
A.oc,.,o.,or,n,o--,o..°,o.°...oo°n, .._.i# 4
_4 1100 Wayne Avenue, Suite 1100 _, "_ ,z_ "_

" " Silver Maryland 20910 Y/ _'_ _:: ,_![",'cl'_ _.

....i,' _b S_ro;_587_8202

, Centimeter
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 mm

i,,,,i,,,,i,,,,i,,,,i,,,,I,,,,l,,,,i,,,,i,,,,i,,,,i,,,,I,,,,i
1 2 3 4 5

Inches 1.0 ,._2_____.8_.5
_ 111113----2112.2
_ 136

,_,,oi1_.o
IIIII'_

1111111111"----4Ililt

.%,,.4

RPPLTETO RITM STRNDRRDS ,_ _£ @_IMRGE, INC. _ _%

" V/:

SUNMOS for the Intel Paragon
A Brief User's Guide*t

Arthur B. Maccabe Kevin S. McCurley
University of New Mexico Sandia National Laboratories
Albuquerque, NM 87131 Albuquerque, NM 87185-1109

maccabe@cs.unrn.edu mccurley@cs.sandia.gov

Rolf Riesen Stephen R. Wheat
Sandia National Laboratories Sandia National Laboratories

Albuquerque, NM 87185-1109 Albuquerque, NM 87185-1109
rolf@cs.sandia.gov srwheat@cs.sandia.gov

1 Background message passing routines (e.g., csend, isend, crecv,
and irecv). In addition, the standard SUNMOS li-

SUNMOS is an acronym for Sandia/UNM brary supports the C standard I/O library and the
Operating System. It was originally developed for FORTRAN I/O library. As a consequence, many
the nCUBE-2 MIMD supercomputer between January nCUBE and Intel NX codes will run under SUNMOS
and December of 1991. Between April and August of without modification.

1993, SUNMOS was ported to the Intel Paragon. This A separate document [2] describes the differences
document provides a quick overview of how to compile between standard Intel NX routines and the SUNMOS
and run jobs using the SUNMOS environment on the emulation library. Another document [3] describes
Paragon. the installationprocedure. In addition to these docu-

The primary goal of SUNMOS is to provide high ments, there are man pages for the following SUNMOS
performance message passing and process support commands and library routines:

while consuming a minimal amount of memory. As yod fyod fservers create_yod_configan example of its capabilities, SUNMOS Release 1.4
occupies approximately 240K of memory on a Paragon getcomm getpcb shomaesh ..nsend/_nrecv
node, and is able to send messages at bandwidths of All of these are available by anonymous ftp from
165 megabytes per second with latencies as low as ftp. cs.sazldia.gov in pub/smmos/doc. If you need
42 microseconds using Intel NX calls. By contrast, additional support or have further questions, send
Release 1.2 of OSF/1 for the Paragon occupies ap- email to sunmos-support¢cs.unm.edu..
proximately 7 megabytes of memory on a node, has
a peak bandwidth of 65 megabytes per second, and

latencies as low as 42 microseconds (the communica- 2 Compiling SUNMOS applicationstion numbers numbers are reported elsewhere in these

proceedings [1]). At Sandia, SUNMOS executables are generated on
A Paragon running SUNMOS will use OSF in the Sun workstations using the Intel supplied cross corn-.service and .io partitions, but will have SUNMOS

loaded on all or some of the compute nodes in place pilers. While it is possible to compile application pro-
of OSF. Compute nodes running SUNMOS do not grams on the service nodes on a Paragon, we do not
appear in the .compute partition. The number and recommend this practice.
configuration of SUNMOS and OSF compute nodes is The SUNMOS distribution comes with three shell
decided at boot time; see [3] for further details, scripts that can be used to compile programs written

Through emulation libraries, SUNMOS currently in C, C++, and FORTRAN. These scripts are called
site, siCC,and sir77, respectively, These scripts

supports many of the nCUBE message passing rou- invoke the appropriate cross compilers and link the
tines (e.g., nread and nwrkte) and many of the NX application with the SUNMOS libraries.

