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ABSTRACT

Three-dimensional hydrodynamic models for gas-solids flow are developed
and used to compute bubble and solids motion in rectangular fluidized beds. Qur
computed results demonstrate the significance and necessity for three-dimensional
models of hydrodynamics and erosion in fluidized-bed combustors. A kinetic the-
ory model for erosion using Firnie's single-particle ductile erosion model was used
to compute erosion in a rectangular fluidized bed containing a single tube. Com-
parison of two-dimensional and three-dimensional computed hydrodynamics, ero-
sion rates, and patterns clearly show the superiority of three-dimensional modeling.

Introduction

Solids motion (and the associated bed dynamics involving bubble evolution
and pressure fluctuations) is the key to understanding the erosion processes in
fluidized-bed combustors (FBC's). Fluidized-bed combustors used in industry
have continued to show promise for burning high sulfur coal, but erosion of in-
bed tubes and other components is still hampering the commercialization of the
FBC technology. Despite its importance, the exact mechanisms of erosion and
hydredynamics in fluidized beds are poorly understood. One reason may be due to
the lack of three-dimensional models for fluidized-bed hydrodynamics and erosion
models.

A three-dimensional model with a constant microscopic solids viscosity was
used by Gidaspow and Ding (1990) to simulate gas-solids flow in a thin “wo-
dimensional” fluidized bed with a circular jet. To date, no published three-
dimensional two-phase flow models have been used to simulate fluidized beds,
to our knowledge. One reason is the extensive computing cost.

In this paper we present our three-dimensional models for fluidized beds and
demonstrate the significance and the necessity of three-dimensional models of hy-
drodynamics and erosion. The computer codes used are FLUFIX (Lyczkowski

and Bouillard, 1989), FORCE2 (Burge, 1991), and IFAP. The empirical models
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for solids viscosity and solids stress (Gidaspow, 1986; Lyczkowski and Bouillard,
1989; Bouillard et al., 1989) were used in FLUFIX and FORCE2. The kinetic the-
ory granular two-phase flow model developed by Ding and Gidaspow {1990) was
extended to three-dimensional in IFAP. A kinetic theory model for erosion using
Finnie’s (1960) single-particle ductile erosion model is used to compute erosion
around tube surfaces in a rectangular fluidized bed. The computations show the
significance of three-dimensional effects on bed dynamics and tube wear.

Governing Equations

Equations for Gas-Solids Flow

The gas phase flow can be assumed to be Newtonian. The transport equa-
tions for the solids phase were derived starting from the Boltzman equation for
the velocity distribution of particles. The obtained continuity equations and mo-
mentum equations are listed in Table 1, Eqs. (T1) and (T2), respectively. The
fluctuating solids phase kinetic energy equation is given in Eq. (T7) in Table 1.

To close the solids phase transport equations, we need constitutive relations
for solids stresses and solids strain rates. The empirical solids viscosity and stress
model were listed in Eqs. (T5a) to (T5d). In the kinetic theory, we assumed
the single particle velocity distribution function to be Maxwellian (Ding and Gi-
daspow, 1990; Jenkins and Savage, 1983),

Flroeyt) = —"eapl- T Ya)) (1)

where ¢ is the instantaneous particle velocity, n is the particle number density, T is
the granular temperature, and v, is the mean solids velocity, and used the Enskog
assumption for the pair-distribution function (Chapman and Cowling, 1976). The
constitutive equations obtained are listed in in Egs. (6a) to (T6d) in Table 1. In
Eq.(T7), the correlation between the gas phase fluctuation velocity and the solids
phase fluctuation velocity has been neglected, as discussed by Ding and Gidaspow
(1990). The radial distribution function, g, listed in Eq. ('T'6d) was recommended
by Lun and Savage (1986) to match the data of Alder and Wainwright (1960) more
closely.

Eq. (1) has implied three-dimensional fluctuation flow of particles. Two-
dimensional fluctuation of particles cannot really exist. From this point of view,
the three-dimensional model must be used as shown in this paper.

