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Processing of Prosthetic Heart Valve Sounds for Classification

J. V. Candy & H. E. Jones
University of California
Lawrence Livermore National Laboratory
P.O. Box 808, L-495
Livermore, CA 94550

Abstract

People with serious heart conditions have had their expected life span extended
considerably with the development of the prosthetic heart valve especially with the
great strides made in valve design. Even though the designs are extremely reliable, the
valves are mechanical and operating continuously over a long period, therefore,
structural failures can occur due to fatigue. Measuring heart sounds non-invasively in
a noisy environment puts more demands on the signal processing to extract the desired
signals from the noise. In this paper we discuss acoustical signal processing
techniques developed to process noisy heart valve sounds measured by a sensitive,
surface contact microphone and used for the eventual classification of the valve.

1: Introduction

The Bjork-Shiley Convexo-Concave (BSCC) prosthetic heart valve was
manufactured from 1979 to 1986 and is currently estimated to have been implanted in
approximately 23,000 patients in the United States and Canada [1]. This mechanical
valve controls the flow of blood with a disc occluder that rotates between inlet and
outlet struts. In an unusually small number of these valves, the outlet strut fractures
from fatigue resulting in the mortality of two-thirds of the patients. Current technology
suggests that one of the legs of the strut separates from the flange. If this single leg
separation (SLS) condition can be detected, then the valve can be replaced before the
remaining leg fractures. Although actuarial analysis predicts that the risk of a fracture
of the two-legged outlet strut is usually less than the risk associated with open-heart
surgery required to replace the BSCC valve with a different type of prosthetic heart
valve, Shiley Heart Valve Research Center, (SHVRC) is conducting research in an
attempt to identify the SLS valves. This research includes a variety of methods for
screening patients with BSCC valves in minimally invasive methods in an attempt to
determine if the outlet strut is intact (INT) or SLS.

Sounds are produced by the BSCC valve as it closes and opens with the heart's
pumping action which occurs approximately 39 million times per year in the average
patient. Analyzing the sig..1l that acoustically propagates is one approach in
determining the condition of the outlet strut. Another method is the use of X-ray
imaging of the valve in vivo (in the body). Although this second potential method is
also non invasive, it does have the potential disadvantage of radiation exposure. The
overall objective of this research is aimed at developing techniques for analyzing heart
valve sounds enabling the classification of implanted BSCC heart valves as INT or
SLS. This acoustic screening methodology may eventually be used as a means of
selecting particular valves, which may benefit from further examination by X-ray
methods currenily being developed by the SHVRC. The current approach to solve the

This work was performed under the auspices of the Department of Energy by the
Lawrence Livermore National Laboratory under contract W-7405-Eng-48.



Heart Valve SLS Classification Problem is based on the fact that the dynamic action of
the valve propagates acoustical signals at various frequencies which can be measured
using sensitive, surface contact microphones. Currently, each heart cycle is measured
and separated into valve closing as well as opening cycles or beats [2]. The acoustic
energy radiated by a functioning heart valve is contaminated by numerous mechanisms.
The human body superimposes biological sounds and distorts the acoustic energy as it
travels through tissue. The instrumentation that captures the heart valve sounds
influences the data. The microphone, filters, amplifiers, digitizer, and storage media
distort the raw acoustic data. Extracting pertinent information from the original heart
valve sounds is difficult signal processing problem considering the distortions caused
by these biological and electronic sources.

Nise Noise Noise
L
b
BSCC é AC()l.lSliC ‘ Acoustic Data
Heart Valve|{gg | Medium E Measurement Acquisition
Noisy
Measurement
Desired Signal

Figure 1. Conceptual Diagram of Prosthetic Heart Valve Acoustic Propagation.

