, straight, and with nearly
constant stresses along the edge.* There are two geometrical symmetries' for the crack:
symmetry under 180° rotation about the normal to the crack front i (Figure ii.1(a)), and
reflections through the plane of the crack. Hodgdon here derives a pleasing and illuminat-
ing result: the three traditional stress intensity factors Ky, Ky, and Ky precisely are
the amplitudes for the even-even, odd-odd, and even-odd components of the asymptotic
diverging strain field (Figure ii.1). The final term, odd under rotation and even under
reflection, doesn’t have a crack opening displacement; presumably for this reason it has

not attracted attention.

To write Hodgdon’s crack growth law, we need to set up some variables. Let the
crack edge be x()), the normal to the crack plane be b, and the in-plane normal to the
crack tangent vector be fi (see Figure 2.1(a)). Let’s use “reference gauge” (where the

parameterization follows the integral curves of x.) Then, Hodgdon showed that the most

The focus in the literature on flat straight cracks thus forms the basis for our methods.

There is also an additional gauge symmetry associated with the arbitrary parameterization
A(s) of the crack growth edge (where s is the arclength along the edge).
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Figure ii.l. Symmetry and the Stress Intensity Factors. (a) The vectors as-
sociated with a point on the crack front: t is the tangent to the crack front curve; n,
perpendicular to t and in the crack plane, is the direction of crack growth; b=txiis
the normal to the crack plane. (b) A crack loaded in mode I, with K7 > 0. Arrows show
direction of crack opening displacement. Mode I is symmetric both under 180° rotations
and under reflections through the plane of the crack. (c) A crack loaded in mode II, with
K1 > 0. This mode is antisymmetric under rotations and reflections. (d) A crack loaded
in mode III, with K 7; > 0, symmetric under rotations and antisymmetric under reflec-

tions. Hodgdon’s work explained the symmetry significance of the traditional breakdown

into modes, as well as identifying a fourth. 10
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general crack growth law allowed by symmetry is (up to first order in gradients)

% =un
ot
on __ov;
ot~ 9s
. . OKj . .. OKy 0K
fEy + 91K s + 9Kk s +9m—3, +
af T aﬁ ~ aﬁ 3
B 25 - on - I
thag b+hntKnas t+hannKmas b} b,

where the f, ga, and h;; are scalars, zeroth order in -33;; and v is a scalar, up to first order

in ?%.t

For slowly-varying crack fronts, the most important terms are v and f. The velocity
v( Ki. KIQI’ KI2H) as a function of stress is the function so often studied using microscopic
and viscoelastic theories.* The term fKjj in the second equation is the only term not
involving gradients along the crack front. In particular, v/(Kcf) has units of length, and

will be set by the graininess of the material — f is thus expected to be much larger than

the various g and h constants.

This immediately gives an explanation for the now well acknowledged “principle of

local symmetry” — the crack growth law in two dimensions.? In two dimensions, we are
left with the simpler equations

o7 .

— =vn

gt

n N
— = —fKyb.
5 fKu

When Kjj = 0, this equation says that the crack grows in a straight line (since %’t-' =0),in
agreement with the “principle of local symmetry” 10 generally used to predict crack growth

in two dimensions. The principle of local symmetry also says that Ky = 0 is maintained

These scalars can be functions of the stresses. A scalar zeroth order in 56; is an arbitrary

function of materials constants, Kj, KI2I’ and KI2H; scalars first order in a% can in addition
- K r § 7 n 7 a. 7

depend upon (KuKmZ), (KmZd), (Kul§W), (Kud -5), (35 1), and (K - b).

Typically it has a threshold K. below which the crack doesn’t grow, but under fatigue
growth (where our symmetry analysis must also apply) there often is no sharp threshold.
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Figure ii.2. Qualitative picture of crack growth in mode II, where the crack curves so
as to reduce the mode II stress, leaving only mode I stress. (a) Our (Hodgdon'’s) picture,
where the crack curves gradually to the direction where Kjj = 0, on a length scale of 727‘2’-1-
(b) The “principle of local symmetry” picture, where there is a sharp kink to the direction
where Kyj = 0. Note that in the f — oo limit, the two pictures agree.
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Figure ii.3 Mode III cracks. On the top is a photograph of a crack in desert
floral foam, under mode III loading, where the initial cut is planar on the right,
with subsequent growth to the left. On the bottom is a photograph of the a crack
in desert floral foam under torsional mode III loading. The initial cut is planar,
around the circumference of the foam rod, and subsequent growth is toward the

center of the rod.

