a2
A\ ¢ = // g
ad, q:.l' /
N \\\\//q’ \\//
\‘tm \\\‘\\‘:’//b

O
Q o, \\\q;%% N A““ /// \\ ///\\{)
\F OV, TR

> IR &, 4
\\/\'f’ \ ///\\/‘" p, &
Centimeter

1 2 3 4) 6 7 8 9

p—y

o 11 12 13 14 15 mm

1 2 3) !
Inches 0 Eh g
l= v
o
= e
L2 flis e

57N 4

4 i
o . A N
: 0§ »1’\' / q\ A \
@>\//e//<\“§; i‘;] //\\ // //%\\\ o //Q\\
D\ N S {i@
6///%% \\\ /// MANUFACTURED TO ATIM STANDARDS //61\\\\ %ﬁ/ﬁ\\i%
0\ BY APPLIED IMAGE, INC. /4\\ ol
24 PN

%2%06905" ~A.

Y T . -
;vf//,,-?/,‘, 7o P 4 —

SUNMOS for the Intel Paragon
A Brief User’s Guide*!

Arthur B. Maccabe
University of New Mexico
Albuquerque, NM 87131

maccabe@cs.unm.edu

Rolf Riesen

Sandia National Laboratories

Kevin S. McCurley
Sandia National Laboratories

Albuquerque, NM 87185-1109

mccurley@cs.sandia.gov

Stephen R. Wheat

Sandia National Laboratories

Albuquerque, NM 87185-1109 Albuquerque, NM 87185-1109

rolf@cs.sandia.gov

1 Background

SUNMOS is an acronym for Sandia/UNM
Operating System. It was originally developed for
the nCUBE-2 MIMD supercomputer between January
and December of 1991. Between April and August of
1993, SUNMOS was ported to the Intel Paragon. This
document provides a quick overview of how to compile
and run jobs using the SUNMOS environment on the
Paragon.

The primary goal of SUNMOS is to provide high
performance message passing and process support
while consuming a minimal amount of memory. As
an example of its capabilities, SUNMOS Release 1.4
occupies approximately 240K of memory on a Paragon
node, and is able to send messages at bandwidths of
165 megabytes per second with latencies as low as
42 microseconds using Intel NX calls. By contrast,
Release 1.2 of OSF/1 for the Paragon occupies ap-
proximately 7 megabytes of memory on a node, has
a peak bandwidth of 65 megabytes per second, and
latencies as low as 42 microseconds (the communica-
tion numbers numbers are reported elsewhere in these
proceedings [1]).

Paragon running SUNMOS will use OSF in the
.service and .ilo partitions, but will have SUNMOS
loaded on all or some of the compute nodes in place
of OSF. Compute nodes running SUNMOS do not
appear in the .compute partition. The number and
configuration of SUNMOS and OSF compute nodes is
decided at boot time; see [3] for further details.

Through emulation libraries, SUNMOS currently
supports many of the nCUBE message passing rou-
tines (e.g., nread and nwrite) and many of the NX

*This work was supported by the United States Department
of Energy under Contract DE-AC04-94AL85000.

tThis document was written on May 31, 1994. You
can obtain the latest version of SUNMOS documentation of
via anonymous {tp from ftp.cs.sandia.gov in the directory
pub/sunmos/doc.

srwheat@cs.sandia.gov

message passing routines (e.g., csend, isend, crecv,
and irecv). In addition, the standard SUNMOS li-
brary supports the C standard I/O library and the
FORTRAN I/O library. As a consequence, many
nCUBE and Intel NX codes will run under SUNMOS
without modification.

A separate document [2] describes the differences
between standard Intel NX routines and the SUNMOS
emulation library. Another document [3] describes
the installation procedure. In addition to these docu-
ments, there are man pages for the following SUNMOS
commands and library routines:

yod fyod fservers create_yod _config
getcomn getpcb showmesh _nsend/.nrecv

All of these are available by anonymous ftp from
ftp.cs.sandia.gov in pub/sunmos/doc. If you need
additional support or have further questions, send
email to sunmos-supportQcs.unm. edu..

2 Compiling SUNMOS applications

At Sandia, SUNMOS executables are generated on
Sun workstations using the Intel supplied cross com-
pilers. While it is possible to compile application pro-
grams on the service nodes on a Paragon, we do not
recommend this practice.

