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ABSTRACT

A new multiaxial strength theory incorporating three
independent stress parameters was developed and reported by
the author in 1984. It was formally incorporated into ASME
Code Case N47-29 in 1990. The new theory provided
significantly more accurate stress-rupture life predictions than
obtained using the classical theories of von Mises, Tresca, and
Rankine (maximum principal stress), for Types 304 and 316
stainless steel tested at 593 and 600°C respectively under
different biaxial stress states. Additional results for Inconel 600
specimens tested at 816°C under tension-tension and tension-
compression stress states are presented in this paper and show
a factor of appraximately 2.4 reduction in the scatter of
predicted versus observed lives as compared to the classical
theories of von Mises and Tresca and a factor of about 5 as
compared to the Rankine theory. A key feature of the theory,
which incorporates the maximum deviatoric stress, the first
invariant of the stress tensor, and the second invariant of the
deviatoric stress tensor, is its ability to distinguish between life
under tensile versus compressive stress states.

INTRODUCTION

A new multiaxial strength theory was developed by the author
and initially reported in 1984 [1] with an additional assessment
reported in 1992 (2]. The theory incorporates four stress
parameters which can be formulated from the three
independent stress parameters: maximum deviatoric stress (S)),
the first stress invariant (J;), and the second deviatoric stress
invariant (J, ). The theory distinguishes between tensile (J;>0)

work performed by Oak Ridge Nationai Laboratory for the U.S.
Department of Energy under contract DE-AC05-840R21400 with
Martin Marietta Energy Systems.

and compressive (J, <0) stress states which is not possible using
the classical strength theories of Tresca (maximum shear stress)
and von Mises (octahedral shear stress) {3]. The new theory
was previously shown by the author to provide significantly
improved creep-rupture life predictions in tests of Type 304 [1]
and 316 [2] stainless steel conducted under constant-load
conditions at 593 and 600°C respectively. During 1990 the
theory was incorporated into ASME Code Case N47 [4] for use
in computing creep-rupture damage and life in elevated
temperature components. In the current paper the accuracies
of both the new and classical theories are assessed for predicting
creep-rupture life in biaxial tests of annealed Inconel 600
conducted under constant-load conditions at 816°C in argon.

Prior investigations of multiaxial creep-rupture behavior
include the works of Chubb and Bolton (5}, Kennedy, Harms,
and Douglas [6], Sdobyrev as referenced by Rabotnov (7}, Davis
(8], Johnson, Henderson, and Khan [9], Rowe, Stewart, and
Burgess {10], Abo E! Ata and Finnie {11}, Hayhurst [12),
Anderson, Atkins, and Shavely [13], Hayhurst, Leckie, and
Morrison [14], and others. Manjoine [1%] has similarly
investigated the stress-state problem and has provided a
summary with discussions of selected strength theories which
have been proposed over the years. Rowe, et al. and Anderson,
et al. investigated creep rupture in tubes of Types 304 and 316
stainless steel under biaxial tension-tension stress states. The
classical theories of von Mises, Tresca, and Rankine differ by
less than ~ 15 percent for these stress states. Chubb, et al. and
Kennedy, et al. investigated creep rupture in tubes of Type 316
stainless steel and Inconel respectively, under both biaxial
tension-tension and compression-tension stress states thus
covering an area of stress space where greater differences exist
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between the Rankine theory as compared to the Tresca and von
Mises theories. Choice of a best strength theory in these and
most of the previously referenced investigations tended to be
both material and temperature dependent with all three of the
previousty noted classical theories selected as being the best
candidate for at least one test material and one test
temperature. The classical theories all provide a relatively poor
fit to the data for compression-tension stress states,

Several key investigations which have provided a base of
mechanistic support for the current work are those of Cane
[16], Speight and Beere {17}, Beere and Speight [18], Hellan
[19], and Dyson [20]. In particular Cane’s publication was very
useful. Cane, in referencing the other cited authors’ work,
summarizes the stages of fracture by the classical grain
boundary cavitation process as being the production of cavity
nuclei (Stage I), the deformation of stable cavities and their
growth to produce discrete cracks (Stage II), and linkage of
discrete cracks to produce final fracture (Stage III). In terms of
continuum mechanics variables, Cane relates the stress state
dependence of these processes to the von Mises equivalent
stress, o, the hydrostatic stress, J,/3, the maximum principal
stress, g, and the maximum deviatoric stress, S,. In
development of the author’s strength theory, these same stress
parameters, when appropriately formulated, have resulted in
significantly improved life predictions relative to the three
previously noted classical theories.

