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A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM USING
AN INCOMPLETE SOLUTION OF THE SUBPROBLEM
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Department of Operations Research
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Abstract

We analyze sequential quadratic programming (SQP) methods to solve non-
linear constrained optimization problems that are more flexible in their def-

inition than standard SQP methods. The type of flexibility introduced is

motivated by the necessity to deviate from the standard approach when

solving large problems. Specifically we no longer require a minimizer of
the QP subproblem to be determined or particular Lagrange multiplier es-
timates to be used. Our main focus is on an SQP algorithm that, u_es a

particular augmented Lagrangian merit function. New results are derived
for this algorithm under weaker conditions than previously assumed; in

particular, it is not assumed that the iterates lie on a compact set.

1. Introduction

The problem of interest is the following:

minimize F(x)ze_" NI)
s.t. c(z) > 0,

where F : _'_ _ _ and e : _n _ _m. Since we shall not assume second derivatives are

known, computing x*, a point satisfying the first-order KKT conditions for NI) is the best
that can be achieved. Such points are feasible and satisfy the following conditions:

VF(x*) =Vc(x*)T,_ *, ,kjcj(x )=0 j= 1,...,m (1.1)

for some nonnegative multiplier vector A* E _rn. Whenever the term "KKT point" is
used in the following sections, what will be meant is a point satisfying tlm first-order KKT

*Research supported by the National Science Foundation Grant DDM-9204208; the Department of Energy
Grant DE-FG03-92ER25117; the Office of Naval Research Grant N00014-90-J-1242 and the NATO t|'aw4

grant No. 500525.
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conditions for NP. Despite this theoretical limitation we shall prefer some KKT points to
others in order to try and satisfy our real purpose of finding a minimizer. For example, if
the initiM estimate is feasible we do not wish to converge to a nearby KKT point if at that

point the objective function is higher.

We use the term stationary point to denote a point that is feasible and satisfies (1.1) tbr
some multiplier vector )_ E _m that is not necessarily nonnegative.

Typically SQP algorithms generate a sequence of points {xk} converging to a solution,
by solving at each point, xk, a quadratic program (QP) of the form

1 T
minimize VF(xk)TP + 7P Hkp

p_" Qp
s.t. c(xk) + Vc(xk)p >_0

for some positive definite matrix Hk. Let Pk (referred to as the search direction) denote the

unique solution to QP. We define xk+l - xk + akpk, where the steplength e_ is chosen to
achieve a reduction in a merit function.

SQP algorithms are viewed by many as the best approach to the solution of NP when 7t

is small ( < 200 ). As the size of the problem grows, usually so does the relatiw_ importance
of the effort to solve QP when compared to the total effort. Indeed for many large problems
the effort to solve QP dominates the total effort.

When the minimizer of QP is used to define the search direction, it is not necessary in any

theoretical discussion of an SQP algorithm to define how the QP subproblem is solved. All
implementations of SQP methods currently available use an active-set method to solve the

QP subproblem. For a comprehensive survey of active-set methods see [GMWS1], [Fle87]
and [GMSW91]. The potential number of iterations to solve a QP using an active-set
method grows exponentially with n. In practice the number of iterations grow,,; much more

slowly than exponential (if this was not the case active-set methods would be hopelessly

inefficient). Nonetheless, the number of iterations required to solve a large QP is usually
large. In any implementation of an SQP method it is necessary to limit the number of
iterations allowed to solve a given QP subproblem. If the QP solution process is terminated

prematurely the SQP algorithm may break down. lt is in part for this reason that the
development of SQP methods for large-scale problems has been inhibited. Ever.,.for small

problems there are occasions when the number of QP iterations is excessive. ._;ince the
definition of "small" continues to increase as computers become more powerful we can

expect the cost of solving the subproblems to grow in importa.nce.

In the algorithms presented here we have endeavored to improve the efficie_:_,:yof SQP
methods by circumventing the need to determine the minimizer of QP. W'e show that a

suitable search direction may be computed from information available at any stationary
point of QP. Stationary points occur as iterates within most active-set methods to solve QP
and for such methods the number of iterations to determine a stationary point increases

only linearly with the size of the problem. Consequently, the search direction may be found
by applying an active-set method to QP and terminating the procedure early.

