: \\/// L // ‘0
& W '
wr N o / / 435

Q Yo W Q) Associati i

N\ YN\ O oo e L% e,

\\// . \\\\\i\\\b// snvers;;;??é&;y;zgd2091o //&e\y\\ <'£i; 45%‘;/ \ ///\ij/\\
7 & N/ o

Centimeter
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 mm
|||u||||1|m||m||u||I|||||unluulunllmllmlnnlnuln|||||||I||u|1|11l|||||||||In|||1|uluullmhmlnuhmhmlunluuluul
II|||‘|IIllll!I||IIllllII]IllIllllllillllllll[IIII‘IIII]IIII'
1 2 3 4 5

Inches 10 e lzs

= 1%

= 22

g w R

== | B

L2 [lis e

24 A
AN c»
5 I /\\/4\\\\ //\\\\\
\\\ & 6 //\
ac\// 4 // Q
KA \ /// MANUFACTURED TO AIIM STANDARDS 4 %>*§{%*‘

/// BY APPLIED IMAGE. INC.
4 o






BNL-48S62

MULTI MOTOR CONTROLLER
MMC32

USER MANUAL

S. Kate Feng-Berman, D. Peter Siddons

February, 1993

Research Supported by the
OFFICE OF BASIC ENERGY SCIENCES

INFORMAL REPORT



9]

Table of Contents

Chapter 1 @ INTOQUCHON ..ot e e e ee s ae e s e e emee e e
Chapter 2 : Basic System COMCEPL ..c.cciiiiiiiiaiiecmiecieeseae st eeseeares s emeessneseaees e ceneeas
Chapter 3 : INStAllAtON ..ottt te st et et 13
Chapter 4 : Local Manual CONMOL ....cui ittt necenene et eecnee e enaaseneeasseeneecenes 17
Chapter 5 : Computer-GPIB Command .......cicceeiiiieerieneieseeciieerr e eaeeescaa e e e 21
Chapter 6 1 EXAMPLES woueiiieiei ettt nere s see e erae s e sneeeeme st et se e saase st s e e s seeen 27

Appendix A : Alphabetic Command Summary
Appendix B : MMC32 Connector Pinouts Table



Sy
CHAPTER 1
INTRODUCTION

1.1 OVERVIEW

The MMC32 is a versatile stepping motor controller for systems with many motors.
The system as currently configured can control up to 32 motors, with all motors capa-
ble of full speed operation concurrently in different pulse modes. Each individual
motor’s position can be monitored in an open loop, a closed loop, or an encoded loop,
even when the motor is moving. There are 2 limit switch inputs for each motor, and a
further input to accept a reference position marker. The motors can be controlled via a
front panel keyboard with display, or by a host computer over an [EEE-488 interface.
Both methods can be used together if required. The details for manual operation are in
Chapter 4, and for remote computer control are in Chapter 5.

The manual operation is controlled by the front panel keypad with interactive menu
display. There is an "emergency stop" key on the front panel keypad to abort the
motion of all motors without losing tack of the motors’ position. Please reference
Appendix B for MMC32 motor board connector pinouts.

1.2 FEATURES AND SPECIFICATIONS

The MMC32 is a high density, extremely flexible module that controls incremental
motors and other pulse-driven devices. For each channel, the mmc32 provides two
kinds of output-pulse modes and three kinds of input-pulse modes in negative true
logic at TTL levels. Both input and output modes have the directory mode and pulse
mode. In the directory mode it supplies(output)/accepts(input) a direction signal (
1=CWI[-], 0=CCWI[+]) and a pulse-train output/input. In the pulse mode, it
supplies(output)/ accepts(input) pulses in both CCW(+) and CW(-) directions. The
additional mode for input pulses is called encoded mode which accepts an encoder A-
phase input and an encoder B-phase input with 1X, 2X, and 4X multiplication. The
following is a list of the MMC32 features and specifications. Please note that the
features marked with a "*” symbol are NEW FEATURES.

Optional remote (IEEE-488) and manual control
Abort motion capability

Maskable Service Request (SRQ) generation

AW N

Three Limit-switch inputs for each motor: upper,Jower, and reference position

5% Thirty-two independent channels, one for each motor has programmable output
and input modes

6* Readout of actual motor’s position while motor is moving either from the number

of pulses sent out, or the encoded steps depending on the programmed input

mode.



-4 .

7% Programmable output mode for direction/pulse or CCW(+)/CW(-) pulses (section
2.4).

8* Programmable input mode for direction/pulse, CCW(+)/CW(-) pulse, or B/A
phase (section 2.4).

9* Programmable start/peak speed( 1 pps to 8191 pps ).

10* Programmable speed multiplicaton mode from 0.01x mode to 30x mode (section
2.2).

11* Programmable acceleration/deceleration register value ( 2 to 16383, see section
2.3)

12 Maximum move per instruction is 16,777,215 steps ( 24 bits resolution )
13 Load/go function for different motors to move concurrently.

14 Single step capability

15 Automatic completion for remaining pulses after abort

16 Error status, position readout

17 Position calibration

18 Inexpensive

Once initalized, the absolute position of each channel is maintained throughout all
operations.

A move operation may be prematurely terminated by either remote control or manual
control.

The maskable SRQ capability is provided for all channels. If requested, an SRQ is
generated when any motor stops moving for any reason.

The inputs for three limit switches can be provided as cither normally closed or nor-
mally open (see Appendix B for details). The activation of a limit switch causes the
selected motor to perform a decelerating stop. The status of the limit switches is read-
able by either the remote or manual method.

The LOAD/GO function provides the capability of moving a selected group of motors
concurrently and repeatedly.

The output status byte reports various system errors, including <he 3 limit switch states,
SRQ status, motor busy flag, command error, motor enable/disable, and motion aborted
state. If the command error bit is set, an error number may be read which indicates the
particular error.



