
++.++. +%,_ _:, _.+_ +_., -,_+, .
?.) ++._> ' Association for Information and Image Management

+ ++ o.,.+++,+,++ +

Centimeter
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 mm

1 2 3 4 5

Inches IlllliO _1_ IlJl_
III!1 ++++ttttt_itilt_
+b=--- +m 13.6

i_ ,

ItLIIg

IIIIINIIlll_lltll_

BNL-48S62
INFORMAL REPORT

MULTI MOTOR CONTROLLER
MMC32

USER MANUAL

S. Kate Feng-Berman, D. Peter Siddons

February, 1993

Research Supported by the
OFFICE OF BASIC ENERGY SCIENCES

-2-

Table of Contents

Chapter I • Introduction ... 3

" Chapter 2 • Basic System Concept .. 5

Chapter 3 " Installation .. 13

Chapter 4 " Local Manual control ... 17

Chapter 5 • Computer-GPIB Command .. 21

Chapter 6 • Examples ... 27

Appendix A • Alphabetic Command Summary

Appendix B • MMC32 Connector Pinouts Table

-3-

CItAPTER l

INTRODUCTION

• 1.1 OVERVIEW

The MMC32 is a versatile stepping motor controller for systems with many motors.

. The system as currently configured can control up to 32 motors, with "all motors capa-

ble of full speed operation concurrently in different pulse modes. Each individual

motor's position can be monitored in an open loop, a closed loop, or an encoded loop,

even when the motor is moving. There are 2 limit switch inputs for each motor, and a

fm-ther input to accept a reference position marker. The motors can be controlled via a

front panel keyboard with display, or by a host computer over an IEEE-488 interface.

Both methods can be used together if required. The details for manual operation are in

Chapter 4, and for remote computer control are in Chapter 5.

The manual operation is controlled by the front panel keypad with interactive menu

display. There is an "emergency stop" key on the front panel keypad to abort the

motion of all motors without losing track of the motors' position. Pleasc reference

Appendix B for MMC32 motor board connector pinouts.

1.2 FEATURES AND SPECIFICATIONS

The MMC32 is a high density, extremely flexible module that controls .incremental

motors and other pulse-driven devices. For each channel, the mmc32 providt:s two

kinds of output-pulse modes and three kinds of input-pulse modes in negative true

• logic at TTL levels. Both input and output modes have the directory, mode and pulse

mode. In the directory mode it supplies(output)/accepts(input) a direction signal (

I=CW[-], 0=CCW[+]) mad a pulse-train output/input. In the pulse mode, it

supplies(output)/ accepts(input) pulses in both CCW(+) and CW(-) directions. The

additional m(xle for input pulses is called enccx.ted mcxtc which accepts an encoder A-

phase input and an encoder B-phase input with lX, 2X, and 4X multiplication. The

following is a list of the MMC32 features and specifications. Please note that the
features marked with a '*' avmbol are NEW FEATURES.

, 1 Optional remote (IEEE-488) and manual control

2 Abort motion capability

,. 3 Maskable Service Request (SRQ) generation

zt Three Limit-switch inputs for each motor: upper,lower, and reference position

5* Thirty-two independent channels, one for each motor has programmable output

and input modes

6* Readout of actual motor's position while motor is moving either from the number

of pulses sent out, or the encoded steps dcpcnding on the programmed input
mode.

4 --

7" Programmable output cn;Kte for direction/pulse ol CCW(+)/CW(-) pulses (section
2.4).

8* Pro_ammable input mode for direction/pulse, CCW(+)/CW(-) pulse, or B/A

phase (section 2.4).

9* Pro_mr'ammable start/peak speed(1 pps to 8191 pps). "

10" Programmable speed multiplication mode from 0.01x mode to 30x mode (section

2.2).

11" Programmable acceleration/deceleration register value (2 to 16383, see section

2.3)

12 Maximum move per instruction is 16,777,215 steps (24 bits resolution)

13 Load/go function for different motors to move concurrently.

14 Single step capability

15 Automatic completion for remaining pulses after abort

16 Error status, position readout

17 Position calibration

18 Inexpensive

Once initialized, the absolute position of each channel is maintained throughout all

operations.

A mo.ve operation may be prematurely terminated b3 either remote control or nmnua]
control.

The maskable SRQ capability is provided for ali channels. If requested, an SRQ is

generated when any motor stops moving for any reason.

The inputs for three limit switches can be provided as either normally closed or nor-

mally open (see Appendix B for details). The activation of a limit switch causes the

selected motor to perform a decelerating stop. The status of the limit switches is read-

able by either the remote or manual method.

The LOAD/GO function provides the capability of moving a selected group of motors

concurrently and repeatedly.

The output status bvte. reports various svstem, errors, includin,,e ,.he 3 limit switch states,

SRQ status, motor busy flag, command error, motor enable/disable, and motion abc)rind ..

state. If the command error bit is set, an error number may be read whicE, indicates the

particular error.

_

CHAPTER 2

BASIC SYSTEM CONCEPTS

" 2.1 GENERAL

The MMC32 executes motor motion in units of motor steps, or pulses. The maximum

• number of steps possible in one motion is 16,777,215 steps (i.e., 24 bits). If a user

tries to move a motor which is busy or requesting service, the motor controller will

wait until that motor finishes moving or finishes serviced to send out the motor motion

command.

