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Abstract

Our system classifies the condition (intact or single leg separated ) of in vivo Bjork-Shiley
Convexo-Concave (BSCC) heart valves by processing acoustic measurements of clinical
heart valve opening sounds. We use spectral features as inputs to a two-stage classifier,
which first classifies individual heart beats, then clas,,_ifies valves. Performance is
measured by probability of detection and probability of false alarm, and by confidence
intervals on the probability of correct classification. The novelty of the work lies in the
application of advanced techniques to real heart valve data, and extensions of published
algorithms that enhance their applicability. We show tJhateven when given a very small
number of training samples, the classifier can achieve a probability of correct
classification of 100%.

"Work performed under the auspices of the U.S. Department of Energy by the Lawrence
Livermore National Laboratory under contract number W-7405-ENG-48."
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Summary

1.o Introduction

Prosthetic heart valves and the many great strides in valve design have been
responsible for extending the life spans of many people with serious heart conditions. Even
though the prosthetic valves are extremely reliable, they are eventually susceptible to the
long-term fatigue and structural failure effects expected for mechanical devices operating
over long periods of time. The purpose of our work is to classify the condition of in vivo
Bjork-Shiley Convexo-Concave (BSCC) heart valves by processing acoustic measurements
of heart valve sounds. The structural failures of interes_ for BSCC valves, is called single leg
separation (SLS). SLS can occur if the outlet strut cracks and separates from the main
structure of the valve. We measure acoustic opening and closing sounds (waveforms) using
high sensitivity contact microphones on the patient's thorax. For our analysis, we focus our
processing and classification efforts on the opening sounds because they yield direct
information about outlet stut condition with minimal distortion caused by energy radiated
from the valve disc.

Our heart valve analysis system consists of algorithms for data acuisition, signal
processing and signal classification. Data acqisition and signal processing are discussed in
other papers. This paper concentrates on classification algorithms and results, with brief
descriptions of the acquisition and signal processing provided as necessary to understand the
inputs to the classifiers. We decribe the extraction and selection of spectral features from
the spectral estimates computed by the signal processing system. We show that a two-stage
classifier, which first classifies individual heart beats, and then classifies valves is very
effective in correctly classifying the valves represented in our data set. We measure
performance by constructing confusion matrices, receiver operating characteristic (ROC)
curves showing probability of detection and probability of false alarm (sensitivity and 1-
specificity), and by specifying statistical confidence intervals on the probability of correct
classification. We show that even given a very small number of training samples, the
classifier achieves probability of correct classification of 100% for a real test set.

2. Measurements and Signal Pre-Processing

In this paper, we discuss feature extraction, feature selection and classification
techniques developed to analyze BSCC heart valves sounds and assign them to one of two
classes; those which correspond to valves having the single leg separation (SLS) condition
and those which are intact (INT). The structural condition of interest for BSCC valves,
called single leg separation (SLS), can occur if the outlet strut cracks and/or separates
from the main structure of the valve. We measure acoustic opening and closing sounds
(beats or waveforms) using high sensitivity contact microphones on the patient's thorax.
For our analysis, we focus our processing and classification efforts on the opening sounds
because they yield direct information about outlet strut condition with minimal distortion
caused by energy radiated from the valve disc.

The heart sounds are noisy transient waveforms with a duration of approximately 10
msec to 20 msec. The opening sounds have a much smaller amplitude than the closing sounds
have, and the low signal-to-noise ratio for opening sounds complicates our analysis. The
statistical variability of the opening sounas can be quite large, so we must be careful to

- screen out beats that are not statistically acceptable to be used as a classifier input. We
have developed a beat monitor that performs this screening based upon spectral content of
the waveforms.
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3.0 Classification Using Supervised Learning
I

Our approach to classifying heart valve structural failures is depicted in Figure 1.
Here we see that after the data have been acquired and processed, a set of feature vectors is
extracted and processed by a classifier to decide on the condition of this valve. Our approach
is based on estimating the spectrogram surface (power vs. frequency vs. beat or time),
which displays the resonant peaks of the heart valve under investigation. Note that there is
a separate spectrogram for the valve closing and opening beats. The spectrogram is obtained
by first digitizing the acoustic data, preprocessing (filtering, smoothing, etc.) and then
estimating the power/energy spectrum at each beat producing an individual slice of the
spectrogram surface. Unfortunately, due to nonstationarities within the valve dynamics
(disc closure mechanism) or the acoustic medium, these resonant frequencies vary as a
function of time; thus, searching for a single "fixed" fracture frequency can be futile.