It may be thought that by expending much less effort to compute the search direction,
the number of iterations for the outer algorithm may increase. However, it has been observed

that large numbers of QP iterations are required only when xk is a poor approximation to
x*, that is, when the QP subproblem does not model the nonlinear problem weil. We
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hypothesize that a search direction based on the minimizer of such subproblems is little

better than using information at a stationary point. Our preliminary results reported in
Section 6 support this hypothesis.

Not solving the QP subproblem also implies that we do not know the QP multipliers,
which are often used to estimate the multipliers of NP. In general, SQP methods usuMly
use some specific estimate of the NP multipliers in the definition of tile method and hence

in the proof of convergence. When solving large problems specific definitions of multiplier
estimates are not always computationally attractive, hl our analysis we allow for flexibility

in how multipliers are defined by requiring only that the multiplier estimates satisfy certain
conditions.

Incomplete solutions for QP subproblems

There have been other proposals to define the search direction for an SQP algorithm other

than as the minimizer of the QP subproblem. IrLDembo and Tulowitzki [DT85] an algorithm
is analyzed for which the search direction pk has the property that

Ilpk- P II= o(llPkll),

where p_ denotes the minimizer for the k-th QP subproblem.

We follow a different approach and define a search direction for which the effort to
compute it has a guaranteed bound. A different algorithm, but using the same approach,

was suggested by Gurwitz and Overton [G089]. However, no global convergence results

were given for their algorithm.

In the course of solving a QP an active-set method generates iterates that are stationary
points. We show that such points may be used to construct a suitable search direction. The

step to the stationary point is not in general an adequate search direction, ttowever, if
the stationary point is not a minimizer then there exist nonoptimal multipliers. We show

how an auxiliary direction may be constructed using information about the nonoptirnM
multipliers. This auxiliary direction, when combined with the step to the stationary point,

gives a suitable search direction.

Terminating the QP algorithm prior to obtaining a solution impacts the SQP algorithm

in a number of critical ways. Not only is the search direction different, but also the QP
multipliers will not be available. The merit function of principal interest requires the defi-
nition of a search direction in the space of the multipliers. In the past, this see_rch direction

has been defined using the QP multipliers. The fact that such multipliers are positive was
crucial in the analysis of these algorithms. The consequences of terminating the QP solution

process early are therefore f_r reaching.

The remainder of this paper is organized as follows. Section 2 describes the tbrm of

the general algorithm, and the definition of the search direction. Section 3 studies the
convergence properties of the algorithm; it is shown that such an algorithln is globally
convergent. In Section 4 we show that the algorithm converges superlinearly. We a.lso show

that the penalty parameter used in the merit function is bounded. Section 5 considers the
use of Mternative merit functions. Finally, Section 6 presents numerical results obtained

from an implementation that uses the merit function of principal interest.



2. Description of the algorithm

The search direction we propose could be used with most of the merit functions ana,lyzed

in the literature. However, our primary interest is the following merit function:

LA(x,A,s,p) = F(x) - AT(c(x)- s) + ½P(C(X)- s)T(c(x)-- s), ] (2.1)

where s/-'_ 0 are slack variables, and the scalar p is known as the penalty parameter.

This merit function was suggested by Gill et al. [GMSW86b] and is used in the SQP
code NPSOL. It is similar to merit functions proposed by Wright [Wri76] and Schittkowski

[Sch81]. Although our primary interest is this specific merit function, we also show (Section
5) how the ideas discussed can be extended to the use of other merit functions. Tile reason
for our focus on this merit function is due to the success in practice of NPSOL. The merit

function is also used in a new SQP code, LSSQP [Eld91], designed to solve large problems.
The search is performed on an expanded space, including the Lagrange multiplier es-

timates A, and the slack variables s. The symbols p, _ and q will be used to denote the
components of the search direction on the corresponding subspaces. Irl this case, the value

of the merit function as a function of the steplength will be denoted by

¢(a) - ia(X + ap, A + a_,s + otq, p). (2.2)

The derivative of ¢ with respect to a is denoted by ¢'. Also, Ck(a) and ¢_¢(a) will be used

to indicate the values of ¢ and ¢1 evaluated at (xk,Pk, _:, _k, sk, qk, Pk).
The following conventions will be used in the rest of the paper:

gk -= VF(xk), Ak -=-Vc(xk), ck - c(xk),

and the symbols tik and (_kwill be used with the same meaning as Ak and ck, but restricted
to the set of active constraints at the given point. The term active constraint will be used

to designate a constraint that is satisfied exactly at the current point (cj(x) = () in NP, or

aTp = --cj in QP), and the set of all constraints active at a given point will be referred to
as the active set at the point.