Boundary Conditions

To solve the three dimensional equations of gas-solids flow given above, we
need appropriate initial conditions and boundary conditions for the two-phase
velocities, the gas phase pressure, the porosity, and the granular temperature.
The initial conditions depend upon the problem investigated. The inlet conditior s
are usually given. For example, the porosity is set to 1 where particle-free gas
enters the system. The boundary conditions at planes of symmetry demand zero
normal gradient of all variables.

At an impenetrable solid wall, the gas phase velocities in the three normal
and tangential directions are set to zero. The no-slip condition cannot always be
applied to the solids phase. Since the particle diameter is usually larger than the
length scale of surface roughness of the rigid wall, the particles may partially slip

I\‘Hi

i



TABLE 1. GOVERNING EQUATIONS FOR GAS-SOLIDS FLOW
1. CONTINUITY EQUATION FOR PHASE k(= g,s)

d
5 (exPs) + 7 - (exprvic) = 0 (T1)
Y ea=1 (T1a)
k

2. MOMENTUM EQUATION FOR PHASE k(= g,s;l = g,s;1 # k)

0 _
E"t'(fkpkvk) + 7 (€xpiViVk) = —€k U Py + €xprg + 7 Tk + B(vi — vi) (T2)
3. GAS PHASE STRESS

Tg = 2eg11ySyg (T3)
where
5, = n_ 2 T3
S5g = ‘ilvvg +(Tvg)'] - 3 V 'vg (T'3a)
4. SOLIDS PHASE STRESS
Fs = [—ps + €,&s 7 -vs]i +- 26‘,;1.3::935 (T4)
Deformation Rate
= 1 1 =
§s = §[Vvs + (VVs)T] 3 V vsl (T'4a)
5. EMPIRICAL SOLIDS VISCOSITY AND STRESS MODEL
fs =0 (TSCL)
Vps = G(e&a) V €, (T'5b)
G(es) = exp[—600(e — 0.376)] (T'5¢)
s = B5Pa-s (for ezample) (T'5d)

6. KINETIC THEORY MODEL

Solids Phase Pressure
Ps = €4pp|l + 2(1 + €)esgo]T (T6a)
Solids Phase Bulk Viscosity
T

4 . . s Al
€0 = eappdpgo(1+e)(>) (7'66)

Solids Phase Shear Viscosity

3

4 A "rm
Ks = ‘gfap;vdpg()(l + e)(’“‘)—; (T'6c)
Radial Distribution Function
go = (1 - )2t (76d)
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TABLE L. (continued)
Fluctuating Energy 37 (= 1 < C? >) Equation

3 0 -
5[5£(e,ppT) + V  (€appVsT)] =TFa: YVs —~ V- — v — 30T

Collisional Energy Dissipation v

4 T
7 =3(1 = €l ppgo T ()7 = v - v
p T
Flux of Fluctuating Energy ¢
=—-KY T

Conddctivity of the Fluctuating Energy

T,
& = 2ppedy(1 + e)go(-;r )?
7. GAS-SOLIDS DRAG COEFFICIENTS
For ¢ < 0.8,
52;1, P E,,h' VE‘
ﬁ = 1.‘_’)0_.4....!__..?.~~ + 1. 7"_.§.__._"Lm
(dp¢8) dp¢s
For ¢ > 0.8,
8= §C €€apy[Vy = Vol 05
4 dpods
where,
24 0.687
Cq = —- {1 + 0.15Re, ], For Re, <1000
Re,

Cq=0.44, for Re, > 1000,

Re, = €pglvy ;gvs,dp¢8

o

(r7)

(1'7a)

(T'7b)

(T'7¢)

(T10)

(T'11)

(T12)



at the wall. This mean slip velocity can be assumed to be given by (Ding and
Gidaspow, 1990),(Ding, 1990)

67}32

F 05131

|w (2)

stlw = —A

where the z; direction is normal to the wall and the z, directi'on is tangential
to the wall. The slip parameter, A, is taken to be the mean d1§tance between
particles. In FORCE2 and FLUFIX, the mean free path is determined by

V2,

where d,, is the particle diameter, ¢, is the sphericity of a partiFle, and €, is the
solids volume fraction. In IFAP, A, is obtained from the expression

