
Centimeter
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 mm

1 2 3 4 5

Inches ,_

IIIIINIllIl_ttllt_

UCRL- JC-1125_._ _

PREPRINT _/ i_(._,/,, ,

os;

A Task Adaptive Parallel Graphics Renderer

Scott Whitman

This paper was prepared for submittal to
ACM Siggraph '93

Anaheim, CA
August 1-6, 1993

I,

December 21, 1992

I. i
q

This is a preprint of a paper intended for publication in a journal or proceedings. Since

changes may be made before publication, this preprint is made available with the

understanding that it will not be cited.or reproduced without the permission of the
author.

DISCI.AIMER

This documentwas preparedas nn accountof work sponsoredby an atency of the
United StatesGovernment.Neither the United S_ttesGovernmentnorthe University
of California emcany of theiremployees,makesany warranty,expressor implied,or
n._qumesany loRalliability or responsibilityfor the accuracy,completeness,or useful-
hessof any informatioL apparatus,product,or processdisclosed,or representsthat
its usewouldnot infrinile privately ownedriRhts.Referenceherein to anyspecific
commercialproducts,process,or servicebytradename,trademark,manufacturer,or
otherwi_eodoesnot necessarilyconstituteor implyits endorsement,recommendation.
or favoring by the United States Governmentor the University of California. The
views und opinionsof authors expressedherein do not necessarilystate or reflect
flmse of the United States Governmentor the Unirersily _f California, undshall not
beusedfor advertisingor productendorsementpurposes.

A Task Adaptive Parallel Graphics Renderer

Scott Whitman "

Lawrence Livermore National Lab

P.O. Box 808, L-301

Livermore, CA 94550

Q

ABSTRACT

This paper presents a graphics renderer which incorporates new partitioning methodologies of memory and work for
efficien! execution on a parallel computer. The Task Adaptive domain decomposition scheme is an image space method
involving dynamic partitioning of rectangular pixel area tasks. We show that this method requires little overhead, allows
coherence within a parallel context, handles worst case scenarios effectively, and executes efficiently with little processor
synchronization necessary. Previous research in the area of memory and work decompositions for graphics rendering
has been primarily limited to simulation studies and little practical experience. The algorithm presented here has been
implemented on a scalable distributed memory multiprocessor and tested on a variety of input scenes. We present a
theoretical and practical analysis in order to contrast its predicted and actual success. The implementation analysis
indicates that load imbalance is the major cause of performance degradation at the higher processor counts. Even so, on
a variety of test scenes, an average rendering speedup of 79 was achieved utilizing 96 processors on the BBN TC2000
multiprocessor with a processor efficiency range of 66% to 947b.

CR Categories and Subject Descriptors: D.1.3 [Concurrent Programming]: Parallel Programming; 1.3.3
[Computer Graphics]: Picture/Image Generation - Display algorithms; 1.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism - Visible line/surface algorithms.

General Terms: Algorithms, Design, Performance

Additional Keywords and Phrases: Scan line, BBN Butterfly, parallel processing, three-dimensional, load balancing,
SIMD, MIMD, shared memory

1 Introduction

Scientists, engineers, and other users of computer graphics may occasionally generate datasets containing

hundreds of thousands of polygons. In order to aid their research process effectively, quick turn around of the

rendering of these datasets is required. To this end, we have developed a general purpose polygon rendering

algorithm which is suitable for implementation on distributed memory parallel computers. The discussion

here will focus on the design and implementation of a parallel polygon based scan conversion renderer. This

algorithm is intended to support fast rendering of highly complex datasets rather than real-time update of

moderately complex scenes. We show that good speedup and parallel efficiency can be obtained with only a

small overhead when compared to an optimized serial renderer. Several advantages to using a software based

approach include the feasibility of adding special rendering features to the pta_gram and the capability to allow

integration of a parallel scientific application with the graphics renderer on the same machine simultaneously.

Using this latter approach on a parallel computer facilitates fast inter-processor communication of data rather

than the slower external I/O typically used in post-processing graphics data.

"email: slim@llnl.gov

We present a new work decompo_,ition strategy called Task Adaptive which is based on dynamically
partitioning the amount of computational work left at a given time. The algorithm uses a heuristic in which

image space tasks are partitioned without requiring the partitioned processor to be interrupted. We employ a
sophisticated memory referencing strategy which is integrated into the Task Adaptive algorithm to allow local

access to graphics data during the rendering process. The exact data which is needed for a particular graphics
rendering task is copied to each processor without the need for remote referencing. This approach on a
MIMD parallel computer allows one to obtain reasonable speedup as more processors attack the problem. The
algorithm is also amenable to using either a shared or message passing programming paradigm. An in-depth

analysis of the overheads accompanied with parallel processing is presented to find out where performance
is adequate or could be improved. The analysis is from both a theoretical and practical point of view to

understand the degradation factors as a function of number of processers (P). This solution for domain and
data decomposition can also be used in other graphics rendering algorithms and may be suitable for hardware
implementation.

The structure of the paper is as follows. Section 2 outlines previous work in the area of parallel graphics
rendering. Section 3 describes the three main phases of the parallel display algorithm and section 4 discusses

the complexity of this algorithm. Section 5 presents the strategies for storage of graphics data and section
6 gives performance results for several test datasets. A glossary is included in the appendix for readers
unfamiliar with some of the tenninology.

2 Historical Perspective

In the past 15 years, there have been numerous approaches to using parallelism in the tiling operation of polygon
display algorithms. Much of this research has focused primarily on the domain (or work) decomposition of the

rendering process. While there has been some work on parallel object space methods ([Abra86, Fran90] among
others), the bulk of the algorithms have been of the image space variety. A taxonomy of these approaches
appears in [Whit92] which are briefly summarized here. Polygon decompositions can involve independent

tasks such as used by [Fium83] where span segments of a different polygons on a scan line are processed in
parallel. Ghosal and Patnaik [Ghos86] assign each processor scan lines of a given polygon to scan convert

at the same time. Allison [Alli91] uses a shared Z-buffer where the obj_:cts are processed in parallel and
rendered to a common frame buffer. Crockett and Orloff [Croc91] alternate each processor on an lntel iPSC

from computing the rendering of image space tasks to communicating polygonal data to balance the load
effectively.