The balance of this paper summarizes the improved strength
theory, the experimental Inconel 600 creep-rupture data on
which the current theory assessments are based, assessment
resulits, and some brief conclusions.

STRENGTH THEORY

For a multiaxial stress state with ordered principal stresses
0> 0,>0, the new strength theory defines the uniaxially
equivalent stress as

a.=%S.<§-§:)'exp[b<-;i'~1)1 )
where
J,=6,+0,40, 1)
= 30,
0=/[(0,-0)*+(0,-0)*+(0,-0 V12 4

$,=0,- _’31 Q)

and

S,=‘/o“;+o§¢o§ &)

=(6J°3 I3

=/3(o}, 12
Y30 oo

and
J, = 1st invariant of the stress tensor,
J, = 2nd invariant of the stress tensor,
J;* = 2nd invariant of the deviatoric stress tensor,
§, = maximum deviatoric stress,
o = von Mises equivalent stress,
0,, = normal stress on octahedral plane, and
7., = shear stress on octahedral plane.

For a = 1.0, the new theory reduces to the form
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0=0 exp[B(J,/S,-1)] (6)

which removes any dependence of ¢, on maximum deviatoric
stress, §;, while maintaining dependence on the hydrostatic
stress component, J; (or octahedral normal stress), and the
octahedral shear stress, J, * (or o). Parameters o, J;, and S, are
all stress invariants (i.e., can be expressed in terms of the
principal invariants of the stress tensor).

The invariant stress parameters in the new theory (/;, S, , and
o) are graphically illustrated in Fig. 1. Parameters a and b are
constants which can vary slightly from material to material. For
best life predictions, the constants can be determined by a least-
squares fit of the theory to multiaxial stress-rupture data for a
range of stress states. A minimum of two test points are
required to fit the constants a and b in Eq. 1, with the
recommended tests being one torsion and one equal biaxial
tension test, or a minimum of one test is required to fit the
constant b in Eq. 6 with the recommended test being a pure
torsion test. Stress parameters incorporated in the new theory
have been shown by Cane and others to correlate with the
mechanistic creep-rupture processes of cavity formation, growth,
linkage, and failure {1, 16-20].

Five materials (two ferritic steels and three nickel-base alloys)
have been studied to date and have been found to have
somewhat universal values of 2 and b for creep-rupture life
predictions. Results for Types 304 and 316 stainless steel,
Inconel 600, modified 9 Cr-1 Mo steel, and 2 1/4 Cr-1 Mo steel
have indicated that parameter a tends to have a value in the
range of 0.85-1.10 with 1.0 being a good universal value to use
in the absence of data to define a "best fit" value. A value of
a = 1.0 also assures one that the shape of the "prismatic” 3-D
isochronous failure surface in g, , 0,, 0; space will be circular
in planes of constant J; similar to contours for the von Mises
strength theory. Parameter b tends to have a value in the 0.15-
030 range for the previously noted materials. The value of b
determines the appropriate magnitude of the hydrostatic-stress
effect in the strength theory, thus determines differences in
equivalent stress and life under tensile (J,>0) versus
compressive (J;<0) stress states. The author has found that life
predictions made using the new strength theory are significantly
better than predictions made using the previously noted classical
theories both when the optimum constants @ and b are used
and also when the universal values of a=1.00 and 5=0.24 are
used.