2.2 PULSE RATE

The default range of pulse rates is 1 to 8191 pps (pulse per second). The end users

can multiple the range by changing the multiplication mode from 0.01x to 30x. With
the 0.01x mode, the speed range is [0.01, 81.92] pps at an increment of 0.01 pps.

With the 30x mode, the speed range is [300, 2,457,60] pps at an increment of 30 pps.

The details on how to set the multiplication mode is in section 5.3.1. For normal

operation the self starting rate should be smaller than the peak rate (Figure 2-1). If the
user set the starting rate higher than the peak rate, then the motor will not move. The

error bit of the status byte will be on to indicate error, and the error byte will be 19.

2.3 ACCELEI_ATI()N/DECELEI_ATION

,"_ 0" 3

The ran,,e for acceleration/deceleration reeister value is 2 to 1___,-__. Please see Fig'.-."

2-2 for acceleration/deceleration motion. The acceleratio_ and deceleration register

can be set with the GPIB command 'A' in the ,'-'ange of [2,163S31. However, tile

register value does not mean too much for users. Most users prefer to set the number

of pulses for acceleration/deceleration, which can be set through the GPIB command
'W' or from the front panel keypad. The math calculation between the number of

pulses for acceleration/deceleration and the register value is described in the following:

Tclk • reference clock cycle=l/4.9152MHZ -= 0.01)_X)002

RA • Acceleration register

RH • Peak speed

RL • Start speed

" Tsu • Acceleration time in second

PA • Number of pulses during Acceleration/deceleration.

PA= (Rtt*RH - RL*RL)* RA * Tclk

That is to say RA= (RH*RH - RL*RL) * 0.0()(){)()_)2/(pulses #)

(') .

Example Ii' RH is equal to 210A) pps, RI_, is equal to 100, Tclk is equal to 0.00()00()2,

and RA is equal to 1000, we will get the number of steps tbr

acceleration/deceleration to be 440 steps.

The math calculation between the acceleration/deceleration time and the register value
is"

Tsu= (RH- RL)* RA * Tclk

Example

If RH is equal to 2100 pps, RL is equal to 100, Tclk is equal to 0.0000002, and

RA is equal to 1000, we will get the acceleration/deceleration time to be 0.4
second.

For triangle operation, the total number of pulses must be smaller than two times the

acceleration/deceleration pulse number. The hardware limit switch input can be used to

trigger the deceleration.

2.4 FLAG BYTE AND SERIAL POLl., BYTE

The MMC32" outputs from connector P3 of the motor board for each individual motor

could be direction/pulse, which is called directory mode, or CCW(+)/CW(-) pulse,

which is called pulse mode. The MMC32 inputs to connector P4 of the motor board

for each individual motor could be direction/pulse, CCW(+)/CW(-) pulse, or B/A phase

(encoded mode). The conr_ector pinouts of the motor board art: &:scribed in API'EN-

DIX B in details. Those options are set by the flag byte which can be set via tile front

panel keypad, or the GPIB interface (section 5.3.1 'F' command), llm flag byte indi-

cates the last motion corr2mand, connector P3 output mode, connector P4 input mode,

and SRQ mask. The following is the table for the flag byte definition"

,,,

bit # Definition
.........

0,1 Operation command code

2,3,4 P4 input mode - step/dir, +/- pulse, open, A/B phase
....... .,

5 not used

6 SRQ on - 0: No/l" Yes
, . q.

7 P3 output mode - 0: step,dir (default)/l" CW(-) pulse, CCW(+) pulse
,,,

_

The P4 input mode which is decided by bits 2,3,4 is the input to tile P4 connector of

the motor lm'ml (described in APPENDIX B). The following table is tile definitions

for bits 2,3,4.

bit 4 bit 3 bit 2 Command Description

0 0 0 steP/direction (default)
......

" 0 0 1 open (no input)

0 1 0 " CCW(+) pulse/eW(-) pulse
......

1 0 0 quadrature input A/B phase, 1X multiplication

1 1 0 quadrature input A/B phase, 2X _-nul@iication

1 1 1" quadrature input A/B phase_ 4Xmul@lication
,,

The operation command code is the code of last motion, excluding the motor stop

command. Hence, bits 0,1 are READ ONLY. The following table is the definitions for

bits 0,1.

bit 1 bit 0 Command Description
-- ,

0 0 Acceleration/deceleration niove

0 1 Stop command
, ,

I 0 Move until the +/- limit switch

1 1 Move until the home limit switch

**** A'TTENTION To Programmer ****

The default for the SRQ flag is off in which case the users will wait pol-

ling the output status byte (section 2.5) until it indicates the motor is not

busy anymore (bit 2 of tile status byte). You stlould set tile SRQ flag on

(see section 5.3 I), if you do not want to wait until motors finish movin,,

Usually, you need the SRQ ria,,e on for an interrupt driven, real time con-

trol software so that the user can do something else before a motor finishes

moving. If the SRQ flag is set on one motor, an interrupt handling sub-

routine should be written so that the program will jump to the interrupt

- handler right after the motor finishing moving. In your interrupt handler

you need to do a SERIAL POLL to clear the SR() signal on the controller

bus. The sequence for serial polling is described in the following"

0. Enable Attention control signal of access board.
1. Address MMC32 to be a talker (The default address is set at 6)

2. Send listen address of the access board (MLA: my listen address)

3. Send Serial Poll Enable (SPE)

4. Disable Attention control signal of access board

5. Read response from the device (MMC32).

6. Untalk (UN'I) and Unlisten (UNI,).

7. Serial Poll Disable (SPD)

The rtzsponse you read from the serial poll is a byte with bit 6 indicating

SRQ on and bits 0-5 indicating which motor needs SRQ.

