
"___' _' _ Informadlon lad Imaigo.alnangoment _/ ,_ _._:

__ BY QPPLIED INC.

i I





• Theory of Nonlinear, Distortive Phenomena in Solids:
Martensitic, Crack, and Multiscale Structures-Phenomenology

and Physics

Table of Contents

ABSTRACT ................................ 1

i. TWEED PRECURSORS IN MARTENSITES ................ 3

ii. CRACK GROWTH LAWS ........................ 8

iii. NONLINEAR THEORY: DEPLOYMENT IN PRACTICE .......... 14

Heterophase Fluctuations ........................ 16

iv. HYSTERESIS AND DISORDER ...................... 17

REFERENCES ............................... 22

v. PUBLICATIONS, PH.D.'S AND INVITED TALKS ............. 24

A. Publications Supported by This Grant .................. 24

B. Doctoral Thesis Supported by This Grant ................. 25

C. Personnel Currently Supported by This Grant ............... 26

D. Invited Talks on Research Supported by This Grant ............ 26

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expr_med herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

I]_UTI01_ ,q:"THISDocur,_rNTIS UNLIMtTEO

. MAS [Ea



¢ •

Theory of Nonlinear, Distortive Phenomena in Solids:

Martensitic, Crack, and Multiscale Structures-Phenomenology and Physics.

Progress Summary 1991-1994, DOE Grant # DE-FG02-88-ER45364

James P. Sethna and James A. Krumhansl

Laboratory o£ Atomic and Solid State P_.ysics,

Corne11 University, Ithaca, New York 14853-2501

(Grant Period July 1, 1991 - June 30, 1994)

ABSTRACT: Our collaboration has had remarkable success in the last three years in

applying recent techniques in theoretical condensed-matter theory to several problems of

widespread importance in materials science. First, we've identified the tweed precursors to

martensitic phase transformations as a spin glass phase due to composition variations, and

used simulations and exact. "replica theory" predictions to quantitatively predict diffraction

peaks and model phase diagrams, and provide real space data for comparison to transmis-

sion electron micrograph images. Second, we've used symmetry principles to derive the

crack growth laws for mixed-mode brittle fracture m explaining the known results for two--

dimensional fracture and deriving the growth laws in three dimensions. Third, we've used

recent advances in dynamical critical phenomena to study hysteresis in disordered systems,

explaining the return-point-memory effect, predicting distributions for Barkhausen noise,

and elucidating the transition from athermal to burst behavior in martensites. Fourth,

from a nonlinear lattice-dynamical model of a first-order transition using simulations,

finite-size scaling, and transfer matrix methods we've shown that heterophase transforma-

tion precursors cannot occur in a pure homogeneous system, thus emphasizing the role of

disorder in real materials. Fifth, full integration of the nonlinear Landau-Ginzburg con-

tinuum theory with experimental neutron-scattering data and first-principles calculations

has been carried out to compute semi-quantitative values of the energy and thickness of

twin boundaries in InT1 and FePd martensites.



• We feel gratified that this research program has successfully met and gone beyond

the objectives in our proposal submitted January 1991. Since that time our group has

published 16 papers w_.th three in progress, and the principle investigators have given 37

invited talks at internationally recognized conferences and centers of physics. Our group

has graduated 3 Ph.D.'s, who are now enjoying post-doctoral fellowships at excellent

places (Jennifer Hodgdon, now working at AT&T Bell Labs, Jamie Morris, now at Ames

Laboratory in Iowa, and Sivan Kartha, starting this fall at the Institute for Advanced

Study at Princeton). Most importantly, we have opened fundamentally new insights and

methodology for understanding materials and applications to first-order transformations,

crack growth, twin boundaries, and hysteretic behavior of martensitic alloys and magnetic

systems.

