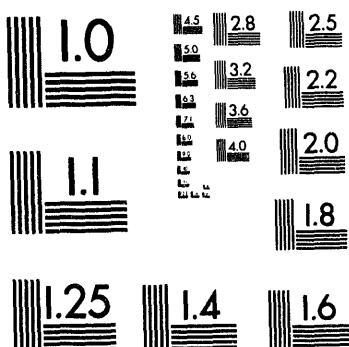
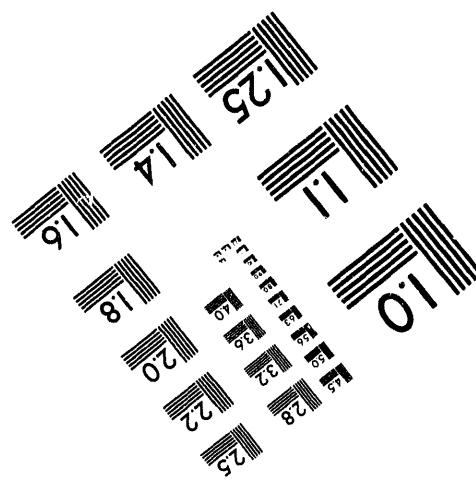
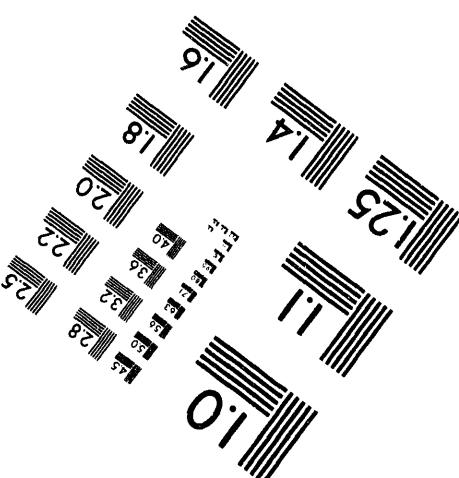

AIIM

Association for Information and Image Management


1100 Wayne Avenue, Suite 1100
Silver Spring, Maryland 20910
301/587-8202



Centimeter

Inches

MANUFACTURED TO AIIM STANDARDS
BY APPLIED IMAGE, INC.

1 of 1

Solar Electric Generating System II Finite Element Analysis

Jeffrey L. Dohner and John R. Anderson
Sandia National Laboratories
Albuquerque, NM 87185

ABSTRACT

On June 2 1992, Landers' earthquake struck the Solar Electric Generating System II, located in Daggett, California. The 30 megawatt power station, operated by the Daggett Leasing Corporation (DLC), suffered substantial damage due to structural failures in the solar farm. These failures consisted of the separation of sliding joints supporting a distribution of parabolic glass mirrors. At separation, the mirrors fell to the ground and broke. It was the desire of the DLC and the Solar Thermal Design Assistance Center (STDAC) of Sandia National Laboratories (SNL) to redesign these joints so that, in the event of future quakes, costly breakage will be avoided.

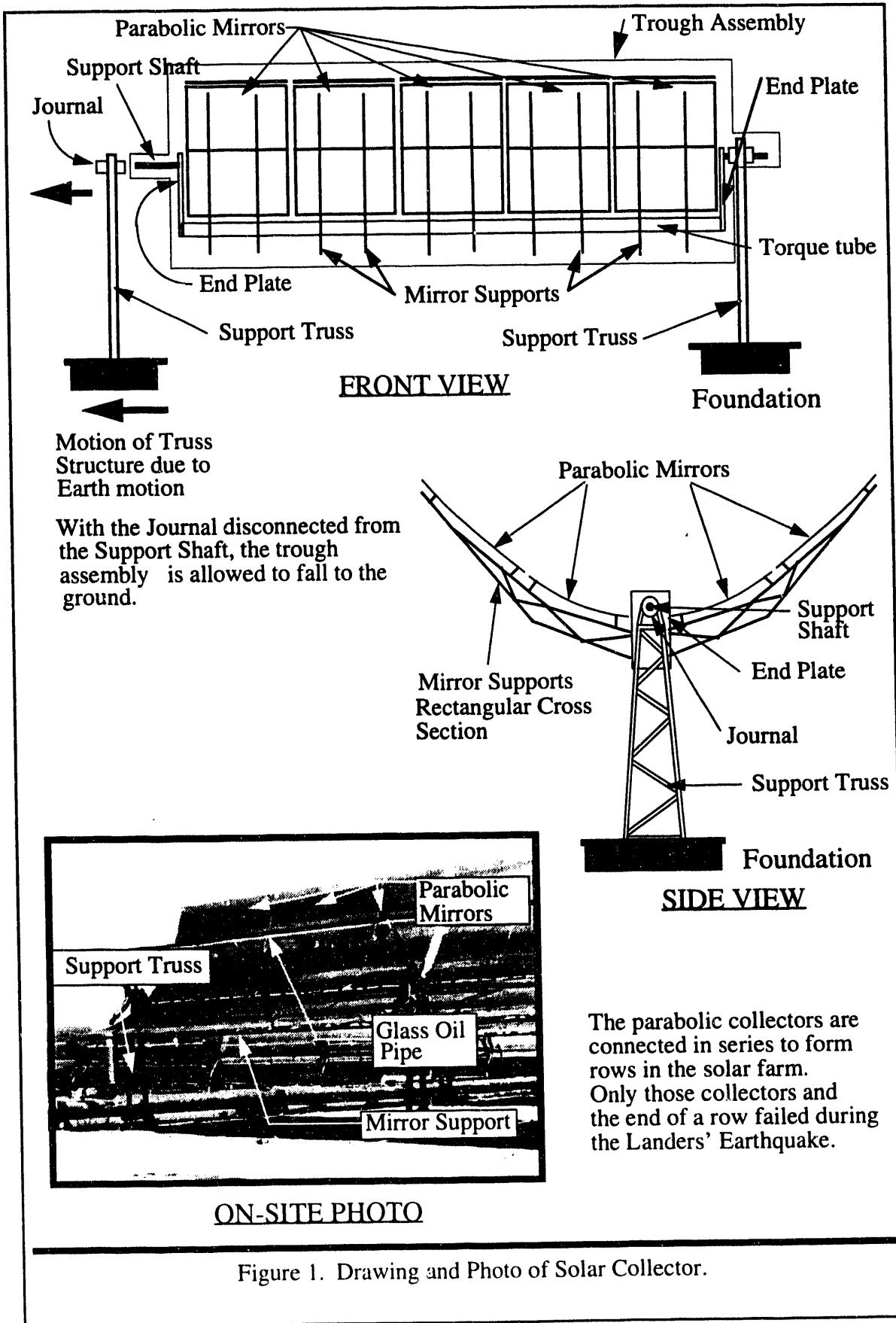
To accomplish this task, drawings of collector components were developed by the STDAC, from which a detailed finite element computer model of a solar collector was produced. This nonlinear dynamic model, which consisted of over 8560 degrees of freedom, underwent model reduction to form a low order nonlinear dynamic model containing only 40 degrees of freedom. This model was then used as a design tool to estimate joint dynamics. Using this design tool, joint configurations were modified, and an acceptable joint redesign determined.

The results of this analysis showed that the implementation of metal stops welded to support shafts for the purpose of preventing joint separation is a suitable joint redesign. Moreover, it was found that, for quakes of Landers' magnitude, mirror breakage due to enhanced vibration in the trough assembly is unlikely.

MASTER

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

1. BACKGROUND


This section describes the Solar Electric Generating System II (SEGS II) facility, the Landers' Earthquake, and the technical problem at hand.

1.1 The SEGS II Facility

The SEGS II facility consists of a farm of glass mirrored, single axis, parabolic trough solar collectors (see Figure 1). These collectors use solar energy to heat oil; which is used to produce steam; which, in turn, drives a turbine-generator to produce electricity.

A collector, shown in Figure 1, consists of a flexible truss structure supporting a distribution of mirrors. This flexible truss structure can be defined in terms of a number of substructures. *In this report*, the following terminology will be used to define these substructures. The tubular substructure which runs the length of the collector will be called the *torque tube*. The truss substructures between the mirrors and the torque tube will be called *mirror supports*. The flat plates attached at each end of the torque tube will be called *end plates*, and the tubular shafts projecting from these end plates will be called *support shafts*. The support shafts fit into journals which are attached to another set of substructures which will be called the *support trusses*. The support trusses transfer the weight of the entire collector to a concrete foundation. Vibration at this foundation can be transmitted through the support trusses, the journals, the support shafts, the end plates, the torque tube, and mirror supports to produce vibration in the mirrors. The end plates, torque tube, mirror supports, and mirrors will collectively comprise another substructure called the *trough assembly*.

In SEGS II, collectors are attached end to end to form rows which rotate about a north-south axis. The assembly of all collectors in all rows is referred to as the *solar farm*.

1.2 The Landers' Earthquake

On June 2 of 1992, the Landers' earthquake struck the SEGS II facility in Daggett, California. The displacement of the quake was large enough such that some troughs separated from their support trusses allowing one end of the trough assembly to fall to the ground and shattered several mirrors of each fallen collector.

As shown in Figure 2,¹ the epicenter of this quake was located near Landers, California - a small town approximated 50 miles south east of SEGS II. The magnitude of the quake was M7.5 (on the Richter scale). Thus, making it the largest quake to strike southern California in the last 40 years.² Approximately three and one half hours later, a second quake of magnitude M6.5 also struck SEGS II. Although its epicenter was closer, the

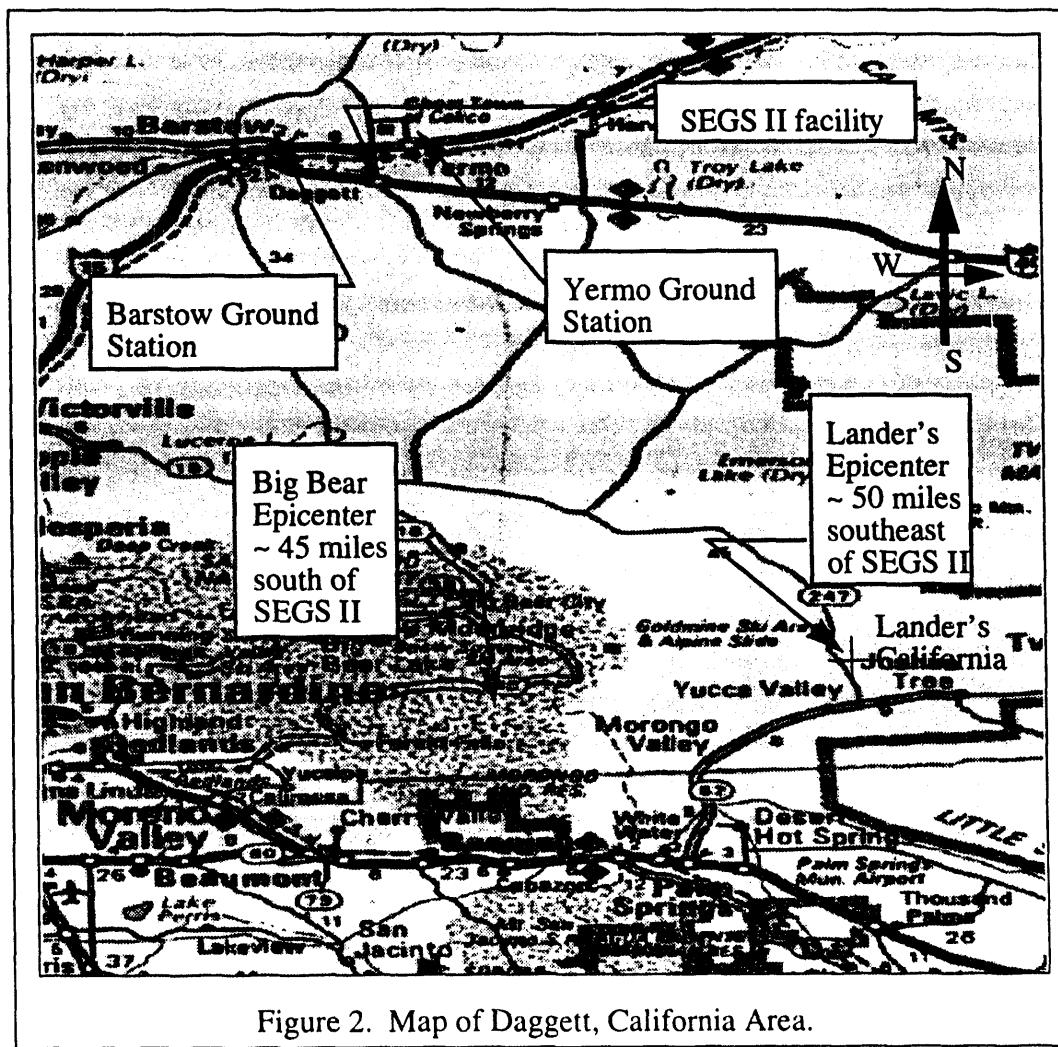


Figure 2. Map of Daggett, California Area.

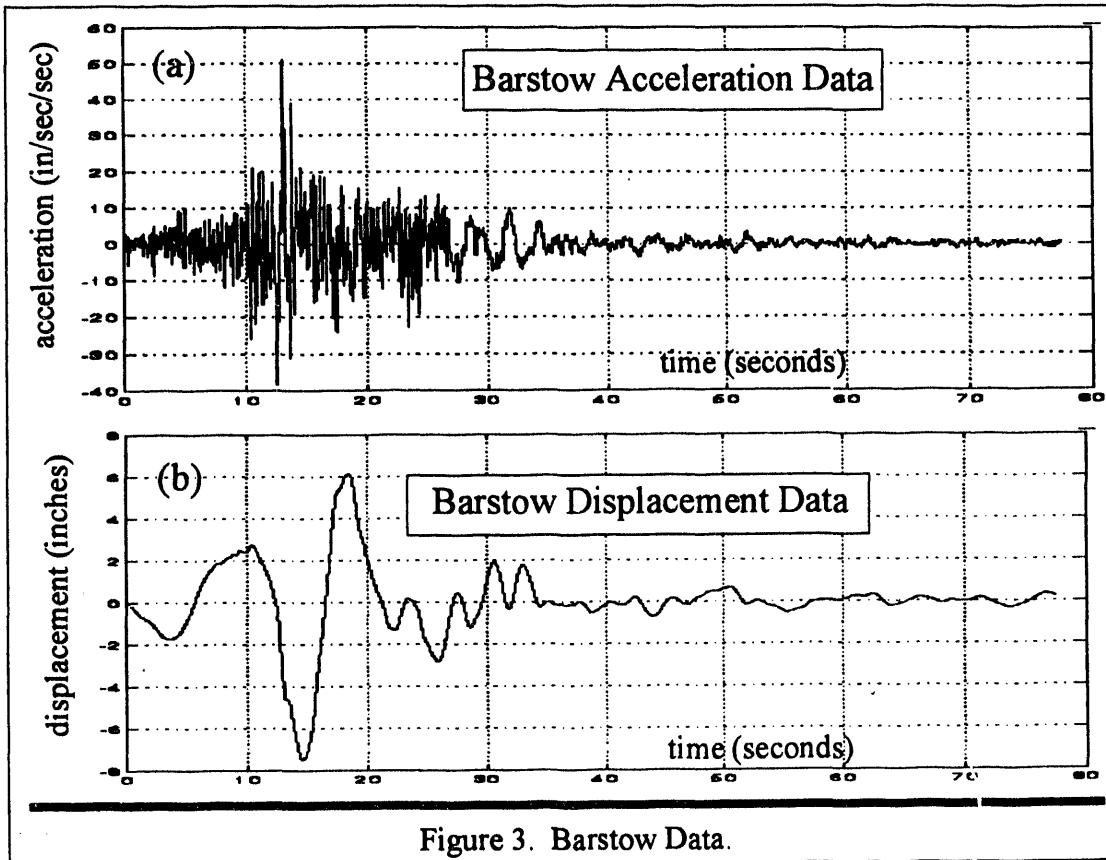
1. Rand McNally Road Atlas, 65th Edition, 1989

2. Ad Hoc Working Group, Future Seismic Hazards in Southern California, Phase I: Implications of the 1992 Landers' Earthquake Sequence, report by the California Division of Mines and Geology, P.O. Box 2980, Sacramento, CA 95812-2980

effects of this quake were minimal compared to the effects of the Landers' quake. The epicenter of this quake was near the small town of Big Bear Lake City - only 45 miles south of Daggett.

There are two ground-response stations³ within 10 miles of Daggett. The first station, at Barstow, is located approximately eight miles to the west, and the second station, at Yermo, is located approximately four miles miles to the east. Due to their close proximity, it was assumed that earth motion at Dagget and Yermo was similar to earth motion at Barstow. Therefore, recorded Barstow data could be used as input to numerical simulations.

The Barstow data was limited in both frequency and direction. This data was band passed filtered to frequencies below 23Hz and above 0.07Hz. Three channels recorded acceleration in two perpendicular directions parallel to ground and in one direction perpendicular to ground. Rotations in these three directions where not measured, and therefore, without alternative, were assumed zero. From the acceleration data, displacement data was deduced. Figures 3a and 3b show recorded Barstow acceleration and deduced displacement for one channel.


As is shown in this data, the frequency response of acceleration is very high; however, the frequency response of displacement is low. Since both acceleration and displacement are excitations to the numerical problem (discussed below), and since the problem contained non-linear components (also discussed below), the frequency response in the mirrors could not be bounded without the use of a simulation. High frequencies creeping into mirror dynamics could break the mirrors.