-5
CHAPTER 2
BASIC SYSTEM CONCEPTS

2.1 GENERAL

The MMC32 executes motor motion in units of motor steps, or pulses. The maximum
number of steps possible in one motion is 16,777,215 steps (i.e., 24 bits). If a user
tries to move a motor which is busy or requesting service, the motor controller will
wait until that motor finishes moving or finishes serviced to send out the motor motion
command.

2.2 PULSE RATE

The default range of pulse rates is 1 to 8191 pps (pulse per second). The end users
can multple the range by changing the multiplication mode from 0.01x to 30x. With
the 0.01x mode, the speed range is [0.01, 81.92] pps at an increment of 0.01 pps.
With the 30x mode, the speed range is [300, 2,457,60] pps at an increment of 30 pps.
The details on how to set the multiplication mode is in section 5.3.1. For normal
operation the self starting rate should be smaller than the peak rate (Figure 2-1). If the
user set the starting rate higher than the peak rate, then the motor will not move. The
error bit of the status byte will be on to indicate error, and the error byte will be 19.

2.3 ACCELERATION/DECELERATION

The range for acceleration/deceleration register value is 2 to 16383, Please sce Fig
7.2 for acceleration/deceleration motion. The acceleration and deceleration register
can be set with the GPIB command ’A’ in the mange of [2,16383]. However, the
register value does not mean too much for users. Most users prefer to set the number
of pulses for acceleraton/deceleration, which can be set through the GPIB command
"W’ or from the front panel keypad. The math calculation between the number of
pulses for acceleration/deceleration and the register value is described in the following:

Tclk - reference clock cycle=1/4.9152MHZ ~= 0.0000002
RA : Acceleration register

RH : Peak speed

RL : Start speed

Tsu - Acceleration time in second

PA . Number of pulses during Acceleration/deceleration.

PA= (RH*RH - RL*RL)* RA * Tclk
That is to say RA= (RH*RH - RL*RL) * 0.0000002/( pulses )



,()<

Example If RH is equal to 2100 pps, RL is equal to 100, Tclk is equal to 0.0000002,
and RA is equal to 1000, we will get the number of steps for
acceleration/deceleration to be 440 steps.

The math calculation between the acceleration/deceleration time and the register value
is :

Tsu= (RH - RL)* RA * Tclk

Example
If RH is equal to 2100 pps, RL is equal to 100, Tclk is equal to 0.0000002, and
RA is equal to 1000, we will get the acceleration/deceleration time to be 0.4
second.

For triangle operation, the total number of pulses must be smaller than two times the
acceleration/deceleration pulse number. The hardware limit switch input can be used to
trigger the deceleration.

2.4 FLAG BYTE AND SERIAL POLL BYTE

The MMC32 outputs from connector P3 of the motor board for each individual motor
could be direction/pulse, which is called directory mode, or CCW(+)/CW(-) pulse,
which is called pulse mode. The MMC32 inputs to connector P4 of the motor board
for each individual motor could be direction/pulse, CCW(+)/CW(-) pulse, or B/A phase
(encoded mode). The conriector pinouts of the motor board are described in APPEN-
DIX B in details. Those options are set by the flag byte which can be set via the front
panel keypad, or the GPIB interface (section 5.3.1 'F" command). The flag byte indi-
cates the last motion command, connector P3 output mode, connector P4 input mode,
and SRQ mask. The following is the table for the flag byte definition:

bit # | Definition

0,1 Operation command code

2,34 | P4 input mode - step/dir, +/- pulse, open, A/B phase

5 not used
6 SRQ on - 0: No/l: Yes
7 P3 output mode - 0: step,dir (default)/1: CW(-) pulse, CCW(+) pulse




The P4 input mode which is decided by bits 2,3,4 is the input to the P4 connector of
the motor board (described in APPENDIX B). The following table is the definitions
for bits 2,3.4.

bit4 | bit3 | bit 2 | Command Description
0 0 0 step/direction (default)
0 0 1 open (no input)
0 1 0 CCW(+) pulse/CW(-) pulse
1 0 0 quadrature input A/B phase, 1X multiplication
1 1 0 quadrature input A/B phase, 2X multplication
1 1 1 quadrature input A/B phase, 4X multplication

The operation command code is the code of last motion, excluding the motor stop
command. Hence, bits 0,1 are READ ONLY. The following table is the definitions for

bits 0,1.

bit1 | bit 0 | Command Description
0 0 Acceleration/deceleration move
0 1 Stop command
1 0 Move untl the +/- limit switch
1 I | Move until the home limit switch

***kx ATTENTION To Programmer *#**

The default for the SRQ flag is off in which case the users will wait pol-
ling the output status byte (section 2.5) until it indicates the motor is not
busy anymore (bit 2 of the status byte). You should set the SRQ flag on
(see section 5.3.1), if you do not want o wait untl motors finish moving.
Usually, you need the SRQ flag on for an interrupt driven, real time con-
trol software so that the user can do something else before a motor finishes
moving. If the SRQ flag is set on one motor, an interrupt handling sub-
routine should be written so that the program will jump to the interrupt
handler right after the motor finishing moving. In your interrupt handler
vou need to do a SERIAL POLL to clear the SRQ signal on the controller
bus. The sequence for serial polling is described in the following:

. Enable Attention control signal of access board.

. Address MMC32 10 be a talker ( The default address is set at 6 )

. Send listen address of the access board ( MLA: my listen address )
. Send Serial Poll Enable (SPE)

. Disable Attention control signal of access board

. Read response from the device (MMC32).

. Untalk (UNT) and Unlisten (UNL).

A h W~ O



7. Serial Poll Disable (SPD)

The response you read from the serial poll is a byte with bit 6 indicating
SRQ on and bits 0-5 indicating which motor needs SRQ.

If your controller software drivers have a function to do the above
sequence for the serial poll byte, then you only have to call the function to
return the serial poll byte. On example is the GPIB-PC turbo Pascal
which uses the function "ibrsp" to return serial poll byte. Please see sec-
don 6.1.1 for a GPIB-PC turbo Pascal example on SRQ.