In using pixels as a basic building block for domain decomposition, researchers have devised the following
tasks for parallel processing: horizontal strips (screen wide) of scan lines [Chan81, Hu85, Kapl79, Whe185],
vertical strips (.screen height) of pixels [Whe185], and rectangular areas of pixels [Croc91, Kapl79, Park80,
Rob188, Whe185]. The solutions can be divided into the following categories: Data Non-Adaptive and Data

Adaptive. The Data Non-Adaptive methodology relies on an initial decomposition of image space that is not
related to the input data. The idea is that if many tasks of different work loads are assigned to different

processors, the over,di load will become balanced. In the Data Adaptive case, the size of the tasks (that is, the
area of the pixel regions) are adjusted according to the input data in an attempt to obtain better load balancing.

Data Adaptive schemes have been implemented by Whelan [Whe185], Roble [Rob188], and Whitman [Whit91]
in the context of scan conversion methods, in addition to Dippe [Dipp84] in a ray tracing algorithm.

We have implemented a number of the aforementioned algorithms to determine their relative strengths
and weaknesses. The polygon based approaches were found to be too limiting in the parallelism or usable

context. In the Data Adaptive algorithms, it was found that creating nearly equal work tasks requires too
much pre-processing time. Of the Data Non-Adaptive partitioning schemes (horizontal scan lines or groups

Processors

N -1t/I Disk
1- Read i i_l _" -I_--'-._'J.J
2-Transform I [_ _ _ "
3-Clip I [_

Figure 1" Pre-processing phase pipelined parallelism (task size is 1 object)

of scan lines, vertical strips, or rectangular areas of pixels), empirical test results indicate that the rectangular
method works the best using a 1:1 ratio of sides since this layout minimizes the perimeter while maximizing

overall coherence. The algorithm presented in this paper is based on this rectangular method but improves
upon it by limiting overhead in pre-processing, handling worst case scenarios, and adaptively partitioning the
work load. lt was designed for fast rendering of animated as well as static input datasets.

3 Algorithm

In this section, we discuss the work decomposition strategy for the following three distinct phases of computer
image synthesis. In the descriptions below, we include the average percent time used by each phase in a serial
algorithm for a variety of test scenes.

1. Pre-processing (13 %) - this consists of data read-in, transformation of points, normals calculation,
back-face rejection, clipping, and perspective projection.

2. Rendering (86 %) - includes hidden surface removal, shading, anti-aliasing, and any other visual effects.

3. Post-processing (1%) - this involves displaying the image on a frame buffer or storage in a file.

The Task Adaptive domain decomposition is a variation on using rectangular areas of pixels as individual
tasks. This algorithm uses less overhead than the rectangular approach in terms of pre-processing and later
communication, however. The primary focus in this document will be on the rendering portion since this
phase takes the]3ulk of the computation time. Some methods for parallelizing the first and third phases are

given but implementations of these will generally be specific to the environment where the overall program
is to run. The discussion will focus on a shared memory programming paradigm but specifics for a message
passing implementation will be presented as well.

3.1 Pre-processing Phase

The implementation of the pre-processing phase depends to a large degree on the amount of parallelism
available. If there are a large number of objects (i.e. > P, the number of processors), then each object
can be read into a different processor's memory (see figure 1). Since each object may be a different size,
the time to process a given object may vary as indicated by the size of the rectangles in the figure. Each

O---- Ins---

 3,pl

_k Points to bin polygons

Figure 2: 2D array of bins containing polygon data

processor can then perform the transformations, clipping, etc. on the data in local memory. If the number
of objects is instead < P, we then have two possible scenarios. In the first, if the user is animating these
objects over a long period of time without a change in the objects' shapes, then each object can be split into
multiple sub-objects which can then be processed independently. This provides enough parallelism to keep

ali of the processors busy. If the user is only creating a single image, then the cost of splitting the objects
cannot be amortized. A possible parallelization in this case would be to independently process iterations of
the individual loops for transforming or clipping the objects. This would work in a shared memory machine

but not for a message passing architecture. Alternatively, a reader process could assign portions of the data

to individual processors.
Another part of the pre-processing phase involves setting up the data for the domain decomposition so

that each processor will have access to the data it needs for a particular task. Each initial task corresponds to
a small area of the image space so the polygons are placed imo bins (see figure 2) where a bin is associated
with a particular task. The bounding box of the polygon is used to judge which bin(s) that polygon is placed
into. The data structures for these bins is discussed in section 5. The average speedup for this section of the

algorithm was 9.4 on 96 processors. The main limitation to further speedup is the sequential nature of the disk
access for reading in data. If the data is coming directly from a simulation program running simultaneously
on the same computer, this bottleneck would not exist.