*This work was supported by the United States Department These shell scripts, other SUNMOS utilities, and
of Energy under Contract DE-AC04-94AL85000. other useful files are located in a single directory tree.

tThis document was written on May 31, 1994. You Check with your local system administrator for the
can obtain the latest version of SUNMOS documentation of location of this directory at your site.
via anonymous ftp from ftp.cs.sandia.gov in the directory The sunmos directory contains several subdirecto-
pub/sunmos/doc, ries:

OISTRIBUTtON OF THIS DOOUM_ENT 18 UNLIMITED

current/bin contains executables for the SUNMOS lntel allows communication between yod and SUN-
utilities. You will want this directory in your MOS running on compute nodes.
path. One important point about yod: when you abort a

job under control of yod, you should be very care-
current/man contains documentation on SUNMOS ful about how you kill yod. The correct way to

utilities. You may want to add this directory to do this is to issue a control-C to the yod, or to
your manpath, type kill <pid> from another shell. Do not use

kill -9 or kill -KILL to kill a yod process. Do-
current/include contains header files for the SUN- ing so will leave your nodes allocated, and prevent

MOS libraries. This directory is automatically future runs on those nodes until the machine is re-

searched when you use the SUNMOS compiler booted (or until create_yod_config is run again). If
scripts, so you shouldn't need to reference this you run create_yod_config while there are running
directory explicitly, jobs, these runs are likely to be corrupted, so avoid

current/lib contains the SUNMOS libraries. This running it unnecessarily.
directory is automatically searched when you use
the SUNMOS compiler scripts, so you shouldn't 3.1 An example
need to reference this directory explicitly.

Before we consider the command line options sup-
With the exception of the-nx flag, all compiler flags ported by yod, it is instructive to consider a simple

are treated the same way under SUNMOS as under command line:
OSF, so there should be minimal changes required to
makefiles. The -nx flag is used under OSF to link _, yod -sz 8 a.out 100 200
OSF libraries for compute nodes, and should not be This command line instructs yod to allocate 8 nodes
used under SUNMOS. from the SUNMOS nodes and load the application

a. out on all 8 of these nodes. Any arguments after the
name of the file containing the executable are passed

3 Running applications--yod to the application as command line arguments. In thiscase, each of the 8 application processes is provided
with the command line arguments '100' and '200'

The previous section described a cross-compilation
environment on a Sun workstation. There are several 3.2 Node allocation
utilities on the Paragon iLself located in the directory

/sumuos/bin. The most important ones are: When you load and execute an application pro-

yod - the seneric host node program; handles mesh gram, yod allocates the nodes that the application
allocatmn, program load and execution, and file uses. When the application completes, yod reclaims
I/O. For users familiar with the nCUBE, this cor- the nodes for use by other applications.
responds to the xnc command. For users famil- There are three command line options that con-
Jar with the Intel Delta, this corresponds to the trol the algorithm yod uses to allocate nodes: -size,
mexec command. -allocation, and -base.

The -size option can be abbreviated as -sz (as
shouraesh - shows the current mesh allocation. An shown in the previous example). This option controls

alternate tool called showparts is available via the number of nodes allocated for the application. If
anonymous ftp from ftp. cs. sartdia.gov in the you don't specify a size, the default is to allocate a
directory pub/paxagon-contrib, single SUNMOS node. The size can be specified as an

integer (e.g., 8) or a rectangle (e.g., 2x4). When the
getcoma - displays the communication buffers for a size is specified as a rectangle, the height is given first.

stopped process (useful in debugging). When you just specify the number of nodes to be
allocated, yod first tries to allocate a rectangular re-

getpeb- displays the process control block for a glen of the mesh, trying to keep the region as square
stopped process (useful in debugging), as possible. If yod is unable to allocate a rectangular

region, it will try to scatter the application processes
In the remainder of this section we describe how throughout the mesh (still trying to keep them rea-

yod is used to allocate, load and support the execu- sonably close together). If you sl)ecify the size as a
tion of application programs. In the next section we rectangle, yod will only consider rectangular regions
describe how to use getcomm and getpcb during ap- of the specified shape.
plication debugging. Once you arc familiar with the Using the -allocation option, you can control
basic operation of these utilities, you should consult the allocations that yod will consider. Yod recognizes
the man pages for further details, three allocation modes: strict, lax, and any. When