If your controller software drivers have a function to do the above

sequence for the serial poll byte, then you only have to call the function to

return the serial poll byte. On example is the GPIB-PC turbo Pascal

which uses the function "ibrsp" to return serial poll byte. Please see sec-
tion 6.1.1 for a GPIB-PC turbo Pascal example on SRQ.

2.5 OUTPUT STATIJS BYTE

The output status byte is read only. The following table shows the status byte
definition:

m

bit # Definition

. 0 CCW(+) Limit switch 'encountered- 0/1. No/Yes
,, --

1 CW(-) limit switch encountered - 0/1" No/Yes

2 Motor busy 0il" No/Yes

Command Error - 0/1" No/Yes

- 4 Abort motion by deceleration stop-0/1" No/Yes

5 Service Requested-0/1: No/Yes
• L.

6 Motor off (Motor Disabled)"- 0/li No/Yes

7 Home position Switch activated- 0/1" No/Yes
.....

,k** Caution To Programmer ****

If bit 3 is 1, it means the last issued comrnand failed. To find out the error

message, the user should use 'IE' to interrogate the error number. The

corresponding error message to each error number is described in the next
section.

2.6 ERROR NIESSAGES

If bit 3 of output status byte is 1, then you can use the computer command 'IF':. tc) titld

out the error message. Explanations of the integer error numbers follow.

1 motor tends to move over Software CCW(+) limit

2 motor tends to move over Software CW(-) limit

3 motor needs SRQ from last move

4 motor is busy

5 motor is OFF (disabled)

6 motor is at Hard,axe CCW(+) limit

7 motor is at Hardware CW(-) limit

8 maximum number of steps in a motion is 16,777,216

9 Invalid motor number

10 Motor is already at home position

l 1 IEEE-488 invalid command

12 IEEI:;-488 invalid _nterrogative command

13 Invalid display enable/disable command

14 Invalid self starting speed set

15 Invalid peak speed set
,b

16 Invalid multiplication mode

17 Invalid acc rate set

18 Invalid parameters in LOAD/GO buffer

19 Maximum speed is set lower than minimum speed.

2.7 BUFFER CAPACITY

MMC32 uses first-in-first-out serial rotating buffers (256 bytes) for GPIB commands,

GPIB data, SRQ signal, and front panel keypad commands. Since more than one

motor can be moving at one time, the SRQ on end-of-motion is also buffered, and

multiple SRQs will be generated: one for each motor which was moved.

2.8 CURRENT MEASUREMENT

The following is the measurements of the currents on the motor controller:

1 cpu induces 0.66 ampers of current.

1 MOTOR board induces 1.2 ampers of current.

2 MOTOR boards induce 2.16 ampers of current.

1 cpu + 2 MOTOR boards induce 2.62 ampers of current.

-13-

CHAPTER 3

INSTALLATION

d

3.I INSTALLATION GUIDE

All the motor controllers come with one CPU board marked with 'NSLS-MC32A', and

" the MOTOR boards marked with 'NSLS-MC32B'. Facing the back panel of the motor

controller, on the MOTOR board, from left to right you will see the connector for

pulses output (P3), connector for pulses input (P4), connector for CW/CCW limit
switches (P5) and connector for home limit switches and motor on/off control (P6).
To make sure the connector to the socket on the MOTOR board match with each

other, an arrow is marked on each connector and socket indicating pin number one.

The pins on the bottom layer are even number pins (2,4,6), and the pins on the top
layer are odd number pins (1,3,5). In MMC32, the connectors for step/direction

outputs, step/direction input, and CW/CCW limit switches are E500 (a commonly
used motor controller) compatible. Please reference APPENDIX B the MOTOR

boards' connector pinouLs.

Figure 3-1 is the layout of a CPU board, and figure 3-2 is the layout of a MOTOR

board. On the CPU board, the jumpers-setting on Jl and position 6 to 8 of SW2

decide the number of MOTOR boards being used. Besides, the position 1 (least

significant bit) to 5 (most significant bit) of SW2 decides the GPIB address of the

motor controller (default is 6). The following table is tim definition of the po._itiol_ 6
tO 8 of SW2.

pos 8 pos 7 pos 6 number Of MOTOR boards

0 0 0 1 MOTOR board

0 1 0 2 MOTOR boards

1 0 1 3 MOTOR boards
.........

1 1 1 4 MOTOR boards

If you are using only one MOTOR board, please do not jumper pins 3,4 of J l but the

, rest of the pins, and the positions 6,7 and 8 of SW2 are all off. If you are using twc)

MOTOR boards, please do not jumper pins 3,4 and pins 5,6 of J1, and the positions

6,7 and 8 of SW2 are off, on off respectively. If vou am usin,, three MOTOR boards

" you only have to jumper pins 1,2 and pins 9,10 of J1 respectively, and the p_)sitions

6,7 and 8 of SW2 are on,on,off respectively. If you are using four MOTOR boards,

you only have to jumper pins 1,2, and the positions 6,7 and 8 of SW2 are all on.

The jumper J2 of the CPU board must be jumpcred at pins 3,4.