One approach to solve the classification problem is based on Statistical Pattern
Recognition, [3] which essentially interprets the spectrogram surface as an image,
extracts so-called features from it and attempts to define various decision regions within
for classification. Another approach is based on applying "adaptive" type classification
schemes implemented using neural networks. [4]. Here various algorithms modeled
after the human brain neuron action are applied to spectrogram data after the important
features are extracted. The network is asked to "learn" the various valve classes by
repeated application of data. Both techniques offer much promise, but again large
quantities of high quality acoustic data must be processed to quantify their performance
with acceptable statistical reliability. Of course, improved signal processing of the
spectrogram and/or feature vectors can only add to enhanced performance -- this is the
main point of this paper in which we discuss techniques to extract, enhance and reject
weak opening signals from acoustic measurements of prosthetic heart valve sounds.

In section 2, we develop a parametric approach to extract and process raw heart
valve sounds from noisy acoustic data. Here we motivate the selected algorithms 2nd
indicate their performance on typical clinical data. We develop a monitor to screen and
select "good" beats for further processing and classification in section 3. We
summarize our results in section 4.

2.: Signal Processing of Heart Valve Acoustics

In this section we discuss the development of various signal processing
techniques to detect and extract the low-level heart sound signals from the noisy



acoustic measurements and then enhance them for use in classification schemes. We
have concentrated our efforts on the heart valve opening sounds. The opening sound
yields direct information about outlet strut fracture with minimal amount of disturbance
caused by disc radiation; hence, the opening sound is a very desirable acoustic signal to
extract. Unfortunately, the opening sounds have much lower signal levels and
therefore, noise plays a more significant role than during the closing event. Prior to
spectral estimation and classification the opening valve sounds or beats must be
extracted.

An automated beat extraction process has been designed which relieves human
operators of the tedious task of manually extracting these beats from the digitized audio
data [5]. This process attempts to provide a general solution for extracting both opening
and closing sounds from a wide array of clinical acoustic data, including data from
patients with irregular, paced, or atrial fibrillation heartbeat patterns. Once the opening
sounds from each valve session have been extracted and imported into the data base,
they are available for processing and classification. We have developed a parametric
approach to estimate the power spectrum emanating trom the prosthetic heart valve
opening sounds during each beat cycle. This approach is based on estimating a
parametric model of the beat transient signal characterized by an autoregressive (AR)
or all-pole model which is used primarily to extract damped sinusoidal signals in noise
-- a reasonable representation of the acoustical signal. The AR model is defined by the
difference equation

N
y(n)=—Za,.y(n—i)+ og(n), (D
i=|

where y(n) is the output or response (valve sound), €(n) is the input or excitation
(impulse or prediction error), [{ai}, 0'] is the set of AR model parameters. Applying Z-
transforms to Eqn. 1, then we obtain the transfer function given by
- 1D T

E(z) A(2)

where A(z) =1+ a,z™" +---+a,z Vis the characteristic polynomial of the AR model
whose roots {p,} are the poles of the system. Since the data are noisy, the
excitation £(n) of the AR(N) is modeled as a zero-mean, unit variance, completely

random (white) noise process whose discrete Fourier spectrum H () must be
replaced by the corresponding power spectral density [6] defined by
2

. (o}
Sar(€2) = H z(Q)H 1 (Q) = AL 3)
in order to "average out" the effect of the noise, that is, S,,(Q2) = E{Y(Q)Y"(Q)}. Thus,
the "parametric approach" to represent the heart valve sounds essentially becomes that
of estimating the parametric set defined by ©,,:=/[{4, ), 6] from the noisy acoustic
measurement data {y(n)}. Once these parameters are estimated, then the corresponding

2

AR(N) model and specttum S,,(€) are constructed for each individual heart valve
sound, creating the corresponding heart valve acoustic spectrogram (beat power versus
frequency). It should also be noted that the order N of the AR(N) model must be
estimated. Order estimation is accomplished using the Akaike Information Criterion
(AIC) statistic defined by

AIC(N)=-2InG +2N, )



where O’E is the prediction error variance, N is the model order. The optimal order is

the selected as the
N =min AIC(N), (5)

There are a variety of parameter estimation algorithms available for this
application, we choose to use the lattice algorithms [6] which essentially is obtained by
performing an LD-decomposition of a Toeplitz correlation matrix [7]. Using the lattice

algorithm, we estimate the required parameter set ©, and the corresponding power

spectrum 3‘,({2) for the kth heart valve sound and stack them to create the spectrogram.
A typical clinical spectrogram is shown in Figure 2.