at all times by the propagating crack—in effect, that the crack curves in such a way as to
keep K1 = 0. Our law, in contrast, says that it is only a non-zero K which can make the
crack curve, but that (with f > 0) the crack curves in such a way as to make Kjj smaller
(see figure ii.2). However, the rate at which the crack curves is set by f. Thus a crack for
which the principle of local symmetry suggests should bend sharply to make Ky = 0, will

bend in our growth law with a small radius of curvature v /(Kcf), until Ky = 0.

We've made use of the full three-dimensional growth law in a few tangible situations.
Working with Ingraffea’s finite—element crack-growth group, we've studied the growth of

a crack under mode III loading in a finite slab. The crack rotates slowly until the loading
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is pure mode I, both experimentally (Figure ii.3, top) and within our simulation (L. K.
Wickham, J. A. Hodgdon, P. Wawrzynek, and J. P. Sethna, unpublished). Hodgdon has
also studied. using simple models for the stress-intensity factors, the stability of straight,
flat cracks to sinusoidal perturbations. She checked her results with experiments on various
materials: experiment and theory agree that fnode I cracks are stable to small perturbations

and mode III cracks are unstable. Figure ii.3 shows two geometries of mode III cracks.

To summarize, we've had substantial success in applying symmetry and gradient ex-
pansions to the problem of three-dimensional crack growth: we’ve derived the general crack
growth law and used it to explain both known two-dimensional results and the results of

simple experiments.

iii. NONLINEAR THEORY: DEPLOYMENT IN PRACTICE

This program has had since its beginning nearly ten years ago the objective of bringing
recent developments in basic condensed matter physics to bear on the understanding of the
materials science of a technologically important class of materials produced by solid-solid
phase displacive transformations. Martensites, ferroelastic materials, and less directly in
our program, ferroelectric and high temperature oxide superconductors are examples. Over
this period, in collaboration at times with several other groups, we have brought pretty
much to completion a nonlinear continuum mechanics methodology based on Landau-
Ginzburt theory to discuss mesostructures (e.g. martensitic habit, twin boundaries, and

defect—induced local transformations).

Briefly, we summarize the physics of the central approach. At issue is to find a theoreti-
cal framework which incorporates the lattice scale physics systematically into a mesoscopic
continuum formulation which can describe domain, patterned structures at the micron
scale, as in martensites. First, the transformations of interest are displacive, not replacive.
No diffusion or compositional changes occur; thus, instead of chemical potentials as pri-
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mary phase variables, one wants a strain dependent free energy, with temperature and
stress as parameters. To accomplish such a description the Landau-Ginzburg method was
used. based on identifying the macroscopic “order parameters” which described the trans-
formation, i.e. as thermodynamic variables, by integrating out of the partition function
all the microscopic thermal fluctuations subject to the condition, say, that a particular
strain (or small set of strains) from a high symmetry reference lattice toward a “product”
structure were constrained to be finite. In the most general case a spatial variation on
the macroscopic scale may also be included. The result is a (effectively coarse grained)
free energy functior of strains and strain gradients, in lowest approximation. Prior to the
work supported by DOE in the 1980’s such a general description of the transformation dis-
placements and energetics in many models were based simply on linear elasticity, perhaps
augmented by higher order elastic corrections. However, intrinsically it is clear that first
order displacive transformations require nonlinear free energies that have multiple minima,
representing alternate phases; in addition, since, experimentally it is known that, spatially
varying patterns such as twin bands of alternations between equienergetic variants are the
essence of martensitic structures, it was necessary to introduce strain-gradient terms as
well (i.e. the Ginzburg terms) into the free energy. In short, the appropriate continuum

free energy functional of transformation strains must be strongly nonlinear, nonlocal, and

nonconvex.