This increased and increasing interplay between materials science and the "new" con-

densed matter physics leads both to increased opportunity and to the endemic problem of

adequate support for cross-disciplinary basic research, particularly in highly exploratory

work of the present kind. When Barsch and Krumhansl began their program a decade ago,

one saw very little mention of martensite, first-order transitions, structurally disordered

materials, etc. in the physics literature. Today, Physical Review Letters and Physical Re-

view B have frequent reports relevant to this topic. It is important in the future that our

research program be able to move easily from traditional materials science to theoretical

condensed-matter physics as the science suggests. We have been grateful for the level of

support DOE has provided to our work over the past several years; yet we strongly believe

that with this broadened scientific scope, moderately increased funding is important at

this time.

In the following sections we summarize the research accomplishments in the three

general areas proposed in 1991: i. Tweed Precursors in Martensites, ii. Crack Growth

Laws, and iii. Nonlinear Theory: Deployment in Practice. In addition, we report on the
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exciting new results in iv. Hysteresis and Disorder.

i. TWEED PRECURSORS IN MARTENSITES

In marked contrast to the liquid-gas and liquid-solid first order transitions usually

studied by theoretical physicists, first-order solid.solid structural transformations (e.g.

martensitic transformations) demonstrate pretransitional effects for as much as hundreds

of degrees above the nominal transition temperature. As witnessed in a wide-ranging va-

riety of martensitic materials, this striking pretransitional behavior takes several different

forms: anomalous streaks and "central peaks" in scattering; partial elastic softening of

q = 0 as well as q _- 0 phonon modes; and anomalous behaviour in transport and thermal

expansion coefficients. One particularly distinctive example of such precursor phenomena

is the observation of the "tweed" pattern 1 (Figure i.la) in transmission electron microscope

images of materials approaching their martensitic transformation.

These solid-solid transitions are distinctly first-order: what can be driving these large

fluctuations? Disorder turned out to be the driving force. The disorder needn't be gross:

we estimate that the simple statistical compositional disorder intrinsic to alloys is more

than enough to drive small regions prematurely into the low temperature phase. The

diffraction results and the tweed morphology both show local modulations consistent with

the incipient phase transformation. The exotic cross-hatched pattern in Figure i.1, and

the history-dependent, hysteretic nature of the modulations, indicate that these precursors

are a nonlinear, collective response to the disorder.

In recent times, lots of progress has been made in the study of disordered systems: a

bewildering variety of methods have been applied to a bewildering; variety of exotic, tech-

nologically unimportant materials.* It is interesting to note that most applications are to

* Spin glasses, pinned charge-density waves, localization, percolation, and random magnets
have been studied with renormalization-group methods, numerical simulations, scaling,
replica theory, mean-field theories, cluster expansions, supersymmetry, ....
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Figure i.1 Tweed. (a) Tweed as experimentally observed in transmission elec-

tron microscopy of Fel__Pd_. Tweed is identified by its diagonal striations, which

reflect some aperiodic lattice deformation with correlations on the scale of some

tens of atomic spacings. (b) Tweed as seen in our model. The two colors reflect the

two martensitic variants (tall-and-skinny vs. short-and-fat). All materials parame-

ters in our model are determined from independent experimental measurements in

Fel__Pd_, except for the coupling to impurities. We set the coupling to impurities

to fit the temperature range for the tweed deformation.

new materials or to systems at high magnetic fields or low temperatures. Obviously, this

reflects the myopia of the theorists: dirt is everywhere, and we should look to ordinary

materials for inspiration and motivation as well. We're delighted to report not only that

disordered systems theory is useful for _tudying martensities, but that the precursor fluc-

tuations (in one limit) form a distinct spin glass phase, so-called because it was studied

first in dilute magnetic alloys. This work formed Sivan Kartha's doctoral research, and a

preprint of one of our publications is attached•

Kartha's model for tweed is a two-dimensional Landau-Ginzburg theory 2 for the strain

field of an anisotropic, nonlinear elastic medium coupled to a random concentration field.