In general, time to creep-rupture, ¢, , is appraximately linear
in log (time) versus log (stress) space and was, therefore,
represented for the purposes of this paper by the equation

log(t) =44 +A,log(a, ) M

where o, denotes the "uniaxially equivalent” stress. Consistent
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FIG. 1 GEOMETRIC REPRESENTATION OF NEW
STRENGTH MODEL STRESS PARAMETERS

with the usual design approach, constants 4, and A, are
defined by a least-squares fit of Eq. 7 to baseline uniaxial creep-
rupture data. It is then assumed that a complex multiaxial
stress state can be reduced mathematically, through the
"strength theory” (Eq. 1 or Eq. 6) to a uniaxially equivalent
value ¢, such that the uniaxial correlation (Eq. 7) in
conjunction with the equivalent stress from Eq. 1 (or Eq. 6) can
be used 10 predict the failure time for a component under a
complex multiaxial stress state. For the assessments presented
in this paper, it is assumed that the time required to initiate a
crack is appraximately equal to the rupture time for the biaxial
tubular test specimens.

MATERIAL AND SPECIMEN

Assessments of the strength theories reported in this paper are
based on test results for annealed Inconel 600 as reported by
Kennedy, Harms, and Douglas (6]. The nominal composition
of the Inconel 600 material utilized in their tests was 80 Ni-15
Cr-5 Fe. Their tubular specimens were nominally 21.4-mm
inside diameter, 1.52-mm wall thickness, and 63.5-mm gage
length.

EXPERIMENTAL DATA

Tests reported by Kennedy et al. were conducted in argon at
816°C under constant-load conditions. Uniaxial tests were
conducted using the same tubular specimen design as used for
their biaxial tests. Four tests were conducted under a pure axial
load to produce uniaxial tension in the tube, Three tests were
conducted under a combination of axial compression and
internal pressure which produced a "pure” hoop stress with zero
axial stress. These seven tests provided the data for
development of a baseline "uniaxial" stress rupture correlation

e
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(i.e. the small radial stress in the "pure” hoop stress Lests was
ignored). The biaxial tests of Kennedy et al. were performed
under combinations of axial load (tension and compression) and
internal pressure. Their stress rupture results, from some 45
tests, are summarized in Table 1. Since the seven "uniaxial”
tests were conducted using a tubular specimen rather than a
conventional uniaxial solid bar specimen, these seven data points
were included in the biaxial data set used for strength theory
assessments.

To use the individual biaxial test data in Table 1 to objectively
assess stress state effects, the effects of material and testing
variability should be minimized. As was done in the author’s
prior publications [1,2}, an "averaged biaxal data set” was
created from the data in Table 1. This was accomplished by
linearty averaging, in log (stress) versus log (rupture time) space,
each subset of the biaxial test data having the same stress state
(i.e., the same biaxial stress ratio, R=a4/0,). This reduced the
4S data in Table 1 to the 20 data points summarized in Table
2 with only one representative point for each independent stress
state.

A least-squares fit of the linear stress-rupture equation (Eq.
7) to the seven uniaxial data in Table 1 resulted in the baseline
uniaxial stress-rupture correlation given by:

log(t,)=9.1830-4.3034 log(o) ®)

Since the "pure” hoop stress rupture data tended to form a
stress rupture line falling below (i.e., sharter lives) the axial
tension data, a lotcentered fitting technique was used to
determine the slope of the uniaxial line in Eq. 8. Using this
technique, the average value of log(f,) and log{s) for each
subset (i.e. each lot of data) was subtracted from the individual
data values for the lot. A least-squares fit of the resulting
combined data sets determined the Tlot-centered slope”
representing all the fitted data. The intercept constant, 9.1830,
was then determined by forcing the stress rupture line with the
lot-centered slope to pass through the centroid of the total
uniaxial data set (i.e., through the average log(t,) and average
log(o) point for the total uniaxial data set). The resulting data
correlation is given in Eq. 8 and is plotted in Fig. 2.

RESULTS

As in the author’s two prior publications [1,2], resuits of the
assessment of the new versus the classical strength theories are
summarized in four comparative forms: (1) standard 2-D biaxial
isochronous stress-rupture contours; (2) polar plots of deviations
in the ratio of predicted-to-observed life as a function of stress
state showing which stress states result in the best and worst life
predictions; (3) the usual logarithmic stress versus rupture time
correlations; and (4) a statistical assessment of the new and
classical theories partitioning the total error between predicted
and observed life into a strength theory error, which
is dependent on stress state, and a random error, which is
attributed to material and testing variability.

