

DOE/PC/79923-T18

THE EFFECT OF CHEMICAL ADDITIVES ON THE SYNTHESIS OF ETHANOL

DOE/PC/79923--T18

DE92 018899

Technical Progress Report 11

Grant No. DE-FG22-87PC79923

March 16, 1990 - June 15, 1990

by

Steven S.C. Chuang

Department of Chemical Engineering

University of Akron

Akron, OH 44325 U.S.A.

Date of Submission: July, 1990

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

US/DOE Patent Clearance is not required prior to the publication of this document.

MASTER

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

Abstract

Sulfidation of Ni/SiO₂ with H₂S leads to a blockage of bridge-CO sites, an upward shift in the wavenumber of linearly adsorbed CO, an inhibition of ethylene hydrogenation, and an enhancement of the formation of propionaldehyde from ethylene hydroformylation.

1. Introduction

Hydroformylation is a reaction of an olefin with syngas to produce an aldehyde. The transition metals, including Rh, Ru, Co, and Pd in the form of both heterogeneous supported-metals and homogeneous metal complexes, have been shown to exhibit hydroformylation activities [1-8]. Studies on the role of sulfur in homogeneous hydroformylation on the cobalt carbonyls have showed that the catalyst is highly resistant toward poisoning by sulfur compounds such as thiophene [9]. The failure of sulfur compounds to poison the hydroformylation has also been observed on the heterogeneous Rh/SiO₂ catalysts [10-11].

Recent studies have shown that Ni/SiO₂, a methanation catalyst, exhibits hydroformylation activity which is comparable to that of Rh/SiO₂ [12]. However, little is known about the effect of adsorbed sulfur on the hydroformylation over Ni/SiO₂ catalysts. In this paper, we report results of a study on ethylene hydroformylation over the sulfided Ni catalyst. In situ infrared spectroscopic (IR) method was employed to provide a better understanding of how adsorbed sulfur affects the hydroformylation reaction.

2. Experimental

Preparation and characterization of sulfided Ni/SiO₂ has been described elsewhere [13]. Ethylene hydroformylation with the ratio of reactants (CO:H₂:C₂H₄ = 1:1:1) was studied in an infrared (IR) cell at 240°C and 1 - 30 atm. The IR cell is made of stainless steel with CaF₂ window using Grafoil O-rings (Union

Carbide). The catalysts for the study were ground to a fine powder and pressed into a disk (approx. 10 mm in diameter and 1 mm in thickness with 25 mg). Sulfidation of Ni/SiO₂ was performed by passing 1000 ppm H₂S in H₂ through the IR cell at 240°C and 1 atm. IR spectra of adsorbed species were recorded by a Nicolet 5SXC FTIR spectrometer with a DTGS detector at a resolution of 4 cm⁻¹. Gas phase CO bands were eliminated by subtracting the absorbance of gas phase CO with a SiO₂ disk in the cell from the spectra of adsorbed species on the Ni/SiO₂. Compositions of the effluent from the IR cell was determined by an HP-5890A gas chromatography (GC) with a 6 ft Porapak PS column in series with a 6 ft Porapak QS column.

3. Results and Discussion

Table 1 shows comparison of the reaction rate and product selectivity for ethylene hydroformylation over sulfided Ni/SiO₂ (S-Ni/SiO₂) and Ni/SiO₂. The data for both catalysts were taken at the same interval since the onset of the reaction. It should be noted that the reactor was first operated in a steady-state flow mode at each specific pressure and 240 °C for more than 30 min and the reaction pressure was increased from 1 atm to higher pressures. Our preliminary studies on the catalyst deactivation showed that the activity of both catalysts decreased with time while the product selectivity remained constant. Thus, modification of catalyst selectivity brought about by sulfur is of a major concern here.

Sulfidation led to an increase in propionaldehyde selectivity by a factor of 3 - 4 at 240 °C and 1 - 30 atm. Such

an increase in selectivity to propionaldehyde can be attributed to the reduction in the rate of ethylene hydrogenation and the enhancement in the rate of ethylene hydroformylation brought about by adsorbed sulfur. While adsorbed sulfur is known to poison olefin hydrogenation (14), it appears to be effective in promoting ethylene hydroformylation.

As the reaction pressure increased from 1 to 30 atm, the propionaldehyde selectivity increased on both catalysts. IR spectra taken for the reaction on S-Ni/SiO₂ corresponding to the product selectivity and the rate of product formation listed in Table 1 are given in Figure 1. The major bands observed for the reaction at 1 atm are linearly adsorbed CO at 2066 cm⁻¹ and hydrocarbon bands at 2800 - 3050 cm⁻¹. An increase in the reaction pressure led to (i) the growth of hydrocarbon bands and ethylene band near 1886, 1465 - 1441 cm⁻¹ and (ii) the shift of the peak at 2066 cm⁻¹ to 2054 - 2057 cm⁻¹ and the growth of the band at 2054 cm⁻¹ corresponding to Ni(CO)₄. The absence of linearly adsorbed CO band at high pressures appears to be due to overlapping by the strong Ni(CO)₄ band. Ni(CO)₄ was also observed in the effluent of the reactor indicating the occurrence of the transfer of Ni(CO)₄ from the catalyst disk to the effluent line. Chemical analysis of the catalysts (by Galbraith Lab.) show that the Ni loading decreased from 14.4 % (fresh catalyst) to 6 % during the entire period of the hydroformylation study.

