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Abstract

Shear Alfvén instabilities driven by energetic beams and alpha populations are
investigated using a reduced MHD-gyrofluid model with Landau closure. The moment
equations for the fast ions are truncated in a way which incorporates the wave particle
resonances that are required to destabilize the shear Alfvén mode. These are coupled to
an Ohm's law and vorticity equations which have been generalized to include ion FLR,
electron and ion Landru damping. This model has been applied to experimentally
observed regimes in a number of tokamak and stellarator devices. Both linearized growth
rates and the nonlinear evolution are obtained. The saturated nonlinear regimes indicate
mode number and frequency spectra which are generally consistent with experiment. A
detailed examination of one typical nonlinear state has allowed identification of the
dominant saturation mechanisms. This indicates that generation of n=0, m=0 sheared
poloidal velocity flows and quasi linear modification of the q(r) profile can be important
factors in reaching saturation.

L. Introduction

Large tokamak experiments will soon begin operation using D-T fuel mixtures in
order to test the physics of alpha populations. Due to their super-Alfvénic velocities,
alphas can readily destabilize discrete shear Alfvén modes, leading to enhanced fast
particle losses. Such instabilities have already been observed in experimental regimes at
low magnetic fields where the velocities of injected beam speciesl‘3 or minority ion
ICRF tails# can approach the Alfvén velocity. The gyrofluid model with Landau
closured-7 has proven to be a promising technique for analyzing such instabilities. This
approach leads to a set of coupled fluid time evolution equations which may be solved
using an initial value code (TAE/FL). The equations are constructed so as to include both
the wave-particle resonance effects necessary for Landau damping/growth as well as ion
FLR effects. A variety of damping mechanisms which are relevant to the TAE (Toroidal
Alfvén Eigenmode) instability, such as ion and electron Landau damping, and continuum
damping, are also included in the equations.” These damping effects are wreated in a non-
perturbative manner. Examples will be discussed where linear damping effects can
significantly modify the spectrum of the TAE and perturbative attempts would fail to
accurately represent the linear eigenmode structure. We shall first apply this model to
examine the linear stability of beam-driven TAE modes in TFTR!, DIII-D2 and for
alpha-driven TAE's in TFTR (based on extrapolations of the supershot regime to
deuterium-tritium operation)g. The two beam-driven examples are well above the linear
stability thresholds; however, the alpha-driven TFTR case is just barely above threshold.
This is caused by the high ion temperatures, which result in strong ion Landau damping

and the high S of the background plasma, which can enhance continuum damping. More
sizable TAE growth rates may be obtained if the ion temperature is lowered. &
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One of the primary motivations for development of the gyrofluid model is that it
allows one to analyze the nonlinear behavior of the TAE instability. We have examined
the nonlinear evolution for the two beam-driven TAE cases mentioned above and a
reduced ion temperature TFTR alpha-driven case. Nonlinearly saturated states are
generally obtained and mode number and frequency spectra are in the same range as
experimental values. Significant levels of fluctuating fast ion density, and magnetic field
are found in the nonlinear regime. Detailed diagnosis of the nonlinear state has recently
yielded information about the saturation mechanisms which are most likely to be
effective in this model. Linear growth rates have been calculated throughout the
nonlinear evolution, taking into account the instantaneous n = 0, m = 0 components
which are generated by nonlinear beatings of Fourier modes with the same n (toroidal
mode number). Strong reductions of the resulting linear growth rates near the ume where
saturation is achieved indicate the important effect of this component. A further linear
analysis is then performed in which the various n = 0, m = 0 field components are
selectively turned on and off to isolate those which are most significant. Based on
looking at a typical case (the TFTR beam-driven TAE), we find that the n =0, m = 0
electrostatic potential (which induces sheared poloidal velocity flows) and the poloidal
magnetic flux (which leads to modifications in the g-profile) account for most of the
stabilization.

I1. Linear Stability Studies

Our linear stability model is based on an Ohm's law, vorticity equation, and fast
ion density and parallel velocity moment equations.5 These have been generalized to
include ion-electron Landau damping and ion FLR effects/. Effects which are not
presently included in the gyrofluid model, but which may be of importance to the TAE,
are: non-Maxwellian distributions, background plasma compressibility, fast ion
temperature gradients, and finite fast ion orbit width effects. This model will be applied
to the following three cases: (a) the TFTR beam-driven TAE expcrimcntl, (b) the DIII-D
beam-driven TAE experimentz, and (c) extrapolation of a TFTR supershot to operation
with a 50-50 mixture of D-T8. The profiles and parameters used have been obtained
from the associated references and will not be described in detail here. They may be
briefly summarized in the following table:

Table 1 - Approximate parameters of beam and alpha driven TAE experiments

(a) TFTR NBI (b) DII-D NBI (¢) TFTR-DT
Be (r =0) 0.012 0.05 0.003
B (r=0) 0.0314 0.142 0.0435
E(n im(Mev) 0.1 0.075 3.5
B,(T) 1.0 0.789 5.1
n, (r=0) 3x1013 4x1013 4.5x1013
T,(r=0) =1 kev 2 kev 8.5 kev
T.(r=0) =] kev 3.3 kev 19 kev

We shall first vary a number of parameters about their nominal experimental values and
examine sensitivity of the linear growth rates. These parameters are generally varied



independently to illustrate the various dependencies of interest and only the nominal
oplergtional points represent true self-consistent transport/power balance/equilibrium
solutions.