2.5 OUTPUT STATUS BYTE |

The output status byte is read only. The following table shows the status byte
definiton:

bit # | Definition

0 CCW(+) limit switch encountered - 0/1: No/Yes
CW(-) limit switch encountered - 0/1: No/Yes
Motor busy - 0/1: No/Yes
Command Error - 0/1: No/Yes
Abort motion by deceleration stop - 0/1: No/Yes
Service Requested - 0/1: No/Yes
Motor off (Motor Disabled) - 0/1: No/Yes
Home position switch activated- 0/1: No/Yes

NN AW

kaddkxkk Caution To Programmer ¥k**##x*

If bit 3 1s 1, it means the last issued command failed. To find out the error
message, the user should use 'IE’ to interrogate the error number. The
corresponding error message to each error number is descrnibed in the next
scction.

2.6 ERROR MESSAGES

If bit 3 of output status byte is 1, then you can use the computer command "1E’ to find
out the error message. Explanations of the integer error numbers follow.

1

[89]

X NN DN bW

».
C\C

11
12

motor tends to move over Software CCW(+) limit
motor tends to move over Software CW(-) limit
motor needs SRQ from last move

motor is busy

motor is OFF ( disabled )

motor 1s at Hardware CCW(+) limit

motor is at Hardware CW(-) limit

maximum number of steps in a motion is 16,777,216
Invalid motor number

Motor is already at home position

[EEE-488 invalid command

IEEE-48% invalid interrogative command



13
14
15
16
17
18
19

- 10 -

Invalid display enable/disable command
Invalid self starting speed set

Invalid peak speed set

Invalid multiplication mode

Invalid acc rate set

Invalid parameters in LOAD/GO buffer

Maximum speed is set lower than minimum speed.

2.7 BUFFER CAPACITY

MMC32 uses first-in-first-out serial rotating buffers (256 bytes) for GPIB commands,
GPIB data, SRQ signal, and front panel keypad commands. Since more than one
motor can be moving at one time, the SRQ on end-of-motion is also buffered, and
multiple SRQs will be generated: one for each motor which was moved.

2.8 CURRENT MEASUREMENT

The following is the measurements of the currents on the motor controller:

1 cpu induces 0.66 ampers of current.

I MOTOR board induces 1.2 ampers of current.

2 MOTOR boards induce 2.16 ampers of current.

1 cpu + 2 MOTOR boards induce 2.62 ampers of current.



UOTOJAL SUnjEIa[E/BuljeldY 77 I03N]

PAAUNOILI YOJIMS W]
Jo doig Suneisjaoag

—- ospnd Jo Joqumu FUUTEWY -

(sdd ) peadg



(09s) awii],
—

vy

u

0110}

it

X

UOHUID[III([/U0ILIDIIIY [-T 94R31]

2do]§ —=

T
k N
~ 7
|

L ﬂL!
|

paads PUIS ——
_

paads jead




213 -
CHAPTER 3

INSTALLATION

3.1 INSTALLATION GUIDE

All the motor controllers come with one CPU board marked with '"NSLS-MC32A’, and
the MOTOR boards marked with '"NSLS-MC32B’. Facing the back panel of the motor
controller, on the MOTOR board, from left to nght you will see the connector for
pulses output (P3), connector for pulses input (P4), connector for CW/CCW limit
switches (P5) and connector for home limit switches and motor on/off control (P6).
To make sure the connector to the socket on the MOTOR board match with each
other, an arrow is marked on each connector and socket indicating pin number ore.
The pins on the bottom layer are even number pins ( 2,4,6....), and the pins on the top
layer are odd number pins ( 1,3,5.....). In MMC32, the connectors for step/direction
outputs, step/direction input, and CW/CCW limit switches are E500 ( a commonly
used motor conmoller ) compatible. Please reference APPENDIX B the MOTOR
boards’ connector pinouts.

Figure 3-1 is the la);out of a CPU board, and figure 3-2 is the layout of a MOTOR
board. On the CPU board, the jumpers-setting on J1 and position 6 to 8 of SW2
decide the number of MOTOR boards being used. Besides, the position 1 (least
significant bit) to 5 (most significant bit) of SW2 decides the GPIB address of the
motor controlier (default is 6). The following table is the definition of the position 6
to 8 of SW2.

pos 8 | pos7 | pos 6 number of MOTOR boards
0 0 0 I MOTOR board
0 1 0 2 MOTOR boards
1 0 1 3 MOTOR boards
1 1 1 4 MOTOR boards

If you are using only one MOTOR board, please do not jumper pins 3,4 of JI but the
rest of the pins, and the positions 6,7 and 8 of SW2 are all off. If you are using two
MOTOR bourds, please do not jumper pins 3,4 and pins 5,6 of J1, and the positons
6,7 and 8 of SW2 are off, on, off respectively. If you are using tarece MOTOR boards,
you only have to jumper pins 1,2 and pins 9,10 of J1 respecuvely, and the positions
6,7 and 8 of SW2 are on,on,off respectively. If you are using four MOTOR boards,
you only have to jumper pins 1,2, and the positions 6,7 and 8 of SW2 are all on.

The jumper J2 of the CPU board must be jumpered at pins 3,4.

The jumper J3 on the CPU board is configured for two different kinds of U12 chips. [f
U12 chip is a normal RAM (usually SONY 5864), then J3 sheuld be jumpered on
position 1,2, and 5,6, and 11,12, In the future, it U2 chip is tested successiully with



- 14 -

static RAM with on-chip battery, then J3 should be jumpered on position 3,4, and 7,8,
and 9,10.

The jumper J4 is configured for two different kinds of ROM chips. J4 should be jum-
pered on position 1,2 if two of 16K ROM chips (27128) sitting in chip Ul4, Ul5
respectively. Otherwise, J4 should be jumpered on position 3,4 for one 32K ROM
chip on U15.