EIS

TABLE 1| SUMMARY OF BIAXIAL STRESS-RUPTURE
DATA FOR ANNEALED INCONEL 600 TESTED AT
816°C

Tost g o o o t Specimen
N "o e ‘ " Loading
(MPa) (MPa) (MPa)  (h) Mode**
1 000 41370 0.000 0000 1690 AT
2 000 41870 0.000 0.000 8302 AT
S 000 27580 0.0C0 0.000 21400 AT
4 000 20885 0.000 0.000 44908 AT
§ 017 41370 6.89%5 0400 2490 AT&P
6 025 27580 6.895 0.400 18400 ATA&P
7 050 41.8370 20685  .1.476 2310 AT&P
8 050 34475 17238  -1.227 6350 AT&P
9 050 27580 13700 0070 9820 AT&P
10 050 27.580 13790 0979 16400 AT &P
11 050 20.885 10.343 0,738 39700 ATA&P
12 067 418370 27580 -1.965 S170 AT&T
18 075 27580 20.685  -1.476 7170 AT&P
14 1.00 41,870  41.870 2944 912 ATAP
15 100 27580 27580 -1.985 6490 AT&P
16 1.00 20885 20685  -1.4768 27858 AT &P
17 100 20685 20.685  .1.476 31240 AT&P
18 120 34475 41370  -2.044 1340 AT&P
19 183 206885 27380 -1.965 6018 AT&P
20 1.80 27580 41.370 -2.044 1280 AT&P
21 180 17238 27580 -1.985 6680 AT&P
2 1.7 24.183 41370  -2.044 1258 ATA&P
28 185 22400 41.370 -2.944 1082 ATAP
24 200 20685 41370 -2.844 790 ATA&P
25 200 20885 41370 -2.044 B850 AT&P
26 200 13790 27.580 1965 6200 AT&P
27 200 10343 20685  -1.476 18720 AT&P
28 400 10.343 41370 -2.944 1600 AT&P
20 400 10.343 41.370 -2.944 1007 ATS&P
30 4.00 6.805 27580  -1.985 3986 AT&P
81 400 6895 27580 -1.085 4870 AT&P
82 400 5171 20685  .1.476 18119 AT&P
33 ® 0.000 41370 2944 080 AT&P
34 » 0.000 27.580 -1.965 5480 AT&P
35 ® 0000 20685  -1.4786 18960 AT&P
38 025 55160 13790 0979 1689 AC&P
87 -1.00 41870 41370 2844 4768 ACAP
38 -1.00 -27.580 27580 -1.865 2350 AC&P
89 -1.00 -20.885 20.685 -1.476 12000 AC&P
40 200 -20.885 41.370 -2.844 9.2 AC&P
41 200 20885 41.370 2944 1540 AC&P
42 200 13790 27580 -1.985 3080 ACAP
43 -2.00 -10.343 20685  -1.478 12210 AC&P
44 400 -6895 27580 -1.985 479.3 ACAP
45 400 -6805 27580 -1.9685 668.4 ACAP

* Source: Kennedy, Harms, and Douglass, Ref. 6
** AT = axjal tension

AC = axial compression

P = internal pressure
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TABLE 2 AVERAGED BIAXIAL STRESS-RUPTURE DATA
FOR ANNEALED INCONEL 600 TESTED AT 816°C

Data R % o % o, t, Specimen

Subset % Loading

No. (MPa)  (MPa)  (MPa) (h) Mode®*

1 000 31.434 0000 0000 855.7 AT
2 0.17 41.870 6895 0490 249.0 ATA&P
s 025 27580 6895 0490 1840.0 AT&P
4 0.50 20520 14764 -1.048 0837 AT&P
5 067 41870 27580 -1.065 8170 AT&P
6 075 27580 20685 -1.478 717.0 ATA&P
7 1.00 26432 28432 -1.885 8472 AT&P
8 1.20 94475 41370 2044 1340 AT&P
® 188 20685 27580 -1.965 601.3 AT&P
10 1.50 27580 41370 2044 1280 AT&P
11 1.80 17.238 27580 -1.985 6880 AT&P
12 171 24433 41370 20844 1258 AT&P
18 1.85 22.400 41,370 -2.044 1062 AT&P
14 200 15716 91431 2242 2809 ATA&P
15 4.00 7.855 80620 -2.184 4038 AT&P
16 o 0000 28683 2048 4404 AT&P
17 025 -55160 13700 0979 1689 AC&P
18 -1.00 -28.884 28684 2048 2435 ACAP
19 200 -15717 91434 2240 2518 ACA&P
20 400 -6895 27580 -1.965 5880 AC&P