First, in Figs. 1(a)-(c) the fast ion central B varied with Figs. 1(a), (b), (c)
corresponding to cases (a), (b), (c¢), respectively, as described above. The vertical dotted
lines indicate the nominal experimental operational points. The lower set of curves are
the growth rates for the various n's (toroidal mode numbers) while the upper curves are

the real frequencies; these are both normalized to 7,, =R, /v,, where R, is the major

radius and v,, is the Alfvén velocity at r = 0. As might be expected, both the TFTR and

DIII-D beam-driven cases [Figs. 1(a) and 1(b)], are well into the unstable regime. The
dependence on beta is approximately linear as expected from simplified analytic growth

rates?. The real frequencies tend to cluster about oty,, =0.33, as is expected for the

TAE mode. The DIII-D case appears to have a somewhat higher B threshold and fewer
n's unstable that the TFTR case. This is possibly due to the influence of shaping; the
DIII-D case had a moderate elongation of 1.6 whereas the TFTR case was circular. The
alpha-driven TFTR case given in Fig. 1(c) appears to be just barely above threshold with
only n = 2 and 3 having finite growth rates. The causes for this will be examined further
in the following figures.

Next, in Figs. 2(a)-(c) dependence of growth rates on the mean fast ion velocity
relative to the central Alfvén velocity, v,,, is shown. As mentioned above, the gyrofluid

model is based on a Maxwellian distribution for the kinetic species. The mean velocity
here is actually the thermal velocity, which we have chosen in order to match the mean
energy moment of the slowing-down distributions resulting from the experimental

parameters. For the TFTR alpha-driven case [Fig. 2(c)] we have taken S, (0) =0.006

rather than the nominal B, (0) = 0.003 in order to obtain more sizable growth rates for
this particular parameter variation. As may be seen, growth rates remain significant for
< Vyeam >/ Vao < 1, especially for the higher n's and the more unstable cases. This feature
is likely due to the increased sideband coupling resulting with larger n's. As more
poloidal modes beyond the TAE's usual m and m+! become significant, additional
velocity resonances enter in at progressively lower velocities. Again, the TFTR beam-
driven TAE [Fig. 2(a)] appears to be more strongly unstable than the other two cases.

In Fig. 3 we present a typical example of the impact of damping effects on the
TAE volume averaged kinetic energy spectrum. This is based on the DIII-D beam-driven
case (b). In Fig. 3(a) no damping is present while in Fig. 3(b) all damping effects (ion
and electron Landau damping, ion FLR and finite 8 continuum damping) have been
turned on. As may be seen, there is a narrowing of the spectrum and n = 1 is stabilized.
This results because the damping mechanisms preferendally tend to affect the higher m's.
This behavior stresses the importance of non-perturbative approaches for including TAE
damping effects which self-consistently take into account effects of the damping on the
eigenmode structure, such as are used in this model. Varnational forms, for example, do
not generally include such effects. Obtaining a consistent and accurate linear mode
structure can be especially important for subsequent nonlinear calculations.

In Fig. 4 we vary only the B(central) of the plasma equilibrium, again for the
DIN-D beam-driven case (b). This illustrates the stabilization of the TAE with increasing
equilibrium Shafranov shift. As has been shown in ref. 10, the resulting modification of
the Alfvén spectrum results in the TAE merging into the continuum as the beta limit of
the background plasma is reached. Such effects will enhance continuum damping and
can lessen the impact of the TAE when the background plasma is operating close to its
beta limit. These effects partially account for the low growth rates of the TFTR-DT
extrapolated supershot case (¢).



The other factor which is significantly stabilizing for case (c) is ion Landau
damping. In Figure 5 we lower the ion Landau damping rates by lowering the ion
temperature (for the TFTR-DT extrapolated supershot case) and find that higher growth
rates may be achieved. Techniques which would lower the ion temperature are under

consideration!! for the DT operational phase of TFTR.