The model undergoes a structural phase transformation from a square lattice to a rect-
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• angular lattice as temperature is lowered 3'2. The two dimensional square --. rectangular

transition corresponds to the tetragonal --. orthorhombic transition seen in planar com-

pounds such as the YBaCuO-type and LaCuO-type high-Tc superconducting oxides. Con-

ceptually, this is also the two dimensional analog of the cubic _ tetragonal transition seen

in many materials, such as certain ferrous steels, shape memory alloys such as FePd and

certain Indium alloys, and the superconducting A-15 compounds Nb3Sn and V3Si. Fig-

ure i.lb shows a local ground state of our model, found by slow Monte--Carlo annealing

from an initial random ground state. The cross-hatched tweed modulations show a striking

similarity to the experimental ones.

Why do these systems have cross-hatched tweedy patterns.7 Kartha explained this

using the elastic ardsotropy typically associated with martensitic transformations. The

elastic constants for rectangular and diagonal shear in these materials are rather different:

elastic anisotropies of between five and twenty are common. (This is natural: the material

is about to spontaneously stretch in the rectangular direction!) The deformations which

make best use of the soft rectangular shear are superpositions of modulations along the

two diagonals. Indeed, in the limit of infinite elastic anisotropy, these are the only allowed

deformations: it is easily shown that in this limit the allowed rectangular deformations

phi(x,y) can be written as the sum ¢(x, y) = ¢+(x + y) -b ¢_(x - y). These infinitely long

stripes along the diagonal directions correspond to the long-range diagonal correlations

seen in the experiment and the model in Figure i.1.

These long-range diagonal correlations lead to frustration. Frustration is a concept

first introduced in spin glasses: it reflects the competition of forces along closed paths in

a material. Consider the three spins on the right side of Figure i.2. Imagine each can

either point up or down; imagine the F bonds favor aligned spins (ferromagnetic) and the

A bonds favor antiparaUel spins (antiferromagnetic). Since there are an odd number of A

bonds in the loop, no configuration of spins can make all bonds happy. This frustration
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Tweed Spin Glass

Figure i.2 Frustration: Tweed and Spin Glass. A schematic representation

of frustration in the tweed system (left) and the spin glass system (right). Each

loop has a odd number of A bonds, and therefore must have an unsatisfied bond.

leads large systems of spins with random bonds to have a spin-glass phase, which unlike

traditional magnetic and structural phases has no long-range patterns in space but instead

has long-range order in time.

In a complete analogy, notice the closed loop connecting four regions of our metallic

alloy model on the left side of Figure i.2. In each region, the local disorder favors either

rectangular martensite M or square austenite A. To form martensite (_b= 5:@0), the strains

along the two intersecting diagonals must be in the same direction (yielding a net strain

that is tall-and-skinny, +_b0, or short-and-fat, -60), to form austenite, the strains must be

in opposing directions. Again, the loop shown cannot satisfy all four regions: there are an

odd number of A's along the loop. The analogy extends farther than t,ictures: indeed, in

the limit of infinite elastic anisotropy we have shown that a rigorous matht,matieal mapping

exists from our two-dimensional tweed model onto an infinite--range bipartite Sherrington-

Kirkpatrick spin-glass model. This model can be solved exactly, giving predictions for

phase diat_rams and correlation functions.

Kartha used his numerical simulation extensively, both to elucidate the relationship
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Figure i.3. Diffuse Streaking: around three bragg points is shown. (a) Exper-

imental x-ray scattering data 4 for YBa2Cu(A1)3OT_6 around the indicated Bragg

peaks. (b) Corresponding diffraction data extracted from the computer simulation

of tweed (using FePd parameters) faithfully reproduce important features of the

experimental data. i.e. the diffuse streaking is highly anisotropic, most pronounced

in the (11) directions, and asymmetrically depends on the Bragg peak index.

to spin glasses and the relationship to real experiments. We've confirmed that the tweed

phase diagram in our model agrees with that predicted by the spin-glass model, and that

our model has long-range order in time (static tweed - spin glass). We've extracted
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' diffraction patterns from our simulation, and compared them with X-ray scattering data

(Figure i.3). Not only do the contour plots look qualitatively similar, the quantitative

dependences on the wave-number of the Bragg peak and the asymptotics of the tails of

the individual peaks also check. Finally, we've introduced a method for extracting the two

characteristic diagonal (L) and transverse (_) correlation lengths.