* Source: Kennedy, Harms, and Douglas, Ref. 6
*¢ AT = axial tansion

AC = axial compression

P = Intemal pressure

A nonlinear least-squares fit (based on Eq. 7) of the new
theory (Eq. 1) to the averaged Inconel data set in Table 2
resulted in "optimum" values a=0.9984 and b=0.2481. These
constants were used for assessments 1-4 noted above. For
assessment 4 two other scts of constants were also evaluated
The second set of constants consisted of the assigned value of

=1.00 and the value of b=0.2480 obtained from a nonlinear
least-squares fit of Eq. 7 to the averaged biaxial data set in
Table 2. The third sct consisted of the assigned values of
a=1.00 and b=0.24, which the author has used as universal
constants in the two prior papers [1,2], since they were not
fitted to the material data sets. The accuracy of the new theory
is not highly sensitive to small changes in these values.
Constants of a=10859 and b=02893 were previously
determined for annealed Type 304 stainle:s steel [1] and values
of a=0.8631 and b=0.2058 previously de:ermined for annealed
Type 316 stainless steel [2]. The universal values of a=1.0 and
b=0.24, although not optimum values, still result in significantly
better life predictions for Types 304 and 316 stainless steel and
Inconel 600 than the classical theories; However, life predictions
were not quite as accurate as obtained using the alloy-specific
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values. Since the values of constants a and b for Inconel were
almost identical for the three cases where (1) optimum values
of both a and b were obtained from a least-squares fit, (2) the
value of a=1.00 was assigned and b obtained from a least-
squares fit, and (3) universal values of 3=1.00 and b=0.24 were
assigned (no fit), only the optimum values of 4=0.9984 and
b=0.2481 were used for the assessments summarized in this

paper.
{sochronous Stress-Rupture Contour

Biaxial isochronous stress-rupture contours for both the new
and the classical strength theories are shown in Fig. 3. Each
averaged data point from Table 2 was shifted along a stress
rupture line of slope A4,=-4.3034 (i.e., slope of the uniaxial
stress rupture line, from Eq. 8) to a common rupture time, and
the resulting isochronous biaxial stress point plotted in Fig. 3.
One can see that the new theory fits the Inconel data
significantly better than the classical theories in the second and
fourth quadrants for the tension-compression stress states. This
was also true for the 304 and 316 stainless steel results reported
previously. In the first quadrant, neither the classical strength
theories or the new theory represent the data very accurately.
The data trend in the first quadrant for biaxial stress ratios in
the range 2s<0g/0,<= does not follow the usual data trend
[1,2]. Itis possible that instability may have influenced the data,
however no attempt was made by the author to investigate the
instability problem. Internal pressure also results in tube
diameter growth during a test which continuously alters the
biaxial stress ratio during the test. This was not taken into
account in the correlations developed in this paper. The data
trend in quadrant 1 of Fig. 3, if real, would indicate significant
anisotropy in Inconel 600 since the contour is not symmetrical
about a 45° line. The agreement demonstrated by Types 304
and 316 stainless stect in quadrants 1, 2, and 4, as reported in
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FIG. 3 BIAXIAL ISOCHRONOUS STRESS-RUPTURE
CONTOUR FOR INCONEL 600

the author’s two previous publications (1,2], was significantly
better than is demonstrated in Fig. 3 for the Inconel data.
The 3-D isochronous rupture surface for Inconel 600 has a
geometric "bottle shape” similar 10 that reported previously for
Type 304 stainless steel and reproduced in Fig. 4 (1}. The
bottle shape indicates larger stresses under compressive stress
states than under tensile stress states for the same rupture time.