1.3 Objective

After the Landers' earthquake, the Dagget Leasing Corporations (DLC), which operates SEGS II, contacted the Solar Thermal Design Assistance Center (STDAC) of Sandia National Laboratories (SNL) for assistance in determining a low cost solution to the journal separation problem. Personnel of DLC suggested welding stops at the end of each journal to prohibit the journals from separating from the support structure. STDAC engineers concurred that the stops would indeed prohibit separation but cautioned that the solution should be analyzed to ensure that this remedy would not cause subsequent failures. STDAC then contacted SNL's structural dynamics department and asked for their assistance in performing a Finite Element Analysis to determine the acceptability of the proposed solution.

3. A ground-response station is a location where seismic activity is recorded.

The following section describes the Finite Element (FE) model used in assessing acceptability.

2. FINITE ELEMENT (FE) MODEL DEVELOPMENT

There is a 60% probability that within the next thirty years an earthquake as large as or larger than the Landers' earthquake will strike southern California.⁴ Therefore, the solar collectors, which failed in the Landers' earthquake, must be redesigned to survive this imminent geological threat.

The redesign process can be experimental, analytical or both. The disadvantage of using an experimental process is that experiments are relatively costly, whereas the advantage of an analytical process is that redesign costs are lower and design flexibility higher. Nevertheless, the disadvantage of using an analytical process is that when dynamics are complex, the accuracy of results unsupported by experiment is questionable. Therefore,

4. see Ref. 2 on page 5.

a process which uses both experiment and analysis is preferred. In this report, only an analytical approach is discussed.

The following section describes the Finite Element (FE) model used in assessing acceptability.

The redesign process consist of constructing a model of collector dynamics, simulating that model with recorded input data (the Barstow data), and varying modeled joint parameters to determine a set of viable joint configurations. The complexity and detail of the model is dependent on the characteristics of the excitation, and the capacity of the computational implementation relative to the complexity of dynamics.

In this redesign process, a FE model of a single solar collector was produced. This model was nonlinear and of high order. The difficulty with assimilating a high order nonlinear model into the joint redesign process is that such models require excessive central processing unit run times. Nevertheless, for redesign, the model must run quickly. This high order, nonlinear model was massaged into workable form via substructure modeling, model reduction, and substructure assembly. This resulted in a low order nonlinear model sufficient as a design tool.

2.1 Substructure Modeling

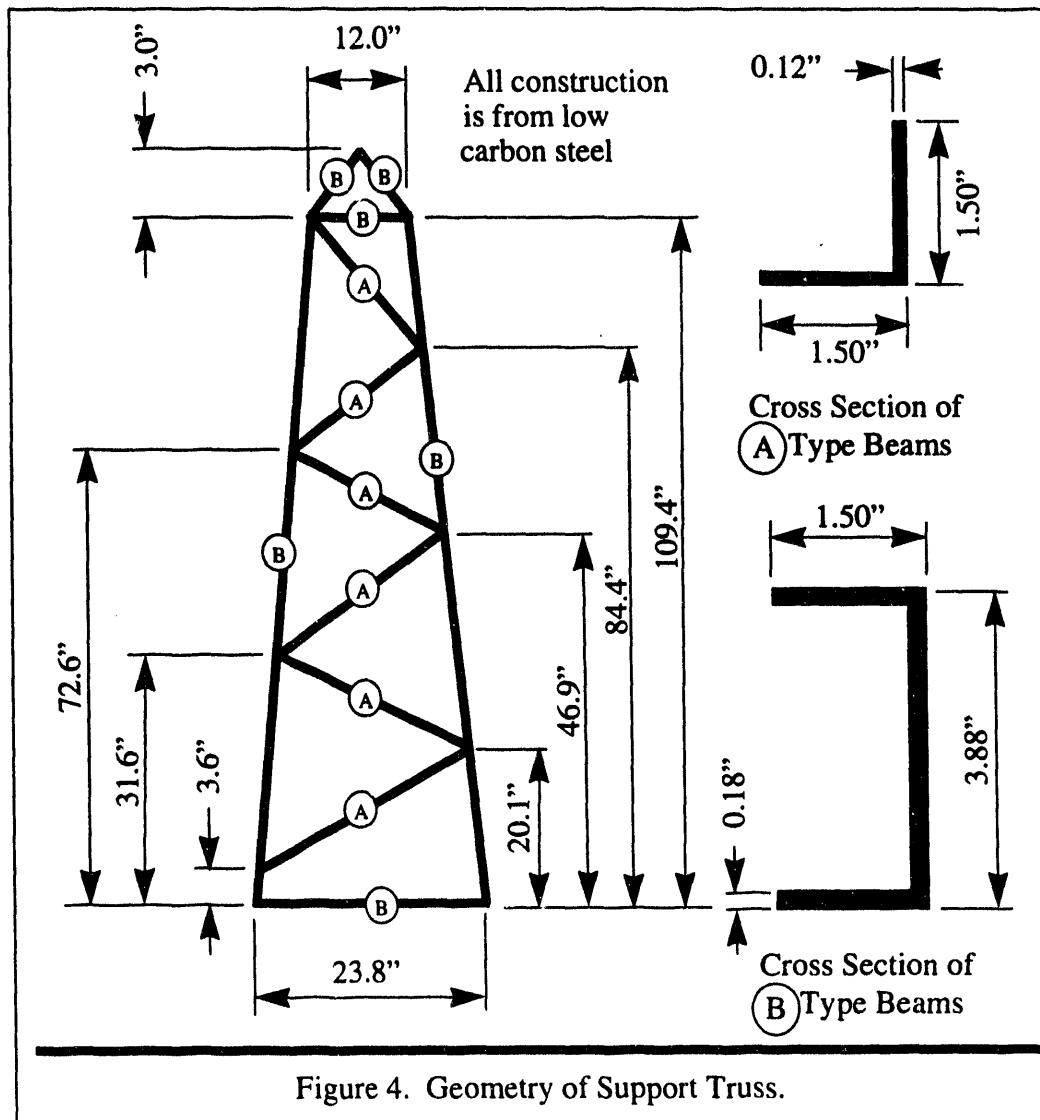
Substructure modeling is the dynamic modeling of an individual or a group of substructures. If a substructure model is linear, model reduction can be performed, and the reduced order substructure model can be combined with other substructure models to form a reduced order model of the total system. The process of recombining all substructure models will be called substructure assembly.

Collector dynamics were modeled using five separate substructure models. These models were:

Left Support Truss Model - a linear FE model representing left support truss dynamics,

Left Joint Model - a constraint model representing the dynamics of the joint between the left support truss and the trough assembly,

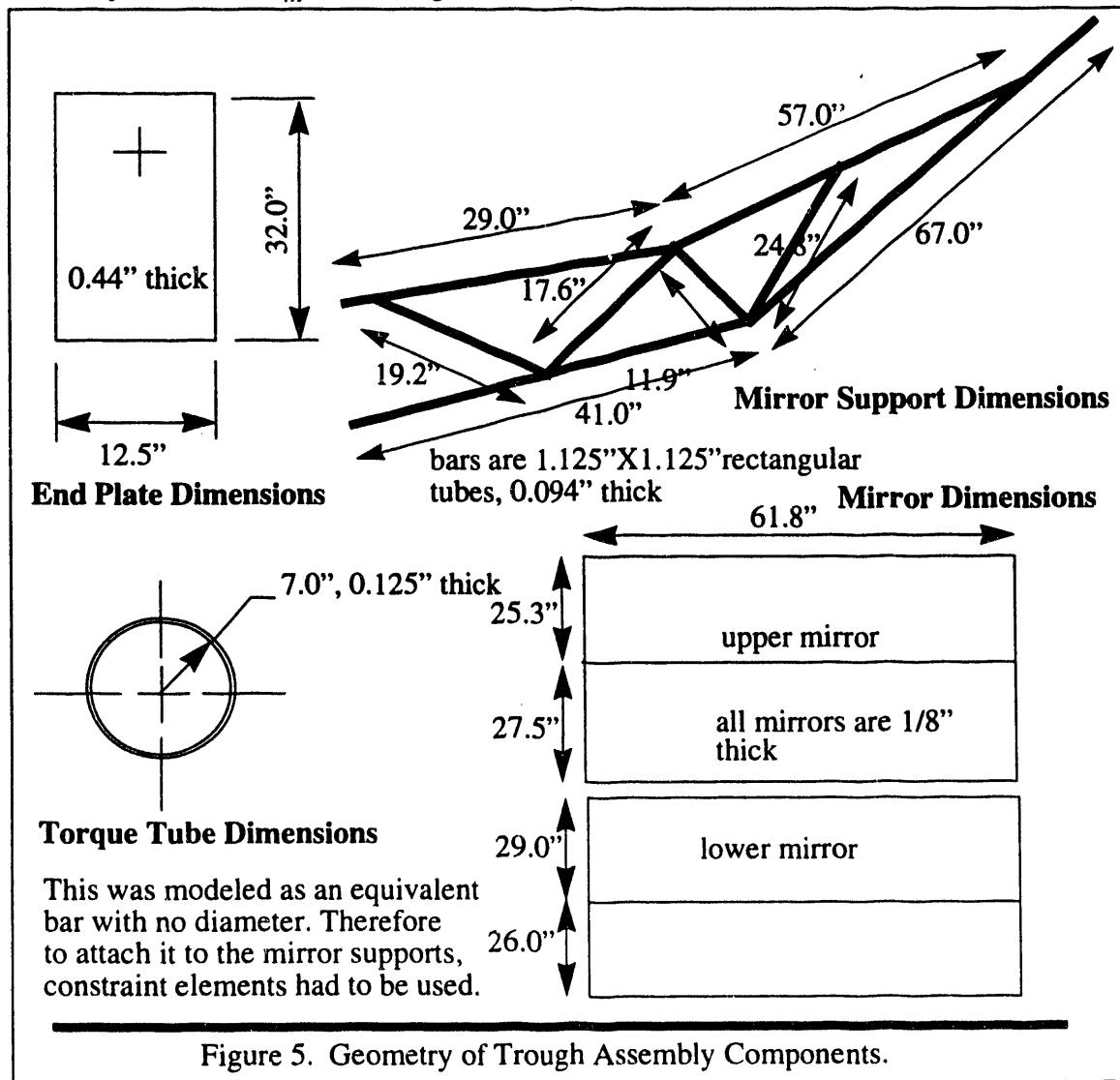
Trough Assembly Model - a linear FE model representing trough assembly dynamics,


Right Joint Model - a constraint model representing the dynamics of the joint between the right support truss and the trough assembly, and

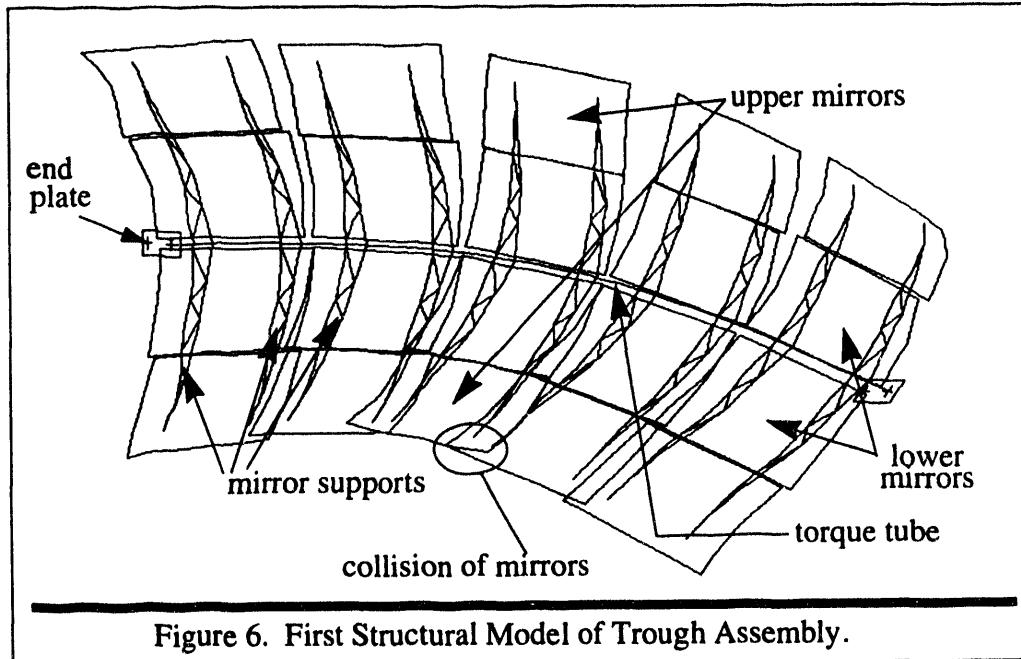
Right Support Truss Model - a linear FE model representing right support truss dynamics.

A concise discussion of the production of each of these models is given below.

2.1.1 Left and Right Support Truss Models


Support trusses, composed of a distribution of welded angle iron, were modeled in PATRAN 3 as a collection of beams. Figure 4 shows a drawing of a support truss. Notice that this model does not include a journal. This is because journal dynamics are included into the left and right joint models. The left and right support trusses where identical in geometry and construction and therefore did not have to be modeled separately. Each support truss weighs about 200 lb_m , and each support truss model contained 378 Degrees of Freedom (DOF).

2.1.2 Trough Assembly Model


The trough assembly contains the end plates, the torque tube, the mirror supports, and the mirrors. This assembly was also modeled in PATRAN 3. The end plates and mirrors were modeled using thin shell elements, and the torque tube and mirror supports were modeled using beam elements. Two problems evolved from this modeling. First, since thin shell elements carry no normal angular rotation, it was not possible to model the transmission of normal torsional loads into the end plates via shell elements alone. Therefore, a collection of rigid bar constraints were attached to the plate elements to allow for torsional loading. Second, since the finite diameter torque tube was represented by a bar element of equivalent stiffness and mass but of infinitesimal diameter, massless rigid bar constraints had to be applied to couple torque tube dynamics to support truss dynamics.

Trough component dimensions are shown in Figure 5. The total mass of the trough assembly was 2160 lb_m . The trough assembly model consisted of 7812 DOF.

A NASTRAN modal analysis of the trough assembly model produced six rigid body modes and a closely spaced distribution of structural modes. The natural frequencies of the first seven structural modes were 9.94, 11.53, 12.01, 16.39, 16.41, 16.53, and 16.81Hz. Due to high modal density, the accuracy of the model above 16Hz was questionable. This is because model accuracy is inversely related to modal density. As modal density increases, the ability for a deterministic FE model to represent reality accurately is questionable. Nevertheless, since the lower order modes were well spaced, and since these are the modes which were significant in determining joint dynamics, the model was deemed sufficient as a design tool.

Figure 6 shows the mode shape of the first structural mode at 9.94Hz. For sufficiently large amplitude excitations, this mode produces mirror collisions. If the mirrors collide, they will break. This mode represents a dominate mechanism of mirror collision.

2.1.3 Left and Right Joint Models

Joints were modeled as mathematical constraints. Figure 7 shows the DOF and loads needed to define these constraints. The journal, modeled as a single point at the apex of the support truss, can rotate and displace in all directions. The DOF and the loads at the journal can be related to the DOF and the loads at the end plate attachment point. The attachment point is the location where the support shaft is connected to the end plate. The mathematical constraints between DOF and loads at the journal, and DOF and loads at the attachment point, comprise the joint model.

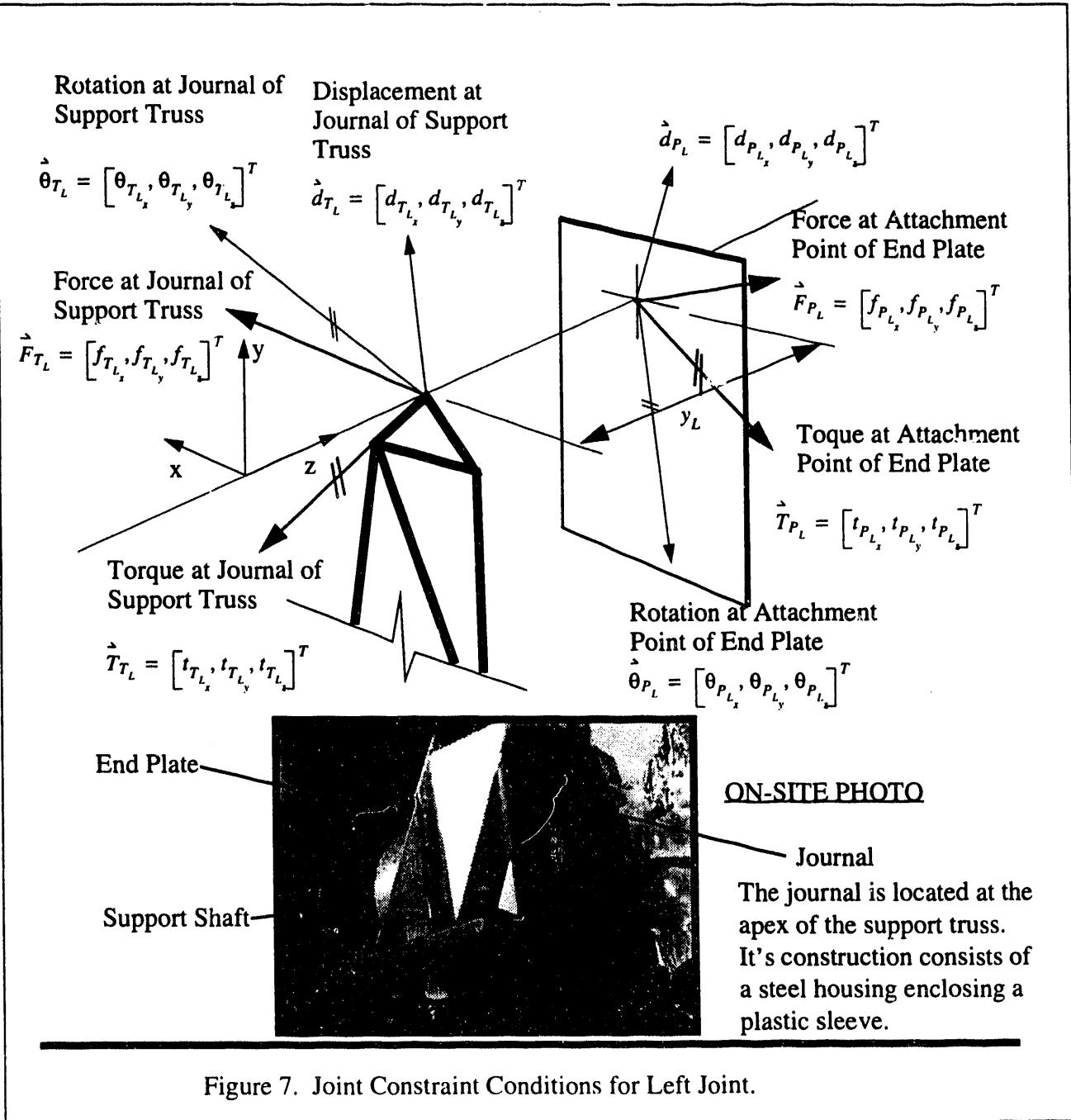


Figure 7. Joint Constraint Conditions for Left Joint.