In our approach, a supervised classifier (probabilistic neural network) is trained to
classify heart valves into two classes: Intact (INT) or Single Leg Separated (SLS). We train
our classifier using clinical signals measured from valves that were explanted and examined
after measurement, so the condition ("ground truth") of the valves is positively known.
We test the classifier using similar signals from a "blinded" data set of signals measured
from valves that were explanted. The processing steps are summarized here, and will be
described in detail in the paper.

Preprocessing
The preprocessing techniques [3-9] serve several functions. First, they cut out heart beat
opening sounds (see Fig. 2 for an example of the real data). Second, they screen out opening
sounds that are not representative of what we call "good" beats that are of sufficient quality
to warrant further processing. The algorithms screen out opening sounds (beats) that lie
outside objective statistical bounds we defined for them. Third, we calculate ARMA and
lattice models for the beats and create estimated signal spectra from them. These spectral
estimates serve as the basic for the features we extract. For a detailed description, see [3-
8].
Feature Extraction
Features are chosen initially based upon judgment obtained from knowledge of the processes
and measurements involved. We use features of the estimated frequency spectra of
individual opening sounds. We use ARMA and lattice model spectral estimates [3-9]. The
features used in our current prototype system are the magnitudes of the spectral estimates
in a given small band of frequencies. The width of the band is allowed to vary to produce a
large number of features, one at each width. We then use feature selection algorithms to
choose the subset of optimal features (see Figs. 3 and 4).

Feature Selection
We use both automatic feature selection procedures, along with manual validation to apply
human judgment. We use algorithms for automatically searching through the set of featuresi

and ranking them in order of importance. For example, the sequential forward selection
algorithm ranks the features one by one in order of a statistical measure of distance between
cluster centers in feature space. The branch and bound algorithms produce a list of the
optimal set of features (given a number of features to choose a priori) [9-13, 16]. After
using feature selection algorithms, we generally perform a manual inspection of the one-
and two-dimensional cluster plots in feature space to further reduce the feature set, to gain
physical insight and to allow the insertion of valuable human judgment into the process. We
choose the number of features according to the well-known rule of thumb that says that the
number of independent training samples (feature vectors) should be greater than or equal to

',



3pproximately 5 times the number of features contained in a feature vector. Thus the
number of features we can use is limited by the number of training samples (valves)
available [16, 19].

.Classification

We use a probabilistic neural network (PNN) classifier [17]. The PNN is a Bayes
classifier which estimates the conditional probability density functions (pdf's) for the
input feature vector, given the class to which it belongs (see Figs. 5-7). It is a Parzen
window estimator, which converges to the Bayes optimal decision boundary as the number of
training samples approaches infinity A classifier smoothing parameter must be chosen, and
we created an automatic optimization algorithm for choosing it, based upon searching for the
largest value of the probability of correct classification. We use a two-stage classifier, in
which the first stage uses a PNN to classify beats and the second stage uses hypothesis testing
with a threshold to detect SLS or INT valves. Future plans include using a PNN with other
features in the second stage (see Figs. 8 and 9).

4.0 Classification Results

We processed the training and test data described above, and obtained the following
performance. For training, we found the the system is very robust, even for a small
samples size (10 training samples). The ROC curve derived from the confusion matrix
(see Fig. 10) shows P(Detection) = 1.0 and P(False Alarm) = 0. However, we must keep in
mind that our confidence in these estimates is not high, because the sample size is so small.
To evaluate this confidence, we compute

P(Correct Classification) = .5[P(Detection) + 1 - P(False Alarm)]

for this problem [16]. We show that P(Correct Classification) has a binomial distribution,
and we can define a 95% confidence interval about the estimated P(Correct Classification).
This confidence interval is a function of the number of training samples N, and we show how
the confidence interval tightens as N increases. For our data set, N= 10. For our estimated
value of P(Correct Classification) = 1.0, we see that the 95% confidence interval has a
lower bound of 71% and an upper bound of 100%. If we were to have 1000 samples, the
confidence interval bounds are 99.6% and 100%. If we were to have N = 100 samples, the
bounds are 96% and 100%. See Figs. 11-13. Clearly, we can improve our performance if
we can obtain more heart valves to study. See Figs. 14-19 for details of the classification
results.