The number of MOTOR boards is one for eight-motors-control, two for sixteen-
motors-control, three for twenty-four-motors-control, and four for thirty-motors-control.
By jumpering PS5 on the MOTOR board, you can set the motor number for the board.
For example, if you jumper pins 7,8 and pins 15,16, the board controls motor O to
motor 7. If you jumper pins 5,6 and pins 13,14, the board controls motor 8 to motor
15. If you jumper pins 3,4 and pins 11,12, the board controls motor 16 to motor 23. If
you jumper pins 1,2 and pins 9,10, the board controls motor 24 to motor 31. Please
reference Figure 3-2.



Q17

%;075}

P
13
o) |

L

29728
5[ (xei)
- Qs
a feod

Qo

+ LiUf

+, +

zeer -uff comeclvy”

!

C
T

o T

2079205138 | a4 (|
Lok ar

SSorapigscad] g TI4Ls ad B |

Loy e Y

e R T !
4 E

o —
e—l

:

LU {J/\q/ L/(;/\’O // ot

Ré£CoZ P2

;

5

-~ '}H p
> ‘ L}

E

(41

ine
m

1

-

3 e
[hﬁﬁZEEﬁﬁ
i S
=S |

' :

¢

Wk
[0
3T

ué
¢
1
_?i] |

n

s

- -E el =

EE V4c 923 Ni |

SSMCIda] P3| §|r

Mcéggufef

o= &3
as “

¢y (i}

za fMC344P3 |

jidl ™y

Ul
(=]

2

TPS

=596 | .

S E <\ 94l S2er]
{;lkﬁ:- el

Co T
c 1 GALS )AL ‘

C 1L

)

e

L I

1?7 P4

TP¢

MSLS - uCIZA

SLS-50. 331 -3-4 REY 3




La)Dwad Or0 Al — ) ?

D/osoudd W P~ x
, 0]

v oyap ~ud 29

6

i
r&

\45@ O;\a /cL, \&/& — |
~wo Jol 21§ I

R

Lo L
20
~ T Sp7STEL d
N LIAeNI: (b 7078 u 2 arairdd )2 jaidd J ASEQE\U:GS& uos
vo & R i (7] 01y 7 _ ~
N /L,, ] «Ewi.i 0" as he ﬂ tEa wais It )
S el ! T 7 =g -
hl. e Qxrel o 19 GG . Il z
T . Ciig) €19 ) , x
.Vb Ay /W,)M!;)uxﬁs 3 . @ . \ﬁ @/ U.«..E\ 21017 :gﬂ —Za) d:rt\ﬂio\ U,S\Lg " -
% .rE Ll
W s % Md.«m«cho/.¢L »@ in ¢t i U
SNy i
E70% [T ) == = s
= ' 710 I =
o1 N7 TEF
=~ ? _mm mw 1 0 .
\ w L @ S~
.,m IM._ —Hll«u—lllgHu "0 ﬂ D.wlﬂﬂlod N)
I3 3 |-
e
UM ./\. Aayé\ 7ol u:\tq__ Tl | /5 0171 ¢ ™~
2 x m A GO R — I =
S P 4R T & 2 HH:__:HU r.@.ﬂu — " @ s )
L (TR w §eSTh 3w [(NelsTiLe : _ =
AR L(. o mHj seara 18 un [ ary Y
. aJ _ T o
O N @ ® ) D @ | 8 AJY B-[-16009-515 N
—IO A BLEIN-5 1K N
- YIS O _ e
. ] ﬁ.muli\v



17 -
CHAPTER 4

LOCAL MANUAL CONTROL

4.1 OVERVIEW

The Local Manual Control is performed using the MMC32 front panel keypad and
display (See Figure 4-1). There are four rows available on the front panel display.
Each row displays different kinds of information:

Row 1: Instruction

Row 2: Response Message

Row 3: Keyin Character + Error Message
Row 4: Menu

4.2 MENU FLOWCHART

The MMC32 manual operation is very user friendly because of the interactive informa-
tion on the MMC32 front panel display. The front Panel Menu is designed like a tree
structure starting from ROOT. The Root is the main menu which contains 4 functions:
(1) Setup (2) Select Active Motor Number (3) Motor Motion (4) Display motor status.
The menu flowchart is in Figure 4-2.

4.3 INDIVIDUAL FUNCTION HIGHLIGHT

The manual and computer controls have almost the same functions except the follow-
ing.

4.3.1 SETUP

In the setup menu, you can set up different parameters or just look at the parameters
by choosing the next parameter function key without inputting any number for the last
parameter function key. If the setup parameter is out of the valid range, the error mes-
sage will appear on row 3 of the display.

4.3.2 DELETE NUMBER KEY

On the front panel keypad, the key "DELETE’ is used to delete the last typed-in digit
(-,0......9). You can also use this key to cancel the current function progress when you
are requested to input a number. For example, if you type the 'LmtMv’ (limit move)
function key accidentally, when the direction question comes on (0/1), you can type
the 'DELETE’ key to cancel this function before typing in any digit. Then, the motor
will not'move, the original menu remains and an error message 'lnvalid func. key <-°
appear.

4.3.3 LOAD/GO



- 18 -

In the 'LOAD’ function you can load any of the 32 motors’ motion parameters
sequendally for 36 loops (you can repeat the same motor), but you have to end the
loading sequence by inputting 255 for motor number selection. If any of the loaded
motors tends to move beyond its software limit setting, the 'LOAD’ function is ended.
Then, the.execution function 'GoForlt” will not do anything. You can repeat the
’GoForlt’ command without changing the 'LOAD’ parameters.

4.3.4 EMERGENCY STOP
This is a convenient key to stop all motors’ motion. It is actually a smooth stop (
decelerating stop) without losing track of the motors’ position.