3.2 Rendering Phase

As discussed previously, assigning rectangular regions of pixels as tasks seems to be a very reasonable
solution for solving the rendering problem in parallel. Each task consists of a region of pixels for which

the tiling problem is solved serially for those polygons which are present in the region. Here, we employ a
modified scan line Z-buffer algorithm [Myer75] which uses stochastic sampling (16 samples/pixel)[Cook86]

for anti-aliasing: The limitations of a basic rectangular assignment method is that a specific load balancing
mechanism must be chosen so as to assign equal work to the processors. An example load balancing scheme

is to divide the image space into R • P tasks which are dynamically assigned to processors (see figure 6
for a simple rectangular decomposition). R is the granularity ratio and must be chosen properly so as to
minimize overhead and maximize load balance. The larger a value of R chosen, the more work involved

in pre-processing, communication, and polygon duplication, but the better the load balancing. Conversely,
smaller values of R result in less overhead but inadequate load balancing. The Task Adaptive approach is

based on a rectangular decomposition and attempts to bridge this gap by using a small granularity ratio (in
this case, R = 2 is used) to minimize overheads along with a dynamic load balancing scheme. A ratio of

R = 1 could be used, but that presents a situation that requires more communication clue to the load balancing
mechanism utilized. After a processor has finished its first task, it attempts to dynamically retrieve additional

tasks off the queue. The pseudo code similar to what each processor executes is shown below:

j--p
forall (i = O; i < P; i++) /* static scheduling */

work_on_task(i) ;

while (j < (2 * P)) /* dynamic scheduling ,/

work_on_task(atomic_add(j));
while (work_available> threshold)

partition(); /* start partitioning ,/

This shows the code for a shared memory implementation where the shared variable] is atomically

• accessed. For a message 9assing implementation, one of the processors (or the hos0 could be designated
as the controlling processor (CP) which would keep track of which processor is assigned a given task. The

• part it ion routine is executed so as to dynamically balance the load among the processors. Since each image
space task differs in its amount of work, steps are taken to steal part of another processor's work when there
aren't any initial tasks left. The adaptive nature of this work decomposition is outlined in the steps given

below which are essentially part of the partition routine•

1. When a processor needs work (call this processor Ps), it searches among the other processors for the
one which contains the most amount of work left to do (call this processor Pm,_). If there is sufficient

work to do, proceed, otherwise return.

2. The Ps processor then sets a lock preventing any other processors from splitting Pm,_: in addition to
setting its own lock to prevent unwanted blocking of processors.

3. Ps partitions Pm,='s remaining work into two segments; the first goes to Pm,_: and the second to P,.

4. Ps then copies from Pm,,_ the data necessary for it to work on the second segment.

5. Ps unsets both its lock and P,,_'s and starts doing work• After completion of its work, Ps repeats

these steps•

The terminology Pma_:refers to the processor index of the maximally loaded processor as determined by

a particular Ps at a given time. The usage of the lock is to prevent more than one processor from splitting

a given P_,,_ at a time• The lock is implemented as part of the operating system and guarantees that one
processor proceeds through it at a time and if it is not open, the processor waits until it opens. After Ps
completes its new work, it calls partition. This routine is repeatedly called until there is no work available

for splitting above a certain threshold. Based on empirical studies, splitting is still worthwhile even down to
two scan lines so that is the threshold set. Since Ps splits the work of P,_,_ that remains to be rendered into

_ two vertical tasks, it makes sense for P,,,,_ to continue working on the upper task while Ps takes the lower
one. This also allows coherence to be maintained in Pm,,:'s region without any additional overhead and it

allows Pma_ to continue working on its task uninterrupted. Other splitting mechanisms were investigated
(such as creating two side-by-side regions or even a combination of side-by side and top-down) but their
performance was found to be inferior to the method outlined here. Figure 3 illustrates the splitting process.

Because the splitting process relies on work proceeding in a task in a top to bottom fashion, only scan
line oriented hidden surface removal algorithms may be utilized as tasks. On the other hand, any scan line

algorithm could be implemented since it does not matter what the attributes of the particular algorithm are.
Since the initial task regions are split horizontally, the regions which have been split become further deviate

from square. In order to find out the effect of the region size on splitting, we measured the performance for

5

aspect ratios other than square (1:1). A horizontally oriented region such as what is produced with a 2:1 (2
pixels across for every 1 down) ratio resulted in poor performance overall. The following a_.rrage percentage
improvements over a 2:1 ratio were noted: 1:1 - 2.5%, 1:2 - 6.4%, 1:3 - 6.7%, and 1:4 - 1.7%. The ratio
of 1:3 produced the best results while 1:4 resulted in too much loss of coherence.

Heuristic for Splitting

In order to find /:'ma=, it is necessary to come up with a method for determining the amount of work a

given processor has left to do. A heuristic which can be used is the number of scan lines left to work on
by a processor, since this is indicative of the amount of work left. Another possible heuristic is the sum
of ali polygon fragments per scan line for the scan lines which remain to be rendered. A third option is

just computing the average number of polygons per scan line since this is simpler to calculate. The latter
choices are superior to the first one since they take into account the complexity of work in the area. However,
after comparing these possibilities in practice, the potential added benefit of the latter two heuristics did not
overcome their increased work although the overall difference between ali three choices was not significant.

During the tiling portion of the computation, each processor updates its own shared variable corresponding
to the number of scan lines it has left to compute. Ps performs a quick search of the other processors' variables

in order to find the largest one, which is then denoted Pm,,=. Figure 7 shows a final illustration of the splitting

process for an iso-surface dataset where the larger areas are the size of the initial tasks and the smaller areas
are initial areas that have been split (here, only 20 processors were used for clarity of illustration). The bottom

and right side of each area are color-coded according to the processor which worked on it.
For a message passing machine, the following changes are necessary for task splitting. A controlling

processor (CP) is used to direct the assignment of tasks to processors. After each scan line is completed,
ali processors send a message to the CP to update the number of scan lines they have left to render. When
a processor needs to perform a split, it sends a message to the CP to retrieve the current Pm,,_. The CP
determines the current Pmr= by using the same heuristic as above as well as taking into account how many

hops the splitting processor is from a potential P,n_=. This is obviously dependent on the topology of the
architecture and should be modified accordingly.