Note the repeatability of each spectrum along with the average spectrum. The
corresponding spectrogram is shown in the figure as beat power versus beat number
versus frequency along with the corresponding resonant peak histogram. Once the
spectral estimator is designed, the resonant frequencies are also estimated from the
power spectrum. Here our approach is to estimate the peaks of the spectrum above a
pre-set threshold. From this spectrum of peaks, we estimate the corresponding resonant
frequencies present in the data from its location. Clearly, if the heart valve sounds were
stationary, then only a single spectral line would appear at each frequency during each
beat, but due to reasons discussed previously the acoustic data is non-stationary and
therefore, we expect frequencies to "cluster” about a mean frequency. Here the
approach is to estimate the probability of occurrence of a set of resonant frequencies
and look for clustering about various mean frequencies. We estimate this multivariate
probability mass function using a histogram estimator with bin size corresponding to
the frequency resolution of the processed data. This approach leads to a new set of
features which are used in the final classifier.

Once the lattice parameters, spectrogram and peak frequency histogram are
estimated for a given valve, they are stored in the data base and made available to the
various classifiers on demand. Besides the peak histogram, the spectral power in
various bands are averaged over the ensemble and used as components of feature
vectors along with the reflection coefficients themselves, which have proved to be
reliable features for other applications [9,10]. So we see that the parametric approach
offers reasonable estimates of desirable features which can ultimately be used to
classify heart valve conditions. Next we discuss the detailed development of the Beat
Monitor -- a pre-classification algorithm primarily aimed at rejecting "bad" beats.

3.: Processing of Acoustic Heart Valve Transients

Classifying the heart valve condition from the acoustic signatures requires
unambiguous data, selection and extraction of the significant features, and development
of a classification algorithm which identifies the valve condition with the best
sensitivity and specificity. It is important to acquire noise free, uncontaminated signals
in the appropriate frequency range to provide enough information to classify the
signals. Poor data will significantly hamper the attempts to predict the heart valve
condition because the classifiers will be based on random noise instead of signal
information related to valve condition. Thus, it is essential not only to extract the
opening transients, but to assure that the beats extracted have an adequate signal-to-
noise ratio to provide the classifier high quality resonance information as features. We
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Figure 2. Clinical Spectrogram Estimates: Estimated Power Spectra/Average,
Frequency Peak Histogram and Beat Spectrogram.

have developed a sophisticated Beat Monitor that utilizes the spectral content of
acceptable opening transients to accept/reject subsequent openings. The Monitor
depicted in Figure 2 uses the opening heart valve beat sounds to develop a parametric
model and then predicts the acoustic response on a beat-to-beat basis. The algorithm,
first captures an ensemble of acceptable beats (during training), estimates an "average”
parametric model, and then screens subsequent beats using the model. This processor
is based on testing the residual sequence, which is the difference between the measured
and predicted acoustic signal, for the statistical property of "whiteness". This scheme
relies on the underlying fact that if the parametric model reliably represents or "fits" the
data, then the residual sequence contains no other information about valve acoustics
(resonances). Therefore, the sequence should be purely random or "white". Should
the residual sequence test statistically white, then theoretically the estimated model fits
the data and nothing has changed; however, should it test non-white, then something
has changed and a further, more detailed investigation must be pursued (see Refs. 11,
12, 13 for more details). Theoretically, the heart valve Beat Monitor is implemented

using the AR(N) model whose parameters are estimated using the Levinson recursion