4.3.5 Flush input buffer

This key marked with 'FLB’ is a key to flush the GPIB command buffer in case the
GPIB commands time out due to GPIB communication hardware failure or I/O proto-
col failure.



skejdsiq put sjoa3uo) PueJ JUOLI TEON 1+ ¥ 23y

u O oM

| 7 e & 1 L)
O O O O

Jaug 0 - NUIN P

£ T 1 aJussaj Joug - Jarousei) ulkay] g

9Jussop 9su0dsay ‘T

0 8 L UOHOIUISU] °]

]
o O O O




JICYDAOL TUIJA] [PUB] JUOL[ TEDIN 01

(smwis ‘uomisod ‘sdais urpwia ‘Joquunu JOjoW 3ANIL wud) /] =

| ot
_Alssz —~ JXON - IXON —=
100y —— doig yioowg —e— AW —at-
— UOHOJA JOI0J —a
1o, Jon —~e——| doig Aouddiowy AJNQWIO}] ~a—
pro] JAOJA] 9J3UIS  ~a— AN I00WIS ~t—

g 100}
Ny

(39quInN J010JA] 9ANIY 109]3S ) "ON'[2S ~¢~

-
_Atl IXoN —= XoN ¢ T 1XoN —=

_. 100y —~-— SOJMON  —at— YOIV ~at|—d- A0S -
[of =— WMD) ] (PPUS¥02d) PUSHT
At <] A ~— (poadg ueig ) pdgo] —=




227 -
CHAPTER §
COMPUTER-GPIB COMMAND

5.1 OVERVIEW

This chapter describes the computer commands sent through the IEEE-4888 interface
to the MMC32. All commands can be either lower-case or upper-case letters.

5.2 COMPUTER COMMAND CONVENTIONS and DEFINITIONS

5.2.1 DELIMITER

All individual commands end in a delimiter that signifies that the command is com-
pleted. A delimiter serves the same function as the space between words in a sentence.

The delimiter, which is part of the command, is a space character or a <LF> ( i.e.
Char(10) for Line Feed)

5.2.2 INDIVIDUAL COMMANDS

An individual MMC32 command controls or reads a single parameter, function, or
action such as acceleration, velocity, position, load, go, etc. There are two classes of
individual commands, INTERROGATIVE and EXECUTIVE.

INTERROGATIVE COMMANDS: These commands read a single param-
eter, the result of a function, or the status of an action. They are executed
immediately on reccipt and the requested data will be placed in the
MMC32 output buffer (256 bytes) sequentially waiting for the user
fetch the requested data. Hence, the user must fetch the requested daw
before he sends the next interrogative command.  All interrogative com-
mands’ initial is "1’ meaning Interrogative.

EXECUTIVE COMMANDS: These commands modify a single parameter,
execute a function, or Initiate an action. On receipt by MMC32, they are
stored in the MMC32 input buffer(256 bytes) sequentially and executed by
MMC32 in the order they are sent.

Individual commands vary in length, and consist of one or more letters with a delim-
iter. Each command is entered as a character/delimiter combinauon. Some commands
include a sign (+/-) to denote direction of motion. The number of characters used
depends on the type of commuand entered.

When two or more individual commands are entered on the same line, they should be
separated by spaces. Please see Chapter 6 for command examples.



5.3 COMMAND GROUPS AND DESCRIPTION

The basic MMC32 individual commands can be divided into four categories: Parame-
ters Setup commands; Data Interrogating commands; Motor Motion commands; and
Execution commands. These commands are discussed in section 5.3.1 through section
5.3.4. An alphabetical command summary is included in Appendix A.

5.3.1 PARAMETERS SETUP COMMANDS

These commands set up parameters to control motor motion, calibrate motor position,
enable/disable front panel control, and so on. If the selected motor is busy, the motor
controller will wait until that motor finishes moving to change its parameters.

Annnn

DK

EK

Fnnn

Nnnn

Acceleration/deceleration register value setup on the active motor
-- The range of choices is [2, 16383]

A100 (set acceleration register value to be 100 )
A700 (set acceleration register value to be 700 )

Flush the GPIB and keypad input buffer in case of GPIB ume
out or protocol failure

Disable local mode ( the front panel keypad control), except the
key for emergency stop and the key to enable/disable front panel
control. Note: The remote mode ( computer control) is always
enabled. By default, the MMC32 local mode is enabled.

Enable local mode ( the front panel kevpad control- detauly).

Flag setup on the active motor -- Please see section 2.4 for flag
bits definition. The bits 0.1 of the flag byte are not programm-
able.

F16 (P4 input is quadrature input A/B phase 1X, P3 output is
step/direction, Disable SRQ)
F64 (Enable SRQ)

Motor Number -- Select the active motor number.  All succeed-
ing commands relate to this selected active motor before the next
"N’ command is exccuted. Valid motor numbers are O to 31.

N2 (select motor 2 to be the active motor number)
NO (select motor 0 to be the active motor number)



P+/-nnnnnnnn

Unnnn

Vnnnn

Wnnnn

Zfftf

- 23 -

Calibrate the active motor position (32 bits long) in motor steps.

PO (sets current position to be 0)

Start velocity setup on the active motor -- The default range of
choices is [1, 8191] pulses per second.

U300 (set start speed to be 300 pulse/sec)

U245 (set start speed to be the 245 pps)

Peak Velocity setup on the active motor -- The default range of
choices is [1, 8191] pulses per second.

V2000 (set peak velocity to be 2000 pulse/sec)
V3125 (set peak velocity to be 3125 pps)

The number of pulses for acceleration/deceleration

WI100 ( set number of pulses during acceleration/deceleration to
be 100 )

Setup the active motor speed multiplication mode from 0.01x to
30x. Note, the input is a floating number from 0.01 to 30.