The yod program runs in the service partition, and the mode is strict, yod will only attempt contiguous
handles all requests from the SUNMOS compute nodes allocations, i.e., the processes in your application will
that it controls (much like the proxy process under not span nodes used by the processes in another appli-
OS_). A special message passing module written by cation. This mode is useful if you are concerned that

another application might saturate a communication 4 Debugging (such as it is)
channel and interfere with the communication in your

application. There is currently no support for a debugger under
When the allocation mode is lax, yod will still at- SUNMOS (aarrgh!). We recommend debugging under

tempt to perform a strict allocation. If that fails, OSF, which has integrated debugger support. Support
yod will then try to allocate nodes in a rectangular for a debugger may be added in the future.
shape, spanning rows and columns with other appli- As a poor man's substitute for a debugger, you can
cation processes. (This is the default allocation mode observe the front panel lights and use the getcomm
when you specify the size as a rectangle.) and getpcb utilities to find the current state of a hung

When the allocation mode is any, yod will first at- process.
tempt a strict allocation. If that fails, yod will then

attempt a lax allocation. If that fails, yod will then 4.1 The lights
try to find the desired number of node anywhere in
the mesh. (This is the default allocation mode when
you specify the size as a single number.) The li hts on the front of the machine can some-

times be ased to diagnose what went wrong. Each
The-base option controls the starting position for node has 6 lights associated with it: one red light,

an allocation in the mesh. This option is useful when and five bar lights. The bar lights on each node willyou need to take advantage of differences in the nodes
(e.g., different memory sizes), be referred to as numbered 1-5, counting from the top.

• when a node is not running a user process, the
lights repeatedly blink in the pattern 1--2--3--

3.3 Controlling memory allocation 4--5--4--3--2--1.

When an application process is loaded, SUNMOS • when the primary processor on a node has faulted,the lights repeatedly blink the pattern" 3--2,4--
allocates memory for five distinct regions: code (text), 1,5--2,4--3.
static data, communication, stack, and heap. The

code region is always just large enough to hold the • when the coprocessor on a node faults (and the
code for the process. Similarly, the static data region primary processor does not) light # 3 comes on
is always just large enough to hold the static data and stays on.
for the process. By default, SUNMOS allocates 256K

bytes for the communication and stack regions. After • when the processor is running in user mode,
is has allocated memory for the code, communication, light #p 1 comes on and stays on. This includes
and stack regions, SUNMOS, by default allocates the the case when a user is blocked waiting for a mes-
remainder of the application memory (i.e., the mem- sage.
ory that is not used by SUNMOS itself) for the appli-
cation's heap region. • when a node is in system mode but hung receiv-

You can directly control the amount of memory al- ing a message, light # 4 is on. This is usually
located for the communication, stack, and heap re- accompanied by the red light on the node being
gions using the -coma, -stack, and -heap command on, and will usually require a reboot of the ma-
line options of yod. Each of these options takes a single chine. This indicates an OS failure and should be
number, the number of bytes to allocate for the speci- investigated further if it happens.
fled region. As an example, if you use -coma 1000000,
then SUNMOS will allocate 1,000,000 bytes of storage • when a node is in system mode but hung send-
on each node for message buffers, ing a message, light # 5 is on. This is usually

The communication region is used to buffer mes- accompanied by the red light on the node being
sages that have arrived at the receiving node, but not on, and will usually require a reboot of the ma-
yet requested by the application process. If you al- chine. This indicates an OS failure and should be
locate too little space for the communication region, investigated further if it happens.

SUNMOS will abort the application processes as soon The case of waen a user is blocked waiting for a mes-
as a message arrives when there is not sufficient space sage is indistinguishable from when a user is runningin communication region to hold the message.

happily on a node, but this can be discovered using
The stack region is used to hold local variables. If getcomm (described below).

you use large automatic arrays, you may exceed the
default stack size. If your application exceeds the size '"
allocated for the stack region, the results are unpre- 4.2 Inspecting the message queues of
dictable; however, you will most likely get a data ac- hung jobs
cess fault during execution.

The heap region is used to hold the dynamic space The getcomm utility can be used to display the
used by an application process. In C programs, this list of unreceived messages and posted receives, and
space is accessed using the standard library routines: whether the user process is currently blocked waiting
malloc, calloc, and free. on a message.