The SUNMOS distribution comes with three shell
scripts that can be used to compile programs written
in C, C++, and FORTRAN. These scripts are called
sicc, siCC, and sif77, respectively. These scripts
invoke the appropriate cross compilers and link the
application with the SUNMOS libraries.

These shell scripts, other SUNMOS utilities, and
other useful files are located in a single directory tree.
Check with your local system administrator for the
location of this directory at your site.

The sunmos directory contains several subdirecto-
ries:

wl-‘L LE

poaoao ks
v, i P" N m
o L }“ L

So_

DISTRIBUTION OF THIS DOCUMENT I8 UNLIMITED

current/bin contains executables for the SUNMOS
utilities. You will want this directory in your
path.

current/man contains documentation on SUNMOS
utilities. You may want to add this directory to
your manpath,

current/include contains header files for the SUN-
MOS libraries. This directory is automatically
searched when you use the SUNMOS compiler
scripts, so you shouldn’t need to reference this
directory explicitly.

current/1ib contains the SUNMOS libraries. This
directory is automatically searched when you use
the SUNMOS compiler scripts, so you shouldn’t
need to reference this directory explicitly.

With the exception of the -nx flag, all compiler flags
are treated the same way under SUNMOS as under
OSF, so there should be minimal changes required to
makefiles. The -nx flag is used under OSF to link
OSF libraries for compute nodes, and should not be
used under SUNMOS.

3 Running applications—yod

The previous section described a cross-compilation
environment on a Sun workstation. There are several
utilities on the Paragon ilself located in the directory
/sunmos/bin. The most important ones are:

yod - the generic host node program; handles mesh
allocation, program load and execution, and file
/0. For users familiar with the nCUBE, this cor-
responds to the xnc command. For users famil-
iar with the Intel Delta, this corresponds to the
mexec command.

showmesh — shows the current mesh allocation. An
alternate tool called showparts is available via
anonymous ftp from ftp.cs.sandia.gov in the
directory pub/paragon-contrib.

getcomm — displays the communication buffers for a
stopped process (useful in debugging).

getpcb — displays the process control block for a
stopped process (useful in debugging).

In the remainder of this section we describe how
yod is used to allocate, load and support the execu-
tion of application programs. In the next section we
describe how to use getcomm and getpcb during ap-
plication debugging. Once you are familiar with the
basic operation of these utilities, you should consult
the man pages for further details.

The yod program runs in the service partition, and
handles all requests from the SUNMOS compute nodes
that it controls (much like the proxy process under
OSt). A special message passing module written by

Intel allows communication between yod and SUN-
MOS running on compute nodes.

One important point about yod: when you abort a
job under control of yod, you should be very care-
ful about how you kill yod. The correct way to
do this is to issue a control-C to the yod, or to
type kill <pid> from another shell. Do not use
kill -9 or kill -KILL to kill a yod process. Do-
ing so will leave your nodes allocated, and prevent
future runs on those nodes until the machine is re-
booted (or until create_yod_config is run again). If
you run create_yod.config while there are running
jobs, these runs are likely to be corrupted, so avoid
running it unnecessarily.

3.1 An example

Before we consider the command line options sup-
ported by yod, it is instructive to consider a simple
command line:

% yod -sz 8 a.out 100 200

This command line instructs yod to allocate 8 nodes
from the SUNMOS nodes and load the application
a.out on all 8 of these nodes. Any arguments after the
name of the file containing the executable are passed
to the application as command line arguments. In this
case, each of the 8 application processes is provided
with the command line arguments ‘100’ and ‘200°.

3.2 Node allocation

When you load and execute an application pro-
gram, yod allocates the nodes that the application
uses. When the application completes, yod reclaims
the nodes for use by other applications.

There are three command line options that con-
trol the algorithm yod uses to allocate nodes: -size,
-allocation, and -base.

The -size option can be abbreviated as -sz (as
shown in the previous example). This option controls
the number of nodes allocated for the application. If
you don’t specify a size, the default is to allocate a
single SUNMOS node. The size can be specified as an
integer (e.g., 8) or a rectangle (e.g., 2x4). When the
size 1s specified as a rectangle, the height is given first.

When you just specify the number of nodes to be
allocated, yod first tries to allocate a rectangular re-
gion of the mesh, trying to keep the region as square
as possible. If yod is unable to allocate a rectangular
region, it will try to scatter the application processes
throughout the mesh (still trying to keep them rea-
sonably close together). If you specify the size as a
rectangle, yod will only consider rectangular regions
of the specified shape.