Polar Plots

Polar plots provide an excellent means for displaying
deviations between predicted and observed life as a function of
the biaxial stress state. Plots of this type, based upon the
averaged data set in Table 2, are given in Figs. 5-8 for the new
and classical strength theories. The ratio of predicted-to-
observed rupture time is plotted radially in logarithmic scale
with the plot axcs and anglc mapping the principal stress axes
in the tubular specimen wall. For each biaxial test, the tangent
of angle, 8, in the polar plot is equal 10 the biaxial stress ratio
in the specific test. For a perfect sirength theory the data
would fall on a circle of radius 10° (i.c., predicted life equals
observed life). A circle (labeled as SM-20), denoting a safety
margin of 20 on life (approximate safety margin in Appendix T
of ASME Code Case N-47 [3]), is placed on each plot for
reference. Similarly, a circle (labeled OCM-5) is shown on each
plot and denotes an arbitrarily sciected margin of 5 on life as a
reference for overly conservative design.

A comparison of the four polar plots shows that the new
theory (Fig. 5) did an cxcellent overail job of modeling stress-
state effects in Inconel 600 both in terms of a lack of excessive
conservatism and minimum erosion of a safety margin of 20 on
life (i.c., thc points all fall close to the 10° circle). In
comparison, both the Tresca and the von Mises theories (Figs.
6 and 7 respectively) gave highly conservative life predictions for
biaxial tension-compression (T-C) siress states (i.e., in second
quadrant) and were also slightly less accuraté than the new
theory for tension-tension (T-T) stress states (i.e., in first

0g = UNIAXIAL TENSILE VALUE

FIG. 4 THREE-DIMENSIONAL ISOCHRONOUS STRESS-
RUPTURE SURFACE FOR TYPE 304 STAINLESS STEEL

quadrant). The Rankine theory provided significant life
overpredictions under some T-C stress states while providing a
significant life under prediction for at least one T-C stress state.
The trends demonstrated in the first quadrant (for T-T stress
states) were somewhat similar for all the strength theories with
the new theory being slightly better at reducing the data scatter.
Overall, these general trends which were observed in Inconel
are very similar to the trends previously observed and reported
by the author for Type 304 and 316 stainless stecl.

Stress-Rupture Plots

Stress versus rupture time correlations for the new and the
three classical strength theories are given in Figs. 9-12. These
plots compare predicted specimen lives to observed lives for all
the biaxial data summarized in Table 1. Since these correlations
are based on individual test results rather than on the averaged
data set (Table 2), they encompass the total scatter due to
inaccuracy of the strength theory in precisely predicting stress-
state effects as well as the scatter introduced by material and
testing variability. ~ The baseline uniaxial stress-rupture
correlation (Eq. 8) is shown on each plot as a solid line and
represents the predicted life line. The individual data are
plotted in each figure. Each plot contains one dashed and two
dotted lines. The dashed line is a least-squares fit of the biaxial
data in Table 1, based on the specific strength theory noted in
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the plot, assuming the biavial line has the same slope Ajasthe
uniaxial (solid) bascline. The two dotted lines represent =2
statistical standard errors (denoted as =2 S) relative 1o the
dashed (biaxial) line. The dashed and dotted lines thus
represent, respectively, the observed mean biaxial behavior and
the scatter bounds within which about 95% of the biaxial data
should fall. The scatter bounds, although symmetric relative to
the biaxial (dashed) line are asymmetric relative to the predicted
(uniaxial, solid) line. Each of the scatter bounds can thus be
represented as a factor on life relative to the predicted life line
(i.e., a factor above or below the predicted life). Thesc factors
are noted on each plot 10 facilitate a comparison of the strength

25 T T =T T
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8TD ERROA = 0.2830 |

20 |— —

15 | 42 .

-,
ea
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FIG. 11 VON MISES EQUIVALENT STRESS VERSUS
BIAXIAL RUPTURE TIMES
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FIG. 12 MAXIMUM PRINCIPAL STRESS VERSUS BIAXIAL
RUPTURE TIMES

theories. The total "range of scatter" is obtained by dividing the
upper bound life by the lower bound life (i.e., by multiplying the
two factors on the dotted lines given in each plot).