[6] to “fit" the model to pre-selected beats yielding the "inverse" or residual filter, that
is,

HINV(Z = Y(Z) A(Z)’ (6)

or equivalently in the time domain with q’*, the delay or k-step time delay operator for
the ith heart sound y.(n)

(1= A(g7Ne(n) = 0,y,(n), Q)



Once the valve sound is processed by the residual filter, its estimated correlation
is tested for statistical whiteness using the correlation estimates

R R. (k)
k — tE
Pulh = 25

(8)

R, (k) = E(e*(n))
to perform thewhiteness test given by

1.96
k)t — , 9
{""‘ ) ﬁ} )

where £ is the lag variable and K is the number of samples in the signal. Here 95% of
the normalized correlation samples must lie within the bounds (or equivalently 5% can
exceed the bounds) for the sequence to be deemed white.

Residual Correlation |
FILTER TEST COUNT

- Beat F Beat Residual N° Bad Beat
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Figure 2. Mechanical Heart Valve Beat Monitor Structure Diagram.

A typical Beat Monitor design is shown in Figure 3. The raw data is processed
beat-by-beat. First, the parametric model is designed using the AIC(N) to estimate the
order for a given beat (shown in the Figure as N=17), next the prediction error is tested
for whiteness according to Eq. 9. The results of the Whiteness Test are also shown in
the Figure indicating a white prediction error sequence (3.5% out of bounds). The
corresponding power spectra (raw and estimated) show good agreement assuring that
the major spectral properties of the heart valve sound have been captured by the
parametric model.

Utilizing this design, each beat is processed by the estimated model and if
tested statistically white, the model fits the beat and it is deemed acceptable, processed
and incorporated in the spectrogram for the heart valve under examination. During the
“training phase" of the Beat Monitor, any beat that is deemed white is also further
modeled and averaged with the previous beat models to train the algorithm and produce
a set of average coefficients for the given valve (patient). To check the feasibility of
this approach designed to reject "bad" beats based primarily on the spectral content of
good beats during a recording session, we applied it to the "gold standard" data set, that
1s, a set of acoustic data in which the heart valve condition (INT or SLS) is known a-
priori. The results are'shown in Figure 4. Here we see a plot of whiteness Percentage
Out versus Beat Number with a 5% Whiteness Threshold and a 10% Acceptance
Threshold. The accompanying tables show the percentage of beats deemed "good" for



the particular valve number and class. The Monitor passes a large percentage of the
beats for both classes (INT or SLS) of known valve condition showing that the
collected data is highly repeatable. This completes the section, on pre-classification
processing of opening sounds. Each of the acceptance levels (%) as well as a count of
the number of acceptable beats relative to those available 1s logged into the data base
header for future classification. Next, we investigate, more specific problems
associated with the opening sounds.
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Figure 3. Beat Monitor Residual Filter Design: Raw Opening Signal and Order
Testing. Whiteness/Acceptance Testing and PSD Estimates.
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4.: Summary

We have discussed the development of a parametric approach of feature
estimates which are employed in schemes to solve the BSCC prosthetic heart valve
classification problem. The features are based on the estimated spectrogram of the
periodic valve response, the peak frequency histogram estimated simultaneously from
the spectrogram and the lattice parameters (reflection coefficients) estimated directly
from the data. The use of these features has proved to be effective in developing a
reliable classifier for a related application. Data are currently being gathered and
processed in a clinical environment and to date the results appear promising indicating
that acoustic data can be used to noninvasively provide information about heart valve
outlet strut condition.

We also discussed the overall automated procedure to extract the heart valve
opening sounds, the most desired, yet the most difficult, acoustic signal to process and
showed a sophisticated automated procedure to achieve the desired results. The
detailed development of the corresponding heart valve Beat Monitor followed showing
excellent performance on a "gold standard" (known) data set. The Monitor design
appears quite effective and is currently being tested to screen changes in valve
conditions on a visit-by-visit basis.
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