Jt' •

ge1_getcomm -n 12

CommComm Buff Analysis for node 12 (logical dO)

UserUser has not processed the following message(s) yet:
! l_! len= 2, type= 55 (0x00000037), src= 13 (OxOOOOOOOd), src pid I
i i logical src= I (OxO0000001)
! ! dst= 12 (OxO000000c), dst_pid I

time stamp = OxOOOOO17a

UserUser is waiting the following message(s):
? lq? len= O, type= 54 (0x00000036), src 65535 (OxOOOOffff), pid 65535 (OxOOOOffff)
? ? time stamp = OxOOOOO17e, msg body= OxfOfTb9d8

Figure 1: Sample output from getcomm.

A A sample output for getcomra is given in Figure 1. Since the logical address 18c18 from the dump is
This _This shows the output from a one node of a program after 18b80 and before 19240, you can tell that the
that _that was run on physical nodes 12 and 13, running to fault occurred in main(). Furthermore, 18c18-18b80
a certa certain point and hanging. = 98 in hex, or 152 in decimal. Since each instruction

Th The output from getconm shows that node 12 (us- is 4 bytes, this is 38 instructions into main(). From
ing ping physical node numbering) is currently blocked inspection of the output from
waitilwaiting for a message of type 54 and length 0 from
any s,any source (0x0000ffff), and has received a message sicc -S -Manno main. c
from from logical node 1 (physical node 13) of type 55 and
lengtllength 2 bytes in the system buffer, we find that the instruction is

TI_ The utility getpcb is a bit more obscure--see the
man 'man page. One use is to decide what state a node is ld.1 56(sp), r28

in. l_in. Note that running getpcb or getconm while the which is generated from the linenode node is sending a message will cause a fault in itself,

so yoso you should only use these on hung jobs. algvalue = *algptr

4.3 4.3 Deciphering node fault dumps From this you might suspect the problem is dereferenc-
ing a null pointer algptr. This is not fun--or partic-

W] When a SUNMOS node process faults (yes, it can ularly efficient--but sometimes better than nothing.
happ&appen), it displays some very crude register and pro- If you're faint of heart, then try the old 1970's way of
cess i:cess information that can be used to diagnose the fail- inserting print statements. • '"
ure (ture (those of you old enough to remember the 1960's
will. fiwill, feel right at home). An example of such a dump
is glvls given in Figure 2.

Tll This indicates that node 2 faulted at an instruction 5 I/O and fyod
whos,whose hex value is 0x139d0001, located at address
0xl8_0xl8cl8. The table of 32 values is the contents of the The fyod program provides scalable file I/O service
32 int32 integer registers. The instruction itself is probably to SUNMOS nodes. If this program is not used, then
of litof little use without a disassembler, but the address all I/O from a SUNMOS job is funneled through the
can bcan be used to find the routine in which the program yod process on the service partition of the Paragon.
faultffaulted. You can run While this is simple and adequate for small numbers

of nodes or small amounts of I/O, it represents bot-
nm860 -f -v a.out > a.out.map tleneck in I/O bandwidth.

on ycon your SUNMOS executable a.out to produce the fyod is intended to help with this difficulty. Users
map _map a. out. map. By looking at the starting addresses can start an fyod process on the .io partition to handle
of th_of the functions in your program, you can locate the requests to different directories in parallel. As an ex-
addrmddress where the fault occurred. The dump in Fig- ample, suppose the paragon has a 2 node .io partition
ure 2ure 2 was produced by a program whose dump con- with 2 RAID devices: /raid/io_01 and/raid/io_02.
tains tains the following lines: The user could have these managed separately by typ-

ing
_mai__main IOxOOOl8b801externl I I I•text

_qrf__qrfact lOxOOO19240Iexternl I I I.text fyod -sz 2 -pn .io -dir /raid/io_##

NODE Oxd: proc OxO, psr Ox208aO, epsr 0x21080402, fsr Ox350000al
pc(log) 0x18c18, pc(phys) OxfOe64cl8, instr Ox139dO001, sp OxSedO990
FAULT TYPE: Data Access Fault (bad address)

rO: OxO0000000, rl: OxOOO46a28, r2: OxO5edb990, r3: OxO0000000
r4: OxO5655bfc, rS: 0x04029498, r6: OxO402bb84, rT: OxO402bbbc
r8: 0x04028ci0, r9: OxO5655ba8, riO: 0x04028c00, rll: 0x0401c028
ri2: 0x0401c024, r13: 0x04028c08, r14: 0x04028c0c, r15:OxO402ab28
r16: OxO0000001, r17: OxO5655ba8, r18: OxO5655bbO, r19:0x00000013
r20: OxO0000000, r21: OxO0000001, r22: OxO62dcO00, r23:OxO0000000
r24: OxO0000000, r25: OxO62dcO00, r26: OxO0000000, r27:OxO62dcO00
r28: OxO0000001, r29: Oxlb564b18, r30: OxffffO000, r31:0x04020000