To summarize, we've discovered and developed an elegant and intellectually satisfying

explanation for the tweed precursors in martensitic phase transformations, and brought the

concepts and tools developed in the last decade for the study of spin glasses and disordered

systems into the real world of metallurgy.
i

ii. CRACK GROWTH LAWS

How do cracks grow? Many have studied the problem of the growth of flat, straight

cracks: there are constituitive relations for viscoelastic cracks, 5 crossovers from brittle

to ductile fracture, 6 atomistic simulations, 7'8 fracture in disordered media, .... Little or

no attention has been spent on more realistic mixed-mode fracture with curved fronts,

for the obvious reason that the calculations of the stress fields around the crack become

onerous. Recent progress in finite element methods for the study of brittle fracture, and

(more importantly) recent developments in computational processing power, have made

the study of real fracture possible. For example, Tony Ingraffea's group here at Cornell

now can model the stresses at the crack edge in a turbine blade: however they need to

know where the crack will grow next!

Jennifer Hodgdon's doctoral work used symmetry and gradient expansions to derive

the differential equations for three-dimensional crack growth. Probably the roots of our

methods lie back in the days of Euler and Stokes, when equations for everything from

wave motion and fluid flow were discovered/derived. However, in the last decade the art

of deriving evolution equations has undergone a renaissance as physicists have moved from
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the study of equilibrium statistical mechanics to non-equilibrium dynamics, growth and

interface problems. After uncovering the power of symmetry in understanding the equilib-

rium and static behavior of exotic phases of helium, liquid crystals, and superconductors,

we're now exploring how symmetry and Ginzburg-Landau style gradient expansions can

be applied to dynamics. Hodgdon used these methods to develop the general law for

mixed-mode three-dimensional brittle crack growth (reprint enclosed).

Hodgdon focused on growth laws for smooth, slowly growing cracks valid on length

scales large compared to the graininess of the material and large compared to the nonlin-

ear zone. In this limit, the cracks can be taken to be nearly flat, straight, and with nearly

constant stresses along the edge.* There are two geometrical symmetries t for the crack:

symmetry under 180° rotation about the normal to the crack front fi (Figure ii.l(a)), and

reflections through the plane of the crack. Hodgdon here derives a pleasing and illuminat-

ing result: the three traditional stress intensity factors KI, KII, and KIII precisely are

the amplitudes for the even-even, odd-odd, and even-odd components of the asymptotic

diverging strain field (Figure ii.1). The final term, odd under rotation and even under

reflection, doesn't have a crack opening displacement; presumably for this reason it has

not attracted attention.

To write Hodgdon's crack growth law, we need to set up some variables. Let the

crack edge be x(_), the normal to the crack plane be I_, and the in-plane normal to the

crack tangent vector be fi (see Figure 2.1(a)). Let's use "reference gauge" (where the

parameterization follows the integral curves of x.) Then, Hodgdon showed that the most

* The focus in the literature on flat straight cracks thus forms the basis for our methods.

t There is also an additional gauge symmetry associated with the arbitrary parameterization
)_(s) of the crack growth edge (where s is the arclength along the edge).
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Figure ii.1. Symmetry and the Stress Intensity Factors. (a) The vectors as-

sociated with a point on the crack front: t is the tangent to the crack front curve; fi,

perpendicular to t and in the crack plane, is the direction of crack growth; I_ --_t x fi is

the normal to the crack plane. (b) A crack loaded in mode I, with K[ > 0. Arrows show

direction of crack opening displacement. Mode I is symmetric both under 180 ° rotations

and under reflections through the plane of the crack. (c) A crack loaded in mode II, with