Using the -allocation option, you can control
the allocations that yod will consider. Yod recognizes
three allocation modes: strict, lax, and any. When
the mode is strict, yod will only attempt contiguous
allocations, i.e., the processes in your application will
not span nodes used by the processes in another appli-
cation. This mode is useful if you are concerned that

another application might saturate a communication
channel and interfere with the communication in your
application.

When the allocation mode is laz, yod will still at-
tempt to perform a strict allocation. If that fails,
yod will then try to allocate nodes in a rectangular
shape, spanning rows and columns with other appli-
cation processes. (This is the default allocation mode
when you specify the size as a rectangle.)

When the allocation mode is any, yod will first at-
tempt a strict allocation. If that fails, yod will then
attempt a lax allocation. If that fails, yod will then
try to find the desired number of node anywhere in
the mesh. (This is the default allocation mode when
you specify the size as a single number.)

The -base option controls the starting position for
an allocation in the mesh. This option is useful when
you need to take advantage of differences in the nodes
(e.g., different memory sizes).

3.3 Controlling memory allocation

When an application process is loaded, SUNMOS
allocates memory for five distinct regions: code (text),
static data, communication, stack, and heap. The
code region is always just large enough to hold the
code for the process. Similarly, the static data region
is always just large enough to hold the static data
for the process. By default, SUNMOS allocates 256K
bytes for the communication and stack regions. After
is has allocated memory for the code, communication,
and stack regions, SUNMOS, by default allocates the
remainder of the application memory (i.e., the mem-
ory that is not used by SUNMOS itself) for the appli-
cation’s heap region.

You can directly control the amount of memory al-
located for the communication, stack, and heap re-
gions using the -comm, -stack, and ~heap command
line options of yod. Each of these options takes a single
number, the number of bytes to allocate for the speci-
fied region. As an example, if you use -comm 1000000,
then SUNMOS will allocate 1,000,000 bytes of storage
on each node for message buffers.

The communication region is used to buffer mes-
sages that have arrived at the receiving node, but not
yet requested by the application process. If you al-
locate too little space for the communication region,
SUNMOS will abort the application processes as soon
as a message arrives when there is not sufficient space
in communication region to hold the message.

The stack region is used to hold local variables. If
you use large automatic arrays, you may exceed the
default stack size. If your application exceeds the size
allocated for the stack region, the results are unpre-
dictable; however, you will most likely get a data ac-
cess fault during execution.

The heap region is used to hold the dynamic space
used by an application process. Iu C programs, this
space is accessed using the standard library routines:
malloc, calloc, and free.

4 Debugging (such as it is)

There is currently no support for a debugger under
SUNMOS (aarrgh!). We recommend debugging under
OSF, which has integrated debugger support. Support
for a debugger may be added in the future.

As a poor man’s substitute for a debugger, you can
observe the front panel lights and use the getcomm
and getpch utilities to find the current state of a hung
process.

4.1 The lights

The lights on the front of the machine can some-
times be used to diagnose what went wrong. Each
node has 6 lights associated with it: one red light,
and five bar lights. The bar lights on each node will
be referred to as numbered 1-5, counting from the top.

e when a node is not running a user process, the
lights repeatedly blink in the pattern 1—2—3-—
4—-5—4—3-—2—1.

e when the primary processor on a node has faulted,
the lights repeatedly blink the pattern: 3——2,4—
1,5—2,4—3.

o when the coprocessor on a node faults (and the
primary processor does not) light # 3 comes on
and stays on.

e when the processor is running in user mode,
light # 1 comes on and stays on. This includes
the case when a user is blocked waiting for a mes-
sage.

e when a node is in system mode but hung receiv-
ing a message, light # 4 is on. This is usually
accompanied by the red light on the node being
on, and will usually require a reboot of the ma-
chine. This indicates an OS failure and should be
investigated further if it happens.

o when a node is in system mode but hung send-
ing a message, light # 5 is on. This is usually
accompanied by the red light on the node being
on, and will usually require a reboot of the ma-
chine. This indicates an OS failure and should be
investigated further if it happens.

The case of wnen a user is blocked waiting for a mes-
sage is indistinguishable from when a user is running
happily on a node, but this can be discovered using
getcomm (described below).