Anomalous Situations

For a shared memory implementation, additional synchronization code is required to combat any possible race
conditions or deadlocks which could occur during splitting. For instance, it is possible (and highly likely,

especially at the end of a run) that more than one processor might try to split a given Pm,,= at nearly the same
time. If a semaphore lock is used to prevent simultaneous splitting, the processors could be backed up for
some time trying to partition the same Pmma, not doing any useful work. This is solved by using a test and

Pmax,
prior to splitting

ii!iiiiiiiiiiiiiiiiiiii! i iiiiiiiiiiiiiiiiiiiii[Current _ii!!iii!i!iiiii!ii!ii_iii!i!ili_._i_i!i!!!i!!:i!i!i!iii!i!ili!i!i!i!iscanline .._

"max S ,tt.is
"nto Iii Io oo, rmaxl

equa'_ __

sections

Figure 3: Dynamic splitting of regions for task adaptive scheme

lock methodology in which Ps (as it is searching for P,n_x) checks each processor's split lock to see if the
lock is already set as illustrated below.

Assume that Pe has determined so far that processor 6 meets the heuristic for the most amount of work
left. If processor 6's lock has not been set (i.e., this processor is not being split at the moment), then the

number 6 is stored in Ps's local variable p.max and 6's work left is stored in p_max_work_left. If processor
6's lock has been set, then store the number 6 only as a potential Pma_, in pot_p_max and its work left in

pot_p..max_work_loft. If, after the search is completed, there is a processor number stored in p.max, Ps splits
this one. Otherwise, Ps splits the processor designated as pot_p_max. One should note that the processor

being split does not need to be interrupted from its work during the splitting process. Of course, even with
this scheme, it is possible that some processors will have to wait at the semaphore before they can proceed.

lt is also possible that after a processor has proceeded through the lock, there is no work left since it was ali
completed in the meantime. If that is the case, P, will recursively call parti_cion to obtain additional work.
Based on our measurements, the time spent in a lock by a processor is no more than 0.1% of the execution

time and in general is much less.

3.3 Post.processing Phase

This phase consists of outputting the image to the frame buffer or disk, depending on the needs of the user.
Sending the image Io the frame buffer can be accomplished in a number of ways. The most straightforward
method is to have each processor keep a local buffer to store the pixel colors for its screen area. When a
given screen area's rendering has been completed, the buffer is sent as a message on a scan line basis to the
frame buffer for display.

If the image is being converted to a file for disk storage, the easiest output method is to send it from top
to bottom for later display. This is done by storing a virtual copy of the frame buffer in the memory of the

multiprocessor. Each scan line of the buffer is stored on a separate processor. As each partial scan line is
rendered, it is sent to the memory module which contains that corresponding line in the virtual frame buffer.
After the rendering phase is completed, the virtual frame buffer can be copied to a file for storage. This can
be accomplished by having each processor run-length encode (in parallel) a scan line for final output. The
run-length buffers are then sent to disk in a sequential manner. The average speedup for this section of the
code was 1.6 on 96 processors, again limited by the sequential disk access.

4 Complexity

The overall complexity of the rendering phase outlined in this paper can be analyzed using the CREW PRAM1

model of computation. We assume that there are N polygons used for input with P processors applied to the
rendering computation. Running on a parallel computer, the time complexity of the entire program is:

T = T,.e,_d+ Tsr,tit + Tcomm

where T,.ena is the rendering time, Tsr,tit is the time to perform the task adaptive splitting, and Tcomm is the
time for communication of data to the processors. The analysis given in [Myer75] for the serial scan line

Z-buffer algorithm shows that T,.e,.,a is proportional to O(N) in time complexity. The algorithm described

in this paper is a parallel version of the scan line Z-buffer where each task computed by a processor can be
considered to be executing a serial version of this same algorithm. For a base analysis, we assume that no
task splitting takes place during the program which results in t = 2. P tasks with N polygons independently

1CREWPRAM- ConcurrentReadExclusiveWrite,parallelRandomAccessMachine

and identically distributed (i.i.d.) to each processor. Assuming each processor (i) receives exactly the average
amount of polygons, the number of polygons per task is half the average (since R = 2) so the time complexity
of a single task is:

The total amount of work for ali tasks is then:

L_,_a = 2. P. T,.e,,_,

or just O(N). If this work is done in parallel by P processors, then Tr,na can be reduced to 0(%). We now
show that task adaptive rendering results in the same complexity as the ideal distribution of polygons used in
the base analysis described above.

Contrary to the assumption of i.i.d, assignment of polygons above, most datasets will result in some

processors obtaining more than _ and some less. The task splitting mechanism compensates for this deviation
in the following manner. Task splitting occurs when a given processor does not have enough work (i.e., it's

original polygon distribution is < -_). When this is the case, a lightly loaded processor steals some work
(polygons) from a more heavily loaded one in order to bring its total closer to the ideal distribution. The
processor it steals from (P_a_,) is the most heavily loaded processor according to a greedy selection criteria.

Thus, P,_a_, must have more polygons than -_ and need to give some up to come closer to the ideal distribution.
The task adaptive splitting mechanism essentially ensures that processors come as close to the ideal polygon
distribution as possible. Since the result of task adaptive splitting is a situation where each processor ends up

with a total workload nearly equal to _ polygons, the previous analysis for rendering is therefore accurate

the time complexity of the parallel task adaptive approach (i.e., O (-_)).for

lt can be shown that for splitting, the time to find Pma_ is O(P) and the number of splits is proportional
to P, but the splits occur in parallel which results in a time complexity of O(c). The communication is

O (N), SOthe entire program is of complexity T = O (_). Of course, the PRAM modelproportional to
\--/ x J

has the limitation in that it assumes a constant access to shared memory regardless of how large P becomes.

Since this is unrealistic, performance degradation is bound to occur as larger processor configurations are
used.