The jumper J3 on the CPU board is configured for tw() different kinds of U l2 chil)s. If

U12 chip is a nonnal RAM (usually SONY 5864), then J3 sh_:uld t)c juTnt)crcd on

: position 1,2, and 5,6, and 11,12. In the future, ii U12 chip is tested succes._iutly ,,vitl_

-14-

static RAM with on-chip battery, then J3 should be jumpered on position 3,4, and 7,8,
and 9,10.

The jumper J4 is configured for two different kinds of ROM chips. J4 should be jum-

pered on position 1,2 if two of 16K ROM chips (27128) sitting in chip U14, U15

respectivel). Otherwise, J4 should be jumpered on position 3,4 for one 32K ROM

chip on U15.

The number of MOTOR boards is one for eight-motors-control, two for sixteen-

motors-control, three for twenty-four-motors-control, and four for thirty-motors-control.

By jumpering P5 on the MOTOR board, you can set the motor number for the board.

For example, if you jumper pins 7,8 and pins 15,16, the board controls motor 0 to

motor 7. If you jumper pins 5,6 and pins 13,14, the board controls motor 8 to motor

15. If you jumper pins 3,4 and pins 11,12, the board controls motor 16 to motor 23. If

you jumper pins 1,2 and pins 9,10, the board controls motor 24 to motor 31. Please

reference Figure 3-2.

..." -r _t_i'' <'"

17-

CItAPTER 4

LOCAL MANUAL CONTROL

4.1 OVERVIEW

The Local Manual Control is performed using the MMC32 front panel keypad and

display (See Figure 4-1). There are four rows available on the front panel display.

Each row displays different kinds of information:

Row 1" IJlstruction

Row 2" Response Message

Row 3" Keyin Character + Error Message
Row 4: Menu

4.2 MENU FLOWCHART

The MMC32 manual operation is very user friendly because of the interactive informa-

tion on the MMC32 front panel display. The front Panel Menu is designed like a tree

structure starting from ROOT. The Root is the main menu which contains 4 functions:

(1) Setup (2) Select Active Motor Number (3) Motor Motion (4) Display motor status.

The menu flowchart is in Figure 4-2.

4.3 INI)IVIDUAL FUNCTI()N ilIGilI,I(;ilT

The manual and computer controls have almost the same functions except the follow-

ing.

4.3.1 SETUP

In the setup menu, you can set up different parameters or just l_x)k at the parameters

by choosing the next parameter function key without inputting any number for tile last

parameter function key. If the setup parameter is out of the valid range, the error mes-

sage will appear on row 3 of the display.

" 4.3.2 DEI_ETE NUMBER KEY

On the front panel keypad, the key 'DELETE' is used to delete the last typed-in digit

(-,0 ,9). You can also use this key to cancel the current function pr(_gress when you

are requested to input a number. For example, if you type the 'LmtMv' (limit move)

function key accidentally, when the direction question comes on (()/1), you can type

the 'DELETE' key to cancel this function before typing in any. di<,it._Then, the mot()r

will notmove, the original menu remains and an error message 'Invalid func. key <- '

appear.

4.3.3 !.O A DI(] 1)

-18-

In the 'LOAD' function you can load any of the 32 motors' motion parameters

sequentially for 36 loops (you can repeat the same motor), but you have to end the

loading sequence by inputting 255 for motor number selection, ff any of the loaded

motors tends to move beyond its software limit setting, the 'LOAD' function is ended.

Then, the. execution function 'GoForlt' will not do anything. You can repeat the

'GoForIt' command without changing the 'LOAD' parameters.

4.3.4 EMERGENCY STOP

This is a convenient key to stop 'all motors' motion. It is actually a smooth stop (

decelerating stop) without losing track of the motors' position.

4.3.5 Flush input buffer

This key marked with 'FLB' is a key to flush the GPIB command buffer in case the
GPIB commands time out due to GPIB communication hardware failure or I/O proto-

col failure.

• 0 0 0 0

0

.tj

-_ A A A A

- 21 -

CHAPTER 5

COMPUTER-GPIB COMMAND

5.1 OVERVIEW

This chapter describes the computer commands sent through the IEEE-4888 interface

to the MMC32. All commands can be either lower-case or upper-case letters.

5.2 COMPUTER COMMAND CONVENTIONS and DEFINITIONS

5.2.1 DELIMITER

Ali individual commands end in a delimiter that signifies that the command is com-

pleted. A delimiter serves the same function as the space between words in a sentence.

The delimiter, which is part of the command, is a space character or a <LF> (i.e.
Char(10) for Line Feed)

5.2.2 INDIVIDUAL COMMANDS

An individual MMC32 command controls or reads a single parameter, function, or

action such as acceleration, velocity, position, load, go, etc. There are two classes of
individual commands, INTERROGATIVE and EXECUTIVE.

I1 TERROGA fIVE COMMANDS: These commands read a single paranl

, eter, the result of a function, or the status of an action. They are executed

immediately on receipt and the requested data will be placed in the

MMC32 output buffer (256 bytes) sequentially waiting for the user tc)

fetch the requested data. Hence, the user must fetch the requested data

before he sends the next interrogative command. All interrogative c_m-

mands' initial is 'I' meaning Interrogative.

EXECUTIVE COMMANDS: These commands modify a single parameter,

execute a function, or initiate an action. On receipt by MMCo_., they are

stored in the MMC32 input buffer(256 bytes) sequentially and executed by
° M NIC32 in the order d_ev are sent.