Since rotations in the x and y directions are not significantly large, it was assumed that support shafts were always parallel to the z axis. Therefore, a joint can be modeled by equating displacements and rotations in the x and y directions, allowing rotations in z direction to be free, and relating displacements in the z direction via a nonlinear constraint equation representing journal/stop interactions. If the rotation, displacement, force, and torque at and on the journal of the left support truss is given by $\dot{\theta}_{T_L} = [\theta_{T_{L_x}}, \theta_{T_{L_y}}, \theta_{T_{L_z}}]^T$,

$\dot{d}_{T_L} = [d_{T_{L_x}}, d_{T_{L_y}}, d_{T_{L_z}}]^T$, $\dot{F}_{T_L} = [f_{T_{L_x}}, f_{T_{L_y}}, f_{T_{L_z}}]^T$, and $\dot{T}_{T_L} = [t_{T_{L_x}}, t_{T_{L_y}}, t_{T_{L_z}}]^T$ respectively, and if the rotation, displacement, force, and torque at and on the attachment point of the left end plate is given by $\dot{\theta}_{P_L} = [\theta_{P_{L_x}}, \theta_{P_{L_y}}, \theta_{P_{L_z}}]^T$, $\dot{d}_{P_L} = [d_{P_{L_x}}, d_{P_{L_y}}, d_{P_{L_z}}]^T$

$\dot{F}_{P_L} = [f_{P_{L_x}}, f_{P_{L_y}}, f_{P_{L_z}}]^T$, and $\dot{T}_{P_L} = [t_{P_{L_x}}, t_{P_{L_y}}, t_{P_{L_z}}]^T$, and if the variable y_L is the z-displacement between the journal of the support truss and its attachment point, then the mathematical constraints describing the left joint are given by

$$\dot{X}_{T_{L_2}} = \dot{X}_{m_1}, \quad \dot{F}_{T_{L_2}} = -\dot{F}_{m_1}, \quad (\text{Eq. 1})$$

where

$$\begin{aligned} \dot{X}_{T_{L_2}} &= [\theta_{T_{L_x}}, \theta_{T_{L_y}}, d_{T_{L_x}}, d_{T_{L_y}}]^T, \\ \dot{X}_{m_1} &= [\theta_{P_{L_x}}, \theta_{P_{L_y}}, d_{P_{L_x}}, d_{P_{L_y}}]^T, \\ \dot{F}_{T_{L_2}} &= [t_{T_{L_x}}, t_{T_{L_y}}, f_{T_{L_x}}, f_{T_{L_y}}]^T, \\ \dot{F}_{m_1} &= [t_{P_{L_x}}, t_{P_{L_y}}, f_{P_{L_x}}, f_{P_{L_y}}]^T, \\ \dot{F}_{T_{L_3}} &= [f_{T_{L_z}}] = -[f_{P_{L_z}}] = -\dot{F}_{m_3} = \sigma_L(y_L) + \delta_L(\dot{y}_L, y_L). \quad (\text{Eq. 2}) \end{aligned}$$

The nonlinear functions $\sigma_L(y_L)$ and $\delta_L(y_L, \dot{y}_L)$ are force/displacement relationships which will be discussed below. The variables \dot{F}_{m_1} , \dot{F}_{m_3} , $\dot{F}_{T_{L_2}}$, $\dot{F}_{T_{L_3}}$, $\dot{X}_{T_{L_2}}$ and \dot{X}_{m_1} are also defined above for later use. Again, since the left and right joints are dynamically identical, the constraint equations for the right joint are the same as those for the left joint except that the subscript L is replaced by the subscript R .

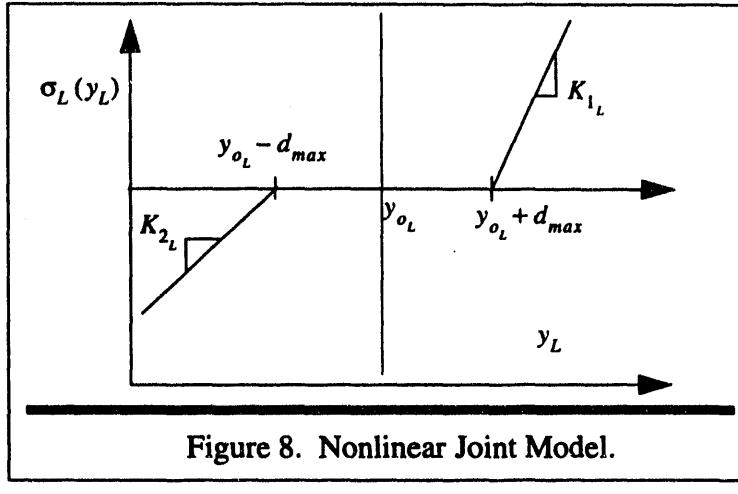


Figure 8. Nonlinear Joint Model.

The function $\sigma_L(y_L)$ is the force/displacement relationship for a journal sliding on a frictionless shaft whose motion is limited by stops at $y_{o_L} - d_{max}$ and $y_{o_L} + d_{max}$ where y_{o_L} is the mean distance between stops. When the journal is not in contact with a stop, no force is produced. When the journal is in contact with a stop, the support shaft elongates by δl . The force produced by this elongation is $K_{1_L} \delta l$ or $K_{2_L} \delta l$ where K_{1_L} is the contact stiffness for the stop at $y_{o_L} + d_{max}$ and K_{2_L} is the contact stiffness for the stop at $y_{o_L} - d_{max}$. These two stiffness are given by IE/A where l is the length of the support shaft in stress, E is Young's Modulus, and A is the cross sectional area of the support shaft. Strictly speaking, two stiffnesses are required since different lengths of the support shaft are stressed relative to which stop is in contact with the journal. Nevertheless, since these stiffnesses were similar, their values were assumed equal. A graphical representation of this force/displacement relationship is shown in Figure 8.

The function $\delta_L(y_L, y_L)$ is the force/displacement relationship for stick/slip friction between the journal and the support shaft. This friction is not only dependent upon joint location, but also upon relative joint velocity.

When the relative velocity between the joint and shaft is zero, friction is equal to that required to resist slip. Numerically this can be approximated via a very stiff spring (in the infinite limit the approximation is exact). When friction exceeds the coefficient of static friction, μ_s , times supported weight, w , its value is reduced to the coefficient of kinetic friction, μ_k , times supported weight. Therefore, its magnitude is always bounded. A block diagram representation of these dynamics is shown in Figure 9.

Friction in the left and right joints is different considering that the weight that each support truss carries is different. If the modeled solar collector is attached at the end of a row of collectors, the weight that the left support truss carries will be half the weight of the modeled trough assemble, whereas the weight which the right support truss carries will be half the weight of the modeled trough assemble plus half the weight of the trough assemble of the next collector in the row.

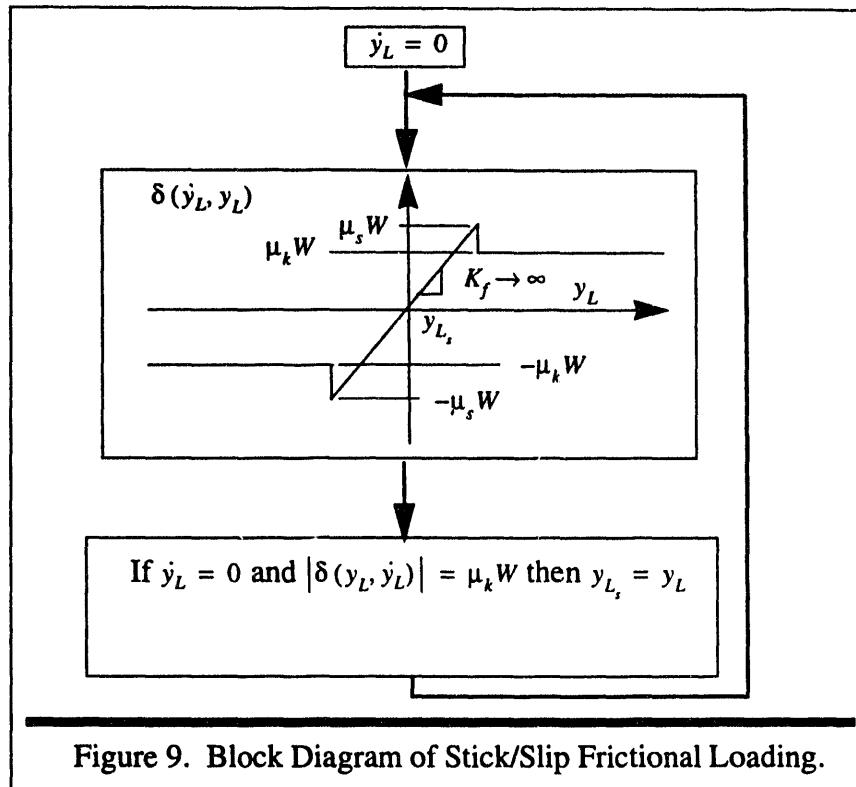


Figure 9. Block Diagram of Stick/Slip Frictional Loading.

The coefficients of static and kinetic friction at the time of the Landers' quake are unknown. Therefore, μ_s and μ_k can only be approximated. The coefficient of static friction was determined from the coefficient of kinetic friction via the assumed relationship, $\mu_s = 1.5\mu_k$. This relationship was made for lack of a better alternative. The coefficient of kinetic friction was determined via numerical iteration. If μ_k is large, there will be no relative motion between the journal and the support shaft. As μ_k is decreased, more motion will occur. At the time of the Landers' quake, the relative motion between the journal and support shaft had to be at least 4" for the joint to fail. Therefore, μ_k was decreased until 4" of relative motion occurred. This represented the maximum possible amount of joint friction under assumed conditions.

2.2 FE Model Reduction

Without model reduction, the number of DOF in the unified model would be excessive. A non-reduced assembled model would contain over 8560 DOF. A model of this order, using direct simulation,⁵ will require excessive cpu time. Thus, to reduce cpu run

5. Direct simulation means that all DOF are calculated during numerical integration.

time, model reduction was performed. The preferred method of model reduction is Craig-Bampton.⁷ A brief overview of this method is found in Appendix A.

Numerically, this reduction was performed in NASTRAN via D-mapping and the results transferred into MATLAB via the NASMAT translator. Numerical simulations were performed in MATLAB.

2.3 Substructure Assembly

Three FE substructure models underwent model reduction. These models were the left support truss model, the right support truss model, and the trough assembly model.

The reduced second order matrix equation for the dynamics of the left support truss is given by

$$\begin{bmatrix} m_{T_{11}} & m_{T_{12}} & m_{T_{13}} & m_{T_{14}} \\ m_{T_{21}} & m_{T_{22}} & m_{T_{23}} & m_{T_{24}} \\ m_{T_{31}} & m_{T_{32}} & m_{T_{33}} & m_{T_{34}} \\ m_{T_{41}} & m_{T_{42}} & m_{T_{43}} & m_{T_{44}} \end{bmatrix} \begin{bmatrix} \dot{\vec{X}}_{T_{1L}} \\ \dot{\vec{X}}_{T_{2L}} \\ \dot{\vec{X}}_{T_{3L}} \\ \dot{\vec{X}}_{T_{4L}} \end{bmatrix} + \begin{bmatrix} k_{T_{11}} & k_{T_{12}} & k_{T_{13}} & k_{T_{14}} \\ k_{T_{21}} & k_{T_{22}} & k_{T_{23}} & k_{T_{24}} \\ k_{T_{31}} & k_{T_{32}} & k_{T_{33}} & k_{T_{34}} \\ k_{T_{41}} & k_{T_{42}} & k_{T_{43}} & k_{T_{44}} \end{bmatrix} \begin{bmatrix} \vec{X}_{T_{1L}} \\ \vec{X}_{T_{2L}} \\ \vec{X}_{T_{3L}} \\ \vec{X}_{T_{4L}} \end{bmatrix} = \begin{bmatrix} \dot{\vec{F}}_{T_{1L}} \\ \dot{\vec{F}}_{T_{2L}} \\ \dot{\vec{F}}_{T_{3L}} \\ 0 \end{bmatrix}$$

where

$\dot{\vec{X}}_{T_{1L}}$ - are DOF in the left support truss model representing displacements and accelerations at the concrete foundation,

$\dot{\vec{X}}_{T_{2L}}$ - are DOF in the left support truss model to be equated to DOF in the trough assembly model (Equation 1),

$\dot{\vec{X}}_{T_{3L}}$ - are DOF in the left support truss model to be coupled to DOF in the trough assembly model via the nonlinear functional relationships $\sigma_L(y_L)$ and $\sigma_L(y_L, y_L)$ (Equation 2),

$\dot{\vec{X}}_{T_{4L}}$ - are generalized DOF in the left support truss model which can be used for model reduction.

The subscript L represents the left truss. If the subscript L is replaced by the subscript R the equations for the dynamics of the right truss result.

7. R.R. Craig, Jr, Structural Dynamics, *An Introduction to Computer Methods*, John Wiley & Sons, New York, NY, 1981, pp. 475-478.

Since $\vec{X}_{T_{1L}}$ and $\vec{X}_{T_{1L}}$ are known inputs (the Barstow measurements), the above equation can be written as

$$\begin{bmatrix} m_{T_{22}} & m_{T_{23}} & m_{T_{24}} \\ m_{T_{32}} & m_{T_{33}} & m_{T_{34}} \\ m_{T_{42}} & m_{T_{43}} & m_{T_{44}} \end{bmatrix} \begin{bmatrix} \vec{X}_{T_{2L}} \\ \vec{X}_{T_{3L}} \\ \vec{X}_{T_{4L}} \end{bmatrix} + \begin{bmatrix} k_{T_{22}} & k_{T_{23}} & k_{T_{24}} \\ k_{T_{32}} & k_{T_{33}} & k_{T_{34}} \\ k_{T_{42}} & k_{T_{43}} & k_{T_{44}} \end{bmatrix} \begin{bmatrix} \vec{X}_{T_{2L}} \\ \vec{X}_{T_{3L}} \\ \vec{X}_{T_{4L}} \end{bmatrix} = \begin{bmatrix} \vec{F}_{T_{2L}} \\ \vec{F}_{T_{3L}} \\ 0 \end{bmatrix} - \begin{bmatrix} m_{T_{21}} & k_{T_{21}} \\ m_{T_{31}} & k_{T_{31}} \\ m_{T_{41}} & k_{T_{41}} \end{bmatrix} \begin{bmatrix} \vec{X}_{T_{1L}} \\ \vec{X}_{T_{1L}} \end{bmatrix} \quad (\text{Eq. 3})$$

where all forcing functions are now on the right hand side.