III. Nonlinear Evolution of the TAE

We next turn to examine the nonlinear evolution of the three cases discussed in
the previous section. In case (c) we use a reduced ion temperature [ T, (r = 0) = 10kev] to
obtain more measurable linear growth rates. The same basic model is used, but
convective nonlinearities are retained in each of the evolution equations and the magnetic
nonlinearities entering into the parallel gradient operator are kept in the Ohm's law and
vorticity equations. It is also necessary to keep a larger group of Fourier modes; in order
to do a true nonlinear calculation, multiple n's (toroidal mode number) as well as multiple
m's (poloidal mode numbers) must be retained. The necessary range of m's is determined
from the linear studies, but can be estimated from the variation of the g-profile as:
nq,, Sms<nq,,. Ideally, enough n's should be kept to cover all linearly unstable
modes and to provide some damped modes at high n. This can be problematical due to
the rather wide range of unstable n's which can be characteristic of the TAE instability.
The specific mode distributions we keep are given in the following table:

Table 2 - Fourier mode distributions used in the nonlinear runs

m's for case(a) m'sfor case(b) m'sfor case(c)

n

0 0-4 0-6 0-4
1 0-5 0-5 0-6
2 1-6 1-10 1-11
3 2-11 2-11 2-16
4 4-14 3-12 4-16
5 5-17 4-11

6 6-20 5-12

7 6-13

8 7-14

both sin(m6 + n¢) and cos(mé + n{) components are retained for all field quantities.

In Figs. 6(a) - 6(c) the nonlinear evolution of the r.m.s. averaged fluctuating
potential. fast ion density, radial magnetic field and poloidal magnetic field are shown for
the three cases. The r.m.s. average is performed over the mode spectrum, with the
exception that the n = 0 component is excluded. These are evaluated at a local point in
radius (indicated on the figures) where the mode structure is near its peak amplitude.
There is generally a well-detined linear growth regime which ends with an overshoot,
followed by a drop-off to a saturated phase. As may be seen, case(c) evolves over a
longer timescale than cases (a) and (b) due to its lower linear growth rate; also, for case
(c) it is less clear that a saturated state has been achieved. In cases (a) and (b) the

fluctuating magnetic fields exceed 103 of the equilibrium field which is a typical value at

which stochastic fast ion losses have been predicted to be signiﬁcam.12 For the TFTR
alpha-driven case (c), the poloidal fluctuating magnetic field exceeds this level. but the

radial magnetic field only transiently exceeds it. However, more recent calculations!3
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which include multiple toroidal mode numbers indicate that the stochastic lcss threshold
could be lower (i.e., 6B/ B, = 2x10™). In Figs. 7(a) - 7(c) the volume-averaged
perpendicular kinetic energies are plotted for the various n's. Again, similar features are
observed: linear phase, overshoot, fall-off and saturated regime. In all cases, then =0
component (which will be important for the nonlinear saturation mechanisras discussed in
the next section) eventually becomes the dominant mode in the evolution. At the next
level below this, case (a) is dominated by n = 3 and 4; case (b) by n =2 and 3; and case(c)
by n = 2 and 4. In Figures 8(a) to 8(c), the fluctuating edge poloidal magnetic field is
plotted vs. time. Since these have not been r.m.s. averaged, and are accumulated with a
higher time resolution than the quantities of the previous two figures, they show the rapid
Alfvén frequency oscillations. The modulation of the wave envelope is related to the
somewhat different times that the individual n's reach saturation and the associated
beatings between different modes. In Figs. 9(a) to 9(c) frequency spectra for the signals
of Fig. 8 are plotted. There are generally coherent peaks at the characteristic TAE mode

frequency w7, =0.33, with case (c) showing two significant peaks. Here the lower one

is the fundamental TAE mode frequency and the upper one is a second harmonic, which
is likely driven due to the nonlinearities. Cases (a) and (b) are close to the Mirnov

frequency data obtained experimentally. 1,2

IV. Nonlinear Saturation Mechanisms

An important motivation for the gyrofluid model is to diagnose the various
saturation mechanisms which may be active for the TAE instability. One of the first
suspected causes was the fast ion ejection which can be inferred from the neutron drops
which were experimentally correlated!,2 with Mirnov bursts of TAE activity. Since our
model is fluid-based, it cannot readily include direct or stochastic particle losses;
however, it does include fast ion density convection which leads to densityv profile
flattening; this may be considered a fluid analog of particle ejection. Another way to
address this loss is to couple the saturated field amplitudes from the gyrofluid model with
Monte Carlo particle following13 and check associated levels of particle losses.
However, it is not yet clear that the enhanced particle losses associated with the TAE
mode are the primary cause of the saturation or possibly just an artifact of the TAE.
Since several distinct experimental TAE regimes have emerged involving beta highly
transient bursts of activityl’2 as well as more steady state TAE turbulence®, one expects
the dominant saturation mechanisms will vary with regime. It is therefore desirable to
examine other possibilities. In this paper we specifically study the effects of the n = 0, m
= (0 components which are generated by nonlinear beatings of the n > O modes. These
lead to: density flattening, modification of the q(r) profile, generation of sheared poloidal
velocity flows, and generation of finite parallel velocity moments of the fast ion
distribution. Some of the other possible saturation mechanisms are: nonlinear frzquency
shifts, alteration of the fast ion energy distribution, and turbulent energy transfers to
shorter length scales. Frequency shifts could provide saturation by altering ike basic
wave-particle resonance (w=k,v,) or reducing linear growth rates
[7 = Brg (@ — @)]. However, since results both from this model and experiments
tend to show that the TAE retains a fairly coherent frequency spectrum throughout its
evolution, this avenue of stabilization seems unlikely. Modification of the fast ion energy
distribution has been observed as a saturation mechanism for the KAW (kinetic Alfvén