During the period 1982-1990 Krumhansl in this, and Barsch on another DOE pro-
gram, together with a number of students and colleagues developed the basic theoretical
methodology, including incorporation of symmetry constraints. Combining simulations and
formal analysis it was shown how to describe cubic to tetragonal, tetragonal to orthorhom-
bic, and two dimensional transformations in some detail, including continuum models of
twin boundaries, a model martensite habit plane, and models for localized transformations

around a defect. References can be found in previous proposals.
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With that accomplished a significant effort on the part of one of us (Krumhansl) during
1991-92 was to review and put this material into writing and into invited papers, including
a series of papers with Barsch at ICOMAT-92 (in press), and a chapter in Olson and Owen,
“Martensite.” (1992, ASM International, where they say (p.4) “A recent advance that has
made a major contribution to the fundamental underpinnings of martensitic transformation

theory is the new nonlinear physics reviewed by Barsch and Krumhansl in Chapter 8 ...").

In addition, though, some additional quantitative work was carried out on the spe-
cific materials, InT1 and FePd martensites, to take experimental data from various sources
and connect twin boundary configurations and energies. The results were reported (with
Barsch) at ICOMAT-92, and are quite important: in neither material are the boundaries
sharp in the sense of a lattice transformation along one shared lattice plane between vari-
ants! Rather, in the InT! the transition scale is ~18 lattice constants, in FePd ~4 lattice
constants; the interfacial energies are very different from the abrupt interface models, and
this could have far reaching effects on the interpretation of data, and nucleation models.

Further deployment to specific materials will continue.

Heteropnase Fluctuations

It has been a long standing question in first order phase transitions, whether there can
be significant components of the phase to be in the parent material as the transition con-
dition is approached. In the solid-solid transition, characteristic of displacive martensitic
systems, the experimental evidence has been unclear. Several years ago R.J. Gooding and
J.R. Morris, post-doc and graduate student respectively with Krumhansl at Cornell, de-
cided to examine this question in the context of a simple lattice model for a displacive first
order transition. This work has been completed under Gooding's supervision at Queens
University (Canada), culminating in Morris’ Cornell thesis, 1992. The result is that for
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a pure system, such as the alkali metals,!! and defect free IIla-IVa metals!? where het-
erophase fluctuations are not seen, an exact thermodynamic theory has been developed by
them,!? and shows that in this idealized limiting case no enhancement of fluctuations into

the future product phase occurs.

In order to study this question, since fluctuations have been taken out in the formula-
tion of Landau-Ginzburg model it was necessary to start with a complete lattice dynamical
model, appropriately nonlinear so that it would show a first order transition in molecular
dynamical simulations at finite temperature. This project developed over several years in
collaboration with W. Kerr (Wake Forest and Los Alamos) and R.J. Gooding with suc-
cessful simulation achieved.!4 In parallel to the simulations Morris!3 developed a rigorous
formal transfer matrix solution for the partition function of 1 and 2 chains with the same
nonlinear dynamical model, then used finite size scaling to convincingly prove that in the
thermodynamic limit, in a pure system, there can be no measurable heterophase precursor
fluctuations. This also is a significant and important result because it emphasizes that
defects, or statistical compositional variations, are almost certainly the origin of precursor

structures and thus ties in with the results of the tweed program.

The above are the main accomplishments during this period under the general heading
of the Nonlinear Theory. There have been a number of invited talks or brief papers by both
of us on the general nature of these continuum models to groups from other disciplines,

such as applied mathematicians, and biophysics.

iv. HYSTERESIS AND DISORDER

First-order phase transitions in the real world of metallurgy and magnetism aren’t
a bit like the “sharp jump” from one phase to the other that theorists are told about.
Not only does the transition happen at different temperatures on heating and cooling (or

different external fields on ramping up and down), there is often no sharp transition at
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Figure iv.l1 Hysteresis Loop Showing Return—Point Memory. Shown is
the magnetization as a function of external field for a 303 system with disorder
R = 3.5J. Note that the system returns to the original curve at exactly the same
state B that it left, that the returning curve has an apparent slope discontinuity
at B, and that both effects also happen for the internal subloop. Thus a state can
have a whole hierarchy of parent states (mothers at increasing fields and fathers
at decreasing fields), which are seen as kinks in the corresponding branch of the
H(M) curve.

all. Martensites are often characterized by four transition temperatures: Ms, My, As, and
Af — denoting the start and finish temperatures on cooling (into Martensite) and heating

(into Austenite).