Ay = pds (2a)

dp =< C? >3 1= (37)7 (3)

n
Ny

37 d
Ap = \/*—*—‘*p 4
P 24 €490 ( )

where 7 is the time interval between particle collisions, C is the particle fluctuation
velocity, T is the granular temperature, n is the particle number density, and N,
is the number of particle collisions per unit time and unit volume,

to give

N, = / (c12 - k)dJf P (r,c15 0 + dyk, ca5t)dkder dey = 44/7d2gon®T7 (5)
c1z2-k>0 '

The subscripts 1 and 2 denote particles 1 and 2. ci12 is the relative velocity of
particle 1 and particle 2, f(?) is the pair-distribution function, k is the unit vector
from the center of particle 1 to the center of particle 2 at a collision, and d,, is the
particle diameter. Note that for small particles or for a high solids concentration
near the wall, the boundary condition of solids velocity is close to the no-slip
conditions. ’

In IFAP, we simply assume zero gradient of granular temperature at the wall.

Kinetic Theory for Erosion

Finnie's single-particle erosion model (1860) accounts for ductile erosion caused
by a single particle. The volume removed by erosion, W, in Finnie’s model is given
as a function of the particle’s instantaneous speed near the wall, ¢,,, angle of at-
tack, o, and mass, m, and is given by

W = Bpme? f(a) (6)

where

———— CF
PrcK

BF o



and

fla) = sin 2 — % sin® «, a <tan™! %; (8)
- %— cos? o, a > tan™? -%

Py is the Vickers hardness of the target surface, Cr is the model constant, ¢ is the
ratio of the depth of contact to the depth of cut, and K is the ratio of the vertical
to the horizontal force. ¢y 1s the particle impact velocity at the wall. According

to Finnie (1960), Br is

1
BP - “8‘};}:; (9)
and \ .
_ Jsin2a ~ 3sin“a, o <18.43°% .
fla) = { -;- cos? a, a > 18.43° (10)

The erosion rate of a solid wall surface caused by multi-particle impacts, E,
can be obtained by integrating of the probability of finding particles within the
range ¢ to ¢ + dc per unit volume near the surface times erosion caused by one
particle impact over all impact velocities in the range of (—o0, co0) to obtained

B = / (cw - n)Brmew? f(a)fu(r,c, t)dew (11)
Cw 'n>0

where the sing%e--particle velocity distribution function f, near the wall is assumed
to be Maxwellian. The particle’s fluctuating velocity near the wall is given as the
difference between the instantaneous and mean velocities as

Cw = Cy — Vyw (12)
At an impenetrable wall, the mean normal velocity of solids is zero. However by

eq.(%Z) the mean tangential velocity may not be zero if there is partial slip of
particles at the wall. The integration yields (Ding and Lyczkowski, 1991)

- (27)% w2 [2T 3 i}
E = ZEsppBF[ ﬁ Fl(ﬂc) + -~5- ——TF~F1(06) + -é'Uwa‘g(ac)] (13)
where
6 1 1 3
Fg)y="1T_"%, 2 .4 . =~ 2 st il =
1(6.) il + T sin 0, + T 46 7 c08 6. = 0.10 (13a)
and
g 2 1 . 9 » 2 .
2(0.) = — 5 + T 6. — 50059,_. sin* g, -+ TS_(COSBC sin“ 8. + 2 cosb,)
3 20 sind g 2 .y
+ 5 cos® f.sin” 4, + 5 sin” §, = 0.06 (13b)

Simi‘la-r approach has been used by Rogers (1989) to derive an erosion model
by 'corr{bun.ng Finnie’s model with a kinetic theory granular flow model. In his
den\fat1§>n, Rogers used Taylor series expansions for the terms involving the expo-
nential in the integration. However, no computation results were presented.
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FORCE?2 Computer Code Predictions

The FORCE2 computer code is an extension of an existing B & W (Burge,
1991) multidimensional, two-phase flow program. The conventional two-fluid hy-
drodynamic models (Gidaspow, 1986; Lyczkowski et al., 1986), which were used in
FLUFIX two-dimensional computer code for fluid-solids flow, were implemented
in FORCE2. The models have been extended in FORCE2 to include 1) three-
dimensional cartesian geometries, and 2) volume porosities and surface permeabil-
ities to account for volume and surface obstruction in the flow field.

