

Rey 4/96

(CLASSIFICATION)

DECLASSIFIED

DOCUMENT NO.

4W-59430 C

SERIES AND COPY NO.

DATE

April 7, 1959

GENERAL ELECTRIC

HANFORD ATOMIC PRODUCTS OPERATION - RICHLAND, WASHINGTON

X

RESTRICTED DATA

THIS DOCUMENT CONTAINS RESTRICTED DATA OWNED IN THE ATOMIC ENERGY ACT OF 1954. IT IS UNLAWFUL TO DISCLOSE ANY OF THE CONTENTS IN ANY MANNER TO ANY UNAUTHORIZED PERSON. PROHIBITED.

TITLE

PRODUCTION TEST IP-243-A-6-FP
EVALUATION OF X-8001 ALLOY ALUMINUM COMPONENTS
FABRICATED FROM CAST BLANKS

OTHER OFFICIAL CLASSIFIED INFORMATION

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, U. S. C., SECS. 793 AND 794, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.

AUTHOR

R. E. HALL

MOVING FILE

1 CIRCULATING COPY

RECEIVED APR 14 1959

FILED APR 14 1959

144-1410

THIS DOCUMENT MUST NOT BE LEFT UNATTENDED WHERE UNAUTHORIZED PERSONS MAY HAVE ACCESS. GUARDED AREA WHILE IT IS IN YOUR POSSESSION AND UNTIL YOU HAVE OBTAINED APPROVAL FOR DISPOSITION WITHIN AN APPROVED CLASSIFIED AREA. IT IS YOUR RESPONSIBILITY TO KEEP IT AND ITS CONTENTS WITHIN THE LIMITS OF YOUR PROJECT AND FROM ANY UNAUTHORIZED PERSON. IT IS PROHIBITED TO TRANSMIT IT, AND STORAGE AT YOUR PLACE OF BUSINESS IS PROHIBITED. IT IS PROHIBITED TO BE COPIED. IF ADDITIONAL COPIES ARE REQUIRED, TO OBTAIN THEM FROM THE DOCUMENT ISSUING FILE. ALL PERSONS LEADING THE DOCUMENT ARE REQUESTED TO SIGN IN THE SPACE PROVIDED BELOW.

ROUTE TO:	PAYROLL NO.	LOCATION	FILE'S ROUTE DATE	SIGNATURE AND DATE
Heilig	1736	310.3	11	Heilig 4/13/60
JS Staff				JS Staff 4/14/60
Informational note Please be considerate with your exhibits				
Never been 3000 feet elevation for the last 1400				

THIS DOCUMENT IS PUBLICLY
AVAILABLE

DECLASSIFIED

MASTER

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

**Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.**

Classification Cancelled and Changed To

DECLASSIFIED

By Authority of CG - PRA 2
D S Lewis, 12-21-93.
By Jeffrey M. Hanson 4-21-94.
Verified By Jeffrey M. Hanson 4-21-94.

DECLASSIFIED

HW-59430 C

DISTRIBUTION

1-2. AEC-HOO: AT Gifford	34. AK Hardin
3. AEC-HOO: HE Parker	35. DW Hoba
4. AEC-HOO: PM Midkiff	36. WH Hodgson
5. WG Albert	37. ST Hubbard
6. JA Ayres	38. JL Jaech
7. JT Baker	39. RT Jessen
8. JW Baker	40. DG Kern
9. LV Barker	41. HP Kramer
10. RS Bell	42. WK Kratzer
11. HE Berg	43. CG Lewis
12. WA Blanton	44. DS Lewis
13. RR Bloomstrand	45. AR Maguire
14. RW Bown	46. WM Mathis
15. JH Brown	47. HC Money
16. KE Carpenter	48. JF Music
17. M Clinton	49. TD Naylor
18. RG Clough	50. SL Nelson
19. DL DeNeal	51. CA Priode
20. TL Deobald	52. T Prudich/RE McGrath
21. RL Dickeman	53. RW Reid
22. EF Fairweather	54. JE Ruffin
23. KE Fields	55. HG Spencer
24. EJ Filip	56. KV Stave
25. JM Fouts	57. CA Strand
26. GR Gallagher	58. JT Stringer
27. LL German	59. RF Sullivan
28. SM Gill	60. JW Talbott
29. OH Greager	61. P Thompson
30. FW Albaugh	62. RE Trumble
31. CN Gross	63. EC Wood
32. LT Hagie	64. JR Young
33. RE Hall	65. HF Zuhr
	66. Records Center
	67. 300 Files

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

This document classified by

[Signature] COPY 1 OF 1, SERIES MA

This document consists of 5 pages.

April 7, 19

DECLASSIFIED

DECLASSIFIED

HW-59430 C

OBJECTIVE

The objective of this test is to determine, through comparative irradiation testing, the relative qualities of X-8001 aluminum alloy components fabricated by impact extrusion of wrought and cast blanks.

SUMMARY OF TEST

This test shall involve:

- a) Monitored irradiation of six charges of alternated cast and wrought blank, X-8001 aluminum alloy clad I & E enriched (0.94% U-235) elements (OIEE) to evaluate relative corrosion resistance, and resistance to "groove pitting" attack; and
- b) Lot monitored irradiation of the gross performance of up to 240 charges of cast blank clad enriched I & E fuel elements to attempt to evaluate the gross performance of this material.