5 Graphics Data Decomposition

Two memory referencing schemes are discussed in this section; the first scheme is designed for a shared
memory machine while the latter scheme is suitable for distributed memory computers which utilize either
shared memory referencing or message passing. The data decomposition consists of 1) setting up the data for
later rendering and 2) accessing the data during the rendering phase of the computation.

5.1 Uniformly Distributed (UD) Scheme

In the Uniformly Distributed scheme, data is stored in global memory and is referenced remotely. Thi_ is
implemented in two different fashions depending on the machine architecture. For a UMA machine (Uniform
Memory Access) such as the Encore Multimax or Sequent Balance, the data is stored in globally shared
memory and hardware caching is generally used to speed up access to frequently referenced data items. On
a NUMA machine (Non-Uniform Memory Access) such as the Cedar, Kendall Square Research KSRI, or
BBN Butterfly family, the data is scattered throughout the local memories of the processors but it can also

Local Area Mesh

•,

m "_t m _',_!_ norm.als,polygons,--_ andpolygon infofor
- area[ii[j]

Figure 4: Bin storage for later local access

be referenced remotely. After the polygon data has been pre-processed, it is not changed so it can be made
cachable for faster referencing.

The bins discussed in section 3.1 are used to store the transformed polygonal data for later access. The

bins in the UD scheme are implemented as a shared two dimensional array of pointers to shared linked lists of

polygons (see figure 2). To prevent multiple processors from appending to the same linked list simultaneously,
each bin has a lock which is used to allow atomic access to its linked list. During the rendering stage,

polygons are retrieved from a particular bin and put into a local memory y-bucket list for a given processor's
scan conversion task. This scheme relies on hardware caching of frequently referenced remote data items.

While it is adequate for UMA machines, a scheme which supports local memory referencing may provide
better results on certain NUMA architectures and facilitates implementation on message passing machines.
This is described below.

5.2 Locally Cached (LC) Scheme

The LC memory referencing strategy involves initial storage of data scattered throughout the memories of
the machine while using a software caching technique to bring data into local memory during processing.
A similar type of mechanism has been used before for parallel graphics rendering [Bado90, Gree89]. In
those cases, though, the instance was ray tracing and involved an implementation of a technique known as
shared virtual memory which emulates sh_xed memory on a message passing system. Instead of using shared
memory however, we employ explicit copying of the exact data which is needed for a given task so that: no
unnecessary communication is required, the minimum amount of memory is used, and a cache replacement
policy is unnecessary. This explicit copying is not amenable to ray tracing since the exact data needed for a
given portion of the image space is not know a priori in that type of algorithm.

During the pre-processing phase, polygons are put into bins as discussed above but the implementation
here differs since only local memory is utilized. Each processor maintains its own set of bins which are stored
locally and implemented as a two-dimensional array of structures. The structures contain the following four
arrays: a points list, a normals list, a polygon connectivity list (indices into the points list), and a polygon
information list (such as bounding box, color, etc.). Each structure contains data for those polygons which

cross over into that particularbin as illustrated in figure 4. Before storing the polygons in these bins, processors
look at ali the polygons in their local memory to see how many belong in each bin. This information is used
to determine how much array memory is necessary to allocate for a particular bin. The reason that arrays (as
opposed to linked lists) are constructed is that each array can later be sent out as a message to a processor
which will tile the area during the rendering phase.

After the memory has been allocated, the local polygon data is placed into the separate arrays for each

bin. The data in a given object's polygon topology arraycontains index pointers to that object's points array.
These indices must be modified to point to the correct place in each bin's points array. It is desirable to store

Copypotyoonsfromother
.pcocessors to the one which has

this area as a task

Ar--[i]O]

• Figure 5: Consolidation of remote polygon arrays to local memory

a point only once in the new points list and record the reference index value once rather than piace a new

copy of the point into the points list for each polygon which references it. If the latter were done for say,
quadrilateral polygons, we might end up using four times as much memory as is really needed. After the data
is processed into messages for each bin, it is "cached" into each processor's memory during the rendering

phase.
In order to tile an area during the rendering phase, a processor must obtain the transformed polygon data

from the other processors (if they contain any) which is relevant to its assigned area (Ii]Ii]) as shown in

figure 5. This is done by querying each processor individually and retrieving that processor's data (if it has
any) in contiguous messages. This method is useful on any distributed memory computer (even one which

supports shared memory) since the caching operation described here is under programmer control. Note, this
is happening in parallel for ali of the processors s;multaneously so the network might potentially become

clogged for a short time. After the burst of communication to obtain initial task data, no more communication
is necessary for this task since the data has now been "cached" into the rendering processor's memory.

" A method to reduce communication during rendering has been discussed in the PixelFlow design [Moln92].

This solution involves image compositing after each processor renders the entire image space using the

local data only. l'he design trades the communication problem for the expenses of: synchronization, later
communication (albeit potentially smaller than discussed above), and a non-adaptive load balancing scheme

based primarily on the data distribution to processors. This method seems primarily suitable for very large
-_ (say > 1000) l_rocessor configurations since the load balancing relies totally on the data distribution and

communication is only a function of image resolution.

Data Movement During Partitioning

When a processoc is going to split another processor's pixel area, it must retrieve the four arrays in the bin
structure of that pixel area. The pointers to these arrays are stored in the memory of the remote processor and
can be readily retrieved. Ideally, it would be nice to only obtain the data for the polygons which are relevant
to the lower task after the split. Since that involves stopping the execution of the remote processor, it was not

+ deemed worthwhile to do in the shared memory implementation. However, a simple method can be used to
reduce the amount of data to be copied over time by performing a quick clip test after the arrays are received.

10

Polygons which arc no longer relevant to the new partitioned task arc deleted. Although this operation takes
a small amount of time, it reduces the communication for further splits of the same area. Testing indicates
that this is a worthwhile addition to the algorithm since it reduces the amount of communication near the cnd
of the program when most of the areas to be split are small and have already been split at least once.