4.2 Inspecting the message queues of
hung jobs

The getcomm utility can be used to display the
list of unreceived messages and posted receives, and
whether the user process is currently blocked waiting
on a message.

% get getcomm -n 12

CommComm Buff Analysis for node 12 (logical d0)

User User has not processed the following message(s) yet:

1 1d
! !
! !

logical src= 1 (0x00000001)
dst= 12 (0x0000000c), dst_pid 1

s===:======= time stamp = 0x0000017a

User User is waiting the following message(s):

len= 2, type= 55 (0x00000037), src= 13 (0x0000000d), src_pid 1

? 1@ 1len= 0, type= 54 (0x00000036), src 65535 (0x0000ffff), pid 65535 {0x0000ffff)

? ?

time stamp = 0x0000017e, msg body= Oxf0£7b9d8

Figure 1: Sample output from getcomm.

A A sample output for getcomm is given in Figure 1.
This This shows the output from a one node of a program
that that was run on physical nodes 12 and 13, running to
a certa certain point and hanging.

Th The output from getcomm shows that node 12 (us-
ing ping physical node numbering) is currently blocked
waitiwaiting for a message of type 54 and length 0 from
any sany source (0x0000f££f), and has received a message
from from logical node 1 (physical node 13) of type 55 and
lengtllength 2 bytes in the system buffer.

Th The utility getpcd is a bit more obscure—see the
man man page. One use is to decide what state a node is
in. Nin. Note that running getpcb or getcomm while the
node node is sending a message will cause a fault in itself,
so yoso you should only use these on hung jobs.

4.3 4.3 Deciphering node fault dumps

W! When a SUNMOS node process faults (yes, it can
happhappen), it displays some very crude register and pro-
cess icess information that can be used to diagnose the fail-
ure (fure (those of you old enough to remember the 1960’s
will fwill feel right at home). An example of such a dump
is givis given in Figure 2.

Th This indicates that node 2 faulted at an instruction
whoswhose hex value is 0x139d0001, located at address
0x180x18c18. The table of 32 values is the contents of the
32 inB2 integer registers. The instruction itself is probably
of litiof little use without a disassembler, but the address
can bcan be used to find the routine in which the program
faultffaulted. You can run

I nm860 -f -v a.out > a.out.map

on ycon your SUNMOS executable a.out to produce the
map map a.out.map. By looking at the starting addresses
of theof the functions in your program, you can locate the
addreaddress where the fault occurred. The dump in Fig-
ure 2ure 2 was produced by a program whose dump con-
tains tains the following lines:

_mair_main
_qrfi_qrfact

]0x00018b80|extern| | |
]0x00019240|extern| | |

|.text
|.text

Since the logical address 18¢18 from the dump is
after 18b80 and before 19240, you can tell that the
fault occurred in main(). Furthermore, 18c18-18b80
= 98 in hex, or 152 in decimal. Since each instruction
is 4 bytes, this is 38 instructions into main(). From
inspection of the output from

sicc -S -Manno main.c
we find that the instruction is
1d.1 56(sp), r28
which is generated from the line
algvalue = *algptr

From this you might suspect the problem is dereferenc-
ing a null pointer algptr. This is not fun—or partic-
ularly efficient—but sometimes better than nothing.
If you’re faint of heart, then try the old 1970’s way of
inserting print statements. :

5 I/O and fyod

The fyod program provides scalable file I/O service
to SUNMOS nodes. If this program is not used, then
all I/O from a SUNMOS job is funneled through the
yod process on the service partition of the Paragon.
While this is simple and adequate for small numbers
of nodes or small amounts of I/O, it represents bot-
tleneck in I/O bandwidth.

fyod is intended to help with this difficulty. Users
can start an fyod process on the .io partition to handle
requests to different directories in parallel. As an ex-
ample, suppose the paragon has a 2 node .io partition
with 2 RAID devices: /raid/io 01 and /raid/io.02.
The user could have these managed separately by typ-
ing

fyod -sz 2 -pn .io -dir /raid/io.##

NODE Oxd: proc 0x0, psr 0x208a0, epsr 0x21080402, fsr 0x350000a1
pc(log) 0x18¢18, pc(phys) 0xfOe64ci8, instr 0x139d0001, sp 0x5edb990