5.0 Conclusions

Our classification system is very robust, even though the number of samples is small.
However, the P(correct classification) has a very wide confidence interval, because the
training sample size is so small. Ongoing and future work includes continued study using
data from more heart valves, as they continue to be provided by the clinical team explanting
and studying valves. Within the next year, we expect to obtain data from from
approximately 100 explanted valves. For this sample size, we expect to obtain very tight

o and meaningful confidence intervals for P(correct classification).
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Figure 1

Block diagram of the overall heart beat analysis system.
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We use both fixed window features

and sliding window features L_

Fixed adjacent window features Sliding window features

, PSD (f)

0 W Af N-1 f 0 W _ ,_f N-1 f

• W - Frequency window width • The window slides

• zXf- Frequency bin width • p (f)- Mean in windowW

- 1-- E: PSD_(f)• We get number bands- N__ w c= 1
W • Number bands = N

• Fixed window bands form • Sliding window bands may perform
a subset of the sliding better because they account for all
window bands shifts in window centers
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We Use theP_N (Probabilistic Neural Net)for Bayesia iassification

Recall the Bayes Decision Rule for a Two-Class Problem:

d (X)- ek if hA IAfA(X_) > hB IBfB (X)

d (X)- eB if hA IAfA (X) > hBiBfB (X)
where

e = state of nature = 0Aor eB

d (X) = decision based on X

fA(X) = pdf for class A

f8 (X) = pdf for class B

_ .. ]T = measurementsX --- [ x 1 x 2 . , Xp

IA, IB= loss functions for A, B

h A, h B --" prior probability of occurrence

for patterns from classes A, B, hB= 1 - h A



The PNN estimates probability
density functions from training data L_

fA(X) = (2X_ op / _/ exp I- (X - XAi)T (X - XAi)1i=1 2c_2

i = Pattern number

m = Number of training patterns

X = Pattern (feature) vector under test

XA_= i th training pattern from class A 1G = Smoothing parameter
p = Dimension of X

c_--_0 _ PNN = Nearest neighbor classifier

Estimated pdf has distinct modes
corresponding to locations of training samples

G---_o _ PNN = Hyperplane (linear) classifier

Broad smoothing, interpolation

Estimated pdf approaches Gaussian
0394!T 3/GAC
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We use a two-stage classification
scheme: classify beat_ "irst, valves second

Beat Compute Features

Classification of the Beat Decisions Valve
etc. (Fusion) Classification

Training For
vectors ONE
(beats) VALVE

for class •

SLS or INT Beat Compute
Decision Features

- - of the ' _ Classifier

Xl e I Beat (PNN
___ Classifier _ >(PNN) e2 _ Decisions • or

• etc. " -= other) rq>sLS
, _ (Fusion) "_ _ = _i or

X.p OSLS _p > Lm,._

; 9p-- ]. or .• elm "

Posteriors, pdf's
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Our current two-stage classifier uses one feature

in the second stage L_
Beat classification Compute one Valve classification

(for one valve) valve feature (for one valve)
Features vectors for
beats i= 1,2,..., P Minimum percent SLS

under test threshold (let this vary)

Y

SLS t Compute % SLS

--> PNN beat % of beats beats = Yes Valve' _is
or Intact classified SLS _i SLSbeat

t
>, _ For ]No Valve

+P (success) _-!NT_ _ is
_ 1 l / peats PD Intact=__ I __-For 1

"' I/f_ _ I sLs

0 i'  ats
= Y

=0
"6

0 1P FA

P (SLS I SLS) + P (INT I INT)P (success) =

2[
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The confusion matrix is a useful

tool generated from training results L_

Truth

SLS INTACT

P (SLS i SLS) P (SLSi INT)
SLS - P (detection) - P (false alarm)