The reduced second order matrix equation for the dynamics of the trough assemble is given by

$$\begin{bmatrix} m_{m_{11}} & m_{m_{12}} & m_{m_{13}} & m_{m_{14}} & m_{m_{15}} \\ m_{m_{21}} & m_{m_{22}} & m_{m_{23}} & m_{m_{24}} & m_{m_{25}} \\ m_{m_{31}} & m_{m_{32}} & m_{m_{33}} & m_{m_{34}} & m_{m_{35}} \\ m_{m_{41}} & m_{m_{42}} & m_{m_{43}} & m_{m_{44}} & m_{m_{45}} \\ m_{m_{51}} & m_{m_{52}} & m_{m_{53}} & m_{m_{54}} & m_{m_{55}} \end{bmatrix} \begin{bmatrix} \vec{X}_{m_1} \\ \vec{X}_{m_2} \\ \vec{X}_{m_3} \\ \vec{X}_{m_4} \\ \vec{X}_{m_5} \end{bmatrix} + \begin{bmatrix} k_{m_{11}} & k_{m_{12}} & k_{m_{13}} & k_{m_{14}} & k_{m_{15}} \\ k_{m_{21}} & k_{m_{22}} & k_{m_{23}} & k_{m_{24}} & k_{m_{25}} \\ k_{m_{31}} & k_{m_{32}} & k_{m_{33}} & k_{m_{34}} & k_{m_{35}} \\ k_{m_{41}} & k_{m_{42}} & k_{m_{43}} & k_{m_{44}} & k_{m_{45}} \\ k_{m_{51}} & k_{m_{52}} & k_{m_{53}} & k_{m_{54}} & k_{m_{55}} \end{bmatrix} \begin{bmatrix} \vec{X}_{m_1} \\ \vec{X}_{m_2} \\ \vec{X}_{m_3} \\ \vec{X}_{m_4} \\ \vec{X}_{m_5} \end{bmatrix} = \begin{bmatrix} \vec{F}_{m_1} \\ \vec{F}_{m_2} \\ \vec{F}_{m_3} \\ \vec{F}_{m_4} \\ 0 \end{bmatrix} \quad (\text{Eq. 4})$$

where

\vec{X}_{m_1} - are DOF in the trough assembly model to be equated to DOF in the left support truss model,

\vec{X}_{m_2} - are DOF in the trough assembly model to be equated to DOF in the right support truss model,

\vec{X}_{m_3} - are DOF in the trough assembly model to be coupled to DOF in the left support model by the nonlinear functions $\sigma_L(y_L)$ and $\sigma_L(y_L, y_L)$,

\vec{X}_{m_4} - are DOF in the trough assembly model to be coupled to DOF in the right support model by the nonlinear function $\sigma_R(y_R)$ and $\sigma_R(y_R, y_R)$,

\vec{X}_{m_5} - are generalized DOF.

To couple equation (3) to equation (4), equations (1, 2, 3) are used. This results in a combined relation as follows.

$$\begin{bmatrix}
m_{m_{11}} + m_{T_{22}} & m_{m_{12}} & m_{m_{13}} & m_{m_{14}} & m_{m_{15}} & m_{T_{23}} & m_{T_{24}} & 0 & 0 \\
m_{m_{21}} & m_{m_{22}} + m_{T_{22}} & m_{m_{23}} & m_{m_{24}} & m_{m_{25}} & 0 & 0 & m_{T_{23}} & m_{T_{24}} \\
m_{m_{31}} & m_{m_{32}} & m_{m_{33}} & m_{m_{34}} & m_{m_{35}} & 0 & 0 & 0 & 0 \\
m_{m_{41}} & m_{m_{42}} & m_{m_{43}} & m_{m_{44}} & m_{m_{45}} & 0 & 0 & 0 & 0 \\
m_{m_{51}} & m_{m_{52}} & m_{m_{53}} & m_{m_{54}} & m_{m_{55}} & 0 & 0 & 0 & 0 \\
m_{T_{32}} & 0 & 0 & 0 & 0 & m_{T_{33}} & m_{T_{34}} & 0 & 0 \\
m_{T_{42}} & 0 & 0 & 0 & 0 & m_{T_{43}} & m_{T_{44}} & 0 & 0 \\
0 & m_{T_{32}} & 0 & 0 & 0 & 0 & 0 & m_{T_{33}} & m_{T_{34}} \\
0 & m_{T_{42}} & 0 & 0 & 0 & 0 & 0 & m_{T_{43}} & m_{T_{44}}
\end{bmatrix}
\begin{bmatrix}
\dot{\tilde{X}}_{m_1} \\
\dot{\tilde{X}}_{m_2} \\
\dot{\tilde{X}}_{m_3} \\
\dot{\tilde{X}}_{m_4} \\
\dot{\tilde{X}}_{m_5} \\
\dot{\tilde{X}}_{T_{3_L}} \\
\dot{\tilde{X}}_{T_{4_L}} \\
\dot{\tilde{X}}_{T_{3_R}} \\
\dot{\tilde{X}}_{T_{4_R}}
\end{bmatrix}$$

$$+ \begin{bmatrix}
k_{m_{11}} + k_{T_{22}} & k_{m_{12}} & k_{m_{13}} & k_{m_{14}} & k_{m_{15}} & k_{T_{23}} & k_{T_{24}} & 0 & 0 \\
k_{m_{21}} & k_{m_{22}} + k_{T_{22}} & k_{m_{23}} & k_{m_{24}} & k_{m_{25}} & 0 & 0 & k_{T_{23}} & k_{T_{24}} \\
k_{m_{31}} & k_{m_{32}} & k_{m_{33}} & k_{m_{34}} & k_{m_{35}} & 0 & 0 & 0 & 0 \\
k_{m_{41}} & k_{m_{42}} & k_{m_{43}} & k_{m_{44}} & k_{m_{45}} & 0 & 0 & 0 & 0 \\
k_{m_{51}} & k_{m_{52}} & k_{m_{53}} & k_{m_{54}} & k_{m_{55}} & 0 & 0 & 0 & 0 \\
k_{T_{32}} & 0 & 0 & 0 & 0 & k_{T_{33}} & k_{T_{34}} & 0 & 0 \\
k_{T_{42}} & 0 & 0 & 0 & 0 & k_{T_{43}} & k_{T_{44}} & 0 & 0 \\
0 & k_{T_{32}} & 0 & 0 & 0 & 0 & 0 & k_{T_{33}} & k_{T_{34}} \\
0 & k_{T_{42}} & 0 & 0 & 0 & 0 & 0 & k_{T_{43}} & k_{T_{44}}
\end{bmatrix}
\begin{bmatrix}
\dot{\tilde{X}}_{m_1} \\
\dot{\tilde{X}}_{m_2} \\
\dot{\tilde{X}}_{m_3} \\
\dot{\tilde{X}}_{m_4} \\
\dot{\tilde{X}}_{m_5} \\
\dot{\tilde{X}}_{T_{3_L}} \\
\dot{\tilde{X}}_{T_{4_L}} \\
\dot{\tilde{X}}_{T_{3_R}} \\
\dot{\tilde{X}}_{T_{4_R}}
\end{bmatrix} =$$

$$\begin{bmatrix}
-m_{T_{21}} & -k_{T_{21}} & 0 & 0 \\
0 & 0 & -m_{T_{21}} & -k_{T_{21}} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
-m_{T_{31}} & -k_{T_{31}} & 0 & 0 \\
-m_{T_{41}} & -k_{T_{41}} & 0 & 0 \\
0 & 0 & -m_{T_{31}} & -k_{T_{31}} \\
0 & 0 & -m_{T_{41}} & -k_{T_{41}}
\end{bmatrix}
\begin{bmatrix}
\dot{\tilde{X}}_{T_{1_L}} \\
\dot{\tilde{X}}_{T_{1_R}} \\
\dot{\tilde{X}}_{T_{1_R}} \\
\dot{\tilde{X}}_{T_{1_R}} \\
\dot{\tilde{X}}_{T_{1_R}} \\
\dot{\tilde{X}}_{T_{1_R}} \\
\dot{\tilde{X}}_{T_{1_R}} \\
\dot{\tilde{X}}_{T_{1_R}}
\end{bmatrix}
+
\begin{bmatrix}
0 & 0 \\
0 & 0 \\
-I & 0 \\
0 & -I \\
0 & 0 \\
I & 0 \\
0 & I \\
0 & 0
\end{bmatrix}
\begin{bmatrix}
\dot{\tilde{F}}_{T_{3_L}} \\
\dot{\tilde{F}}_{T_{3_R}}
\end{bmatrix}, \quad (\text{Eq. 5})$$

$$y = \begin{bmatrix} y_L \\ y_R \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & -I & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & -I & 0 \end{bmatrix} \vec{X} = Q \vec{X} \quad , \quad (\text{Eq. 6})$$

$$\vec{X} = \begin{bmatrix} \vec{x}_T \\ \vec{X}_{m_1} & \vec{x}_T \\ \vec{X}_{m_2} & \vec{x}_T \\ \vec{X}_{m_3} & \vec{x}_T \\ \vec{X}_{m_4} & \vec{x}_T \\ \vec{X}_{m_5} & \vec{x}_T \\ \vec{X}_{T_{1_L}} & \vec{x}_T \\ \vec{X}_{T_{1_R}} & \vec{x}_T \\ \vec{X}_{T_{3_L}} & \vec{x}_T \\ \vec{X}_{T_{3_R}} & \vec{x}_T \\ \vec{X}_{T_{4_L}} & \vec{x}_T \\ \vec{X}_{T_{4_R}} & \vec{x}_T \end{bmatrix}^T$$

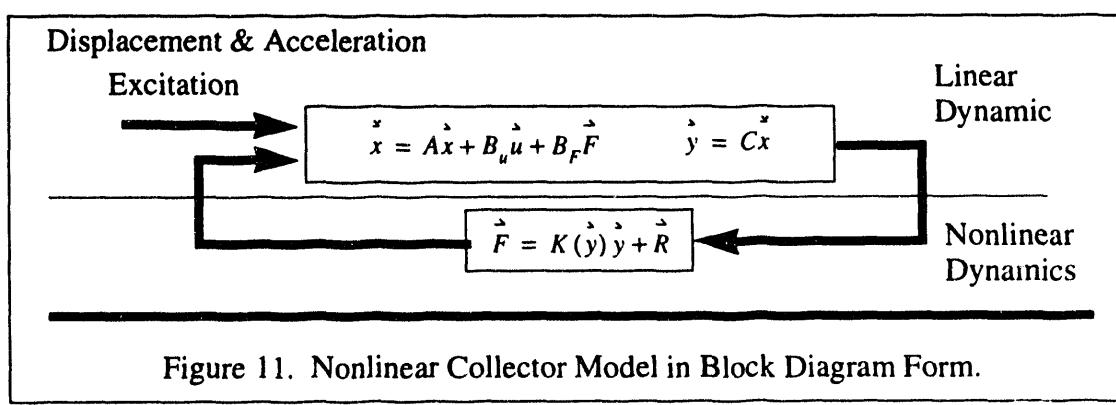
where for this problem, $\vec{x}_T, \vec{X}_{m_i}, \vec{X}_{T_{1_L}}, \vec{X}_{T_{1_R}}, \vec{F}_{T_{1_L}}, \vec{F}_{T_{1_R}}, i \in R^{1 \times 1}$ and the 0s take appropriate dimensions.

Written in condensed notation, equations (5) and (6) become $M\vec{x} + K\vec{x} = R\vec{u} + D\vec{F}$

and $y = Q\vec{X}$ where $\vec{u} = \begin{bmatrix} \vec{x}_T \\ \vec{X}_{T_{1_L}} & \vec{x}_T \\ \vec{X}_{T_{1_R}} & \vec{x}_T \\ \vec{X}_{T_{3_L}} & \vec{x}_T \\ \vec{X}_{T_{3_R}} & \vec{x}_T \end{bmatrix}^T$ and $\vec{F} = \begin{bmatrix} \vec{F}_{T_{1_L}} & \vec{F}_{T_{1_R}} \end{bmatrix}^T = \begin{bmatrix} f_{T_{1_L}} & f_{T_{1_R}} \end{bmatrix}^T$. This can be

collapsed into state space form as $\dot{\vec{x}} = A\vec{x} + B_u\vec{u} + B_F\vec{F}$, $y = C\vec{x}$, and $\dot{y} = C_v\vec{x}$ where

$$\dot{\vec{x}} = \begin{bmatrix} \dot{\vec{x}} \\ \dot{\vec{X}} \end{bmatrix}, A = \begin{bmatrix} 0 & I \\ -M^{-1}K & 0 \end{bmatrix}, B_u = \begin{bmatrix} 0 \\ M^{-1}R \end{bmatrix}, B_F = \begin{bmatrix} 0 \\ M^{-1}D \end{bmatrix}, C = [Q \ 0], C_v = [0 \ Q] \text{ and again the 0s take appropriate dimensions.}$$


This state space relationship includes all the dynamics of the linear portion of the system.

Nonlinear joint dynamics,

$$\vec{F} = \begin{bmatrix} f_{T_{2_L}} \\ f_{T_{2_R}} \end{bmatrix} = \begin{bmatrix} \sigma_L(y_L) \\ \sigma_R(y_R) \end{bmatrix} + \begin{bmatrix} \delta_L(y_L, y_R) \\ \delta_R(y_R, y_L) \end{bmatrix} = K(\vec{y})\vec{y} + \vec{R}$$

can be implemented using joint constraint conditions given in Figures 9 and 10.

The assembled collector model can be drawn in block diagram form as shown in Figure 11.

As shown in this diagram, nonlinear dynamics and linear dynamics can be separated into feedback and feedforward blocks. As discussed above, model reduction was used to reduce the order of all linear dynamics. Nonlinear dynamics were already of low order. Thus, the assembled model was of low order. The assembled model is given by

$$\ddot{x} = (A + B_F K(y) (C)) \dot{x} + B_u \dot{u} + B_F \dot{R}. \quad (\text{Eq. 7})$$

During simulations, equation (7) was updated every time step.

Also during simulations, variable time steps were used. Variability in time step was required since journal/stop impacts produced high frequency dynamics which could throw the numerical simulation into instability. When the journals and stops were far from contact, long time steps were used, and when the journal and stops were in or near contact, short time steps were used. Stability was also constrained by the stiffnesses used to impose stop conditions. The proper selection of these stiffnesses could only be determined by iteration.

3. RESULTS

The section below presents results on model reduction errors and collector dynamics.

3.1 Model Reduction Error

The assembled model was only 40th order. The natural frequencies of each reduced order models are given in Table 1.

Mode	Support Truss Model			Trough Assembly Model		
	Full order	Reduced Order	% Error	Full Order	Reduced Order	% Error
1	11.01 Hz	11.01 Hz	0.08%	9.94 Hz	10.17 Hz	2.32%
2	28.44 Hz	29.46 Hz	3.61%	11.53 Hz	11.55 Hz	0.12%
3	60.67 Hz	63.77 Hz	5.11%	12.01 Hz	12.38 Hz	3.10%
4	70.80 Hz	71.12 Hz	0.46%	16.39 Hz	15.88 Hz	3.16%
5	111.12 Hz	444.66 Hz	300.16%	16.41 Hz	16.31 Hz	0.61%
6	127.62 Hz	659.66 Hz	416.89%	16.53 Hz	16.39 Hz	0.85%

Table 1. Model Error.

As shown in Table 1, Craig-Bampton matches lower order modes to within 4%, whereas higher order modes were in substantial error. Since excitation frequencies were low (most of the structural energy was below 1Hz), accuracy was needed only at these lower order modes.

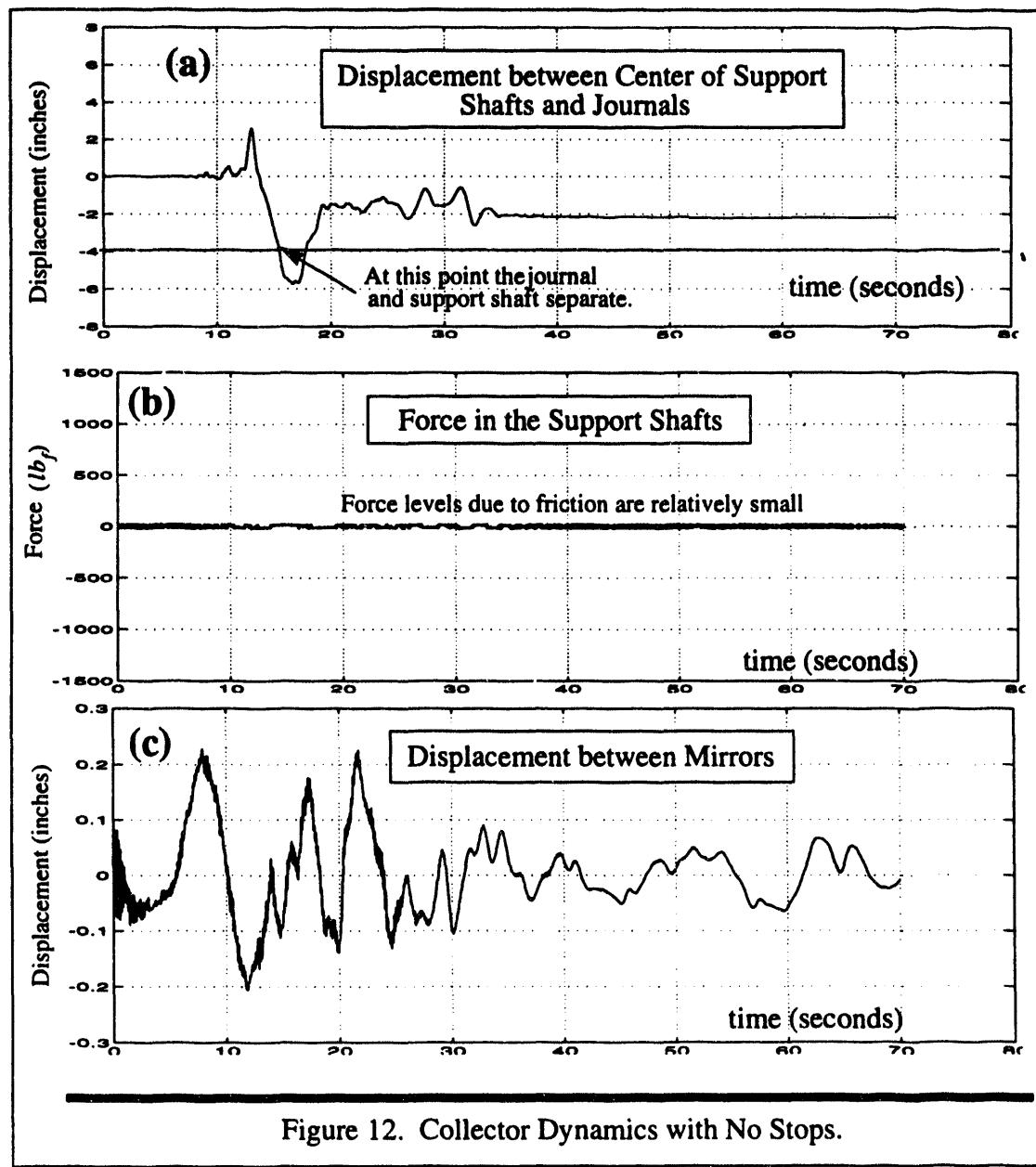
3.2 Collector Dynamics

Two joint configurations were studied. The first configuration lets d_{max} go to infinity (see Figure 9). This represents a Support Shaft with No Stops. This was the joint configuration during the Lander's quake. The second configuration assumes that $d_{max} = 1"$. This represents a Support Shaft with Stops at 1". This is the remedy proposed and implemented by the DLC. It was found that this was a sufficient remedy to the joint separation problem.