FAULT TYPE: Data Access Fault (bad address)

r0: 0x00000000, ri: 0x00046a28, r2:

r4: 0x056565bfc, rb5: 0x04029498, r6:

r8: 0x04028c10, rg9: 0x05655ba8, ri0:
ri2: 0x0401c024, ri13: 0x04028¢08, ri4:
ri6: 0x00000001, ri7: 0x05655ba8, ri8:
r20: 0x00000000, r21: 0x00000001, r22:
r24: 0x00000000, r25: 0x062dc000, r26
r28: 0x00000001, r29: 0x1b564b18, r30:

0x05edb990, r3: 0x00000000
0x0402bb84, r7: 0x0402bbbc
0x04028¢00, rii: 0x0401c028
0x04028c0c, rib: 0x0402ab28
0x06655bb0, ri9: 0x00000013
0x062d¢c000, r23: 0x00000000

¢ 0x00000000, r27: 0x062dc000

0xf£££0000, 1r31: 0x04020000

Figure 2: Output from a node that faulted under SUNMOS

The use of ## indicates that requests to open a file
from a directory with ## replaced by one of the strings
“01” or “02” are directed to the appropriate I/O node.
A similar paradigm exists in the NX library when a
file is opened: a string of three or more # characters
in a file name is replaced by the node number of the
job opening them). To describe how the fyod pro-
gram works, we stort with an fopen request made by
a SUNMOS node. This is sent to the yod process re-
sponsible for the job. yod then starts by looking up
in a directory of file services. If an fyod service is
found that handles the directory in which the file re-
sides, the open request is sent to the appropriate £yod.
This fyod opens the file and sends a response back to
the SUNMOS node. Future 1/O traffic for this file
travels between the SUNMOS node and the I/O node
directly, without intervention from the yod process. A
user can display the directory of existing fyod services
by typing the command fservers. At some point in
the future, fyod will likely become part of the boot
procedure, eliminating the need for users to manage
their own I/O servers. Further details on fyod appear
in the man page. fyod requires a large segment of
wired memory on an I/O node, so it is not advisable
to run more than one of these on a single I/O node.
This will also result in a decrease in performance.

6 Advanced features of yod

6.1 Heterogeneous loads

A recently added feature to yod was the ability
to load different executables on different nodes, all
within a single application. The exact syntax for do-
ing this should be contained in the man page, but
roughly speaking you use yod -F loadmap to specify
that loads are controlled by the contents of the file
loadmap. An example file would be of the form:

-5z 16x32
progl 16x2:0 -comm 4000000
prog2 16x30:2 -comm 1000000

This specifies that yod should allocate 512 SUNMOS
nodes arranged in a 16x32 rectangle. The SUNMOS
executable progil should be loaded on the 16x2 rect-
angle anchored at node 0, i.e., columns 0 and 1 of the
16x32 rectangle. Further, prog2 should be loaded on
the 16x30 rectangle anchored at node 2, i.e., columns
2-31 of the original rectangle. Note that the two pro-
grams are supplied with different comm sizes (other
yod options except for size options can go here). The
specification of the “anchor nodes” 0 and 2 for the
two applications are required, because yod does not
do tiling. Another example is

-sz 512
progi 32 -comm 4000000
prog2 480 -comm 1000000

This more flexible specification allows yod to allocate
any 512 nodes obeying the allocation strategy, and as-
sign the executables to the nodes in node order (progi
goes on nodes 0,...,31, etc.).

6.2 Use of the second processor

The GP node of an Intel Paragon has two i860XP
processors that share access to the memory (MP nodes
will have even more). Originally Intel planned to use
this processor as a communications coprocessor, with
the goal of lower latency and ability to overlap com-
putation and communication on a node. Under SUN-
MOS, there are currently three modes supported for
use of the second processor:

mode 0 affectionately called “heater mode”; where
the second processor is inactive.

mode 1 the second processor is used as a communi-
cation coprocessor. This results in significantly
lower latencies for message passing, and allows
better overlap between communication and com-
putation.

mode 2 the second processor can be used as an ad-
ditional compute processor, with shared memory.
This has been referred to by some as “SUNMOS
turbo mode”.

Modes 1 and 2 will not work reliably with some early
hardware, but seem to work reliably now on the San-
dia hardware. These modes are selected through the
-proc option to yod.