Z0.01 (set speed range to be [0.01, 81.92] pps at an increment
of 0.01pps)

Z30 (set speed range to be [30, 245730 pps at an increment of
30 pps)

5.3.2 DATA INTERROGATING COMMANDS

These commands request the setup value or read the motor status.  All the interrogat-
ing commands start with an 'I' followed by a single character defining which data is
requested. After the command is issued, you should fetch the interrogated data. The
MMC32 will send LF (#10) as end of dawa (EOD). These commands are:

[A

IE

IF

Interrogate active motor Acceleration/deceleration value.
Interrogate command Error number message.

[nterrogate the active motor Flag setings. Bits 0,1,2 give the
operation code of last motion, excluding the motor stop com-
mand, and bit 6 is the SRQ mask bit. The flag byte definition is
described in section 2.6.



IN

10

IR

v

IX

1Y

1Z

.24 -
Interrogate the active motor Number.

Interrogate the active motor Output Status. The response is an
ASCII string representing a single byte of data. The correspond-
ing bit definition is discussed in section 2.4.

Interrogate the active motor current position in steps.

Interrogate the remaining number of steps from last motion of
the active motor. If it is -16777216 (i.e. -$1000000 in hex), then
it means the last motion command was 'move to limit switch’
(ex. TO,T1, or H) and it was terminated by a "stop command’
before it reached the limit. Under this circumstance, MMC32

does not know the remaining number of steps, so it sends a
number -16777216 (i.e. -$1000000 in hex) to warn the user.

Interrogate the active motor start velocity.

Interrogate the active motor peak Velocity.

Interrogate the active motor software CW('-) limit position.
Interrogate the active motor software CCW(+) limit position.

Interrogate the active motor seek-home velocity.

5.3.3 MOTOR MOTION COMMANDS

The motor moton commands are:

C0

Cl

Complete ALL. MOTORS which have a non-zero remaining
number of steps from the last move. If the last move command
is 'move to limit switch’ and not finished because of a stop com-
mand, then the motor will continue moving until it encounters
the limit. User should be aware of which motors have uncom-
pleted motions from the last move before he sends this com-
mand.

Complete the ACTIVE MOTOR motion if it has a non-zero
remaining number of steps from the last move. If the last move
command was 'move to limit switch’ and unfinished because of
a stop command, then the motor will continue moving untl it



encounters the limit.

H Move the active motor to the home position (Hardware base
point).

M-+/-nnnnnnnn Move the active motor to position nnnnnnnn steps (Absolute
move).

M3000 (move to posidon 3000 )
M-1000 (move to position -1000 )

R+/-nnnnnnnn Move the active motor nnnnnnnn steps from the current position

(Relative move).

R3000 (move 3000 steps from current position)
R-1000 (move -1000 steps from current position)

S1 Move the active motor one step in the CCW(+) direction.
SO Move the active motor one step in the CW(-) direction.
Ti Move the active motor to the hardware CCW(+) limit.
TO Move the active motor to the hardware CW(-) limit.

5.3.4 OTHER EXECUTION COMMANDS
The remaining commands are a) LOAD/GO , and b) Kill motion.

a) LOAD/GO

The LOAD/GO function is used for the "LOAD AND GO’ option. Prior to any move,
the microprocessor in the MMC32 must calculate a number of move parameters. n
some applications this delay in calculation may be excessive. The delay between the
sending of the motion command and the actual motor moton can be reduced by the
use of the 'LOAD AND GO’ option, especially if you want to move more than one
motor at the same time. You can load any of the 32 motors’ motion parameters
sequentially before you execute the motion using the "GO’ function.

L Load move command parameters, which include a space, the
motor number immediately followed by an 'r' (relative move) or
an 'm’(absolute move), a space, and then the number of steps.
Use the same format for the next motor moton puarameters until
vou terminate it with 255 (EOM : End Of Motor). If any motor



i

]

b) KILL MOTION

K

‘e

- 26 -

1s commanded to move beyond the limit settings, the "G’ (exe-
cute) command will not do anything.

L O¢ 1000 Im -3000 255 (motor 0 moves 1000 steps from
current position, and motor | moves to absolute position -3000
seps)

L 6r -700 3m 400 Or 1000 255 (motor 6 moves -700 steps from
current position, motor 3 moves to absolute position 400 steps,
and motcr 0 moves 1000 steps from current position)

Execute the last loaded motion parameters in the LOAD buffer.
It is not effective when previous LOAD command tries to move
any’ motor beyond its own limit setting and the commands will
cause the previous motion to be re-executed. However, the user
has to be careful not to move any motor beyond the limit
switches in repeating the 'G’ command, because doing so does
not check the status of the motors’ limit switch states before
moving. Hence, repeating 'G’ command without 'LOAD’ com-
mand repeated beforehand is not recommended. It is used only
for keyboard mode convenicence.

Decelerating stop to abort the motion of all motors withe it los-
ing track of the motors’ positon. It is called a soft abort.

k (abort the mouon of all motors softly)

Stop immediately the moton of all motors without losing track
of the motors’ position. It is called a hard abon.

q (abort the mouon of all motors immediately)



227 -
CHAPTER 6

EXAMPLES

6.1 TURBO PASCAL 3.0 ON DOS-PC

Following is an example for a PC-GPIB interface to the MMC32 using the TURBO
PASCAL 3.0 language on a PC running under DOS. Comments are bracketed by { }.

6.1.1 SRQ handling

The following program moves motors 0,1 at the same time and finds out which motors
finished moving.