Classifier - sensitivity

Results P (INT ! SLS) P (INT I INT)
INT - P (miss) = specificity

= P (spec)

A A

P (detection)+ P (miss) - 1

P (false alarm) + p (spec) - 1
-.. 1_ ^

P (correct classification) - 2 [P (SLSI SLS) + P (INT] INT)]
- _ [sensitivity + specificity]

A

P (error) - 1-P (correct classification)



We performed two experiments

Experiment IA Experiment II
1. Training: Used 17 confirmed 1, Training: (Same as Experiment I)

sessions for 10 valves, all with
normal heart conditions

#SLS Sessions - 10 (6 valves) #SLS Sessions = 10 (6 valves)
# INT Sessions - 7 (4 valves) • # INT Sessions = 7 (4 valves)

Total - 17 Total = 17

2. Testing: Used 11 confirmed 2. Testing: Used 20 sessions
sessions, with mixed heart from various sources, with
conditions mixed heart conditions,

3 valves were aortic
#SLS Sessions - 7 (7 valves) #SLS Sessions = 11
# INT Sessions - 4 (3 valves) # INT Sessions = 9

Total - 11 Total = 20

F'- lq I' o39,:3z,GAC
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We want to provide the bounds for.the case
in which p = 1 (no Incorrect class=flcation__________) L_

• We will provide the bounds for whatever _ we obtain
during training (from our confusion matrix)

• However, Shiley has requested our "confidence" when _ = 1,
so we can specify it as a function of n.

For example:

n Lower Bound Upper Bound

10 .7143 1.0

i

100 .9615 1.0

1000 .9960 1.0

This quantifies why we need a large sample size!

t
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Experiment I: Summary of performance
specifications based on training data

• Number of training samples: n - 17

• Test statistic: 8 - % beats classified SLS

• Decision threshold: y-.5

. P -1 -
D _ FA-"

• Maximum likelihood estimate of P(correct classification) = _ - 1

• Confidence interval about the true P(correct classification) -- p

P (.8095 < p < 1.0)=.95

IIII



• ° .' e

q



.It • •

!,

Experiment I: Summary of test results-

Confusion matrix developed after truth was known L_

#SLS sessions - 7, #1NT sessions = 4

_h SLS INT
ClassificationS.

SLS 7/7 014
-1 =0

INT 0/7 414
-0 =1

P(cc)- ½ [ 1+1]= 1



J_ =P Ibf.

lp

Experiment !1:Classification results for

blinded data from confirmed intact valves

[ape Log # Truth Classification Whiteness e_ d
Test (%)

AZL001 INT INT 5 26 -.24

AZL003 INT INT (3 features) 11 15 -.35

AZL004 (aortic) INT SLS 5 97 .47

AZL012 INT *NC - _ _

AZL013 INT SLS 18 100 .50

AZL014 INT INT (3 features) 13 47 -.03

AZL025-1 (aortic) INT SLS (data?) 16 84 .16

AZL025-2 (aortic) INT *NC - _ _

GOT-01 (aortic) INT *NC - _ _

Leuven data are different, need to train on Leuven data
*NC = no classification due to insufficient data

0394_'4 I';GAC
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Experiment El:Classification results (testing)
for data from confirmed SLS valves L_

Tape Log # Truth Classification Whiteness (_-----_.------d.
Test (%)

BC131 SLS SLS 5 100 .50

BC409 SLS SLS 5 100 .50

BC490 SLS SLS 13 100 .50

BC610 SLS SLS 11 100 .50

BC824 SLS SLS 13 100 .50

BC832 SLS SLS 5 98 .48

BC1026 SLS NC _ _ _

BC1031 SLS SLS 5 100 .50

USA-A SLS SLS 5 100 .50

USA-B SLS SLS 10 100 .50

USA-C SLS SLS 5 100 .50
0394J42,/GAC
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Experiment I!: Summary of test results-

confusion matrix developed after truth was known

# SLS sessions = 11, but only 10 were classified

# INT sessions - 9, but only 6 were classified

h ' SLS INT
Class ification"--..._

SLS 10/10 3/6
= 1 =.5

INT 0/10 3/6
= 0 = .5

P(cc)- ½11 +.5]-.75
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