• Individual commands vaQ' in length, and consist of one or more letters with a delim-
iter. Each command is entered as a character/delimiter combination. So,he commands

include a sign (+/-) to denote directicm of motion. The number of characters used

depends on the type of comnland entered.

When two or more individual commands are entered on the same line, they should be

separated by spaces. Please see Chapter 6 for command examples.

22-

5.3 COMMAND GROUPS ANl) DESCRIIq'ION

The basic MMC32 individual commands can be divided into four categories: Parame-

ters Setup commands; Data Interrogating commands; Motor Motion commands; and
Execution commands. These commands are discussed in section 5.3.1 through section

5.3.4. An alphabetical command summary is included in Appendix A.

5.3.1 PARAMETERS SETUP COMMANDS

These commands set up parameters to control motor motion, calibrate motor position,

enable/disable front panel control, and so on. If the selected motor is" busy, the motor

controller will wait until that motor finishes moving to change its parameters.

Annnn Acceleration/deceleration register value setup on the active motor

-- The range of choices is [2, 16383]

Al00 (set acceleration register value to be 100)

AT00 (set acceleration register value to be 700)

B Flush the GPIB and keypad input buffer in case of GPIB time

out or protocol failure

DK Disable local mode (the front panel keypad control), except the

key for emergency stop and tlm kt:}, tc) cnablt./disablc fr{_nt Imn,'l
control. Note: The remote mtxtc (computer control) is al,.vay,_

enabled. By default, the MMC32 local mode is enabled.

E'K Enable local mode (the front panel keypad cc)ntrol- default).

Fnnn Flag setup on the active motc)r -- Please see section 2.4 l'_)r ft:lt-'
bits definition. The bits 0,1 of the ria,, bvte are not proeramm-

able.

F16 (P4 input is quadrature input A/B phase IX, P3 output is

step/direction, Disable S RQ)

F64 (Enable SRQ)

Nnnn Motor Number -- Select the active n_tm)r 11tltllbCl'. Ali succeed-

ing commands relate to this selected active motor before the next
'N' command is executed. Valid motor numbers are () to 31.

N2 (,select motor 2 to be the active motor number)

NO (select motor 0 to be thc active motor number)

- 23 -

P+/-nnnnnnnn Calibrate the active motor position (32 bits lon,,)_ in motor steps.

PO (sets current position to be 0)

, Unnnn Start velocity setup on the active motor-- The default range of

choices is [1, 8191] pulses per second.

. U300 (set start speed to be 300 pulse/sec)

U245 (set start speed to be the 245 pps)

Vnnnn Peak Velocity setup on the active motor -- The default range of

choices is [1, 8191] pulses per second.

V2000 (set peak velocity to be 2000 pulse/sec)

V3125 (set peak velocity to be 3125 pps)

Wnnnn The number of pulses for accelerationMeceleration

WIO0 (set number of pulses during acceleration/deceleration to

be IIN))

Zffff Setup the active motor speed multiplication mode from 0.()lx tc_

30x. Note, the input is a ttoating number from 0.01 to 30.

Z0.01 (set speed range tc) bc [().01, 81.92] pps at arl incrcz_cr;_

: of 0.01 pps)

Z30 (set speed range to be [30, 24573f)] pps at an irlcrcmcnt ()f

30 pps)

5.3.2 DATA INTERROGATING COMMANI)S

These commands request the setup value or read the motor status. Ali the intcrrc)g:_t-
in<, commands start with an 'I' followed by a sinele character dclinine which data i,;

requested. After the command is issued, you should fetch the interrogated data. The

MMC32 will send LF (#1()) as end of data (EOD). These commands are"

IA Interrogate active mc)tor Acceleration/deceleration value.

" lE [ntem)tzate command Error number mcss'l,,e

IIz Interrogate the active motor Fla,, settin<,s. Bits (),1 -_ ,,ive the

operati_m code of last motion, excluding the mcm)r stc_p cc_l-

mand, arid bit 6 is the SRQ mask bit. The ria,, byte dclinitic)n iN
described in section 2.6.

- 24 -

IN Interrogate the active motor Number.

IO Interrogate the active motor Output Status. The response is an

ASCII string representing a single byte of data. The correspond-
I ,.

ing bit definition is discussed in section 2.4.

lP Interrogate the active motor current position in steps.

lR Interrogate the remaining number of steps from last motion of
the active motor. If it is -16777216 (i.e. -$1000000 in hex), then

it means the last motion command was 'move to limit switch'

(e.x. T0,T1, or H) and it was terminated by a 'stop command'
before it reached the limit. Under this circumstance, MMC32

does not know the remaining number of steps, so it sends a

number - 16777216 (i.e. -$1 (X)(X)(X)in hex) to warn the user.

IU Interrogate the active motor start velocity.

IV Interrogate the active motor peak Velocity.

IX Interrogate the active motor software CW(-) limit position.

IY Interrogate the active motor software CCW(+) limit position.

IZ Interrogate the active motor seek-home vekx:ity.

5.3.3 MOTOR MOTION COMMANDS

The motor motion commands are:

CO Complete ALI_, MOTORS which have a non-zero remaining

number of steps from the last move. If the last move command
is 'move to limit switch' and not finished because of a stop com-

mand, then the motor will continue moving until it encounters
the limit. User should be aware of which motors have uncom-

pleted motions from the last move before he sends this con>
mand.

C1 Complete the ACTIVE MOTOR motion ii it has a non-zero

remaining number of steps fron_ the last move. If the last move

command was 'move to limit switch' and unfinished because of

a stop conunand, then the motor will continue moving until it

25-

encounters the limit.