The FORCE2 code was used to compute bed dynamics in a thin 40x3.81 cm
fluidized bed with a jet velocity of 5.78 m/s. A rectangular obstacle was placed in
the bed as shown in Figure 1. The bed materials are glass beads with a diameter of
500 pm and a density of 2.5 g/cm3. Three slices were used in the depth direction
of the bed. Figure 1 shows the FORCE2 three-dimensional predictions of time-
averaged porosity contour and solids velocity in.the bed. No significant difference
in the depth direction were found in this “two-dimensional bed”. Figure 2 shows
the comparisons of FORCE2 predicted sliced-averaged porosities and solids veloc-
ities with Argonne National Laboratory’s FLUFIX computed results. Both codes
give similar solids flow patterns. However, differences in porosity distribution are |
noted.
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Figure 1. FORCE2 prediction: three-dimensional time-averaged (over

1 s) porosity contour and solids velocity in the thin 40x3.81 cm
fluidized bed.
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Figure 2. Comparison of FLUFIX (2-D) and FORCE2 (3-D) predic-
tions: time-averaged porosity contour and solids velocity in the
thin 40x3.81 cm fluidized bed.

IFAP Predictions

The two-dimensional IFAP (Isothermal Flow Analysis Program), which gen-
eralizes the FLUFIX code (Lyczkowski et al., 1986) used at Argonne National Lab-
oratory (ANL) by adding a kinetic theory granular flow model and other features
(Ding, 1990),(Ding and Gidaspow, 1990), was extended to a three-dimensional
code for fluid-solids flow. The IFAP code has been demonstrated to be adapt-
able to a variety of problems including industrial-scale circulating fluidized bed
(Ding,1990; Gidaspow et al., 1990) and liquid-solids flow (Gidaspow et al. 1991)
The gas-solids bubbling fluidized bed erosion data of Zhu et al. (1990) were sim-
ula.ted in two- and three-dimensions.

Figure 3 shows a sketch of the fluidized bed used in the simulations assuming
a quarter symmetry. A tube of 3.2 x3.2 x 20.3cm?® was used in the computation
instead of a round tube with a diameter of 3.2 cm used in the experiment to reduce
the number of finite difference cells. The bed materials are silica sand with a mean
particle diameter of 1 11m, shape factor, d)s, of 0.89 and a density of 2.58 g/cm
The initial bed height w=+ 32 cm. The minimum fluidization velocity, Umf, is 56
cem/s. The ﬂmdnmg velocity was 187 cm/s. Nonuniform grids were used in the
computations, 10 in z direction, 43 in z direction and 4 in y direction for total of
1720. The influence of the grid size on the computed results of a two-dimensional
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Figure 3. Three-dimensional fluidized bed with conditions used in com-
putation.

1720. The influence of the grid size on the computed results of a two-dimensional
fluidized bed has been checked by Ding and Gidaspow (1990). The hydrodynamic
computations contained in this paper were performed on ANL’s CRAY-XMP/14
and the erosion cumputations were post-processed on ANL’s VAX 8700.About 15
hours of cpu time were required for three-dimensional hydrodynamic computation
to reach 2 seconds of real transient time.

Figure 4 shows the computed time-averaged porosity contours and solids ve-
locities. The time-averaging period was taken from 1.6 seconds to 2.0 seconds.
The three-dimensional bubbles can be visualized by the four slices in the y direc-
tion, as shown in the figures. Bubble shapes, sizes, rising velocities, and bursting
times are quite different due to the wall resistance to the solids and gas motion.
The significance of the three-dimensional hydrodynamic simulation can be seen -
by comparing the three-dimensional results with the two-dimensional results us-
ing the same grid sizes. The two-dimensional time-averaged porosities and solids
velocities were compared to three-dimensional time- and slice-averaged porosities
and solids velocities, as shown in Figure 5. Completely different porosity contours
and slightly different solids flow pattern were found.