Changes ,or Message Passing Implementation

The LC scheme is amenable to implementation on message passing architectures, although some changes
arc necessary. On these machines, processors cannot explicitly copy data from another processor, it must be
sent in a message to them. For the rendering phase, the shared memory approach involves every processor
checking every other processor's memory to find out if there is any data residing on a remote mcmory module
which is relevant to its assigned task. Instead, for message passing each processor is assigned its first task area
according to its processor number, with processor 0 getting ali of the background tasks. The proccssors then
know which one is responsible for a particular task area. If a proccssor's memory contains data for another
one's task, it can then send a message there which contains the relevant data or a flag which indicates that
it has no data relevant to the particular area. In this way, each processor retrieves ali of the data necessary
from the others for its assigned task. Both methods require the same amount of communication but the
shared memory method benefits from dynamic self scheduling of tasks which is not amenable to message
passing. After the first set of tasks, a processor can retrieve which tz,sk it is to be assigned from the controlling
processor (CP). The CP will then send messages to the others to irdicate which tasks are now executing on
which processors. For partitioning, each processor must check every so often to see if there is a message on
its queue requesting a split. If so, the processor then sends exactly the data needed for the lower half of its
remaining work to the requester. It also sends a message back to the CP to update the number of scan lines
left. Unfortunately, using the CP requires slightly more overhead than the direct query method used in the
shared memory implementation.

6 Results

The algorithm was tested on a BBN Butterfly TC2000 multiprocessor using the Task Adaptive domain de-
composition and the LC memory referencing scheme. Three input datasets of varying complexity were use:t,
two of which (rings and tree) arc from Eric Haines' SPD database [Hain87]. The other image, layers, i
several transparent iso-surface layers from a fusion plasma turbulence simulation generated by Tim Williams

• at Lawrence Livermore Lab. These test images2 are shown in figures 7, 8, and 9. Ali rendering utilized 16
•i samples/pixel anti-aliasing with Phong smooth shading at standard video (640x484) resolution.

6.1 Performance

In table 1, we compare average time for rendering including algorithmic specific overheads for the test images

using the Data Adaptive algorithm (described in section 2), the base rectangular region method, and the Task
Adaptive algorithm using the UD and LC memory referencing schemes and static versus dynamic scheduling
of tasks. Recall, the UD scheme cannot be implemented on message passing computers, lt should also be

noted that although the performance of the UD scheme is equal to that of the LC scheme, this will vary
depending on the machine topology and hardware cache support. The timing, speedup, and efficiency results

for the tiling section of the program arc given in table 2 with a graph of the speedup in figure 10. The
speedup measured is self speedup and the program utilized remote memory transfers even on single processor

2Thelayersimageshowstheareaborderscolor-codedaccordingto whichprocessorworkedon a particularscreenarea.

11

Table 1: Comparison of various algorithms' performance at 96 processors

 gori II Average Time

Data Adapave - LC 25.9 seconds

Rectangular - LC 20.9 seconds
Task Adaptive - LC (Static) 9.8 seconds

Task Adaptive - UD (Dynamic) 9.4 seconds

Task Adaptive - LC (Dynamic) 9.4 seconds

Table 2: Rendering time, speedup, and efficiency of Task Adaptive (LC dynamic) algorithm on 96 processors
on the BBN TC2000

II Layers Rings I Tree

Polygons 64.1K 568K 851K
Time 6.2 sec 9.6 sec 8.8 sec

Speedup 83.2 90.1 63.1

Efficiency 0.86 0.94 0.66

runs. This was required since the input datasets would not fit into the memory of a single processor. To ,

compensate, the extra cost of communication and code modification were measured and subtracted out of
the single processor time "inorder to come up with a realistic estimate of the sequential time (noted in the
graph) for speedup measurements. According to our measurements, there is only a 15% measured overhead
cost difference between an optimized serial renderer and the parallel program described here when run on a

single processor. The average efficiency of the parallel algorithm is 82% which means that the parallel version
provides high performance relative to itself as well as to a serial renderer.

In order to show the actual causes of performance degradation from linear speedup, various overhead effects
were measured for the implemented program on the input datasets as a function of the number of processors

(P). They include: load imbalance, network contention, code modification to allow parallel execution, and
communication (see the glossary for definitions), Other factors (which were also measured) such as memory

latency, synchronization, and scheduling represent such a small fraction (typically < 0.1%) of the work that
they are not presented in the graphs. These overheads are not taken into account in the PRAM model of
computation• Note, these latter factors are small due to the fact that the splitting mechanism involves very little

synchronization "of processes. The equations given in the appendix show how the factors are calculated. The
graphs which depict the measured degradation factors as a function of P for the layers, rings, and tree images
are given in figures 11-13. The overheads shown at one processor represent the effects of code modifications

necessary to run the code on a parallel machine and the communication required to transfer the data from
shared memory to local memory. Table 3 indicates the computed overheads at 96 processors.

6.2 Analysis

From the graphs, we can see that several of the overhead effects use an increasingly higher percentage of
runtime as P is increased, meaning that different factors come into play at higher processor counts. Load

balancing, in particular, is directly affected. As P increases, more processors perform dynamic partitioning

12

Table 3: Parallel overhead percentages at 96 processors on the BBN TC2000

Overhead II Layers Rings Tree
Communication 1.2% 2.2% 7.9%

Network Contention 1.7% 2.2% 7.8%
Load Imbalance 9.5% 3.5% 24.8%

Code Modification 2.2% 1.7% 0.8%

simultaneously. Consequently, at the end of a run, some processors have work to do while others are trying
to obtain work. By the time they obtain the lock to split the work, there may not be any work left. As

was stated previously, the heuristic for splitting is not particularly accurate which explains the high load
imbalance particularly for the tree input dataset. The degradation due to code modification has to do with
the fact that additional coherence is lost as the number of processors and consequently total tasks, increase.
Communication overhead increases with P for two reasons. As P increases, the size of the task regions

becomes smaller since #tasks = 2 • P, so polygons cross over into more areas (which means more copying

of this polygon data). Secondly, as P is increased, more processors become available to partition others' work,
which requires communication of data to obtain the new tasks. As a result of this increased communication,
network contention increases as well.