Program MMC32Test;

Data,Line Keyin:string[80];
i,x,Result,JeeeID,Bcount,v:integer;

begin
{ find out GPIB address ID }
IeeeID:=IbFind('DEV6’);
v:=XEOS+REOS+LF;

. IbEos(IeeelD,v);

{ set motor 0,1 SRQ on }
keyin:="n0 F64 nl F64 ’;
Bcount:=Length(keyin);
Send(TeeeID keyin,Bcount);
{ load motor 0,1 motion parameters }
{ motor 1 moves 3000 steps in (+) direction. }
{ motor () moves -3000 steps in (-) direction. }
keyin:="L 1r 3000 Or -30X) 255 7;
Bcount:=Length(keyin);
Send(leeeID keyin,Bcount);
Writeln(’Load command is sent out’);
{ After loading moving parameters, execute GO ¢ommand
keyin:="G "
Bcount:=Length(keyin);
Send(leeelD keyin,Beount):
Witeln("’Go command is sent out’);
for i:=1 to0 2 do EndMove(lceelD);

end.

procedure EndMove(leeciD:integer);
var v, x:integer;
begin



228 -

{ put motor in Serial Poll Active state. }
{ If bit 6 (SRQ bit) is on, then you can check bit O- 5 }
{ to find out which motor finished moving. }
v:=0;
While (( v and 64 )=0) do ibrsp(leeelD,v);
x:=( v and 63);
Writeln(’Motor ’ x,” finished moving’);
end;

{ ------- Subroutine to send data to motor controller. ---------- }
procedure Send(Dev:integer; Message:DataString; Bent:integer);
var L:integer;
begin
for I := 1 to Bent do ibbuf{I] := Message(I];
IBWRT(Dev,ibbuf,Bcnt);
if ibsta < Q then WritelnCIEEE Write error from Send’);
end;

6.2 C on UNIX-PC286

Following is an example for a CAMAC-GPIB interface to the MMC32 using the C
language on a PC running under UNIX. Comments are bracketed by /*  */.

6.2.1 Subroutine to send command string

The followinge subroutine sends the command string to the motor controller through the
CAMAC-GPF.3 interface ( model 3388-G1A).

smc_send(string)

char *string;

{
int 1,2;
long status:
ff=26; aa=(); camdata=0; /* attention */
do { camac(nn,aa,ff,&qq.&xx,&camdata); } while (qq==0);
ff=16; aa=0; camdata=58; /* listen */
do { camac(nn.aa,ff,&qq,&xx,&camdata); } while (qq==0);
ff=16; camdata=58, /* controller talk */
do { camac(nn,aa,ff,&qq,&xx,&camdata); } while (qq==0);
ff=24; camdata=(); /* controller talk */
do { camac(nn,aa,ff,&qq,&xx,&camdata); } while (qg==0);
for ( 1=0; 1<strlen(string); i++) |
ff=106; aa=0; camdata=string|i]; /* send byte */
do | camactanaa ff,&qq,&xx, &camdatn);



if (qq==0) (
do {camac(nn,aa,1,&q2,&xx,&status);} while (q2==0);
if (status&0x20) return(0); )
} while (qq==0);
) 5
return(1);

)



APPENDIX A
ALPHABETICAL COMMAND SUMMARY

Command Description Page
Annnn setup Acceleration/deceleration register value 22
B flush the GPIB and keypad input buffer 22
CO Complete all motors’ remaining steps from last move 24
Cl Complere the active motor’s remaining steps from last move 24
DK Disable keyboard mode except emergency stop and key mask 22
EK Enable keyboard (local) mode 22
Fnnn setup Flag status 22
G Go (start executing move for load/go) 26
H move to Home position 25
1A Interrogate Acceleration/deceleration value 23
IE Interrogate command Error message number 23
IF Interrogate motor Flag status 23
IN Interrogate active motor Number 24
10 Interrogate active motor Qutput status 24
IP Interrogate active motor current Position 24
IR Interrogate active motor remaining steps 24
U Interrogate active motor start velocity 24
v Interrogate active motor peak Velocity 24
[X Interrogate active motor CW (-) limit 24
Y Interrogate active motor CCW (+) limit 24
17 Interrogate active motor £o-home velodity 24
K Kill motor motion softly 26
L Load motor move parameters 25
M+/-nnnnnnnn | Move to position +/-nnnnnnnn steps 25
Nnnn select active motor Number 22
P+/-nnnnnnnn calibrate Position (32 bits long) 23
Q Kill motor motion immediatelv 26
R+/-nnnnnnnn move +/-nnnnnnnn steps (Relative move) 23
Sl Single step move in CCW (+) direction 25|
SO Single step move in CW (-) direcuon 25
Tl move to hardware CCW (+) limit 25
TO move to hardware CW (-) limit 25
Unnn setup start velocity 23
Vnnn setup peak velocity 23
Wnnnn set the number of pulses for Acceleranon/deceleration 23
i set the output pulse rate muluplication value T23




APPENDIX B
MMC32 motor boards’ CONNECTGix PINOUTS TABLE

GROUND

GROUND

MOTOR 0 DIRECTION OUTPUT or CCW(+) PULSE OUTPUT
MOTOR 0 PULSE OUTPUT or CW(-) PULSE OUTPUT
MOTOR 1 DIRECTION QUTPUT or CCW(+) PULSE OUTPUT
MOTOR 1 PULSE OUTPUT or CW(-) PULSE OUTPUT
MOTOR 2 DIRECTION OUTPUT or CCW(+) PULSE OUTPUT
MOTOR 2 PULSE OUTPUT or CW(-) PULSE OUTPUT
MOTOR 3 DIRECTION OUTPUT or CCW(+) PULSE OUTPUT
10 MOTOR 3 PULSE OUTPUT or CW(-) PULSE OUTPUT

11  MOTOR 4 DIRECTION OUTPUT or CCW(+) PULSE OUTPUT
12 MOTOR 4 PULSE OUTPUT or CW(-) PULSE OUTPUT

13 MOTOR 5 DIRECTION OUTPUT or CCW(+) PULSE OUTPUT
14 MOTOR 5 PULSE OUTPUT or CW(-) PULSE OUTPUT

15 MOTOR 6 DIRECTION OUTPUT or CCW(+) PULSE OUTPUT
16 MOTOR 6 PULSE OUTPUT or CW(-) PULSE OUTPUT

17 MOTOR 7 DIRECTION QUTPUT or CCW(+) PULSE OUTPUT
18  MOTOR 7 PULSE OUTPUT or CW(-) PULSE OUTPUT

19 +5 VOLTS

20 +5 VOLTS

P3

O oo~-1AWV AhWN»—

Note: In directory mode, the output is direction/pulse, and in the pulse mode, the out-
put is CCW(+)/CW(-).