H Move the active motor to the home position (Hardware base

point).

M+/-nnnnnnnn Move the active motor to position nnnnnnnn steps (Absolute

move).

M3000 (move to position 3000)

M-1000 (move to position -1000)

R+/-nnnnnnnn Move the active motor nnnnnnnn steps from the current position

(Relative move).

R3000 (move 3000 steps from current position)

R-1000 (move -1000 steps from current position)

S 1 Move the active motor one step in the CCW(+) direction.

SO Move the active motor one step in the CW(-) direction.

T1 Move the active motor to the hardware CCW(+) limit.

TO Move the active motor to the hardware CW(-) limit.

5.3.4 OTHER EXECUTION COMMANDS

The remaining commands are a) LOAD/GO, and b) Kill motion.

a) LOAD/GO

The LOAD/GO function is used for the 'LOAD AND GO' option, Pric)r tc) any m_)ve,

the microprocessor in the MMC32 must calculate a number of move parameters. Irl

some applications this delay in calculation may be excessive. The delay between the

sending of the motion command and the actual motor motion can be reduced hv the

o use of the 'LOAD AND GO' option, especially if you want to move mc_re ttian one

motor at the same time. You can load any of the 32 motors' motion paramemrs

sequentially ber'ore you exectite the motion using the 'GO' function.

L Load move command parameters, which include a space, the

motor number immediately followed by an 'r' (relative nu)ve) c)r

an 'm'(absolute move), a space, and then the number of steps.

Use the same format for the next motor n_otion paran_etcrs until

you terminate it with 255 (EOM : End Of g'l_tc_r). If any llicm_r

- 26 -

is commanded to move beyond the limit settings, the 'G' (exe-

cute) command will not do anything.

L _" leAD0 lm -3000 255 (motor 0 moves 1000 steps from

current position, and motor 1 moves to absolute position -3000

steps)

L 6r -700 3m 400 Or 1000 255 (motor 6 moves -700 steps from

current position, motor 3 moves to absolute position 400 steps,

and motcr 0 moves 1000 steps from current position)

G Execute the last loaded motion parameters in the LOAD buffer.

lt is not effective when previous LOAD command tries to move

any motor beyond its own limit setting and the commands will

cause the previous motion to be re-executed. However, the user

has to be careful not to move any motor beyond the limit

switches in repeating the 'G' command, because doing so does
not check the status of the motors' limit switch states before

moving.Hence, repeating 'G' command without 'LOAD' com-

mend repeated beforehand is not recommended, lt is used only

for keyboard mode convenience.

b) KII.I, MOTION

K Decelerating s:op to ab_)n the motion of all motors withc'_ l_s--

ing wack of the motors' positi()n, lt is called a soft abort.

k (abor_ the motion of ali motors softly)

Q Stop immediately the mo_]on of ali motors without losing track

of the motors' position, lt is ca]led a hard abort.

q (abort the motion of ali motors immediately)

' vn ,.

- 27 -

CHAPTER 6

EXAMPLES

" 6.1 TURBO PASCAL 3.0 ON DOS-PC

Following is an example for a PC-GPIB interface to the MMC32 using the TURBO

. PASCAl., 3.0 language on a PC running under DOS. Comments are bracketed by { }.

6.1.1 SRQ handling

The following program moves motors 0,1 at ",he same time and finds out which motors

finished moving.

Program MMC32Test;

D ata,Line,Ke yin :string[80];

i,x,Result,IeeelD,Bcount,v:integer,

begin

{ find out GPIB address ID }

IeeelD:=IbFind('DEV6');

v:=XEOS+REOS+LF;

IbEos(IeeelD,v);

{ set motor 0,1 SP, Q on }

keyin:='nO F64 nl F64 ';

Bcount:=kength(keyin);

Se nd(Ieee lD ,keyi n,Bcou ntj;

{ load motor 0,1 motion parameters }

{ motor 1 moves 3000 steps in (+) direction. }

{ motor 0 moves -3000 steps in (-) direction. }

keyin:='L lr 3000 Or -30(X) 255 ';

Bcou nt: =ken gth (keyi n);

Send(IeeeII),keyin,Bcount);

Writeln('Load command is sent out'I;

{ After loading moving parameters, execute GO _otnmand }
o.

keyin:='G ':

Bcount:=Length(keyin);

• Send(IeeelD,keyin,Bcount),

Walteln('Go command is sent out');

for i:=l to 2 do EndMove/IceelD);
end.

procedure EndM_)ve(Ieeci D :integer);

var v,x:integer:

begin

-

- 28 -

{ put motor in Serial Poll Active state. }
{ ff bit 6 (SRQ bit) is on, then you can check bit 0-5 }

to find out which motor finished moving. }
v:=0;

While ((v and 64)--0) do ibrsp(IeeeID,v); .
x:=(v and 63);

Writeln('Motor ',x,' finished moving');
end;

{ Subroutine to send data to motor controller. -......... }

procedure Send(Dev:integer, Message:DataString; Bcnt:integer);

var I:integer,

begin

for I := 1 to Bcnt do ibbuf[I] := Message[l];

IB WRT(Dev,ibbuf, Bcnt);

if ibsta < 0 then Writeln('IEEE Write error from Send');

end;

6.2 C on UNIX-PC286

Following is an example for a CAMAC-GPIB interface to the MMC32 using the C

language on a PC running under UNIX. Comments are bracketed by/* */.