3.2.1 Support Shaft with No Stops

The first configuration lets d_{max} go to infinity. This is a model of the joint as it existed during the Lander's quake. Figures 12 (a), (b), and (c) show collector response versus time for this joint configuration. Input excitation came from measured Barstow data.

In Figure 12(a), the distance between the center of the support shaft and the journal is shown. If the distance between the inner end of the journal and the outer end of the support shaft is less than 4", the journal and support shaft will separate. In this configuration, friction was not great enough to stop joint failure. Figure 12(c) shows relative displacement between mirror corners. This relative displacement was measured at the location of the largest relative displacement in the Figure 7 mode shape. To assure no mirror breakage, this displacement should be less than one inch. As shown in this plot, mirror breakage due to collision of mirrors will not occur.


3.2.2 Support Shaft with Stops at 1"

This joint configuration consists of a stop welded to the end of the support shaft which limits its travel to a maximum of one inch. Figures 13(a), (b), and (c) show responses for this configuration.

As shown in Figure 13(a), the 1" maximum displacement limit results in impulse loads occurring in the support shaft. These loadings represent the forces required to set the 1 ton trough assembly into motion. A stop placed 1" from the journal should have the ability to survive these high impact loads. As shown in Figure 13(b), the stop must be able to

withstand at least a 1000 lb_f load. This is a very approximate answer considering that numerically it is difficult to produce an impulse function. Therefore, an adequate safety factor should be applied (~2-4).

As shown in Figure 13(c), even with impact loading, the mirrors will not break.

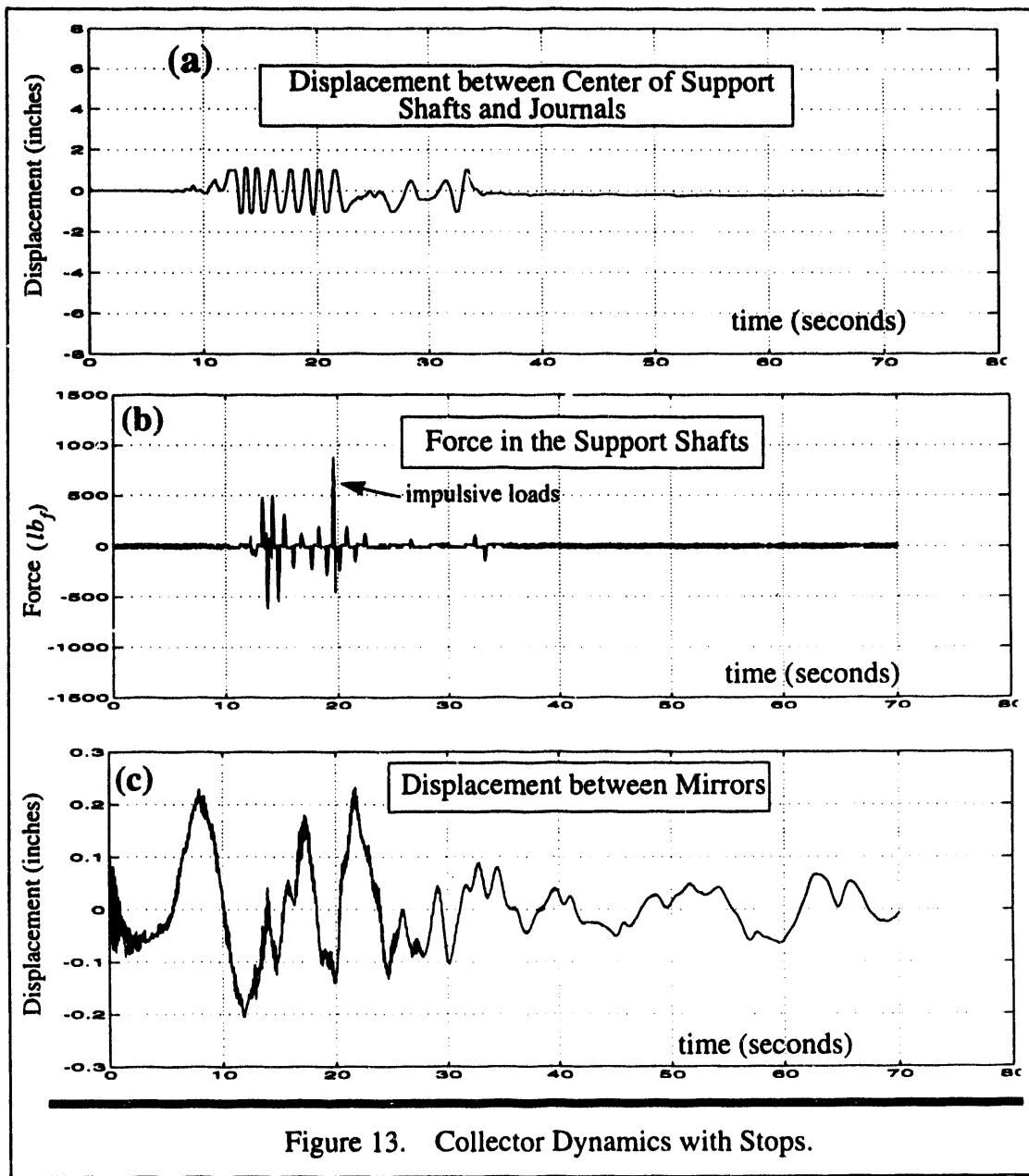


Figure 13. Collector Dynamics with Stops.

4. CONCLUSIONS

The purpose of this project was to redesign collector joints so that joint separation and costly breakage would not occur. Since a remedy to the joint separation problem had already been implemented, it was necessary to determine the sufficiency of this remedy before further redesign. For structural integrity purposes, this remedy is sufficient.

Assuming the validity of assumptions made within this report, the implementation of metal stops welded to the support shaft is a suitable solution to the joint separation problem when the stops are 1" from the journal. Stops must withstand loads of over 1000lb.

Another concern in this analysis was the breakage of the mirrors due to enhanced vibration in the trough assembly. It was found that the addition of stops produced little change in mirror dynamics. Mirror breakage is unlikely.

APPENDIX A - Model Reduction using Craig-Bampton

When performing model reduction, some DOF are eliminated from the FE model, while others are preserved. If $\dot{\bar{u}}_p \in R^{N_p \times 1}$ contains all DOF to be preserved while $\dot{\bar{u}}_{\bar{p}} \in R^{N_p \times 1}$ contains all other DOF, then the DOF of the FE model are given by $\begin{bmatrix} \dot{\bar{u}}_p^T & \dot{\bar{u}}_{\bar{p}}^T \end{bmatrix}^T$. In Craig-Bampton, a transformation matrix, T , is produced such that

$$\begin{bmatrix} \dot{\bar{u}}_p \\ \dot{\bar{u}}_{\bar{p}} \end{bmatrix} = T \begin{bmatrix} \dot{\bar{u}}_g \\ \dot{\bar{u}}_{\bar{g}} \end{bmatrix}$$

where $\dot{\bar{u}}_g$ are a set of ordered generalized coordinates whose truncation will reduce model order.

The generalized coordinates, $\dot{\bar{u}}_g$, are determined by constraining $\dot{\bar{u}}_p = 0$ and transforming resulting system dynamics into modal coordinates. That is, if the FE model is given by

$$\begin{bmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{bmatrix} \begin{bmatrix} \dot{\bar{u}}_p \\ \dot{\bar{u}}_{\bar{p}} \end{bmatrix} + \begin{bmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{bmatrix} \begin{bmatrix} \dot{\bar{u}}_p \\ \dot{\bar{u}}_{\bar{p}} \end{bmatrix} = \begin{bmatrix} \dot{\bar{F}}_p \\ 0 \end{bmatrix}$$

then, $\dot{\bar{u}}_g = \phi^T \dot{\bar{u}}_{\bar{p}}$ where $\{K_{22} - \omega_n^2 M_{22}\} \dot{\bar{u}}_g = 0$, and $\phi = [\dot{\bar{\phi}}_1, \dot{\bar{\phi}}_2, \dot{\bar{\phi}}_3, \dots, \dot{\bar{\phi}}_{N_p}] \in R^{N_p \times N_p}$ for $\omega_1 \leq \omega_2 \leq \omega_3 \dots \leq \omega_{N_p}$. The vectors $\dot{\bar{\phi}}_1$ to $\dot{\bar{\phi}}_{N_p}$ are called the component modes.

These modes along with constraint modes, Ψ_n , will form a complete collection of basis functions for the FE model.⁸ Constraint modes are determined by solving the n static problems given by the solution to the following problem statement

IF $u_p(n)$ is the n^{th} element of $\dot{\bar{u}}_p$ then for $u_p(n) = 1, u_p(m \neq n) = 0$,

FIND $\dot{\bar{u}}_{\bar{p}} = \Psi_n$ for $n, m = 1, 2, 3, \dots, N_p$ in the static case.

These N_p solutions are given by $\Psi = -K_{11}^{-1} K_{12}$ where $\Psi = [\Psi_1, \Psi_2, \dots, \Psi_{N_p}]$.

Therefore the transformation matrix, T , is given by

$$T = \begin{bmatrix} I & 0 \\ \Psi & \phi \end{bmatrix}$$

where $0 \in R^{N_p \times N_p}$ is a zero matrix, and $I \in R^{N_p \times N_p}$ is an identity matrix. Since $\dot{\bar{u}}_g$ is in modal coordinates, model reduction may be performed by simply eliminating the highest modes

8. This means that any response can be represented by the time weighted sum of the basis functions.

of \bar{u}_s . Therefore, for the truncated matrix $\bar{u}_s \in R^{N_s \times 1}$, and $T \in R^{(N_p + N_r) \times (N_s + N_p)}$ where $N_s < N_p$, the reduced order model is given by

$$m_r \begin{bmatrix} u_p \\ u_s \end{bmatrix} + k_r \begin{bmatrix} u_p \\ u_s \end{bmatrix} = \begin{bmatrix} \bar{F}_p \\ 0 \end{bmatrix}$$

where $m_r = T^T \begin{bmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{bmatrix} T$, $k_r = T^T \begin{bmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{bmatrix} T$, $m_r, k_r \in R^{(N_s + N_p) \times (N_s + N_p)}$.

Distribution STDAC

AAI Corporation
York Rd. & Industry Lane
Cockeysville MD 21030-0126

Academy Research
Mc Herzog, Director
PO Box 4996
Scottsdale AZ 85261

Acurex Aerotherm
H. Morse
555 Clyde Avenue
Mountain View CA 94039

Gary Adams Production Inc.
Hilary Lipman
1820 NW 26th
Portland OR 97210

Adirondack Community College
Prof. Sayeed Hasan
Bay Road
Queensberry NY 12804

Advanced Thermal Systems
Dave Gorman
7600 East Arapahoe Rd. Suite 215
Englewood CO 80112

Advantage Hytek
Orlo Hudson
Betty Jo Hudson
8705 E. 63rd Traffic Way
Kansas City MO 64133-4703

Alabama Power Co.
J G. Boyles
PO Box 2641
Birmingham AL 35291

Alabama Solar Energy Center
Leonard Adcock
University of Alabama in Huntsville
Huntsville AL 35899

Alliance for Transportation Research
Larry S. Blair
Executive Vice President
1001 University Blvd. SE, Suite 103
Albuquerque, NM 87106-4342

Alliance for Transportation Research
Michael W. Moulton
Vice President - Engineering Research
1001 University Blvd. SE, Suite 103
Albuquerque, NM 87106-4342

American Energy Technologies, Inc.
Steven K. Gorman
3530 Enterprise Way
Green Cove Springs FL 32043-1865

AMTECH
Jeffrey Keating
7441 NW 8th St. Bay M
Miami FL 33126

Michelle Appenzeller
5218 C. R. 218
Middleburg FL 32068

Applied Concepts
S. Pond
2501 S. Larimer County Rd. 21
Berthoud CO 80513

Applied Research Associates, Inc.
4300 San Mateo NE, Suite A-220
Albuquerque NM 87110

Aqua Vit Foundation
Rob Sangster
324 Wilkinson
Memphis TN 38111

Argonne National Laboratory
Materials and Components Technology Div.
Robert E. Holtz
9700 South Cass Avenue
Argonne IL 60439

Arizona Department of Commerce
Arizona Energy Office
Frank P. Mancini, Ph.D.
3800 N. Central, Suite 1200
Phoenix AZ 85012

Arizona Department of Commerce
Arizona Energy Office
Jack Haenichen
3800 N. Central, Suite 1200
Phoenix AZ 85012

Arizona Public Service Co.
Thomas C. Lepley
J. McGuirk
PO Box 53999
Phoenix AZ 85072-3999

Arizona Public Service Company
Peter E. Eckert
1500 E. University
Tempe AZ 85281

Arizona State University
Paul Russell
College of Engineering
Tempe AZ 85287

Charles E. Baus
Energy Policy Directorate
Pentagon Room 1D760
Washington DC 20301-8000

Arizona State University
College of Engineering and Applied Sciences
Byard D. Wood, Ph.D., P.E.
Director and Professor
Tempe, AZ 87287-5806

Bechtel Group, Inc.
P. DeLaquil
W. Stolte
PO Box 3965
50 Beale Street
San Francisco CA 94119

The Arnorial Bearings of Tuthill
Education/Development
Jerry Tuttle, Ph.D.
12305 Eastridge Dr. NE
Albuquerque NM 87112

Beckwith Electric Company
R. W. Beckwith
PO Box 2999
Largo FL 34649-2999

Ascension Technology
Ed Kern
Box 314
Lincoln Center MA 01773

Black & Veatch
Sheldon Levy
PO Box 8405
Kansas City MO 64114

Augustyn & Company
Jim Augustyn
1029 Solano Ave., Suite C
Albany CA 94706

Boeing Engineering & Construction
R. Gillette
PO Box 3999
Seattle WA 98124

Mr. Gene E. Austin
8015 Steven Franklin
Bartlett TN 38133

Bonneville Power Admin.
Minje Ghim
PO Box 3621
Portland OR 97208

B&E Technical Services Inc.
William R. Lang
600 S. Cherry St. #325
Denver CO 80222-1705

Boston Edison Company
Michael Mulcahy
800 Boylston Street
Boston MA 02199

BDM International
Tim Lambarski
MS-C35B
1801 Randolph SE
Albuquerque NM 87106

Bresler & Reiner, Inc.
Ahmed Hacri
Waterside Mall
401 M Street S.W.
Washington, DC 20024

Babcock & Wilcox
Pat Bator
20 S. Van Buren Ave.
Barberton OH 44203

Brookhaven National Labs
John Andrews
National Center for Analysis of Energy Systems
Upton NY 11973

Barber-Nichols Engineering
R. Barber
6325 West 55th Ave.
Arvada CO 80002

Brown Boveri Corporation
1460 Livingston Avenue
North Brunswick NJ 08902

Battelle Memorial Institute
Pacific Northwest Laboratory
K. Drumheller
4000 NE 41st St.
Seattle WA 98105

Budd Company (The)
John M. Vergoz
3155 W. Big Beaver Road
Troy MI 48084

Budd Company (The) Plastic R&D Center K. A. Iseler 356 Executive Drive Troy MI 48084	City of Albuquerque Linda Stewart City Council PO Box 1293 Albuquerque NM 87103
California Polytechnic State University Dr. Sufwat M.A. Moustafa, P.E. San Luis Obispo CA 93407	City of Albuquerque Mike Minturn Manager Resource Management Division General Services Department PO Box 1293 Albuquerque NM 87103-1293
Cal Tech R. Middlebrook 116-81 Cal Tech Pasadena CA 91125	City of Austin Power & Light David Panico PO Box 1088 Austin TX 78767
California Energy Commission Alice Jenkins Promod Kulkarni 1516 - 9th Street Sacramento CA 95814	City of Las Cruces Jerry Trojan Assist. City Manager P.O. Drawer CLC Las Cruces NM 88004
Cal Poly State University E. J. Carnegie San Luis Obispo CA 93407	Clarkson University Eric F. Thacher Dept. of Mechanical and Aeronautical Engrg. Potsdam NY 13699-5725
California Institute of Technology Aeronautics Library Jean Anderson MS 205-45 Pasadena CA 91125	Clemson University Jay W. Lathrop Electrical Engr. Dept. Clemson SC 29631
California Polytechnic University Dept. of Mechanical Engineering W. B. Stine Pomona CA 91768-4062	Cleveland State University Peter Groumpos 1983 East 24th Street Cleveland OH 44115
Campbell Scientific, Inc. Neal L. Israelsen PO Box 551 Logan UT 84321	Florida Solar Energy Center Mark Thornbloom 300 State Road 401 Capa Canaveral FL 32920
Carolina Power & Light Co. Kent Hoffman Center Plaza Bldg. PO Box 1551 Raleigh NC 27602	Colorado State University Dr. Allan T. Kirkpatrick Department of Mechanical Engineering Fort Collins CO 80523
Dr. Jamie Chapman Number 402 15 Sleeper St. Boston MA 02210	Colorado State University T. G. Lenz Ft. Collins CO 80523
Chicago Bridge and Iron J. M. Shah 800 Jorie Blvd. Oak Brook IL 60521	Colorado State University T. G. Lenz Ft. Collins CO 80523