P4 GROUND

GROUND

MOTOR 0 DIRECTION INPUT or CCW(+) PULSE INPUT or B phase INPUT
MOTOR () PULSE INPUT or CW(-) PULSE INPUT or A phase INPUT
MOTOR 1 DIRECTION INPUT or CCW(+) PULSE INPUT or B phase INPUT
MOTOR 1 PULSE INPUT or CW(-) PULSE INPUT or A phase INPUT
MOTOR 2 DIRECTION INPUT or CCW(+) PULSE INPUT or B phase INPUT
MOTOR 2 PULSE INPUT or CW(-) PULSE INPUT or A phase INPUT
MOTOR 3 DIRECTION INPUT or CCW(+) PULSE INPUT or B phase INPUT
10 MOTOR 3 PULSE INPUT or CW(-) PULSE INPUT or A phase INPUT

11 MOTOR 4 DIRECTION INPUT or CCW(+) PULSE INPUT or B phase INPUT
12 MOTOR 4 PULSE INPUT or CW(-) PULSE INPUT or A phase INPUT

13 MOTOR 5 DIRECTION INPUT or CCW(+) PULSE INPUT or B phase INPUT
14 MOTOR 5 PULSE INPUT or CW(-) PULSE INPUT or A phase INPUT

1S MOTOR 6 DIRECTION INPUT or CCW(+) PULSE INPUT or B phase INPUT
16 MOTOR 6 PULSE INPUT or CW(-) PULSE INPUT or A phuse INPUT

17 MOTOR 7 DIRECTION INPUT or CCW(+) PULSE INPUT or B phase INPUT
18  MOTOR 7 PULSE INPUT or CW(-) PULSE INPUT or A phase INPUT

19 +5 VOLTS

20 +5 VOLTS

O e~ AW &Lt —

Note: In the directory mode, the input is direction/pulse, in the pulse mode, the input
is CCW(+)/CW(-), and in the encoded mode, the input is B/A phase.



P5

P6

oo bsWwio —

—
- O

[N i e B e
[ RVoNe JEN e MU, RNV I (3]

Voo & WK —

—
o

Pt ek gk pmad pmd i
N AL —

—
~J

18
19
20

GROUND

GROUND

MOTOR 0 CCW (+) LIMIT SWITCH INPUT
MOTOR 0 CW (-) LIMIT SWITCH INPUT
MOTOR 1 CCW (+) LIMIT SWITCH INPUT
MOTOR 1 CW (-) LIMIT SWITCH INPUT
MOTOR 2 CCW (+) LIMIT SWITCH INPUT
MOTOR 2 CW (-) LIMIT SWITCH INPUT
MOTOR 3 CCW (+) LIMIT SWITCH INPUT
MOTOR 3 CW (-) LIMIT SWITCH INPUT
MOTOR 4 CCW (+) LIMIT SWITCH INPUT
MOTOR 4 CW (-) LIMIT SWITCH INPUT
MOTOR 5 CCW (+) LIMIT SWITCH INPUT
MOTOR 5 CW (-) LIMIT SWITCH INPUT
MOTOR 6 CCW (+) LIMIT SWITCH INPUT
MOTOR 6 CW (-) LIMIT SWITCH INPUT
MOTOR 7 CCW (+) LIMIT SWITCH INPUT
MOTOR 7 CW (-) LIMIT SWITCH INPUT
+5 VOLTS

+5 VOLTS

GROUND

GROUND

MOTOR 0 ON/OFF SWITCH INPUT
MOTOR 0 HOME LIMIT SWITCH INPUT
MOTOR 1 ON/OFF SWITCH INPUT
MOTOR | HOME LIMIT SWITCH INPUT
MOTOR 2 ON/OFF SWITCH INPUT
MOTOR 2 HOME LIMIT SWITCH INPUT
MOTOR 3 ON/OFF SWITCH INPUT
MOTOR 3 HOME LIMIT SWITCH INPUT
MOTOR 4 ON/OFF SWITCH INPUT
MOTOR 4 HOME LIMIT SWITCH INPUT
MOTOR 5 ON/OFF SWITCH INPUT
MOTOR 5 HOME LIMIT SWITCH INPUT
MOTOR 6 ON/OFFF SWITCH INPUT
MOTOR 6 HOME LIMIT SWITCH INPUT
MOTOR 7 ON/OFF SWITCH INPUT
MOTOR 7 HOME LIMIT SWITCH INPUT
+5 VOLTS

+5 VOLTS



3k 2k ok ok ok ok ok kK kK Caution [ (8) USCT S 3 sk ok e X ok ok ok K K

Please note that the P3, P4, and P5 pinouts are E500 compatible. All the
signals are in negative true logic at TTL levels. Facing the back panel,
you will see connector P3 (labeled P3 on the board), P4, P5, P6 apearing
from left to right. The pin number one on all connectors is marked with
an arrow. The pins on the top layer are odd number pins ( 1,3,5.....), and
the ones on the bottom layer are even number pins ( 2,4,6....).

If the chip U20 and the chip U21 on your PPMC boards are 741.5240
instead of 74LS244. then the limit switch is activated if the input signal is
logical high (5 volts). That means if connector P4 is left float, or the input
signal to the connector P4 on any pin 3 to pir 18 is high, then the limit
switch is going to be activated, and you can no. move the motor. If you do
not have any hardware limit switch installed, then you can not move any
motor at all unless you have a shorting plug to connect the limit-switch
pins to GROUND (pin number one and two). If you want the logic on the
limit switches reversed, then you can exchang chips U20 and U2l with
741.5244.



" DATE
FILMED
8 /31/93