For these analyses the S, for each strength theory was
computed using the standard statistical equation

S=‘M 9
y v
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where

SSQDC\H}”: (DCV),z (10)
i=1
D¢V,=[|08(',)~—‘08(f,).;.], an

and degrees of freedom, v, is given by

v=N-k (12)

N is the total number of data, and k is the number of material
parameters (constants) obtained from the least-squares fit.
Since the slope of the biaxial line is assumed to be the same as
the uniaxial line, only the biaxial line intercept constant was
fitted along with the constants in the strength theory. For the
classical theories no constants were fitted, thus only the biaxial
line intercept constant was fitted to the data, giving v = N-1.
For the new theory, if both parameters @ and b were fitted
along with the biaxial line intercept, then v = N-3, whereas if
parameter a was fixed as 1.0 and only b fitted, then v = N-2.

From the stress versus rupture time correlations given in Figs.
9-12, it is apparent that the new strength theory is more
accurate than the three classical theorics in predicting life and,
therefore, in reducing data scatter. The data scatter range for
the new theory is 6.26 as compared to ranges for the classical
theories of 14.85 (Tresca), 15.20 (von Mises), and 30.83
(Rankine). For these data, the new theory, thus, reduced the
scatter by a factor of about 2.4 on life relative to the von Mises
and Tresca theories, which are the two most widely used
strength theories used in high-temperature structural design
codes.

Partitioning of Emror

It is of interest to partition the total error between predicted
and observed life into two components, one due to error in the
strength theory and the second due to random scatter which is
attributed to material and testing variability. A statistical model
{linear in log (stress) vs log (rupture time) space] was used for
this purpose. The mode! will be briefly described after which
the resuits will be presented.

The total biaxial data set (Table 1) consisting of N data points
is partitioned into m subsets with the data in each subset having
the same stress state. Each subset, j , has n; data points. The
centroid (average log) of the n; data in subset j is denoted as
(X;,¥)). It is assumed that the biaxial data in each subset falls
along a unique stress-rupture line having the same slope, A,, as
the uniaxial data correlation, Eq. 8. Given these assumptions,
which can be shown to be valid for the present

x = LOG ( g,)

Vi = Ay + A x.,dy

Y+ a3,
y=LOG(t,)

FIG. 13 STATISTICAL MODEL PARAMETERS

data, the model can be expressed by the following equation and
is depicted graphically in Fig. 13:

YA Az a ve, (13)

The first two terms (4y+A4; x;) in Eq. 13 are the uniaxially
predicted part of y,. Parameter a; represents the error due to
inaccuracy of the strength theory for subset j. The last term
represents the random error which is ascribed to material and
testing variability. The standard error, S,, determined from the
random error values, ¢;, was calculated in the usual manner
according to the equation

(14)

where N-k denotes the number of degrees of freedom. To be
statisticalty correct, two or more data points are needed at each
stress siate in order to estimate the average behavior and
partition the total error into theory and random components.
There are only nine data subsets of this type in Table 1. These
nine subsets were used in calculating S,. This provided N=34
points. The value of k was determined by the total number of
constants fitted in Eq. 13. The centroid (X;,¥;) of each of the
nine data subsets was fitted. There were no fitted constants in
the classical strength theories, however, two constants (a and b)
were previously fitted for the new strength model. Since these
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TABLE 3  SUMMARY OF STATISTICAL RESULTS
PARTITIONING RUPTURE-TIME ERROR AT EACH STRESS
STATE INTO STRENGTH THEORY AND RANDOM SCATTER
(MATERIAL AND TESTING) ERROR COMPONENTS