The loss of the Ni is greater for the S-Ni/SiO₂ as compared with Ni loss for the reaction on Ni/SiO₂ for the same reaction condition [13]. The great loss of Ni from S-Ni/SiO₂ may be due

to the promoting effect of sulfur on the formation of $\text{Ni}(\text{CO})_4$. Qudar has suggested that adsorbed sulfur could cause a weakening of the Ni substrate and the CO - substrate bond; weakly adsorbed CO would be a better candidate for the carbonyl formation than the more strongly bonded CO [14].

Adsorbed propionaldehyde band at 1728 cm^{-1} was found to increase with reaction pressure. The increase in the intensity of the band is proportional with the increase in the rate of propionaldehyde formation (Table 1). The shoulder at 1678 cm^{-1} has been tentatively assigned to the vibrational frequency of an acyl species which has suggested to be the intermediate for the formation of propionaldehyde [15].

IR spectra of ethylene hydroformylation on Ni/SiO_2 at 1 and 30 atm are shown in Figure 1. The results are consistent with our previous observations [12]. Comparison of IR spectra before and after sulfidation at 1 atm shows that sulfidation of the catalyst led to the suppression of the bridge-CO band and the shift of the linear CO to higher wavenumbers. The loss of bridge-CO site indicates that the pair-surface Ni atoms have been disrupted by adsorbed sulfur resulting in the formation of isolated Ni atom; the shift of linear-CO band to higher numbers may be attributed to the weakening of metal-CO bond as a result of decreases in back-donation of electron from sulfided Ni surface to antibonding of CO molecules. However, such a shift was not obvious for the reaction at 30 atm since the prominent $\text{Ni}(\text{CO})_4$ band may cover the weak band of absorbed CO.

Comparison of the rate and IR data at 30 atm for S-Ni and Ni

shows that the intensity of adsorbed propionaldehyde and acyl bands and the rate of propionaldehyde formation were greater for S-Ni/SiO₂ than for Ni/SiO₂. The results clearly indicate that adsorbed sulfur serves as a promoter to enhance propionaldehyde formation on the Ni/SiO₂ catalyst. Although results of this study do not permit elucidation of the state of active sites for the hydroformylation on S-Ni/SiO₂, the observations of (i) lack of the bridge-CO and higher hydroformylation rate on the Ni/SiO₂ at high reaction pressures and (ii) the suppression of the bridge-CO sites and enhancement of hydroformylation brought about by adsorbed sulfur indicate that the isolated Ni atom site may be responsible for the reaction.

Acknowledgements

Funding for this research was provided by U.S. Department of Energy under Grand DE-FG22-87PC79923