wave)14 in a shearless slab particle model. Steepening of the fast ion distribution can
enhance Landau damping of the wave on the fast ions and lower growth rates. In a
gyrofluid model the analogous mechanism could be analyzed by including the fast ion

K ' ' " ' ' o Vo " " M



temperature evolution. Work is currently underway on this area. Treatment of the effect
of turbulent energy transfers requires resolution of an adequate inertial regime where
damped modes are present. As mentioned earlier, this can be problematical for the TAE
due the range of toroidal mode numbers which can be unstable. Work is currently
underway using q(r) profiles of restricted range in order to limit the width of the wedge in
m, n space which must be kept.

In Figs. 10 and 11 we show the evolution of the n = 0, m = 0 components of
density, poloidal flux, potential, and parallel velocity for the TFTR beam-driven TAE
case described earlier. Fig. 10(a) shows the profile flattening effect of the (0,0) density
on the equilibrium fast ion density (plotted here in terms of the gradient to magnify the
effect). Fig. 10(b) shows the modifications to the q(r) profile caused by the (0,0)
component of poloidal flux. Fig. 11(a) shows the (0,0) potential which results in the

poloidal E x B velocity plotted in Fig. 11(b). Finally, in Fig. 11(c) the (0,0) parallel fast
ion velocity moment is shown. The parallel velocity moment and electrostatic potential
are initially zero while the density and poloidal flux initially have non-zero equilibrium
values. These (0,0) components are then incorporated back into a linear gyrofluid
stability calculation which adds the density and poloidal flux with the pre-existing
equilibrium values and includes the appropriate terms for a non-zero potential and
parallel velocity. The results of this calculation provide, in effect, an instantaneous linear
growth rate diagnostic during the nonlinear evolution; this is of use in understanding the
influence of the (0,0) components on saturation. In Fig. 12 such linear growth rates are
plotted as a function of time for the various n's. As can be seen, near the point where the

nonlinear quantities begin to turn over at t = (500—600)7:Hp [see Fig's. 6(a), 7(a)] the

linear growth rates begin to drop, indicating that the (0,0) components are dominant in
causing the stabilization. Next, in Figs. 13 and 14 we diagnose this further by turning on

and off the various field quantities individually at the point t = 8007,,. The top solid

curve shows the initial (time = () growth rates. The bottom dotted curve shows the
growth rates with all (0,0) field quantities included. The chain-dashed curve shows the
effect of individual (0,0) fields included. As may be seen from Figs. 13(a) and 13(b), the
density and parallel velocity have relatively little effect. The dominant cause of the
stabilization comes from the poloidal flux (which induces changes in the q(r) profile) and
the potential (which leads to sheared velocity flows).

V. Conclusions

We have developed a gyro-Landau fluid model of the TAE instability which
includes many of the growth and damping mechanisms of relevance to this mode. This
has been applied to the TFTR and DIII-D beam-driven TAE experiments, as well as to
the future DT break-even regime in TFTR. The model provides mode number and
frequency spectra which are in the same ranges as the experimental observations. In the
case of the DT experiments it indicates that the effect of the high ion temperatures and
background plasma f's will tend to quench the alpha-driven TAE instability. However,
if the ion temperature can be lowered, more significant growth rates can be obtained.

A primary motivation behind the gyrofluid model is that it is one of the few
approaches which can yield information on the nonlinear evolution of the TAE and the
mechanisms for its nonlinear saturation. These have been examined here for the TFTR
beam-driven case, taking into account the effect of the evolving m,n = (0,0) field
quantities. This analysis has shown that the (0,0) components can account for a large
fraction of the nonlinear stabilization. A further examination of the effect of individual
field quantities (i.e., density, potential, magnetic flux, and parallel velocity) has indicated
that the stabilization predominantly arises trom the (0,0) potential and poloidal magnetic



flux. The potential results in sheared velocity flows which can decorrelate and break-up
the mode structure. The (0,0) poloidal magnetic flux causes small modifications in the g-
profile which can influence the continuum damping of the TAE mode.
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