Figure 2: Output from a node that faulted under SUNMOS

The use of ## indicates that requests to open a file This specifies that yod should allocate 512 SUNMOS
from a directory with ## replaced by one of the strings nodes arranged in a 16x32 rectangle. The SUNMOS
"01" or "02" are directed to the appropriate I/O node. executable progl should be loaded on the 16x2 rect-
A similar paradigm exists in the NX library when a angle anchored at node 0, i.e., columns 0 and 1 of the
file is opened: a string of three or more # characters 16x32 rectangle. Further, prog2 should be loaded on
in a file name is replaced by the node number of the the 16x30 rectangle anchored at node 2, i.e., columns
job opeuing them). To describe how the fyod pro- 2-31 of the original rectangle. Note that the two pro-
gram works, we start with an fopen request made by grams are supplied with different comm sizes (other
a SUNMOS node. This is sent to the yod process re- yod options except for size options can go here). The
sponsible for the job. yod then starts by looking up specification of the "anchor nodes" 0 and 2 for the
in a directory of file services. If an fyod service is two applications are required, because yod does not
found that handles the directory in which the file re- do tiling. Another example is
sides, the open request is sent to the appropriate fyod.
This fyod opens the file and sends a response back to -sz 512
the SUNMOS node. Future I/O traffic for this file progl 32 -con 4000000
travels between the SUNMOS node and the I/O node prog2 480 -con 1000000
directly, without intervention from the yod process. A
user can display the directory of existing fyod services This more flexible specification allows yod to allocate
by typing the command fservers. At some point in any 512 nodes obeying the allocation strategy, and as-
the future, fyod will likely become part of the boot sign the executables to the nodes in node order (progl
procedure, eliminating the need for users to manage goes on nodes 0,...,31, etc.).
their own I/O servers. Further details on fyod appear
in the man page. fyod requires a large segment of 6.2 Use of the second processor
wired memory on an I/O node, so it is not advisable
to run more than one of these on a single I/O node. The GP node of an Intel Paragon has two i860XP
This will also result in a decrease in performance, processors that share access to the memory (MP nodes

will have even more). Originally Intel planned to use
this processor as a communications coprocessor, with
the goal of lower latency and ability to overlap com-

6 Advanced features of yod putation and communication on a node. Under SUN-
MOS, there are currently three modes supported for

6.1 Heterogeneous loads use of the second processor:
mode 0 affectionately called "heater mode"; where

A recently added feature to yod was the ability the second processor is inactive.

to load different executables on different nodes, all mode 1 the second processor is used as a communi-
within a single application. The exact syntax for do- cation coprocessor. This results in significantly
ing this should be contained in the man page, but lower latencies for message passing, and allows
roughly speaking you use yod -F loadmap to specify better overlap between communication and corn-
that loads are controlled by the contents of the file putation.
loadmap. An example file would be of the form'

mode 2 the second processor can be used as an ad-
-sz 16x32 ditional compute processor, with shared memory.
progl 16x2:0 -comm 4000000 This has been referred to by some as "SUNMOS
prog2 16x30:2 -comm 1000000 turbo mode".

D

Modes 1 and 2 will not work reliably with some early Then link the file fcop. o with the rest of your appli-
hardware, but seem to work reliably now on the San- cation. In order to call a subroutine
dia hardware. These modes are selected through the
-proc option to yod. subroutine f(i)