Computed Erosion Rates
The erosion model was used to compute erosion rates of tube surfaces in
the three-dimensional bed. Figure 6 shows the comparisons of computed time-
and surface-averaged erosion rates as a function of tube material hardness with
experimental data of Zhu et al. (1990). Both two- and three-dimensional pre-
dicted erosion rates reasonably match the experimental data. However, the three-
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Figure 4. IFAP (3-D) predictions: time-averaged porosity contours and
solids velocities in the three-dimensional bed.
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Figure 5. IFAP predictions: comparisons of time-averaged two- and

three-dimensional silce-averaged porosity contours and solids ve-
locities.
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a function of tube hardness with experimental data of Zhu et
al.(1990). Fluidicing Velocity=187 cm/s, Particle Diameter=1
mm, Shape factor=0.86.

2-D 3-D
9.1 11.3 3.7 2.8
9.8 6.6
l |
11.3 9.3
| |
1.7 a.1 10.1 6.9

Figure 7 Comparisons of time-averaged two- and three-dimensional
shcfe-averaged erosion rates (um/100 hours) at each brass tube
surface.
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dimensinnal predictions generally agree better with the experin}ents. The com-
puted two-dimensional and three-dirne:sional slice-averaged erosion rates at each
tube surface are compared in Figure 7. Zhu et al. {1990) and other investigators
(Stringer and Wright, 1986; Wood an¢ Woodford, 1983) found that the highest
erosion occurred near the tube’s bottoui and there was very low erosion at the
tube’s top. The erosion pattern of the three-dimensional predictions qualitativ?ly
agrees with these experiments. The two-dimensional results, however, do not give
this evosion pattern. Therefore, the two-dimensional model is not as good as the
three-dimensional model to compute local erosion rates.

Conclusions

Three-dimengioral hydrodynamic models have been aeveloped for gas-solids
flow in fluidized beds. These models predict three-dimeznsiona! bubbles in a flu-
idized bed. Comparisons of predicted »rosion patterns of three- and two-dimensional
models with experiments again shows the importance of three-dimensional mod-
els. Based on our computer codes’ three-dimensional features needed in modeling
large fluidized-bed coinbustors, prediction and validation for many industrial ap-
plication are possible now.
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NOTATION

Br defined in eq. (7)

C ’ fluctuating velocity of particle, m/s

Ca drag coefficient

c instantaneous velocity of a particle, m /s

C1n relative velocity of particle 1 and 2, m/s

d, particle diameter, m

E erosion rate, m/s

e coefficient of restitution

Fy defined in eq.(13a)

F, defined in eq.’13b)

f particle velocity distribution function

f* pair-distribution function

fle) ' function defined in eq.(8)

G solids elastic modulus, Pa

g acceleration due to gravity, m/s?

go radial distribution “unction

1 unit tensor

K parameter in Finnie's erosion model, ratio of
vertical to horizontal force

k unit vector along the line from center of particle 1 to 2

m particle mass, kg

Ny collision frequency between particles per unit time

and unit volume, Hz/m3

particle number density, m 3

outer normal direction of a wall
material hardness, Pa

pressure, Pa

flux vector of fluctuating energy, kg/s3
space vector, m

!"’.Q”S;c:fﬁ

deformation rate tensor, s~!

fluctuating energy, m?/s?

time.s

fluidization velocity, m/s

minimum fluidization velocity, m/s

mean velocity, m/s

solids phase mean velocity near a wall, m /s
volume of target removed by erosion, m?

~
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Sy

Greek letters

«@ attack angle, degrees

¢ two phase drag coefficient, kg/s - m?

o collisional energy dissipation, kg/s®-m

€,E4 gas and solids phase volume fraction, (e, = 1 — €)

¢ parameter in Finnie’s erosion model, ratio of depth of
contact to depth of cut

6 = 90° —- «, degrees
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6. = 90° ~ 18.43 = 71.57°

K conductivity of granular temperature, kg/s - m
s shape factor (0 < ¢, < 1)

Ap mean distance between particles, m

7 shear viscosity, Pa - s

£ bulk viscosity, Pa - s

P density, kg/m?®

7 stress tensor, Pa

T particle-particle collision interval, s
Subscripts

g gas phase

s solids phase

w wall

1,2 particle 1 and 2 or vector component 1 and 2
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