If the number of polygons (N) increases and the number of processors (P) stays the same, we observe

that the overall communication will increase as weil. But, according to the time complexity O (_), rendering
: time _lso increases with N so communication is not likely to become a higher percentage cost. However, if

' the size and distribution of polygons is changed significantly, this will affect the overall rendering time. For

instance, the polygons in the tree image are smaller and more densely packed than in the rings image. Since
the (IV) is larger in the tree image, communication is higher but is also a higher percentage of overall rendering
time since the rendering time per polygon is smaller (comparing the two serial execution times). As one can

see, depth complexity, polygon area, number of polygons as well as microprocessor speed, communication
speed, and data transfer methodology ali contribute to the efficiency of a parallel renderer, lt is obvious, for
instance, that doubling the output image resolution increases the work without increasing the overheads, so the

program appears to be more efficient. With ali of these variables, it is impossible to generalize a solution to
meet ali users' needs. One should take into account the the main requirements of the system when designing

the data decomposition mechanism and use optimizations for data locality and load balancing appropriately.
The results here indicate that the LC scheme exploits data locality at a minimal expense of communication
overhead and can be used in both shared memory and message passing environments.

This algorithm has some deficiencies in dealing with image space tasks which have a high degree of local
complexity since these types of scenes may not be amenable to the splitting mechanism. An example is the

tree input dataset which resulted in a high load imbalance. Another situation is flight simulation where data
can become concentrated at the horizon, lt would be ludicrous to assume that a single algorithm can be

designed to perform equally well under ali types of scenarios. The algorithm presented here is a compromise
which can handle a moderate amount of local image complexity with reasonable performance. Ray tracing

solutions may have enough complexity to allow parallel processing even at the pixel level to be able to remedy
this situation. However, ray tracing is inherently slower than scan conversion methods and its features are

not needed in a number of applications. Unfortunately, assigning pixel sized tasks would be at the expense

of higher loss of coherence when using polygon scan conversion. Additionally, the ratio of communication to
computation is not high enough in scan conversion methods to support task subdivision at this level.

13

1

7 Conclusion

The main goal of this project was to achieve good speedup and efficiency using a parallel algorithm for

rendering of complex geometric scenes. The Locally Cached memory strategy allows the algorithm to be

implemented on either shared memory or message passing MIMD computers. Although the absolute perfor-

mance of this algorithm already ranges from 50,900 to 100,000 anti-aliased Phong shaded polygons/second,

3 the clear metric for success is that we have achieved an average 82% efficiency utilizing 96 processors.

This indicates that with even faster microprocessors and/or larger parallel computers, rendering rates can be

increased even further. In addition, using this algorithm as part of scientific simulation system on a parallel

computer allows direct memory transfer of data and supports fast creation of "movies in minutes."

The algorithm outlined here can also be used for a number of other problems in graphics. For instance,

2½-d polygon overlaying for geographical planning is a computationally intensive problem that can benefit

from parallel processing. The Task Adaptive approach to work decomposition can also be useful in a cluster

(or distributed) computing environment to harness cycles from idle machines for graphics rendering.

Acknowledgments

This work performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore
National Laboratory under contract number W-7405-ENG-48.

References

[Abra86] Abram, Greg Parallel Image Generation with Anti-Aliasing and Texturing, Ph.D. dissertation, University of
North Carolina at Chapel Hill, (1986).

[Alli91] Allison, Michael. Private communication, (July 1991).

[Badog0] Badouel, Didier, Bouatouch, Kadi, and Priol, Thierry "Ray Tracing on Distributed Memory Parallel Computen;:
Strategies for Distributing Computations and Data." Course Notes for Course 28, Siggraph (August 1990)
pp. 185-198.

[Chan8|] Chang, P. and Jain, Ramesh "A Multi-Processor System for Hidden Surface Removal." Computer Graphics
• 15, 4 (December 1981).

[Cook861 Cook, Robert L. "Stochastic Sampling in Computer Graphics." ACM Transactions on Graphics (January
' 1986).

[Croc91] Crockett, Thomas W, and Orloff, Tobias "A Parallel Rendering Algorithm for MIMD Architectures." ICASE
"I'echnical Report No. 91-3, NASA Langley Research Center, (June 1991).

[Dipp84] Dippe,. Mark and Swensen, John "An Adaptive Subdivision Algorithm and Parallel Architecture for Realistic
Image Synthesis." Computer Graphics, Proceedings o]'Siggraph 18, 3 (July 1984) pp. 149-158.

[Fium831 Flume, Eugene, Foumier, Alain, and Rudolph, Larry "A Parallel Scan Conversion Algorithm with Anti-
Aliasing for a General Purpose Ultracomputer." Computer Graphics, Proceedings of Siggraph 17, 3 (July
1983) pp. 141-149.

[Fran90] Frankhn, Win. Randolph and Kankanhalli, Mohan S. "Parallel Object-Space Hidden Surface Removal." Com-
puter Graphics, Proceedings of Siggraph 24, 4 (August 1990) pp. 87-94.

31tdoes not make sense to compare this algorithmto specialpurpose graphics hardware because: 1)Current generation workstations
cannot do Phong shading (SGI's machines currently only support Phong lighting). 2) This scan line based algorithm requires more
operations than a Z-buffer algorithm. 3) This algorithm is software bast,xiand therefore more general purpose. In addition, the
performance quoted here is using a 3 year old CPU (Motorola 88100) which is not as powerful as today's microprocessors.