Mode 2 requires a user to specify some work to be
done on the second processor via a function or subrou- on the second processor, you use the linetine call that takes a single integer argument. There
are currently some restrictions on what can be called
on the second processor. In particular, you cannot call fcop(f,i)
print from the coprocessor, send messages, or use cer-
tain system calls that use static variables (and hence Be sure to declare that f is an external subroutine.
are not reentrant). The two processors will share the You can later check for completion using the lines
heap, but have separate stacks (as a result, the use
of the second processor will consume extra memory
on a node). The performance improvement that is iflag = 0
achieved using mode 2 depends primarily on the de- call fcopdone(iflag)
greetowhichtheprocessorsusetheirmemory caches. ... other work on main processor
We havewitnessedspeedupsashighas95% forcodes iX (iflag .eq. I) then
thatreusetheircachesverywell.Inparticular,itwas """ f completed
possibletoachieveaspeedhigherthantheratedpeak
oftheParagonusingthismethod(!). The filefcop.c is currentlyin the directory

In the C language, the interface to the second pro- /home/u/mccttrley/fcop inside the cs. sandia, gov
cessor in mode 2 is through a function cop(), whose domain, along with a test Fortran program called

test.f. It should also be on ftp.cs.sandia.gov in
prototype is: the directory pub/paragon-contrib.

cop(void (*f)(), volatile unsigned *flag,
_, void *arg) ;

The function f to be run on the second processor 7 Other issues
should have a prototype

There has been a data corruption problem during
void f(int arg) ; the load in some of the early 32-megabyte nodes on the

In order to run f(arg) on the second processor, you Sandia machine. If you observe this, it will produce
would use statements like an error message of the form shown in Figure 3. This

informs you that the text or data segment of your
volatile int fla$=0; loaded program produces an incorrect checksum, so
cop(f ,_tflag,&axg) ; that the program may give incorrect results. One way

to protect against it is to specify a heap that fits in
The main processor can then go off to do other work, 16 megabytes when loading on 32 megabyte nodes.
and when the function f completes on the second pro- The processor modes 1 and 2 are not suffi-
cessor, flag will be incremented. The main processor ciently tested, and some bugs are known to exist
can later check for completion of f by inspecting the on some hardware. The Sandia machine has had
value of flag to see if it was incremented, all of the node boards upgraded to fix the known

There is currently no interface to the second pro- bugs, and any new bugs should be reported to
cessordirectlyfromFortran,but thiswillbe corrected sunmos-dev_cs.sandia.gov. Other sitesmay ob-
infutureversionsofSUNMOS. Fornow,thefollowing serveproblemswiththcsemodes iftheirhardwareis
piece of C code can be used. In a file called fcop. c, an early version and has not been upgraded.
put the following lines: At present there is no document describing the lim-

itations of the nCUBE emulation library, but some no-
star ic volatile if lag; table ommissions are the lack of global operations such
void fcop_(void (*addthem)() int *j)

, { ' as ndsumn() and nglobal(). Broadcasting by giving
a destination of-1 to nwrite() is also not currently

iflag=O; supportedcop (addthem, _tiflag, j) ;
} Floating point exception handling for IEEE float-
void fcopdone_(int *flag) ing point arithmetic is currently not implemented in
{ SUNMOS. This is a design decision dictated by the

*flag : iflag; fact that such exception handling is done in software,
} is incredibly slow, occurs rarely, and would essentially

double the size of the SUNMOS operating system.
Compile fcop.c using the command Constructive feedback on this document is wel-

come. Send comments to mccurley©cs, sandia, gov.
Zsicc -c -O3 fcop. c Send complaints to/day/null.

BAD TEXT LOAD: tmin=OxlO023222 tmax=OxlO012122 s3Osum=lO01
BAD DATA LOAD: dmin=Ox10921213 dmax=OxOx110271 s30sum=l172

Figure 3: Error messages from a bad load.

References

[1] Bernard Traversat, Bill Nitzberg, and Sam
Fineberg, Experience with SUNMOS on the
Paragon XP/S-15, in ISUG-94.

[2] Kevin S. McCurley, Intel NX compatibility under
SUNMOS, Sandia National Laboratories Techn-
nical Report # 93-2618.

[3] T. Mack Stallcup, Installation Instructions for
SUNMOS.

[4] man pages for yod, fyod, fservers, getpcb, get-
comm, showmesh, and nsend/nrecv.

DISCLAIMER

This report was prepared as an account of work sponsoredby an ag¢ncy of thc United States
Government. Neither the United States Government nor any agency thereof, nor any of their
¢mployccs, makes any warranty, express or implied, or assum¢s any legal liability or responsi-
bility for the accuracy, compl©tencss,or usefulness of any information, apparatus, product,or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not ncccssarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Governmentor any agency thereof.