References

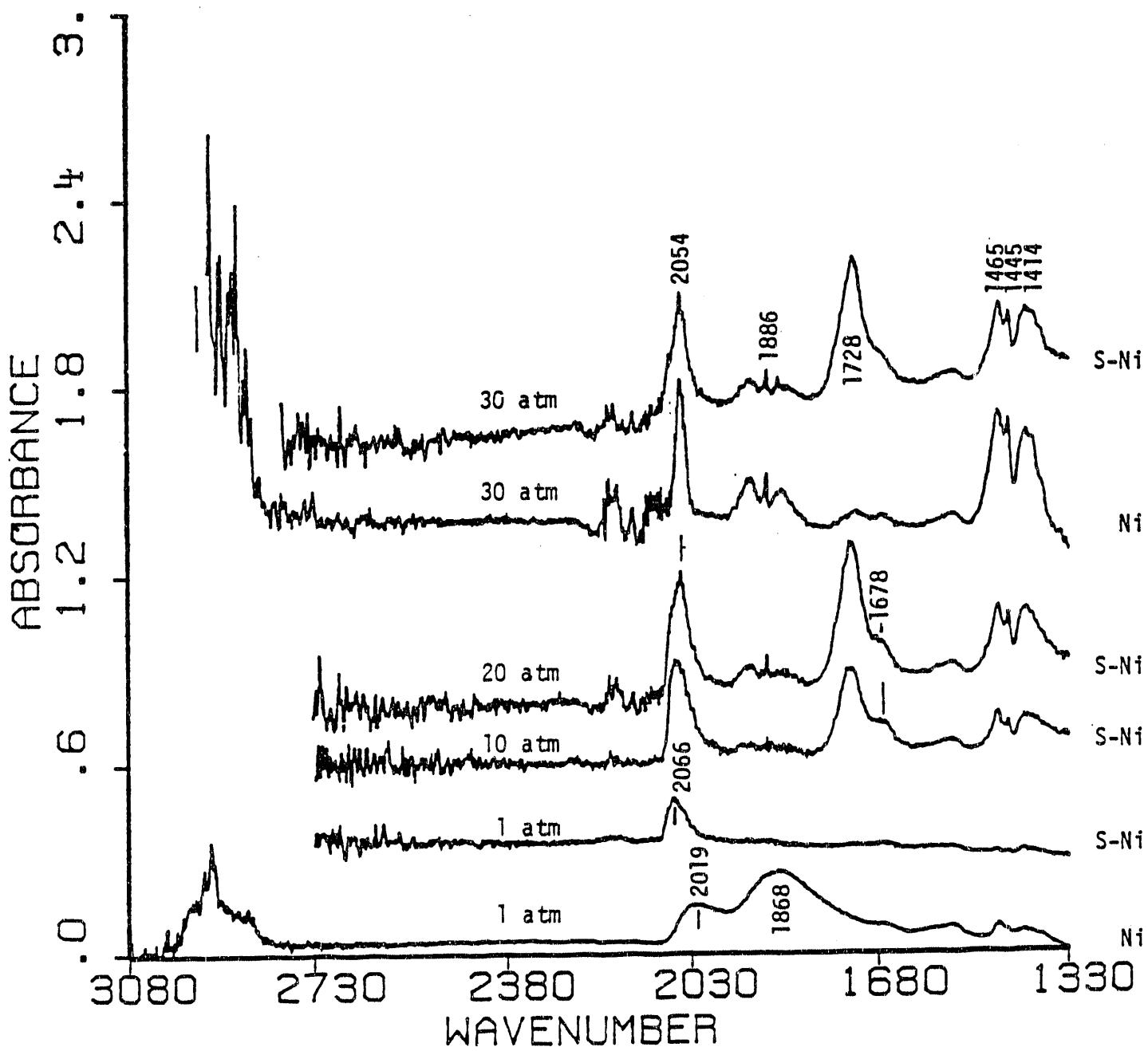
1. H. J. Gsyling, J. R. Monnier, and G. Appai, *J. Catal.* 103 (1987) 407.
2. P. R. Watson and G. A. Somorjai, *J. Catal.* 72 (1981) 347.
3. D. S. Jordan and A. T. Bell, *J. Phys. Chem.* 90 (1986) 4797.
4. O. Roelen, *Ger. Pat.* 849548 (1938)
5. M. Kobayashi, *Chem lett.* (1984) 1215.
6. S. C. Chuang, Y. H. Tian, J. G. Goodwin, Jr. and I. Wender, *J. Catal.* 96 (1985) 396.
7. I. Wender and P. Pino, *Organic Synthesis via Metal Carbonyls*, Vol. 2 (John Wiley, New York, 1977).

8. C. Masters, *Homogeneous Transition-Metal Catalysts-a Gentle Art*, (Chapman and Hall, New York-London, 1981).
9. M. Freund and L. Marko, *Bernnstoff-Chemie*. 46 (1965) 100.
10. Y. Konishi, M. Ichikawa and W. M. H. Sachtler, *J. Phys. Chem.* 91 (1987) 6286.
11. S. S. C. Chuang and S. I. Pien, *J. Mol. Catal.* 55 (1989) 12.
12. S. S. C. Chuang and S. I. Pien, *Catal. Lett.* 3 (1989) 323.
13. S. S. C. Chuang, S. I. Pien, and C. Sze, *J. Catal.* (in press).
14. J. Qudar in "Deactivation and Poisoning of Catalysts", Ed. J. Qudar and H. Wise, p 51, (Marcel Dekker, New York, 1985).
15. T. Fukushima, H. Arakawa, and M. Ichikawa, *J. Chem. Soc., Chem. Commun.* (1985) 729.

Table 1. Product Distribution for Ethylene Hydroformylation
over S-Ni/SiO₂ and Ni/SiO₂

Pressure (atm)	1		10		20		30	
Catalysts	S-Ni	Ni	S-Ni	Ni	S-Ni	Ni	S-Ni	Ni
Product Selectivity (Mole %)								
CH ₄	4.1	2.0	0.	1.3	0.2	1.1	0.2	0.6
C ₃ + H.C.	0.2	2.5	1.4	1.5	0.2	1.3	0.6	0.6
C ₂ H ₆	83.4	92.9	66.3	87.8	64.9	89.9	58.8	87.4
Rate ^a	0.6	36.6	13.6	62.3	12.9	51.5	14.5	48.8
C ₂ H ₅ CHO	8.5	2.4	31.1	8.6	33.9	7.5	40.3	11.1
Rate ^b	0.06	0.96	6.4	6.1	6.7	4.3	9.9	6.2
C ₃ H ₇ OH	3.8	0.2	1.2	0.8	0.8	0.2	0.1	0.3

Reaction condition: 240°C, C₂H₄/CO/H₂ = 1:1:1


Ni/SiO₂: Ni loading = 14.3 wt%, Ni particle size = 92 ⁰A
S-Ni/SiO₂: the ratio of S to Ni = 0.46

a: the rate of C₂H₆ formation

b: the rate of C₂H₅CHO formation

List of Figure

Figure 1. Infrared Spectra of Ethylene Hydroformylation on S-Ni/SiO₂

END

DATE
FILMED

9/3/92