6.2.1 Sul)rouline lo send command string

The followine subroutine sends the command string to the motor controller through the

CAMAC-GP,_3 interface (model 3388-G1A).

smc_send(string)
char *string;

{
int i,q2;

long status"

ff=26; aaf); camdata=O; /* attention */

do { camac(nn,aa,ff,&qq,&xx,&camdata); } while (qq=_));

ff=16; aa--O; camdata=58; /* listen */ "

do { camac(nn.aa,ff,&qq,&xx,&camdata); } while (qq==O);
ff=16; camdata=58; /* controller talk */

do { camac(nn,aa,ff,&qq,&xx,&camdata); } while (qq=--O);

ff=24; camdata--O; /* controlle.r talk */

do { camac(nn,aa,ff,&qq,&xx,&camdata); } while (qq=_-O);

for (i=O; i<strlen(string); i++) {

ff=16; aaf); camdata=string[i]; /* send byte */

do { ca:n:,.c!:lr_.aa.ff,&qq,&xx,,_:canutam);

29-

if (qq=-----O){

do {carnac(nn,aa, l,&q2,&xx,&status);} while (q2==O);

if (status&Ox20) return(O); }

} while (qq--==O);

retum(1)i"

}

APi'ENI)IX A

ALPttABETICAL COMMAND SUMMARY

Command Description l-'age

Annnn setup Acceleration/deceleration register value 22 .,.
B flush the GPIB and keypad input buffer 22 "

C0 Complete ali motors' remaining steps from last move 24

C1 Complete the' active motor's remaining steps from last move 24 .
DK Disable keyboard mode except emergency stop and key mask 22

EK Enable keyboard (local) mode 22

Fnnn setup Flag status 22
G Go (start executing move for load/go) 26

H move to Home position 25

lA Interrogate Acceleration/deceleration value 23

--lE Interrogate command Error message number 23

IF Interrogat e motor Flag status 23 _
IN Interrogate active motor Number 24

IO Interrogate active motor Output status 24

IP Interrogate active motor current Position 24
IR. Interrogate active motor rcmainin,'..:,steps 24

IU Interrogate active motor start velocity 24
- IV Interrogate active motor peak Velocity 24

IX Interrogate active motor CW (-) limit 24
IY Interrogate active motor CCW (+)limit 24

IZ Interrogate active motor go-h,_r_lc volt,city 24...........

K Kill motor motion softly 26

L Load motor move parameters 25 _

-M+/-nrannnnnn Move to position +/-nnnnnnnn steps 25
Nnnn select active motor Number 22

P+/-nnnnnnnn calibrate Position (32 bits hing) _ 23

(.-) Kill motor motion immediately 20
R+/-nnnnnnnn move +/-nnnnnnnn steps (Relative mc>rc) 23.......

Sl Sin,,le step move in CCW I.,_) dirccti_3n 25
*-- 25

Sl) single step move in CW (-) directk_n
T I move to hardware CCW (+) linlit 25

T() move to hardware CW (-) limit 25

Unnr_ setup start velocity 23 •
Vnnn setup peak velocity 23

Wrlnnn set the number of pulses I{)r ,,\cccler:ltic_n/dccelcratior_ --5:_
Xfff set the output pulse rate t_lt_lt_plicati_)n value .[- __ •

APPENDI .X B

MMC32 motor boards' CONNECTON PINOUTS TABLE

P3 1 GROUND
2 GROUND

" 3 MOTOR 0 DIRECTION OUTPUT or CCW(+) PULSE OUTPUT
4 MOTOR 0 PULSE OUTPUT or CW(-) PULSE OUTPUT
5 MOTOR 1 DIRECTION OUTPUT or CCW(+) PULSE OUTPUT

" 6 MOTOR 1 PULSE OUTPUT or CW(-) PULSE OUTPUT
7 MOTOR 2 DIRECTION OUTPUT or CCW(+) PULSE OUTPUT
8 MOTOR 2 PULSE OUTPUT or CW(-) PULSE OUTPUT
9 MOTOR 3 DIRECTION OUTPUT or CCW(+) PULSE OUTPUT
10 MOTOR 3 PULSE OUTPUT or CW(-) PULSE OUTPUT
11 MOTOR 4 DIRECTION OUTPUT or CCW(+) PULSE OUTPUT
12 MOTOR 4 PULSE OUTPUT or CW(-) PULSE OUTPUT
13 MOTOR 5 DIRECTION OUTPUT or CCW(+) PULSE OUTPUT
14 MOTOR 5 PULSE OUTPUT or CW(-) PULSE OUTPUT
15 MOTOR 6 DIRECTION OUTPUT or CCW(+) PULSE OUTPUT
16 MOTOR 6 PULSE OUTPUT or CW(-) PULSE OUTPUT
17 MOTOR 7 DIRECI'ION OUTPUT or CCW(+) PULSE OUTPUT
18 MOTOR 7 PULSE OUTPUT or CW(-) PULSE OUTPUT
19 +5 VOLTS
20 +5 VOLTS

Note: In directory mode, the output is direction/pulse, and in the pulse mode, the out-

put is CCW(+)/CW(-).