Twenty years ago, a sensible theorist would have given up. Surely hysteresis is a non-
equilibrium effect, involving collective behavior of many domains interacting. Probably
random impurities and long-range fields are important. In the last twenty years, sophis-
ticated methods have been developed to grapple with each of these issues. Karin Dahmen
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has been doing her doctoral work on applying the theory of critical phenomena to hystere-
sis in disordered systems. We’ve found scaling and universal critical phenomena buried

inside a disordered first—order phase transition!

Figure iv.1 shows a hysteresis loop for our model. Our model is a collection of domains
each of magnetization +1, coupled together ferromagnetically, with a random field in
each domain favoring one spin value or the other. This model (the random-field Ising
model) has been studied at length in equilibrium at finite temperature: we study it out
of equilibrium at zero temperature (as a random dynamical system). Notice the return
point memory, often seen in technologically important systems. We've constructed a proof
that the return-point memory!® will be found in any system which satisfies a set of three

general criteria, even in the presence of strong interactions and collective effects.

Figure iv.2 shows the phase transition in our model. For weak disorder, the interaction
between domains dominates the behavior: the first domain to flip over pulls its neighbors,
and one large burst dominates the hysteresis loop. For strong disorder, domains flip one
or a few at a time: each when the external field passes the local random field. There
must be a critical value of the randomness where the large jump disappears: this is a
critical point. At and near this critical point, one gets universal power laws for various
measured properties — for example, in the distribution of microscopic (Bau'khausen16 or
Kasimirl?) noise spikes (inset to Figure iv.2). The transition from athermal martensites
to burst martensites should have power-laws and scaling, and be described quantitatively
by a simple model like ours. There is experimental evidence both for power-law scaling of

the noise!® and for a crossover!® from burst to athermal martensites.

Figure iv.3 shows Karin Dahmen'’s renormalization-group analysis of the phase transi-

iy
tion. Dahmen used a field-theoretic Feynman diagram expansion about mean field-theory,
and extracted values for the critical exponents to first order in 6-¢. (The mean—field theory

is correct in dimensions greater than 6: ¢ = 3 is perturbing in dimension!) The significance
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Figure iv.2 Phase transition as we vary disorder. Three H(M) curves for

different levels of disorder: above, below, and near the critical disorder when the

burst disappears. For R > R, the dynamics is macroscopically smooth, although of

course microscopically it is a sequence of sizable avalanches. Inset: Log-Log Plot of

the avalanche-size distribution D(s) vs.avalanche size s, integrated over one sweep

of the magnetic field from —oo to +o0, averaged over & systems of size 1203. Notice

the powerlaw region D(s) ~ s—(7+988) and the cutoff at smaz ~ (R — Rc)"l/ .
of this calculation is not only that it is a theoretical tour-de-force, nor just that it gives
reasonably accurate values for the critical exponents. Rather, it is significant because it
ezplains the power laws and scaling forms seen near the transition. Moreover, it tells us
that we can trust our simple model to have the same behavior as the real world: as we
look at each system at longer and longer length scales, they begin to look more and more

alike, both attracted to the universal fixed point.

To summarize, we've introduced the idea that collective behavior of many domains is
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Figure iv.3 Renormalization Group. The vertical axis is the external field
H, responsible for pulling the system from down to up. The horizontal axis is the
width of the random-field distribution R. The bold line is H¢(R), the location
of the infinite avalanche (assuming an initial condition with all spins down and a
slowly increasing external field). The critical point we study is the end point of
the infinite avalanche line (R¢, H¢(R.)). Also shown are the RG flows around the
critical point. Two systems on the same RG trajectory (dashed thin lines) have the
same long-wavelength properties (correlation functions ...) except for an overall
change in length scale. This self-similarity leads to the observed power laws and
scaling behavior near the transition.

a crucial ingredient in the study of hysteresis. We've developed a simple model system
which explains the retyrn-point memory effect, the broad distribution of event sizes seen
in acoustic emission and Barkhausen noise measurements, and the crossover from smooth
(athermal) to “burst” hysteresis. Finally, at the transition from athermal to burst we

predict universal power laws and scaling behavior.
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