Columbia Gas System Service Corp.
J. Philip Dechow
1600 Dublin Road
Columbus OH 43215

Commonwealth of Virginia
Department of Mines, Minerals, Energy
James Smith
The Bookbinder Building
2201 West Broad St.
Richmond VA 23220

Commonwealth of Virginia
Department of Mines, Minerals, Energy
Susie Thomas
Ninth Street Office Blvd.
8th Floor
202 North North St.
Richmond VA 23219

Computer Sciences Corporation
Applied Technology Division
Joel N. Chaffin
John C. Stennis Space Center
SSC MS 39529

D. Benolt
RR 3 Box 6897
Barre VT 05641

Conserval Systems Inc.
John C. Hollick, P.E.
2211 Main St., Bldg B
Buffalo NY 14214

Cons. Edison Co. of NY
M. LeBow
N. Tai
Irving Place
New York NY 10003

A. Cooley
RR 3 Box 6897
Barre VT 05641

County of Hawaii
Steve Burns
Dept. of Research and Development
25 Aupuni Street
Hilo HI 96720

Cummins Engine Company
Dr. Isoroku Kubo
Mail Code 50160
Box 3005
Columbus IN 47202-3005

Cummins Power Generation
Monte McGlaun
150 Tannerhill Dr
Abilene TX 79602

Cygnus Engineering
Vincent P. Dowd
R.D. 3 Box 2527
Middlebury VT 05753

D&T Solar
Thomas Caldwell
418 Vista Larga
Los Lunas NM 87031

W. S. Davenport
PO Box 29000
Suite 261
San Antonio TX 78229

Davex Enterprises, Inc.
Fred R. Davis
704 Vine St.
Kent OH 44240

Dayton Power & Light Company
S. K. Aventsen
PO Box 1247
Courthouse Plaza
Dayton OH 45401

Detroit Edison Co.
Bob Pratt
2000 2nd Avenue
Detroit MI 48226

Dinh Co. Inc.
Khanh Dinh
PO Box 999
Alachua FL 32615

DKI Group Engineers, Inc.
D. K. Gupta, President
9-Turnberry Lane
Clifton Park NY 12065

Dominion Energy Corp.
John Frank
PO Box 26532
Richmond VA 23261

DSET
G. A. Zerlaut
Box 1850
Black Canyon Stage I
Phoenix AZ 85029

Donnelly Corporation
M. DeVries
49 West Third Street
Holland MI 49423

Duke University
T. C. Wilson
Dept. of Elec. Engr.
Durham NC 27706

Duquesne Light Co.
J. L. Koepfinger
One Oxford Center
301 Grant Street
Pittsburgh PA 15279

DynCorp Meridian
Robert E. N. Muhn
Technical Director, International Projects
4300 King Street, Suite 400
Alexandria, VA 22302-1508

Electric Ideas Clearinghouse
Dr. Douglas Kilpatrick
809 Legion Way SE FA-11
Olympia WA 98504

EPRI
Myron Jones
3412 Hillview Ave
PO Box 10412
Palo Alto CA 94304-1395

EPA
Jennifer Selber

EPRI
Marty Mastroianni
3412 Hillview Ave
PO Box 10412
Palo Alto CA 94303

Electric Power Research Inst.
E. DeMeo
J. Bigger
3412 Hillview Avenue
Palo Alto CA 94303

Electric Power Research Inst.
Myron Jones
Manager
Environment & Energy Management
3412 Hillview Avenue
Palo Alto CA 94303

Electric Power Research Inst.
Marty Mastroianni
Commercialization manager
Electrical Systems Division
3412 Hillview Avenue
Palo Alto CA 94303

Electric Research & Mgmt., Inc.
W. E. Ferro
PO Box 165
State College PA 16804

Endecon
Chuck Whittaker
3401 Crown Canyon Rd
Suite 253
San Ramon CA 94583

Enercontrol Inc.
David Konn
2624 Lake Ridge
Flower Mound TX 75028

Energy Concepts Co.
Don Erickson
627 Ridgely Ave.
Annapolis MD 21401

Energy Information Services
Energy, Minerals and Natural
Resources Department
Ingrid Kelley
Bureau Chief
2040 S. Pacheco
Santa Fe NM 87505

**Energy, Minerals and Natural
Resources Department**
Judy Kowalski
Director of Recycling Programs
2040 S. Pacheco
Santa Fe NM 87505

ECOTOPE
Energy Efficient Solutions
David R. Baylon
2812 E. Madison
Seattle WA 98112

Energy System Consultants
Dana Sears
1532 79th Avenue NE
Brookland Park MN 55444

Enertec Don Cockran 127 Andover Rd. Greenville SC 29615	1606 Civil Engineering Squadron James Fejer Deputy Chief, Operations Branch 1606 ABW/DEM Kirtland AFB NM 87117-5496
Enigma Logic r.B. Swenson Chairman 2151 Salvio, Suite 301 Concord CA 94520	Larry Fite 4197 Arrowood Memphis TN 38118
ENTECH, Inc. M. O'Neill PO Box 612246 DFW Airport TX 75261	Florida Power Corp. Tony Padilla Christy Herig Jim Crews 3201 34th Street South St. Petersburg FL 33711
Environmental Laboratory John A. Dufay 915 Locust St. SE Albuquerque NM 87106-4300	Florida Power and Light R. S. Allan PO Box 14000 Juno Beach FL 33408
Environmental Technology & Education Center (ETEC) Jon Nimitz, Ph.D. 3300 Mountain Road NE Albuquerque, NM 87106-1920	Florida Power and Light E. A. Anderson, P.E. PO Box 561190 Rockledge FL 32956
ESELCO Sheldon L. Levy 8116 Fontana Prairie Village KS 66208	Florida Power and Light Gary L. Michel PO Box 529100 Miami FL 33152
Eurodrive, Inc. 30599 San Antonio Rd. Hayward CA 94544	Florida Solar Energy Center Mark Thornbloom 300 State Road 401 Cape Canaveral FL 32920
FAFCO Freeman Ford 2690 Middlefield Road Redwood City CA 94063	Florida Solar Energy Center David Block Kirk Collier Jim Huggins John Harrison 300 State Road 401 Cape Canaveral FL 32920
FAWP Curtis H. Taylor 923 Old Bay Bridge Road Tallahassee FL 32303	Ford Motor Company Glass Div., Technical Center V. L. Lindberg 25500 West Outer Drive Lincoln Park MI 48246
Federal Conservation & Renewable Energy Referral Service PO Box 8900 Silver Spring MD 20907	Foster Wheeler Solar Dev. Corp. M. D. Garber 12 Peach Tree Hill Road Livingston NJ 07039
Federal Energy Management Activities CE 10.1 U.S. Department of Energy 1000 Independence Ave. Washington DC 20585	

Harris Corporation
Byron F. Knight
Manager-Advanced Programs
PO Box 91000
Melbourne FL 32902-9100

Hilda Frazier DCA
2740 Centerview Drive
Tallahassee FL 32399-2100

Garrett Turbine Engine Co.
Ed Strain
111 South 34th Street
PO Box 5217
Phoenix AZ 85010

GE Energy Sys. Pro. Dept.
Paul C. Bogiages
1 River Road
Bldg 5 Rm. 425
Schenectady NY 12345

General Services Administration
Dennis J. Jaromin
Maintenance and Operations Foreman
Sarah Cook House
Lincoln Home Historic Site
508 South Eighth Street
Springfield, IL 62703

General Services Administration
Bob Bausch
Maintenance Mechanic
Sarah Cook House
Lincoln Home Historic Site
508 South Eighth Street
Springfield, IL 62703

Harper Lake
Dianne Mathis, Production Manager
43880 Harper Lake Road
Hinkley, CA 92347

Hawai'i Energy Extension Service
Andrea Gill Beck
Department of Business and Economic Development
Hawai'i Business Center
99 Aupuni Street #214
Hilo HI 96720

Hawai'i Energy Extension Service
Catherine L. Robbins
Department of Business, Economic Development and
Tourism
99 Aupuni Street #214
Hilo HI 96720

Hawaii Solar Energy Association
Ron Richmond
PO Box 23350
Honolulu Hawaii 96823

Heery Energy Consultants, Inc.
Glenn Bellamy
Project Energy Manager
880 West Peachtree St. NW
Atlanta GA 30309

Heliodyne, Inc.
Jurg H. Bieri, Ph.D.
4910 Seaport Ave.
Richmond CA 94804

Heliotrope
Dave Parks
Malcolm Herbert
3733 Kenora Drive
Spring Valley CA 92077

Heliotrope
3733 Kenora Drive
Spring Valley CA 92077

Highland Plating
M. Faith
10001 N. Orange Drive
Los Angeles CA 90038

Hiromi's Nursery
Paul Mayeda
41-732 Kakaina St.
Waimanalo HI 96795

Hydrogen Engineering Associates
Harry W. Braun
PO Box 62892
Phoenix AZ 85082

Hydrogen Engineering Associates
Roy E. McAlister
540 North May St. Suite 3078
Mesa AZ 85201

Industrial Enterprises, Inc.
Rex A. Martin
500 Lyncrest Drive
Lincoln NE 68510

Industrial Solar Technology
Randy Gee
5771 West 52nd Ave.
Denver CO 80212

Industrial Solar Technology
Ken May
5771 West 52nd Ave.
Denver CO 80212

K.C. Associates
K.C. Warawa
2026 Duncan Road
Wilmington, DE 19808

Inner Solar Roof Systems, Inc
Joseph Allegro
731 N.E. 69th Street
Boca Raton FL 33487

Kansas City Power & Light
David Martin
PO Box 679
Kansas City MO 64141

Institute of Gas Technology
Library
34245 State Street
Chicago IL 60616

John F. Long Homes, Inc.
R. K. (Casey) Kayes
PO Box 14029
Phoenix AZ 85063

International Planning Assoc, Inc
Editor
807 Caddington Ave.
Silver Spring MD 20901

Kearney & Associates
David W. Kearney
14022 Condessa Drive
Del Mar CA 92014

Intersol Power Corporation
John Sanders
8590 S. Mariposa Dr.
Morrison CO 80465-2424

Kirk Enterprises, Inc.
Kirkland & Richards Solar & Elect.
Gregory H. Kirkland
PO Box 741
Inglis FL 32649

Jacksonville Electric Authority
George Rizk
Box 53105
Jacksonville FL 32201

KJC Operating Company
Gilbert Cohen
41100 Highway 395
Boron CA 93516

Japan Economic Review
Mike Turton
National Press Building, Suite 830
Washington DC 20045

Laguna Industries, Inc
Larry Franzmeier
#1 Mesita Industrial Parkway
PO Box B
Laguna NM 87026

Jet Propulsion Lab
Ram Manvi
MS 125-129
40800 Oakgrove Dr.
Pasadena CA 91109

Carlo LaPorta
6503 81st St
Cabin John, MD 20818-1204

L. Johnson, A. Cooley, & D. Benolt
RR 3 Box 6897
Barre VT 05641

Lawrence Berkeley Laboratory
Dr. Arlon Hunt
Building 90-2024
University of California
Cyclotron Road
Berkeley CA 94720

Brian Jones
200 Round Hill Drive
Rockaway NJ 07566

Abbey Lewis
8915 Henriette Wyeth NE
Albuquerque NM 87122

Kenneth S. Jurman
Institutional Conservation Program
9th Street Office Building/8th Floor
202 North Ninth Street
Richmond VA 23219

Ted Lewis & Associates
Edward G. Lewis
556 East Gill Way
Superior CO 80027

L'Garde Inc.
Mitchell Thomas
15181 Woodlawn Ave.
Tustin CA 92680-6419

Lister Diesel, Inc.
K. D. "Alfie" Pearson
555 E. 56 Highway
Olathe KS 66061

Long Island Lighting Co.
Joseph Miller
175 E. Old Country Road
Hicksville NY 11801

Los Alamos National Laboratory
Dr. Donald Neerer
Staff Member
Advanced Engineering Technology Group
PO Box 1663, MS F576
Los Alamos NM 87545

Los Alamos National Laboratory
Taylor Van Buren
Financial Analyst
Industrial Partnership Center
PO Box 1663, MS M899
Los Alamos NM 87545

Lotus Concepts Limited
George Wrigley/Jack Nilsson
3 Stonegate Court
Route 13, Box 181
Easley SC 29640

Lower Colorado River Resource Conservation & Development Project
Michael Forrest
Coordinator
1713 Kofa, Suite G
Parker AZ 85344

John Lucas
865 Canterbury Rd.
San Marion CA 91108

M. K. Inc.
James Koury
4450 Indian Bend Dr.
Whittier CA 90601

Malcolm R. MacPherson, Ph.D.
Rt. 7, Box 128-MK
Santa Fe NM 87505

McCarter Corporation
R. A. Powell
200 E. Washington St.
PO Box 351
Norristown PA 19404

McDonnell-Douglas Astronautics Company
R. L. Gervais
5301 Bolsa Avenue
Huntington Beach CA 92647

McDonnell Douglas Aerospace
Ken Stone
Internal Mail Code A3/P520/11-3
5301 Bolsa Ave.
Huntington Beach, CA 92647-2048

McGraw Edison
R. Dugan
Power Systems Division
Cannonsburg PA 15317

Pat Montoya
State Issues Director
625 Silver Ave SW Suite 130
Albuquerque NM 87102

Pennsylvania State University
Dr. Russell Messier
Material Research Laboratory
University Park PA 16802

McIntosh Middle School
B. Milligan
701 S. McIntosh
Sarasota FL 34233

Mechanical Technology, Inc.
G. R. Dochat
968 Albany Shaker Road
Latham NY 12110

Mendez Cattle Co.
Marcos F. Mendez
9500 N. Shelton Rd.
Linden CA 95236

Meridian Corporation
D. Kumar
4300 King Street Suite 400
Alexandria VA 22302-1508

Meridian Corporation
Anil Cabraal
4300 King Street Suite 400
Alexandria VA 22302-1508

Metsat, Inc.
Julie Smith
515 South Howes
Ft. Collins CO 80521

Michigan State University
Jerry Park
Elec. Engr. Dept.
Engr. Bldg., Rm. 260
East Lansing MI 48824

Midway Clinic
Dr. Drobias
11837 Merrian
Livonia MI 48150

Midway Labs
Paul Collard
2255 East 75th Street
Chicago IL 60649

Midwest Research Institute
R. L. Martin
425 Volker Blvd.
Kansas City MO 64110

Jamie Miller
553 Second St.
Gambrills MD 21054

Minnesota Power Co.
John Kappenman
30 West Superior Street
Duluth MN 55802

Mississippi Technology Transfer Center
Clay Griffith
Stennis NASA Center
Bay St. Louis MS 39529

MIT
J. G. Kassalkian
M. F. Schlecht
Elec. Power Systems Engr. Lab
Cambridge MA 02139

Montana State University
R. Johnson
Dept. of Elec. Engr.
Bozeman MT 59717

John G. Montgomery
1106 Malgren Avenue
San Pedro CA 90732

Dan Moon
Virginia Department of Youth & Family Services
Commonwealth of Virginia
PO Box 3AG
Richmond VA 23208-1108

Morning Star Enterprises
Kent Knock, President
PO Box 176
Trumbull CT 06611

Moylan Engineering Assoc., Inc.
W. J. Moyland
13530 Michigan Avenue
Suite 237
Dearborn MI 48126

MRJ Soleras
Matthew S. Imamura
425 Volker Boulevard
Kansas City MO 64110

Multiarc Scientific Coating
National Renewable Energy Lab
John Webb
1617 Cole Blvd.
Golden CO 80401

National Renewable Energy Lab
Jim Jones
Russ Hewett
1617 Cole Blvd.
Golden CO 80401-3393

National Renewable Energy Lab
Mary Jane Hale
1617 Cole Blvd.
Golden CO 80401

National Renewable Energy Lab
Tom Williams
1617 Cole Blvd.
Golden CO 80401

National Concrete Masonry Association
Bion D. Howard
PO Box 781
2302 Horse Pen Road
Herndon VA 22070

Nature Conservancy
Will Murray
1815 N. Lynn Street
Arlington VA 22209

Howard Nelson 1024 Linda Lane Charlotte NC 28211	NASA/Lewis Research Center R. Corrigan Richard DeLombard 21000 Brookpark Road Cleveland OH 44135
New Mexico Electric Cooperatives Robert E. Castillo Executive Vice President 614 Don Gaspar Santa Fe NM 87501	National Tech Transfer Center Wheeling Jesuit College 316 Washington Ave. Wheeling WV 26003
New Mexico Home Builders Assn. Jack Milarch Executive VP 5931 Office Blvd. NE Albuquerque NM 87109	Natural Power, Inc. Brian Gordon Francesstown Turnpike New Boston NH 03070
New Mexico Institute of Mining & Technology Joe Galon Associate Director of Engineering Physical Plant Department Campus Station Socorro NM 87801	Naval Civil Engineering Lab Kwang Ta Huang CODE L 72 Port Hueneme CA 93043
New Mexico R&D Forum University of New Mexico Richard Cole Director R&D Communication Office Albuquerque NM 87131-6076	Nebraska Department of Economic Development Rex Martin University of Nebraska-Lincoln W191 Nebraska Hall Lincoln NE 68588-0535
New Mexico Public Service Commission Peter Bickley 224 E. Palace Avenue Santa Fe NM 87501-2031	Pat Montoya State Issues Director 625 Silver Ave., SW Suite 130 Albuquerque, NM 87102
New Mexico Manufacturing Extension Program Ken Manicki Manufacturing Project Manager 1009 Bradbury Dr. SE Albuquerque NM 87106	Howard Nelson 1024 Linda Lane Charlotte NC 28211
New Mexico Manufacturing Productivity Center Graham Bartlett 1009 Bradbury Dr. SE Albuquerque NM 87106	NEOS Corporation Kirk Stores 165 South Union Blvd Suite 122 Lakewood CO 80228
NM Solar Energy Industries Association Tom Volk PO Box 90275 Albuquerque NM 87199-0275	New England Power Service Ed Gulachenski 25 Research Drive Westborough MA 01581
	New Mexico League of Women Voters Barbara M. Rosnagle Natural Resources Chair 116 Salamanca NW Albuquerque NM 87107