14

[Ghos86] Ghosal, Dipak and Palnaik, L. M. "l_arallel Polygon Scan Conversion Algorithms: Performance Evaluation
of a Shared Bus Architecture." Computers & Graphics 10, 1 (1986) pp. 7-25.

[Gree89] Green, S. and Paddon, D. "Exploiting Coherence for Multiprocessor Ray Tracing." IEEE Computer Graphics
and Applications (November 1989) pp. 12-26.

[Hain87] Haines, Eric "A Proposal for Standard Graphics Environments." IEEE Computer Graphics & Applications 7,
11 (November 1987) pp. 3-5.

[Hu85] Hu, Mei-Cheng and Foley, James D. "Parallel Processing Approaches to Hidden-Surface Removal in Image
Space." Computers & Graphics 9, 3 (1985) pp. 303-317.

[Kapl79] Kaplan, Michael 'and Grecnberg, Donald E "Parallel Processing Techniques for Hidden Surface Removal."
Computer Graphics, Proceedings of Siggraph (July 1979) pp. 300-307.

[Moln92] Molnar, Stgven, Eyles, John and Poulton, John "PixelFlow: High-Speed Rendering Using Image Composi-
tion." Computer Graphics, Proceedings of Siggraph 26, 2 (July 1992) pp. 231-240.

[Myer75] Myers, Allan J. "An Efficient Visible Surface Algorithm." Report to the NSF for Grant Number DCR74-00768
A01, (July 1975).

[Park80] Parke, Frederic I. "Simulation and Expected Performance Analysis of Multiple Processor Z-Buffer Systems."
Computer Graphics, Proceedings of Siggraph 14, 3 (July 1980) pp. 48-56.

[Rob188] Roble, Doug R. "A Load Balanced Parallel Scanline Z-Buffer Algorithm for the iPSC Hypercube." In Pro-
ceedings of Pixim '88, Paris, France, (October 1988).

[Whel85] Whelan, Daniel S. Animac: A Multiprocessor Architecture for Real-Time Computer Animation, Ph.D. disser-
tation, California Institute of Technology, (1985).

[Whit91] Whitman, Scott Utilizing Scalable Shared Memory Multiprocessors for Computer Graphics Rendering, Ph.D.
dissertation, The Ohio State University, Columbus, Ohio, (1991).

[Whit92] Whitman, Scott "Parallel Graphics Rendering Algorithms," Proceedings of the 3rd Eurographics Workshop

on Rendering, Bristol, UK, (May 1992).

A Parallel Overhead Factors

Load imbalance is measured by determining the maximum finishing time of ali processors T,n,,_:(P), and

comparivg that to the average finishing time of the P processors. This average constitutes what would be the

theoretical ideal finishing time if ali the processors had exactly the same amount of work.

' Load imbal. % = Truex(P)- 7_og(P) , 100% (1)
i Tmpn(P)
I

Communication in the BBN TC2000 system proceeds at a measured Tcomm = 3#see(4 byte word) using!

a special function which transfers data in 15 t_yte chunks. By determining the number of words transferred

for each initial task plus the number transferred for each task created by a partition, we can determine the

total amount of communication in the system. Latency, on the other hand, is the extra time required for

a remote memory reference of a particular data item versus the time for that reference on a local memory

: module. In the algorithm outlined here, very little data is referenced remotely; it is directly copied using the

special communication function and the algorithm outlined previously. Below, (# words) refers to the number

of words transferred per task. The subscripted notation used here is as follows: the i in each sum relates to

15

information about each task i. The first sum is over ali the initial tasks while the second sum refers to tasks
a

generated after the splitting operation occurs.

(x-'#P"r'iti°'_s)Comm. % = Eia-P(#w°rd')i + z..,i=t (#words)i • T_o,,,m • 100% (2)
Vmo .(P).P

Network contention consists of delays in message transfer as a result of excessive simultaneous requests

for the existing paths in the system. The problem is mn on a single processor (where no contention occurs)
and then run on multiple processors, measuring the time for each task to execute. The difference in the times
for task execution (excluding the extra coherence and communication cost) is a direct result of contention in

the network. T(P)i refers to the time for task i to finish when using P processors. The second summation
on the numerator refers to the number of partitions that are created as a result of the dynamic task splitting

which occurs in the task adaptive approach.

V"#partiti°ns T(P)i - R.PCi=l T(1)i
Contention % = F-'i_P T(P)i + z..,i=l • 100% (3)

Tma_(P)" P

Code modification overhead consists primarily of the loss of coherence due to cr,eation of a new region in

a parallel setting, lt can be measured by timing the extra work Tcoh that is associated with ali polygons that
would have been updated from another region due to coherence.

v'#P""titi°"" Tcoh(F)i
Code ,nod. % = Eia-'-PT_°h(P)i + _i=1 • t00% (4)

Tm_,.(P). P

B Glossary

MIMD Multiple instruction stream, multiple data stream computer.

SIMD Single instruction stream, multiple data stream computer.

,i

Load imbalance A measurement corresponding to inadequacies in how well the total work is distributed

among the processors.

Scheduling Determining the mapping of tasks to processors.

Latency The additional time to retrieve a data item from remote memory versus obtaining it locally.

Communication The time to send data from one memory module to another.

Network The problem of multiple messages attempting to use a single interconnection network path
contention or switch node at the same time.

Synchronization The act of bringing together 2 or more processes to a given point in a program simultaneously.

Code modification The additional time resulting from changes to code necessary to run the program in a parallel
environment. In the instance here, this is exemplified as the loss of graphical coherence.

16

Figure 10: Task adaptive speedup

Figure 11" Analysis of ovcrhcads, layers image

Figure 12: Analysis of overheads, rings image

Figure 13: Analysis of ovcrhcads, Ircc image

19i