STATISTICAL ANALYSIS RESULTS FOR

R= |BIAXIAL STRENGTH THEORY SHOWN *

% AN:LE NEW  |VONMISES | TRESCA | RANKINE

% 10716 "%} 16" 167 10" 18| 10" 167
000 | 00 [1.56 280 {158 280 [1.58 290 [1.56 280
047 | 97 [1.29 240 |1.11 207 [156 290 [1.48 278
025 | 140 (160 267 [130 241 [208 384 |181 356
050 | 266 [1.47 219 |086 045 157 28 (136 251
067 | 338 |108 3B 1.8 258 |20 428 |18 351
075 | 369 losa 0487081 0% |00 050 |074 040
1,00 | 450 |144 28 |00 053 |08 053 [0.73 0.3
120 | 502 115 214 1079 043 [107 18 |080 043
133 | 5341 079 042 (085 030 [084 045 [0.62 034
150 | 5683 |08 048 |061 033 [1.02 1.90 [0.78 041
160 | 580 |075 040 |053 029 083 050 |068 037
1| %7 |o7r 041 ose_oao 100 1,68 |075 040

186 | 616 [0 034 |0.48 086 046 (063 0.4

200 | €34 [o51 oaeonosa,oae

400 | 760 lo&2 033 083 0.29 |088 048 |066 035

= | 800 |oeo 02 |06s 035 |074 040 1055 030 |
025 | 1040 [095 051 |6.08 ;17.3370.05 1854 (3.46 845 {
1,00 1350 [1.04 194 319 5985 |58 1100 |0.30 [0.16 ]
200 | 1534 (0.8 045 {181 290 [263 489 |048 025

400 1660 |0.80 043 [1.18 218 |1.54 288 |05 0=

* Numbers > 1.0 indicats life underprediction (conservative)
<1.00 indicates ilfe overprediction (non-conservative)
Sy= statistical standard efror computed from the random errors, €,
for the total blaxial data set in Table 1

= 0.1349 (10 ®y =1.88)
average observed blaxial iife at the designated stress state

predicted (e based on the uniaxial correlaton, Eq. 8, and
equivalent atrees, g, , for the designated strength theory

‘oﬂ -

average observed blaxial life at the designated stress
state + 2 standasd errors
" [ predicted itfe based on the uniaxial correlation, Eq. 8, and
Lqulvnlcnt stress, 0,, for the designated strength theory

O4”y
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two constants are associated with stress state (i.e., with a;) and
not with material and testing variability (i.e. not with ¢;) they
were not included in Eq. 14. The value of k used was,
therefore, 9 for all the strength theories. For those stress states
in Table 1 ha\_r_ing_ only one data point, this point was taken as
the centroid (X;,Y)) for that s'ress state (i.e., stress stale effect).
No attempt was made to statistically quantify the uncertainty
associated with the a; values since these values do not satisfy
the conditions for a Gaussian distribution.

Results of the statistical analysis are summarized in Table 3.
Although the error components were determined in linear log

10

(stress) vs log (rupture time) space, the antilogs of the resulting
a; and S, values are summarized in Table 3 and represent
factors on life. Analysis results indicate that the random error
(ie, £25, which was attributed to material and testing
variablilty) introduced a factor of ~1.86 (as a multiplier or as
a divider) on life. Factors on life due to strength-theory error
(antilog of a)) are stress-state dependent as was obvious from
Figs. 58. The further the factors summarized in Tabie 3
deviate from 1.0, the greater the strength-theory error. For
stress states in the tension-compression quadrant these factors
were significantly greater than the factors associated with
material and testing variability. Considering the results in Table
3 as a whole (i.e., divide the most conservative factor by the
most nonconservative {actor for each theory), then the new
strength theory provided the least range of error (13.1) followed
by the Rankine (40.3), Tresca (44.3), and von Mises (53.9)
theories in that order.

CONCLUSIONS

The new multiaxial stress-rupture strength theory resulted in
significantly improved life predictions for specimens of annealed
Incone!l 600 tested at 816°C in argon under different biaxial
stress states. The improvement for Inconel was not as great
and as dramatic as reported earlier for Types 304 and 316
stainless steel, however the improvement was still “uite
significant. The scatter in stress vs rupture time data was
reduced by a factor of about 2.4 (on life) relative to scatter for
the theories of Mises and Tresca and by a factor of about §
relative to the Rankine theory. As was found in the earlier
papers on 304 and 316 stainless steel, theory errors, a;, for the
new theory tended to be about the same magnitude for the
various biaxial stress states evaluated whereas errors for the
classical theories tended to be significantly larger in the T-C
quadrant of stress space than in the T-T quadrant.
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DISCLAIMER

-

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.
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