KII > 0. This mode is antisymmetric under rotations and reflections. (d) 3, crack loaded

in mode III, with KIII > 0, symmetric under rotations and antisymmetric under reflec-

tions. Hodgdon's work explained the symmetry significance of the traditional breakdown

into modes, as well as identifying a fourth. 10



general crack growth law allowed by symmetry is (up to first order in gradients)

a_
at
ah av.

=- Nt+
aK[ aKii aKtn+

- fKII -I-gl KIII _ + gIIKIIKIII _ Jr gIII

hth-_-_s. b + hntKli-_s . { + hnbKiiKiIl-_s " b b,d

where the f, ga, and hij are scalars, zeroth order in _s; and v is a scalar, up to first order

in _s .I;

For slowly-varying crack fronts, the most important terms are v and f. The velocity

v(Ki. KI2I, KI2II) as a function of stress is the function so often studied using microscopic

and viscoelastic theories.* The term f KII in the second equation is the only term not

involving gradients along the crack front. In particular, v/(Kcf) has units of length, and

will be set by the graininess of the material -- f is thus expected to be much larger than

the various g and h constants.

This immediately gives an explanation for the now well acknowledged "principle of

local symmetry" -- the crack growth law in two dimensions. 9 In two dimensions, we are

left with the simpler equations
0_
-- ---- 1)72_

Ot
Oh

= - f Knk

When KII = O, this equation says that the crack grows in a strmght line (since _ = 0), in

agreement with the "principle of local symmetry" 10 generally used to predict crack growth

in two dimensions. The principle of local symmetry also says that KII = 0 is mmntained

t, These scalars can be functions of the stresses. A scalar zeroth order in _ is an arbitrary

function of materials constants, K t , K'I2I, and K2II; scalars first order in _O can in addition

depend upon (/x_IKIIIos ,, (KIllas ,,(KII_lls),(KII_ "_)'(_s"t),and (KIII_s •b).
• Typically it has a threshold Kc below which the crack doesn't grow, but under fatigue

growth (where our symmetry analysis must also apply) there often is no sharp threshold.
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Figure ii.2. Qualitative picture of crack growth in mode II, where the crack curves so

as to reduce the mode II stress, leaving only mode I stress. (a) Our (Hodgdon's) picture,

2v
where the crack curves gradually to the direction where KII = 0, on a length scale of 7_'_"

(b) The "principle of local symmetry" picture, where there is a sharp kink to the direction

where KII = 0. Note that in the ] _ c_ limit, the two pictures agree.
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Figure ii.3 Mode III cracks. On the top is a photograph of a crack in desert

floral foam, under mode III loading, where the initial cut is planar on the right,

with subsequent growth to the left. On the bottom is a photograph of the a crack

in desert floral foam under torsional mode III loading. The initial cut is planar,

around the circumference of the foam rod, and subsequent growth is toward the

center of the rod.

at all times by the propagating crack--in effect, that the crack curves in such a way as to

keep KII - 0. Our law, in contrast, says that it is only a non-zero KII which can make the

crack curve, but that (with f > 0) the crack curves in such a way as to make KII smaller

(see figure ii.2). However. the rate at which the crack curves is set by f. Thus a crack for

which the principle of local symmetry suggests should bend sharply to make KII = 0, will

bend in our growth law with a small radius of curvature v/(KcJ:), until KII = 0.

We've made use of the full three-dimensional growth law in a few tangible situations.

Working with Ingraffea's finite-element crack-growth group, we've studied the growth of

a crack under mode III loading in a finite slab. The crack rotates slowly until the loading
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' is pure mode I, both experimentally (Figure ii.3, top) and within our simulation (L. K.