BASIS AND JUSTIFICATION

This test is designed to accomplish two primary objectives, i.e., 1) to attempt to verify ex-reactor corrosion data which indicated improved corrosion resistance of cast blank X-8001 alloy material compared with wrought blank, and b) to attempt to verify the resistance to "groove pitting" type of corrosion attack previously observed on M-388 components. Ex-reactor tests of cast blank M-388 alloy in autoclaves using water as the corrosive media up to 360° C, and in flow loops up to 120° C have indicated that the corrosion resistance of the cast blank material is equivalent to, and probably superior to the corrosion resistance of wrought blank material. Metallographic examination of this material indicated a more uniform nickel dispersion in the aluminum as a probable explanation of this performance.

The sporadic occurrence of severe "groove pitting" has seriously challenged the use of X-8001 nickel aluminum alloy as a fuel element cladding material. Although the actual cause of the groove pitting has not been determined, non-uniform dispersion of the nickel in the alloy is suspected. The cause of the non-uniform nickel dispersion or segregation has been located and virtually eliminated by removal of additional aluminum (scalping) from the ingots prior to fabrication of the components.

An alternative to this expensive scalping has been found by Hunter-Douglas Aluminum Company, which involves individually casting the blanks for impact extrusion. Metallographic examination of the components fabricated in this manner indicated that more complete dispersion of the nickel was achieved and segregation was notably absent. If reactor performance of this material is satisfactory, it will indicate that no new problems have been introduced and confirm that dispersion reduces groove pitting. Hunter-Douglas will then be certified as an alternate vendor for X-8001 alloy components and further performance data may then become a basis for process changes at the primary vendor, Aluminum Company of America.

Enriched fuel (0.94% U-235) will be utilized to achieve the higher heat fluxes and fuel surface temperature necessary to produce "groove" and "uniform" type corrosion to establish a difference.

DECLASSIFIED

TEST DETAILS

a) Fuel Elements

All elements utilized in this test shall be fabricated within all process standards for normal production OIIE fuel elements and shall pass all normal quality control tests. Aluminum components for the test material shall be fabricated by Hunter-Douglas utilizing the cast blank process.

b) Monitor Columns

- 1) All fuel elements in the six monitor columns shall have pre-exposure measurements of weight, diameter and warp recorded prior to shipment to the reactor.
- 2) The six monitor columns shall be charged, in order, with piece number one downstream into process channels required for normal enrichment requirements (except fringe compensation) at the discretion of the Operational Physicist and with the concurrence of the author. Charge makeup shall be identical to that utilized in other columns of OIIE in that reactor.
- 3) During irradiation, daily temperature and weekly flow data shall be obtained on data sheets provided. Two of the six columns shall be exposed to a goal exposure of 500 MWD/T, the remaining four are to be exposed to a nominal goal exposure of 800 MWD/T.
- 4) After exposure to the specified goal, each column shall be kept separate from the normal enriched metal discharged, i.e., separate buckets, and shall be shipped to the 105-C MEF* for post irradiation examination and measurements.
- 5) Post irradiation measurements of weight loss, dimension instability, relative gamma activity shall be obtained and all elements shall be visually examined.

c) Lot Charging

- 1) Up to five tons per quarter of the normal OIIE requirements of the same reactor chosen for the pilot loading (roughly 40% of total) will be fabricated in components made from cast blanks. No controls other than lot-charge identification are required for this material.
- 2) Irradiation shall be to normal OIIE goal exposures in effect.
- 3) No special handling of this material after discharge, other than normal, will be required.

d) Reactor

H Reactor was chosen for this test since it is the only older reactor which utilizes sufficient enriched fuel to accomplish this test within a reasonable length of time, and since H Reactor is the one which has shown the most tendency to exhibit groove type pitting attack on M-388 or X-8001 alloy components.

* MEF - Metal Examination Facility

DECLASSIFIED

e) Hazards

Since these elements are equivalent metalographically to normal production OIIE material, and since they must pass all normal fuel standards, rupture risk from this test is slight. If, however, two ruptures are sustained in this material the remainder may be discharged, and no further charging performed pending rupture examination, at the discretion of the Manager, H Processing Operation.

f) Outage Time Requirements

Since this test involves enriched fuel elements which require special charge-discharge procedures sufficient for this test, very slight outage costs should be incurred.

The lot charging portion of the test should require no outage time losses.

RESPONSIBILITIES

Fuels Preparation Department

Manufacturing Operation

The Manufacturing Operation shall be responsible for canning all pieces by the "F" Process, for normal quality control, and for pre-irradiation measurements and marking.

Engineering Operation

The Engineering Operation shall be responsible for liaison in the 300 Area portion of this test and for providing technical assistance.

Irradiation Processing Department

Research and Engineering Operation

Process Technology Operation shall be responsible for assistance in scheduling, choice of test channels, assistance in charging of the test, and for forwarding of operating data to the author.

Process and Reactor Development Operation shall be responsible for coordination of the test, data analysis, and reporting of irradiation experience.

Component Testing Operation shall be responsible for obtaining post-irradiation examination data.

H- Reactor Operation

H-Processing Operation will be responsible for planning, scheduling, the operational safety and production continuity of the reactor, and for collection of routine operating data for the test.

Reactor Fuels Unit
Process and Reactor Development
IRRADIATION PROCESSING DEPARTMENT

DECLASSIFIED

HW-59430 C

APPROVALS

R L Dickman

R. L. Dickman, Manager
Process & Reactor Development Operation
IRRADIATION PROCESSING DEPARTMENT

J. F. Music

J. F. Music, Manager
Process Technology Operation
IRRADIATION PROCESSING DEPARTMENT

R L Dickman

O. H. Greager, Manager
Research & Engineering Operation
IRRADIATION PROCESSING DEPARTMENT

NSL

R Jessen

R. T. Jessen, Manager
H Reactor Operation
IRRADIATION PROCESSING DEPARTMENT

C. A. Priode

C. A. Priode, Manager
Production Operation
IRRADIATION PROCESSING DEPARTMENT