**New Mexico State University
Cooperative Extension Service
Skip Finley
PO Box 390
Mora NM 87732**

**New Mexico State University
Cooperative Extension Service
Bob Grassberger
9301 Indian School Rd NE, Suite 201
Albuquerque NM 87112**

**New Mexico State University
Cooperative Extension Service
Robert O. Coppedge, Ph.D.
Box 3AE
Las Cruces NM 88003**

**New Mexico State University
Pat Melendrez
San Miguel County Extension Agent
PO Box 2170, West Branch
Las Vegas NM 87701**

**New Mexico State University
Southwest Technology Development Institute
Steve Durand
Box 30001/Dept. 3SOL
Las Cruces NM 88003-0001**

**New Mexico State University
Southwest Technology Development Institute
Andrew L. Rosenthal
Box 30001/Dept. 3SOL
Las Cruces NM 88003-0001**

**New Mexico State University
Southwest Technology Development Institute
Dr. Rudi Schoenmackers
Box 30001/Dept. 3SOL
Las Cruces NM 88003-0001**

**New York State Energy Research and Dev. Authority
Fred Strnisa
2 Rockefeller Plaza
Albany NY 12223**

**New York State Pub. Serv. Comm.
Edward Schrom
Empire State Plaza
Albany NY 12223**

**Nippon Electric Glass Co., Ltd.
Bernard L. Steierman
11801 Rockville Pike Suite 1704
Rockville MD 20852**

**North Carolina Alternative Energy Corp.
Bob Weiss
PO Box 12699
Research Triangle Park NC 27709**

**Northern Research & Eng. Corp.
Dr. James B. Kesseli
39 Olympia Avenue
Woburn MA 01801-2073**

**Northwest Power Planning Council
Tom Truelove
851 SW Sixth Ave., Suite 1100
Portland OR 97204**

**NREL
Meir Carasso, Ph.D., P.E.
Manager, Thermal Science Research Section
1617 Cole Boulevard
Golden CO 80401**

**NREL
James G. Jones
1617 Cole Blvd
Golden CO 80401-3393**

**NREL
Steve Rubin
1617 Cole Blvd
Golden CO 80401**

**NREL
Chuck Kutscher, P.E.
Senior Engineer
1617 Cole Boulevard
Golden CO 80401**

**NREL
G. David Mooney, Ph.D.
Project Coordinator
1617 Cole Boulevard
Golden, CO 80401-3393**

**NREL
Federica Zangrando, Ph.D.
Senior Engineer
1617 Cole Boulevard
Golden CO 80401**

**NREL
Roger W. Taylor
Project Manager
1617 Cole Boulevard
Golden CO 80401-3393**

Oklahoma Gas and Electric
J. D. Hampton
PO Box 321
Oklahoma City OK 73101

On Ice
Harry Franey
3116 Pleasant Grove Rd.
Pleasant Grove CA 95668

Pacific Gas and Electric Co.
Steve Hester
Brian Farmer
3400 Crow Canyon Road
San Ramon CA 94583

Pacific Gas and Electric Company
Joseph J. Iannucci
Program Manager
3400 Crow Canyon Road
San Ramon CA 94583

Pacific Power and Light
Steve Carr
920 SW 6th Avenue
Portland OR 97204

Packerland Solar System
Richard Lane
PO Box 8262
Green Bay WI 54308

PAL Engineering Services, Inc.
Ken Lambert, VP
U.S. Office: 621 Heather Knoll
Desoto TX 75115

Parsons of California
D. R. Biddle
PO Box 6189
Stockton CA 95206

Gary Peacock
142 Sandy Oak Trail
Charlotte NC 28210

Ralph R. Pence Associates
725 S. Broadway
Denver CO 80209

Pennsylvania Energy Office
Director
116 Pine Street
Harrisburg PA 17101-1227

Pennsylvania Power & Light Co.
R. J. Fernandez
North Ninth Street
Allentown PA 18101

Philadelphia Electric Company
Don Fagnan
2301 Market Street 510-1
Philadelphia PA 19101

Photon Energy, Inc
John A. Johansen
9650-A Railroad Dr.
El Paso TX 79924

Photovoltaic Energy Systems
Paul Maycock
P. O. Box 290
Casanova VA 22017

Plains Electric Generation and Transmission Cooperative, Inc.
Daniel S. Baile
PO Box 6551
Albuquerque NM 87197

Plains Electric Generation and Transmission Cooperative, Inc.
Dwight Lamberson
Supervisor of Forecasting & Modeling
PO Box 6551
Albuquerque NM 87197

Platte River Power Authority
Carol Dollard
Timberline and Horsetooth Roads
Fort Collins CO 80525

Plumas - Sierra Rural Electric Cooperative
Paul S. Bony
Manager of Member Services
PO Box 2000
Portola, CA 96122-2000

Portland State University
Jean P. Murray, Ph.D.
PO Box 751
Portland OR 97207-0751

Power Kinetics, Inc.
W. E. Rogers
415 River Street
Troy NY 12180-2822

Andrew G. Proulx
10 Kelly Road
Westford MA 01886

Public Service Commission
Allen Girdner
Utility Economist
224 E. Palace St.
Santa Fe NM 87503

Public Service Co. of New Mexico
M. Phyllis Bourque
Alvarado Square
Albuquerque NM 87158-2822

Public Service Co. of New Mexico
Vic Silva
CR Dept (0076)
Alvarado Square
Albuquerque NM 87158

Public Service Co. of New Mexico
Becky Kilbourne
Retail Electric Marketing Center
Alvarado Square
Albuquerque NM 87158

Public Service Co. of New Mexico
Mark E. Harlan
Technical Analysis Coordinator
Alvarado Square
Albuquerque NM 87158

Public Service Co. of New Mexico
Tom Nesmith, P.E.
Alvarado Square - MS 0256
Albuquerque NM 87158

Public Service Co. of New Mexico
John M. Noble, P.E.
Alvarado Square - MS 0510
Albuquerque NM 87158

Public Service Electric & Gas
Harry Roman
B. Radimer
PO Box 570
Newark NJ 07101

Purdue University
Oleg Wasyczuk
School of Elec. Engr.
West Lafayette IN 47907

Radco Products, Inc.
George O. Radford
President
2877 Industrial Parkway
Santa Maria CA 93455

Real Gas and Electric Co.
PO Box F
Santa Rosa CA 95402

Renewable Energy Training Institute
Jeffrey S. Ross
Assistant Director
122 C Street, NW
Suite 520
Washington DC 20001

Rensselaer Polytechnic Inst.
Jose M. Borrego
EESE Dept. JEC 7020
Troy NY 12181

Research Triangle Institute
Carl Parker
PO Box 12194
Research Triangle Park NC 27709

Alan Richardson
Business Liaison
New Postal Building
Room 3004
Santa Fe NM 87501

Rite Engineering & Mfg. Corp.
9441 Washburn Rd.
Downey CA 90242

Roan Corporation
James L. Abolt
177 Bovet Road, Suite 520
San Mateo CA 94402

Rockwell International Corporation
Energy Technology Engineering Center
Robert K. Hoside, C.E.M.
PO Box 1449
Canoga Park CA 91304

The Rovac Corp.
Raymond E. Shea, Sr.
President
PO Box 111
1030 Stafford St.
Rockdale MA 01542

SAIC
Barry L. Butler, SEIA Chairman
Room 2043, M/S C2J
10260 Campus Point Drive
San Diego CA 92121

Sandia National Laboratories
Mark S. Allen
Technology Transfer Division
PO Box 5800
Albuquerque NM 87185-5800

Sandia National Laboratories
R. Hamil
D. Belasich
C. Lombawa
Org. 4212
PO Box 5800
Albuquerque NM 87185

Sandia National Laboratories
Julie Clausen, 7161
PO Box 5800
Albuquerque NM 87185

Sandia National Laboratories
Rolf Wrons, 7816
PO Box 5800
Albuquerque NM 87185

San Diego Gas & Electric Co.
Skip Fralick
PO Box 1831
San Diego CA 92112

San Jose State University
Helmer Nielsen
Dept. of Mech. Engr.
Washington Square
San Jose CA 95192

Scholfield Solar
Allen Carrozza
2450 Channel Drive, Suite A
Ventura CA 93003

Science Applications International Corp.
Roger L. Davenport
Division 448
15000 West 6th Ave., Suite 202
Golden CO 80401

Science Applications International Corp.
Kelly Beninga
Division 448
15000 West 6th Ave., Suite 202
Golden CO 80401

Science and Technology Corporation
Ronald J. Nelson
12452 Towner NE
Albuquerque NM 87112

Segal's Solar Systems
Barry Jay Segal
Consulting Engineer
3357 Cranberry South
Laurel, MD 20724-2419

Scientific Analysis, Inc.
John Allen Gunn, PE
6012 E. Shirley Lane
Montgomery AL 36117

Mr. Ernest Schiele
2323 Bellwood Drive #49
Grand Island NE 68801

Mr. Ed Schrieber
3225 S. 14th St.
Lincoln NE 68502

Seed International, Inc.
Harold W. Nelson
General Manager
Vice President of Marketing
221 Rio Rancho Blvd
Rio Rancho, NM 87124

SLEMCO
A. J. Slemmons
19655 Redberry Dr.
Los Gatos CA 95030

Sea Sun Power Systems
George Hagerman
124 East Rosemont Ave.
Alexandria VA 22301-2326

Segal's Solar Systems
Barry Jay Segal
3357 Cranberry South
Laurel MD 20724-2419

Seldom Seen Education
Mary C. Stuever
PO Box 474
Placitas NM 87043

Sevier County High School
Jeremy Smith, Student
308 Caton Rd.
Sevierville TN 37862

Siemens Solar Industries
Bill Howley
PO Box 6032
Camarillo CA 93011

Sierra Club Rio Grande Chapter
Ken Hughes
Energy Chair
1204 Placita Loma
Santa Fe NM 87501

Sicrra Pacific Power Co.
R. G. Richards
PO Box 10100
Reno NV 89520

Skyline Engineering
Dr. Robert Wills, P.E.
Route 45, PO Box 134
Temple NH 03084-0134

SMUD
Don Osborne
Box 15830
Sacramento CA 95852-1830

SMUD
David W. Rienhart
Box 15830
Sacramento CA 95852-1830

Solar Development, Inc.
David Burrows
3630 Reese Avenue
Garden Industrial Park
Riviera Beach FL 33404

Solar Energy Corporation
Robert Aresty
Box 3065
Princeton NJ 08540

Solar Energy Industries Association
Ann Polansky
777 North Capital Street, NE
Suite 805
Washington DC 20002-4226

Solar Energy Industries Assn
Ken Shemkopf
Linda Ladas
Scott Sklar
Suite 805
777 N. Capitol St. NE
Washington DC 20002-4226

Solar Kinetics, Inc.
Paul Schertz, Vice President
10635 King William Drive
Dallas TX 75220

Solar Kinetics, Inc.
Gus Hutchison
10635 King William Drive
Dallas TX 75220

Solar Power Engineering Co. Inc.
T. Buna
PO Box 91
Morrison CO 80468

Solar Reactor Technologies
Robin Parker
P. O. Box 330975
Miami FL 33233

Solar Steam
D. E. Wood
PO Box 32
Fox Island WA 98333

Solar Stirling Industries
Jack Stearns
2822 Highridge Rd.
La Crescenta CA 91214

Solar Systems Economics
Michael Lotker, Consultant
1646 Folkstone Terrace
Westlake Village CA 91361

Solar Uno
EPS
#A-355
PO Box 02-5256
Miami FL 33102-5256

Solid Waste Bureau
Barbara Hoditschek
Program Manager
Environment Department
1190 St. Francis Drive
Santa Fe NM 87503

Southern California Edison Co.
C. Lopez
PO Box 800
Rosemead CA 91770

Southwest Public Affairs, Inc.
Fred L. O'Cheskey
President
300 First Interstate Plaza
150 Washington Avenue
PO Box 2187
Santa Fe, NM 87504

Southwest Technology Development Institute
Robert Smith
M.E. Property Control Division
General Services Department
Simms Building
715 Alta Vista
Santa Fe NM 87503

**Specialized Environmental
Products, Inc.**
Arthur J. Brooks
3325 Ali Baba, Suite 609
Las Vegas NV 89118

Stearns-Catalytic Corp.
T. E. Olson
Box 5888
Denver CO 80217

State of California
California Energy Commission
Energy Technology Development Division
Research and Development Office
Promod Kulkarni
Phil Misemer
1516 9th Street
MS-43
Sacramento CA 95814-5512

State of California
Department of Corrections
Delano State Prison
Tom Shanyfelt
PO Box 567
Delano CA 93216-0567

State of California
Department of Corrections
Harry Franey
3116 Pleasant Grove Rd.
Pleasant Grove CA 95668

State of Colorado
Office of Energy Conservation
Howard "Andy" Walker Ph.D., M.E.
Renewable Energies Coordinator
1675 Broadway
Suite 1300
Denver CO 80202-4613

State of Florida
Colleen McCann Kettles
David Block
Jim Huggins
Florida Solar Energy Center
300 State Road 401
Cape Canaveral FL 32920-4099

State of Florida
Daryl O'Connor
Executive Office of the Governor
The Capitol
Tallahassee FL 32399-0001

State of Florida
John B. Stark
Executive Office of the Governor
The Capitol
Tallahassee FL 32399-0001

State of Hawaii
Thomas J. O'Brien
Department of Business and Economic Development
335 Merchant St., Room 110
Honolulu HI 96813

State of Hawaii
Maurice H. Kaya, P.E.
**Department of Business, Economic Development, &
Tourism**
335 Merchant St., Room 108
Honolulu HI 96813

State of Hawaii
David A. Rezachek, Ph.D., P.E.
Department of Business and Economic Development
335 Merchant St., Room 110
Honolulu HI 96813

State of New Mexico
Energy, Minerals and Natural Resources Department
James Comon
Anita Lockwood
Harold Trujillo
Brian K. Johnson, P.E.
2040 South Pacheco Street
Santa Fe NM 87505

State of New Mexico
New Mexico State Land Office
Geoff Webb
PO Box 1148
Santa Fe NM 87504-1148

State of New Mexico
Office of Interstate Natural Gas Markets
Ronahd H. Merrett, Director
P.O. Box 2088
Room 206, Land Office Bldg.
Santa Fe, NM 87504

State of Wyoming
Department of Commerce
John F. Nunley III
Federal Grants Supervisor
Barrett Building
Cheyenne WY 82002

State University of New York
Atmospheric Sciences Research Center
R. Perey
Albany NY 12222

Stirling Technology Company
Mr. Maurice A. White
2952 George Washington Way
Richland WA 99352

Stone & Webster Engr.
Dave Agosta
245 Summer Street
Boston MA 01921

Ken Stone
6882 Via Angelina
Huntington Beach CA 92649

Strategies Unlimited
R. Winegarner
201 San Antonio Circle
Suite 205
Mountain View CA 94040

Sundstrand Advanced Technology Grp.
William J. Greenlee, Engineering Manager
PO Box 7002
Rockford IL 61125-7002

Sun Exploration and Production Co.
R. I. Benner
PO Box 2880
Dallas TX 75221-2880

Sundstrand ATG
D. Chaudoir
William J. Greenlee
PO Box 7002
Rockford IL 61125

Sunquest Fresource
Greg Baer, PE
PO Box 3763
Hickory NC 28603

Suntec Systems, Inc.
J. H. Davison
Suite B-4
Loring Park Office Bldg.
430 Oak Grove St.
Minneapolis MN 55403

Sustainable Energy Systems
David N. Borton, Ph.D., President
Hilltop Road
Troy NY 12180

Swedlow, Inc.
E. Nixon
12122 Western Avenue
Garden Grove CA 92645

Sylvester/Bernex
Richard P. Vento
24700 Highpoint Rd.
Beachwood OH 44122

Technology Enterprise Division
Karen Martin
P.O. 549
Mesilla NM 88046

Tech Reps, Inc.
John Stikar
5000 Marble NE, Suite 222
Albuquerque NM 87110

Tennessee Valley Authority
Sharon Ogle
Solar Applications Branch
B 513 Signal Place
Chattanooga TN 37401

Mac Thayer
6 Byard St.
Athens OH 45701

The Solar Letter
Allan L. Frank
9124 Bradford Rd.
Silver Spring MD 20901-4918

TESCO
Linda Terrel
PO Box 970
Fort Worth TX 76101-0970

Tetra Corporation
Kenell J. Touyan, Ph.D.
Director of Energy Resources
3701 Hawkins St. NE
Albuquerque NM 87109-4345