Wickham, J. A. Hodgdon, P. Wawrzynek, and J. P. Sethna, unpublished). Hodgdon has

also studied, using simple models for the stress-intensity factors, the stability of straight,

flat cracks to sinusoidal perturbations. She checked her results with experiments on various

materials: experiment and theory agree that mode I cracks are stable to small perturbations

and mode III cracks are unstable. Figure ii.3 shows two geometries of mode III cracks.

To summarize, we've had substantial success in applying symmetry and gradient ex-

pansions to the problem of three-dimensional crack growth: we've derived the general crack

growth law and used it to explain both known two-dimensional results and the results of

simple experiments.

iii. NONLINEAR THEORY: DEPLOYMENT IN PRACTICE

This program has had since its beginning nearly ten years ago the objective of bringing

recent developments in basic condensed matter physics to bear on the understanding of the

materials science of a technologically important class of materials produced by solid-solid

phase displacive transformations. Martensites, ferroelastic materials, and less directly in

our program, ferroelectric and high temperature oxide superconductors are examples. Over

this period, in collaboration at times with several other groups, we have brought pretty

much to completion a nonlinear continuum mechanics methodology based on Landau-

Ginzburt theory to discuss mesostructures (e.g. martensitic habit, twin boundaries, and

defect-induced local transformations).

Briefly, we summarize the physics of the central approach. At issue is to find a theoreti-

cal framework which incorporates the lattice scale physics systematically into a mesoscopic

continuum formulation which can describe domain, patterned structures at the micron

scale, as in martensites. First, the transformations of interest are displacive, not replacire.

No diffusion or compositional changes occur; thus, instead of chemical potentials as pri-
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• mary phase variables, one wants a strain dependent free energy, with temperature and

stress as parameters. To accomplish such a description the Landau-Ginzburg method was

used. based on identifying the macroscopic "order parameters" which described the trails-

formation, i.e. as thermodynamic variables, by integrating out of the partition function

all the microscopic thermal fluctuations subject to the condition, say, that a particular

strain (or small set of strains) from a high symmetry reference lattice toward a "product"

structure were constrained to be finite. In the most general case a spatial variation on

the macroscopic scale may also be included. The result is a (effectively coarse grained)

free energy function of strains and strain gradients, in lowest approximation. Prior to the

work supported by DOE in the 1980's such a general description of the transformation dis-

placements and energetics in many models were based simply on linear elasticity, perhaps

augmented by higher order elastic corrections. However, intrinsically it is clear that first

order displacive transformations require nonlinear free energies that have multiple minima,

representing alternate phases; in addition, since, experimentally it is known that, spatially

varying patterns such as twin bands of alternations between equienergetic variants are the

essence of martensitic structures, it was necessary to introduce strain-gradient terms as

well (i.e. the Ginzburg terms) into the free energy. In short, the appropriate continuum

free energy functional of transformation strains must be strongly nonlinear, nonlocal, and

nonconvex.

During the period 1982-1990 Krumhansl in this, and Barsch on another DOE pro-

gram, together with a number of students and colleagues developed the basic theoretical

methodology, including incorporation of symmetry constraints. Combining simulations and

formal analysis it was shown how to describe cubic to tetragonal, tetragonal to orthorhom-

bic, and two dimensional transformations in some detail, including continuum models of

twin boundaries, a model martensite habit plane, and models for localized transformations

" around a defect. References can be found in previous proposals.

15
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• With that accomplished a significant effort on the part of one of us (Krumhansl) during

1991-92 was to review and put this material into writing and into invited papers, including

a series of papers with Barsch at ICOMAT-92 (in press), and a chapter in Olson and Owen,

":_Iartensite," (1992, ASM International, where they say (p.4) "A recent advance that has

made a major contribution to the fundamental underpinnings of martensitic transformation

theory is the new nonlinear physics reviewed by Barsch and Krumhansl in Chapter 8 ..." ).