P4 1 GROUND
2 GROUND
3 MOTOR 0 DIRECTION INPUT or CCW(+) PULSE INPUT or B phase INPUT
4 MOTOR 0 PULSE INPUT or CW(-) PULSE INPUT or A phase INPUT
5 MOTOR 1 DIRECTION INPUT or CCW(+) PULSE INPUT or B phase INPUT
6 MOTOR 1 PULSE INPUT or CW(-) PULSE INPUT or A phase INPUT
7 MOTOR 2 DIRECTION INPUT or CCW(+) PULSE INPUT or B phase INPUT
g MOTOR 2 PUI.SE INPUT or CW(-) PULSE INPUT or A phase INPUT
9 MOTOR 3 DIRECTION INPUT or CCW(+) PULSE INPUT or t3 phase INPUT
10 MOTOR 3 PULSE INPUT or CW(-) PULSE INPUT or A phase INPUT
11 bIOTOR 4 DIRECTION INPUT or CCW(+) PULSE INPUT or B phase INPUT
12 MOTOR 4 PULSE INPUT or CW(-) PULSE INPUT or A phase INPUT

,, 13 MO'FOR 5 DIRECTION INPUT or CCW(+) PULSE INPUT or B phase INPUT
14 MOTOR 5 PULSE INPUT or CW(-) PULSE INPUT or A phase INPUT
15 MOTOR 6 DIRECTION INPUT or CCW(+) PULSE INPUT or B phase INI'U'I"

, 16 .MOT()R ¢_PULSE INPUT or CW(-) PULSE INPUT or A phase INPU'F
17 MOTOR 7 DIRECTION INPUT or CCWf+) PULSE INPUT or B phase INPUT
18 MOTOR 7 PULSE INPUT or CW(-) PULSE INPUT or A phase INPUT
19 +5 VOI.TS
20 +5 VOLI'S

Note: In the directory nl_xlc, the input is direction/pulse, in the pul:_e rnc_dc, the input
is CCW(-v#C'W(-), aild in the enccxtcd nuxle, tim input is P,/A phase.

-2-

P5 1 GROUND
2 GROUND
3 MOTOR 0 CCW (+) LIMIT SWITCH INPUT
4 MOTOR 0 CW (-) LIMIT SWITCH INPUT
5 MOTOR 1 CCW (+) LIMIT SWITCH INPUT
6 MOTOR 1 CW (-) LIMIT SWITCH INPUT
7 MOTOR 2 CCW (+) LIMIT SWITCH INPUT
8 MOTOR 2 CW (-) LIMIT SWITCH INPUT
9 MOTOR 3 CCW (+) LIMIT SWITCH INPUT
10 MOTOR 3 CW (-) LIMIT SWITCH INPUT
11 MOTOR 4 CCW (+) LIMIT SW'ITCH INPUT
12 MOTOR 4 CW (-) LIMIT SWITCH INPUT
13 MOTOR 5 CCW (+) LIMIT SWITCH INPUT
14 MOTOR 5 CW (-) LIMIT SWITCH INPUT
15 MOTOR 6 CCW (+) LIMIT SWITCH INPUT
16 MOTOR 6 CW (-) LIMIT SWITCH INPUT
17 MOTOR 7 CCW (+) LIMIT SWITCH INPUT
18 MOTOR 7 CW (-) LIMIT SWITCH INPUT
19 +5 VOLTS
20 +5 VOLTS

P6 1 GROUND
2 GROUND
3 MOTOR 00N/OIT SWITCH INPUT
4 MOTOR 0 ttONtE l_IMIl SWITCIt INI'UI"
5 MOTOR 1 ON/OVF SWITCH INPUT
6 MOTOR 1 HOME LIMIT SWITCI-t INPUT
7 MOTOR 2 ON/OIW SWITCH INPUT
8 MOTOR 2 HOME LIMIT SWITCH INPUT
9 MOTOR 3 ON/OFF SWITCH INPUT
10 MOTOR 3 HOME LIMIT SWITCH INPUT
11 MOTOR 4 ON/OFF SWITCtt INPUT
12 MOTOR 4 HOME LIMIT SWlTCIt INPUT
13 MOTOR 5 ON/OFF SWITCH INPUT
14 MOTOR 5 HOME LIMIT SWITCH INPUT
15 MOTOR 6 ON/OFF SWITCt{ INPUT
16 MOTOR 6 HOME LINIIT SWITCH INPUT
17 MOTOR 70N/OI--F SWITCIt INPUT .
18 MOTOR "7HOME LIMI'F SWITCH INPUT
19 +5 VOLTS
20 +5 VOLTS

- 3 -

*********** Caution to User ***********

Please note that the P3, P4, and P5 pinouts are E500 compatible. Ali the

signals are in negative true logic at TTL levels. Facing the back panel,
you will see connector P3 (labeled P3 on the board), P4, P5, P6 apearing

, from left to right. The pin number one on ali connectors is marked with
an arrow. The pins on the top layer are odd number pins (1,3,5), and
the ones on the bottom layer are even number pins (2,4,6).

" If the chip U20 and the chip U21 on your PPMC boards are 74LS240
instead of 74LS244, then the limit switch is activated if the input signal is

logical high (5 volts). That means if connector P4 is left float, or the input
signal to the connector P4 on any pin 3 to piv 18 is high, then the limit
switch is going to be activated, and you can no. move the motor. If you do
not have any hardware limit switch installed, then you can not move any
motor at ali unless you have a shorting plug to connect the limit-switch

pins to GROUND (pin number one and two). If you want the logic on the
limit switches reversed, then you can exchang chips U20 and U21 with
74LS244.