Mode 2 requires a user to specify some work to be
done on the second processor via a function or subrou-
tine call that takes a single integer argument. There
are currently some restrictions on what can be called
on the second processor. In particular, you cannot
print from the coprocessor, send messages, or use cer-
tain system calls that use static variables gand hence
are not reentrant). The two processors will share the
heap, but have separate stacks (as a result, the use
of the second processor will consume extra memory
on a node). The performance improvement that is
achieved using mode 2 depends primarily on the de-
gree to which the processors use their memory caches.
We have witnessed speedups as high as 95% for codes
that reuse their caches very well. In particular, it was
possible to achieve a speed higher than the rated peak
of the Paragon using this method (!).

In the C language, the interface to the second pro-
cessor in mode 2 is through a function cop(), whose
prototype is:

cop(void (*£)(), volatile unsigned *flag,
void *arg);

The function £ to be run on the second processor
should have a prototype

void f(int arg);

In order to run £(arg) on the second processor, you
would use statements like

volatile int flag=0;
cop(f,&flag ,&arg% ;

The main processor can then go off to do other work,
and when the function £ completes on the second pro-
cessor, £lag will be incremented. The main processor
can later check for completion of £ by inspecting the
value of flag to see if it was incremented.

There is currently no interface to the second pro-
cessor directly from Fortran, but this will be corrected
in future versions of SUNMOS. For now, the following
piece of C code can be used. In a file called fcop.c,
put the following lines:

static volatile iflag;
void fcop_(void (*addthem)(), int *j)
{
iflag=0;
cop(addthem,&iflag,j);
void fcopdone_(int *flag)
{

*flag = iflag;

Compile fcop. ¢ using the command

%sicc -¢ -03 fcop.c

Then link the file fcop.o with the rest of your appli-
cation. In order to call a subroutine

subroutine f(i)
on the second processor, you use the line
call fcop(f,i)

Be sure to declare that f is an external subroutine.
You can later check for completion using the lines

iflag = 0
call fcopdone(iflag)
... other work on main processor
if (iflag .eq. 1) then
. £ completed

The file fcop.c is currently in the directory
/home/u/mccurley/fcop inside the cs.sandia.gov
domain, along with a test Fortran program called
test.f. It should also be on ftp.cs.sandia.gov in
the directory pub/paragon-contrib.

7 Other issues

There has been a data corruption problem during
the load in some of the early 32-megabyte nodes on the
Sandia machine. If you observe this, it will produce
an error message of the form shown in Figure 3. This
informs you that the text or data segment of your
loaded program produces an incorrect checksum, so
that the program may give incorrect results. One way
to protect against it is to specify a heap that fits in
16 megabytes when loading on 32 megabyte nodes.

The processor modes 1 and 2 are not suffi-
ciently tested, and some bugs are known to exist
on some hardware. The Sandia machine has had
all of the node boards upgraded to fix the known
bugs, and any new bugs should be reported to
sunmos-dev@cs.sandia.gov. Other sites may ob-
serve problems with these modes if their hardware is
an early version and has not been upgraded.

At present there is no document describing the lim-
itations of the nCUBE emulation library, but some no-
table ommissions are the lack of global operations such
as ndsumn() and nglobal(). Broadcasting by giving
a destination of -1 to nwrite() is also not currently
supported.

Floating point exception handling for IEEE float-
ing point arithmetic is currently not implemented in
SUNMOS. This is a design decision dictated by the
fact that such exception handling is done in software,
is incredibly slow, occurs rarely, and would essentially
double the size of the SUNMOS operating system.

Constructive feedback on this document is wel-
come. Send comments to mccurley@cs.sandia.gov.
Send complaints to /dev/null.

BAD TEXT LOAD: tmin=0x10023222 tmax=0x10012122 s30sum=1001
BAD DATA LOAD: dmin=0x10921213 dmax=0x0x110271 s30sum=1172

Figure 3: Error messages from a bad load.

References

[1] Bernard Traversat, Bill Nitzberg, and Sam
Fineberg, Experience with SUNMOS on the
Paragon XP/S-15, in ISUG-%4.

[2] Kevin S. McCurley, Intel NX compatibility under
SUNMOS, Sandia National Laboratories Techn-
nical Report # 93-2618.

[3] T. Mack Stallcup, Installation Instructions for
SUNMOS.

[4] man pages for yod, fyod, fservers, getpcb, get-
comm, showmesh, and nsend/nrecv.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

DATE
FILMED

8/35/ 9y