Texas Tech University
Dept. of Electrical Engineering
E. A. O'Hair
PO Box 4439
Lubbock TX 79409

Thermacore, Inc.
Mr. Donald Ernst
780 Eden Road
Lancaster PA 17601

The Gas Company
Shivu Desai
Market Development
Project Engineer
Marketing
555 W. Fifth Street
Los Angeles, CA 90013-1011

Tierra de Sol Engineering
Darryl P. Ruchle
E.E., President
4600-C Montgomery NE
Albuquerque NM 87109

Trends Publishing Inc.
Evelyn Didier
1079 National Press Building
Washington DC 20045

Tritech Incorporated
Timothy Benedict
PO Box 1429
Tahlequah OK 74465

United States Environmental Protection Agency
Patricia C. Plympton
Special Assistant, Policy and Resources Development
Office of Administration
Safety, Health, and Environmental Management
Division
401 M Street SW (PM-273)
Washington, DC 20460

United States Environmental Protection Agency
Phil Wurdick
Chief, Building Alteration Section
Facilities Operations Branch
Facilities Management and Services Division

University of Central Florida
Dr. Gerard G. Ventre
Research Scientist
Institute for Simulation and Training
12424 Research Parkway
Suite 300
Orlando FL 32826

University of Colorado, Boulder
Dr. Jan F. Kreider, P.E.
Dept. of Civil Environmental and Architectural
Engineering
Boulder CO 80309

U.S. Air Force
Clifford E. Richardson, III
Professional Engineer
Construction Management
1606th Air Base Wing (DEEC)
Kirtland AFB NM 87117

U.S. Air Force
Robert R. Cooper
Electrical Engineer
6 CES/CEEE
7621 Hillsborough Loop Dr.
MacDill AFB, FL 33621-5207

U.S. Army Corps of Engineers
Larry D. Lister
Mechanical Engineer
PO Box 4005
Champaign IL 61820-1305

U.S. Army Corps of Engineers
Robert S. Gorham Jr., A.I.A.
Chief, Technology Transfer
PO Box 9005
Champaign IL 61826-9005

U.S. Army Engineering and Housing Support Center
Robert G. O'Brien, P.E.
Chief Utilities Engineering Division
CEHSC-FU
Fort Belvoir VA 22060-5580

USAF/ETAC
Hilda Snelling
ENGRC Meteorology Section
Scott AFB IL 62225

US/ECRE
Guy Betten
Executive Director
Renewable Energy Training Institute
PO Box 10095
Arlington VA 22210-9998

3M-Solar Optics Program
Paul Jaster
Heather Kutzler
3M Center
Bldg. 225-2n-06
St. Paul MN 55144-1000

Tri State Technology Service
Sani Aversano
27 Governors Hill Rd.
Oxford CT 06483

TRW Space & Technology Group
G. M. Reppucci
One Space Park
Redondo Beach CA 90278

TUV Rheinland of N.A., Inc.
Paul Schultze
Vice President
3420 Executive Center Drive
Suite 165
Austin TX 78731

U.S. Army Corps of Engineers
Robert S. Gorman Jr., A.I.A.
Architect
Chief, Technology Transfer
P.O. Box 9005
Champaign, IL 61826-9005

U. S. Dept of Commerce
Mr. Les Garden
ITA/OGIM, Rm 2805
Washington DC 20230

U.S. Department of Energy
G. Burch
C. Carwile
N. Haque
Forrestal Building
Code CE-132
1000 Independence Avenue SW
Washington DC 20585

U.S. Department of Energy
Frank (Tex) Wilkins
1000 Independence Ave., SW
Washington DC 20585

University of Arizona
George V. Mignon
Environmental Research Lab.
Tucson AZ 85706-6985

University of California
Kurt Lund
SECR 0310
La Jolla CA 92093-0310

University of California, Berkeley
C. Hu
Dept. of Elec. Engr.
Berkeley CA 94720

University of Colorado
Dr. Jan F. Kreider, P.E.
Dept. of Civil Engr.
Boulder CO 80309

University of Delaware
Allen Barnett
Dept. of EE
Newark DE 19711

University of Hawaii
Patrick Takahashi
Hawaii Natural Energy Inst.
2540 Dole Street
Honolulu HI 96822

University of Houston Energy Laboratory; SPA
Lorin Vant-Hull
Houston TX 77004

University of Lowell
Thomas Costello
Fahd Wakim
1 University Avenue
Lowell MA 01854

University of Minnesota
E. A. Fletcher
Dept. of Mechanical Engineering
1111 Church St. SE
Minneapolis MN 55455

University of New Mexico
M. W. Wildin
Department of Mechanical Engr.
Albuquerque NM 87131

University of New Mexico
NMERI
G. Leigh
Albuquerque NM 87131

University of Texas at Arlington
Jack Fitzer
West 6th at Speer Street
Arlington TX 76019

University of Wisconsin
T. A. Lipo
Dept. of Elec. Engr. and Computer Science
Madison WI 52706

Utility Power Group
M. Stern
9410 DeSoto Ave., Unit G
Chatsworth CA 91311

Ventures Plus, Inc.
Frank A. Simko
4123 N. Tamiami Trail
Sarasota FL 34234

Dan Vermont
30101 Wolf Rd.
Bay Village OH 44070

Viking Solar Systems, Inc.
George Goranson
1850 Earlmont Ave.
La Canada CA 91011

Virginia Polytechnic Institute and State University
Saifur Rahman, Ph.D.
Associate Professor
Electrical Engineering Department
Blacksburg VA 24061

Virginia Power Co.
Tim Bernadowski
Corp. Tech. Assess.
5000 Dominion Boulevard
Glen Allen VA 23060

Ross R. Wagner
744 E. Samaria
Eric MI 48133

Wall Street Journal
Environmental Reporter
10 Post Office Square
Suite 715
Boston MA 02109

Westinghouse Science & Tech. Ctr.
Walter J. Dollard
Technology Director, Energy & Utility Systems Group
1310 Buclah Rd.
Pittsburgh PA 15235

Wichita State University
Center for Energy Studies
Dr. Ward Jewell
Box 44
Wichita KS 67208

Wisconsin Power & Light
Bob Terrell
222 West Washington Ave.
Madison WI 53701-0192

WG Associates
Vern Goldberg
6607 Stonebrook Circle
Dallas TX 75240

Mr. Jay Whimbley
2456 North Plain City
Farr West UT 84404

Brent Wilson, PE
Associate Director Engineering and Architecture
1606 ABW/DEEE
Kirtland AFB NM 87117-5496

Wyle Laboratories
Don McAvin
7800 Governors Drive West
Huntsville AL 35807

Yankee Environmental Systems, Inc.
Mark C. Beaubien
Senior Engineer
101 Industrial Road
PO Box 746
Turners Falls, MA 01376

Dale F. Zinn & Associates
Dale F. Zinn
Architect
212 E. Marcy St.
Santa Fe NM 87501

William E. Young
380 Milford Point Drive
Merritt Island FL 32952

Zomeworks
1011 A Sawmill Rd NW
Albuquerque NM 87104

Ricardo Xavier Zuniga
State Co-Director
119 East Marcy, Suite 101
Santa Fe NM 87501

Dr. Graciela Lesino
INENCO
Buenos Aires 177
4400 Salta ARGENTINA

Australian National University
Department of Engineering Physics
Prof. Stephen Kaneff
PO Box 4
Canberra ACT 2600
AUSTRALIA

Ministry of Energy
Ian Lewis
56 Wellesley Street West
Toronto, Ontario M7A 2B7
CANADA

National Research Council of Canada
G. Rumbold
John Ayer
Photovoltaic Division
Montreal Road
Ottawa, CANADA K1A 0R6

Queens University
P. C. San
Dept. of Elec. Engr.
Kingston, Ontario
CANADA K7L 3N6

Railtex Power & Energy Group (IPP)
PO Box 2148
Vancouver, B.C.
CANADA V6B 3T8

Republic Equities Corporation
Mr. L. P. Bradley
PO Box 2874
Vancouver, B.C.
CANADA V6B3X4

University of British Columbia
W. G. Dunford
Dept. of Elec. Engr.
Vancouver, BC
CANADA V6T 1WS

University du Quebec
Trois-Rivieres
V. Rajegopalan
Dept. d'Ingeierie - C.P. 500
Trois-Rivieres, Quebec
CANADA G9A 5H7

University of Toronto
S. B. Dewan
Dept of Elec. Engr.
Toronto, Ontario
CANADA M5S 1A4

Solar Uno
Ellis Perez.
Vice-Presidente de Mercadeo y Ventas
Av. Sarasota No. 54, Apto. 102
Santo Domingo, DOMINICAN REPUBLIC

Adel Tawfik Soliman, Ph.D.
New & Renewable Energy Authority
Director of Solar Thermal Dept.
PO Box 39 El-souk El-Togary
Maadi 11693
Cairo, EGYPT

Energy and Technology Associates
Attn: Dr. Adel Solimon
P.O.B. 39 El-Souk El-Togary
Maadi 11693
Cairo, EGYPT

DLR
Institute for Technical Thermodynamics
R. Buck
Pfaffenwaldring 38-40
7000 Stuttgart 80
FEDERAL REPUBLIC OF GERMANY

Indo-American Credit Corporation Ltd.
Dr. Amit N. Shsh
Chairman & Manager
Regd. Office: Iol House, Near Swati
Apartment, Opp. Central Bank Lane,
Ambawaki Bazar, Ambawadi, Ahmedabad
(Guj.) INDIA-380 006

The Industrial Credit & Investment Corporation of
India. LTD.
Dr. P. H. Vaidya
169, Backbay Reclamation
Road No. 3
Bombay 400 020
INDIA

Luz Industries Israel
Yoel Gilon
PO Box 7929
Jerusalem 91079
ISRAEL

PCJ Engineering, Ltd.
W.R. (Roddy) Ashby
Manager
Box 579
Kingston 10, JAMAICA

Thermosol Equipments
AH-158
Anna Nagar
Madras-600 040

CONDUMEX
Ing. Enrique Hill B.
So juana ines de la Cruz
34402o. Piso Tiainepantia. Edo. de Mexico
C.P. 54000
MEXICO

Diseno Solar y Arquitectura Bioclimatica
Dr. Everardo Hernandez
A-P 69-738
MEXICO, D.F. C.P. 04460

Equipos y Sistemas de Captacion Solar
Ing. Enrique Ramoneda Carrillo
Bahia de Chachalacas 42 Col. V. Anzures
11300 MEXICO, D.F.

Ing. Armando Nava Escobedo
Jcfc de Servicios de Conservacion
Durango 291-80 PISO
Colonia Roma
06700 MEXICO, D.F.

Instalaciones Tecnicas Especializadas, S.A.
Attn: Ing. Enrique Ramoneda Carrillo
Gerente General
Bahia De Chachalacas 42
Mexico City, D.F. MEXICO 11300

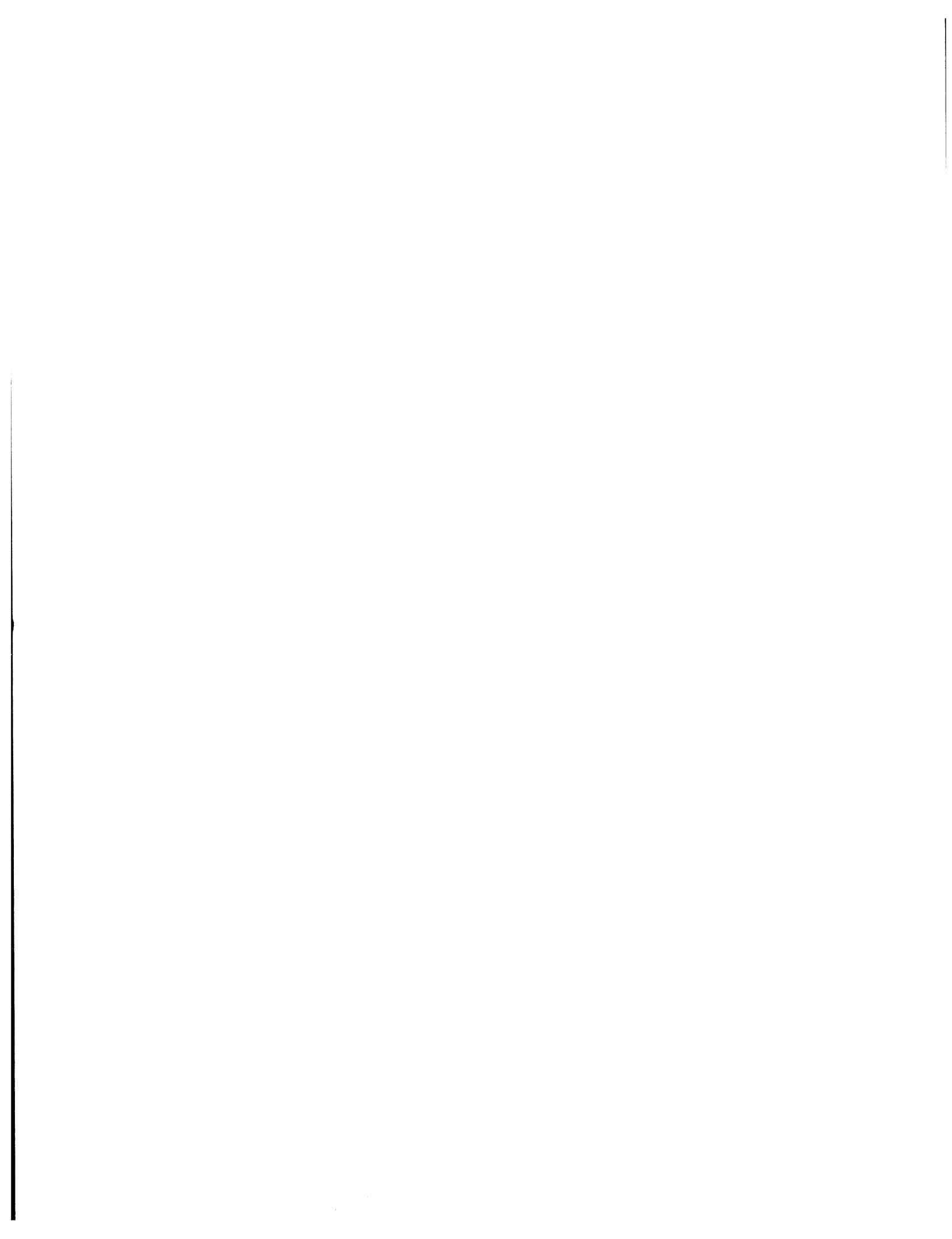
Instituto de Investigaciones Electricas
Dr. Jorge M. Huacuz Villamar
Interior Internado Palmira
Apartado Postal 475
62000 Cuernavaca, Mor., MEXICO

**Saudi Arabian National Center
for Science and Technology**
Abbas A. Salim
PO Box 15164, Riyadh 11444
SAUDI ARABIA

Berna/Bernex AG
R. S. Bonetti/M. Tobler
Industriestrassc 36
CH-4600
Olten. SWITZERLAND

National Rural Electric Cooperative Association
Pete Smith
Manager
5a. Avenida 16-28, Zona 10, 01010
Guatemala, Guatemala, C.A.

Internal Distribution


MS		MS	
1380	M. Allen, 4212	0321	E. Barsis, 1400
1380	R. Hamil, 4212	1111	S. Dosanjh, 1402
1380	D. Belasich, 4212	0821	J. Ang, 1404
1380	C. Lombawa, 4212	1109	J. Jortner, 1408
0724	D. L. Hartley, 6000	0318	G. Davidson, 1415
0735	D. E. Arvizu, 6200	1111	W. Camp, 1421
0735	A. VanArsdall, 6200	1110	R. Allen, 1422
0704	P.C. Klimas, 6201	1110	E. Brickell, 1423
0753	G. J. Jones, 6202	1109	A. Hale, 1424
0752	T. C. Bickel, 6213	0441	J. Biffle, 1425
1127	C. P. Cameron, 6215	0819	J. McGlaun, 1431
1127	R. M. Edgar, 6215	0820	P. Yarrington, 1432
1127	R. A. Mahoney, 6215	0821	P. Stanton, 1433
1127	M. E. Ralph, 6215	0439	D. Martinez, 1434
1127	E. E. Rush, 6215	0841	D. McCloskey, 1500
1127	J. W. Strachan, 6215	0836	C. Peterson, 1501
0703	C. E. Tyner, 6216	0827	P. Hommert, 1502
0703	J. R. Anderson, 6216	0827	J. Rottler, 1511
0703	C. W. Bennett, 6215	0834	A. Ratzel, 1512
0703	L. R. Evans, 6216	0835	R. Skocypec, 1513
0703	T. R. Mancini, 6216	0832	W. Wolfe, 1551
0703	D. F. Menicucci (20), 6216	0833	C. Hailey, 1552
0753	D. E. Hasti, 6218	0833	L. Whinery, 1552-1
0753	R. R. Hill, 6218	0826	W. Hermina, 1553
0753	R. C. Pate, 6218	0825	W. Rutledge, 1554
0753	J. W. Stevens, 6218	0825	Z. Mahmud, 1554-1
0899	Technical Library (5), 7141	0443	H. Morgan, 1561
0619	Technical Publications, 7151	0437	R. Thomas, 1562
0100	Document Processing for DOE/OSTI (10), 7613-2	0557	Tom Baca, 2741
0933	R. Wrons, 7816		
9018	Central Technical Files, 8523-2		
0617	J. Clausen, 12630		

10/28/98

8/28/98

FILED

DATE