In addition, though, some additional quantitative work was carried out on the spe-

cific materials, InTl and FePd martensites, to take experimental data from various sources

and connect twin boundary configurations and energies. The results were reported (with

Barsch) at ICOMAT-92, and are quite important: in neither material are the boundaries

sharp in the sense of a lattice transformation along one shared lattice plane between vari-

ants! Rather, in the InT1 the transition scale is _18 lattice constants, in FePd ,,_4 lattice

constants; the interracial energies are very different from the abrupt interface models, and

this could have far reaching effects on the interpretation of data, and nucleation models.

Further deployment to specific materials will continue.

Heteropnase Fluctuations

It has been a long standing question in first order phase transitions, whether there can

be significant components of the phase to be in the parent material as the transition con-

dition is approached. In the solid-solid transition, characteristic of displacive martensitic

systems, the experimental evidence has been unclear. Several years ago R.J. Gooding and

J.R. Morris, post-doc and graduate student respectively with Krumhansl at CorneU, de-

cided to examine this question in the context of a simple lattice model for a displacive first

order transition. This work has been completed under Gooding's supervision at Queens

University (Canada), culminating in Morris' CorneU thesis, 1992. The result is that for
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" a pure system, such as the alkali metals, 11 and defect free IIIa-IVa metals 12 where het-

erophase fluctuations are not seen, an exact thermodynamic theory has been developed by

them, 13 and shows that in this idealized limiting case no enhancement of fluctuations into

the future product phase occurs.

In order to study this question, since fluctuations have been taken out in the formula-

tion of Landau-Ginzburg model it was necessary to start with a complete lattice dynamical

model, appropriately nonlinear so that it would show a first order transition in molecular

dynamical simulations at finite temperature. This project developed over several years in

collaboration with Vv'. Kerr (Wake Forest and Los Alamos) and R.J. Gooding with suc-

cessful simulation achieved. 14 In parallel to the simulations Morris 13 developed a rigorous

formal transfer matrix solution for the partition function of 1 and 2 chains with the same

nonlinear dynamical model, then used finite size scaling to convincingly prove that in the

thermodynamic limit, in a pure system, there can be no measurable heterophase precursor

fluctuations. This also is a significant and important result because it emphasizes that

defects, or statistical compositional v_riations, are almost certainly the origin of precursor

structures and thus ties in with the results of the tweed program.

The above are the main accomplishments during this period under the general heading

of the Nonlinear Theory. There have been a number of invited talks or brief papers by both

of us on the general nature of these continuum models to groups from other disciplines,

such as applied mathematicians, and biophysics.

iv. HYSTERESIS AND DISORDER

First-order phase transitions in the real world of metallurgy and magnetism aren't

a bit like the "sharp jump" from one phase to the other that theorists are told about.

Not only does the transition happen at different temperatures on heating and cooling (or

different external fields on ramping up and down), there is often no sharp transition at

17
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Magnetization (M)
Figure iv.1 Hysteresis Loop Showing Return-Point Memory. Shown is

the magnetization as a function of external field for a 303 system with disorder

R = 3.5J. Note that the system returns to the original curve at exactly the same

state B that it left, that the returning curve has an apparent slope discontinuity

at B, and that both effects also happen for the internal subloop. Thus a state can

have a whole hierarchy of parent states (mothers at increasing fields and fathers

at decreasing fields), which are seen as kinks in the corresponding branch of the

H (M) curve.

all. Martensites are often characterized by four transition temperatures: Ms, Mr, As, and

Af -- denoting the start and finish temperatures on cooling (into Martensite) and heating

(into Austenite).

Twenty years ago, a sensible theorist would have given up. Surely hysteresis is a non-

equilibrium effect, involving collective behavior of many domains interacting. Probably

random impurities and long-range fields are important. In the last twenty years, sophis-

ticated methods have been developed to grapple with each of these issues. Karin Dahmen
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hasbeendoingherdoctoralwork on applyingthetheoryofcriticalphenomena tohystere-

sisindisorderedsystems.We've foundscalingand universalcriticalphenomena buried

insidea disorderedfirst-orderphasetransition!

Figureiv.1showsa hysteresisloopforourmodel.Our model isa collectionofdomains

each of magnetization ±1, coupled together ferromagnetically, with a random field in

each domain favoring one spin value or the other. This model (the random-field Ising

model) has been studied at length in equilibrium at finite temperature: we study it out

of equilibrium at zero temperature (as a random dynamical system). Notice the re_rn

po{_ memory, often seen in technologically important systems. We've constructed a proof

that the return-point memory 15 will be found in any system which satisfies a set of three

general criteria, even in the presence of strong interactions and collective effects.

Figure iv.2 shows the phase transition in our model. For weak disorder, the interaction

between domains dominates the behavior: the first domain to flip over pulls its neighbors,

and one large burst dominates the hysteresis loop. For strong disorder, domains flip one

or a few at a time: each when the external field passes the local random field. There

must be a critical value of the randomness where the large jump disappears: this is a

critical point. At and near this critical point, one gets universal power laws for various

measured properties m for example, in the distribution of microscopic (Barkhausen 16 or

Kasimir 17) noise spikes (inset to Figure iv.2). The transition from athermal martensites

to burst martensites should have power-laws and scaling, and be described quantitatively

by a simple model like ours. There is experimental evidence both for power-law scaling of

the noise 16 and for a crossover 18 from burst to athermal martensites.

Figure iv.3 shows Karin Dahmen's renormalization-group analysis of the phase transi-

tion. Dab.men used a field-theoretic Feynman diagram expansion about mean field-theory,

and extracted values for the critical exponents to first order in 6-e. (The mean-field theory

is correct in dimensions greater than 6: _ = 3 is perturbing in dimension!) The significance
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Figure iv.2 Phase transition as we vary disorder. Three H(M) curves for

different levels of disorder: above, below, and near the critical disorder when the

burst disappears. For R > Rc the dynamics is macroscopically smooth, although of

course microscopically it is a sequence of sizable avalanches. Inset: Log-Log Plot of

the avalanche-size distribution D(s) vs.avalanche size s, integrated over one sweep

of the magnetic field from -_ to +_, averaged over 5 systems of size 1203. Notice

the powerlaw region D(s) _, s -(r._6) and the cutoff at Srnaz _ (R- Rc) -1/_.

of this calculation is not only that it is a theoretical tour.de-force, nor just that it gives

reasonably accurate values for the critical exponents. Rather, it is significant because it

ezplains the power laws and scaling forms seen near the transition. Moreover, it tells us

that we can trust our simple model to have the same behavior as the real world: as we

look at each system at longer and longer length scales, they begin to look more and more

alike, both attracted to the universal fixed point.

To summarize, we've introduced the idea that collective behavior of many domains is
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Figure iv.3 Renormalization Group. The vertical axis is the external field

H, responsible for pulling the system from down to up. The horizontal axis is the

width of the random-field distribution R. The bold line is He(R), the location
t

of the infinite avalanche (assuming an initial condition with all spins down and a

slowly increasing external field). The critical point we study is the end point of

the infinite avalanche line (Re, He(Re)). Also shown are the RG flows around the

critical point. Two systems on the same RG trajectory (dashed thin lines) have the

same long-wavelength properties (correlation functions ...) except for an overall

change in length scale. This self-similarity leads to the observed power laws and

scaling behavior near the transition.

a crucial ingredient in the study of hysteresis. We've developed a simple model system

which explains the rettp'n-point memory effect, the broad distribution of event sizes seen

in acoustic emission and Barkhausen noise measurements, and the crossover from smooth

(athermal) to "burst" hysteresis. Finally, at the transition from athermal to burst we

predict universal power laws and scaling behavior.
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