The objective function for the QP subproblem will be denoted by _k(p),

1 T
%,(p) = gTp + _p Hkp. (2.3)

Sometimes, ¢ will denote the function of one variable ¢1,(7) -=-_bk(p+ Td).
For any vector v, the notation v- will be used to denote the vector whose j-th element

is defined as

v_ = - min(0, vi).

Finally, the symbol e denotes the vector (1, .... ,1) T, and symbols of the form fl, b_denote
fixed scal_rs related to properties of the problem, or the implementation of the algorithm,
where "abc" identifies the specific scalar represented.
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The algorithm

We first present an outline of the algorithm. Given Ho positive definite, xo and Ao, select

p-1 >_O, 0 < a < rI < 1, tic >_ IIc-(xo)lloo, _, >__II,kol[and 130 > 0.

Algorithm ETSQP

k_0

repeat

Obtain the search direction pk from the QP subproblem
1 T

minp _bk(p) = gTp+ _p Hkp
s.t. Akp + ck >_0

Compute/zk, an estimate of A* such that [l#kll < fig
_k "- #k- ,_k
if pk-1 = 0

Compute sk from (sk)j = max(0, (Ck)j)
else

Compute sk from (sk)j = max(0, (ck)j -()_k)j/Pk-1)
end if

qk _- Akpk + ck - sk
1 T

if ¢_(0) < --TpkHkpk
Pk _ Pk-I

else

max{2pk-"k Ck(Pk)+ (2Ak - #k)T(ch - sh) j3p_)Pk /..-.

lick- shll2
end if

if ¢h(1) _<eh(o)+ _¢_(o)
&_l

else

Select 5 E (0, 1) to satisfy

¢k(_) < Ck(0)+_¢%(0), I¢%(_)1< -_¢%(0)
end if

while c(xh + &Ph) _ -rice or ¢k(5) > Ck(0) + a5¢_(0) do
& _ &/2

end do

Compute gh+_, Ak+l and ck+_

Update Hk to form Hh+l
k_k+l

until convergence



The following are some comments on the steps of the algorithm.

• At each point xk, we form the QP subproblem

1 T (2.4a)minimize gTp + _p Hkp
p6_ n

subject to Akp >_--ck, (2.4b)

and determine a stationary point for QP, that is, a point/it, satisfying

gk + Hkf_k = ATrk, (2.5a)

Ak_k + ck >_0, _rT(AkiSk + ck) : 0, (2.55)

for some vector _rk E _m.

From information available at the stationary point we construct a search direction pk

and #k an estimate of A*. The precise conditions that pk and #k need to satisfy are

given later in this section. If Pk = 0, we set Ak = #k and terminate. Otherwise, we
compute the search direction in the space of the multiplier estimates (t` as

_t =̀ _t`- ht`. (2.6)

• The slack variables st, are computed from

max(0, (ct`)j) if Pt`-I = 0,(st`)j= max (0, (ct`)i (At`)i) otherwise. (2.7)pt`-I

These values minimize the merit function (2.1) at (xt`,,kt`,pk-1) with respect to the
slack variables.

The slack variables st` appear in the merit function (2.1) as part of the term ct` - sk.

From (2.7), this term takes the value

rain (0, (Ck)i_t`) i if Pk-a : O,(ct`)i- (st`)i = min((ct`)i , p-___) otherwise. (2.8)

We shall require the following inequality:

II_EII-<II_t-̀ _t`ll. (2.9)

To simplify the notation in the justification of this result, we drop the subscript k.

If cj - s i = ci then clearly I_i- _il= I_il>_-Icyl.

If ci-si # ci and ci > O, then c_- = 0 < Ici- sil. Otherwise, ci - sj # cj and cj < O.

From (2.8) we get ci - sj < ci < 0, and hence Ici - si[ > Icjl>_1_71.Wehaveshow,,
Ic_-I_<Ici- sil underall circumstances, implying (2.9).
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• The search direction in the space of the slack variables qk is set to the vector of slack

variables for the QP subproblem, i.e.

qk = Akpk + ck -- sk. (2.10)

For a linear constraint this choice keeps the corresponding slack variable at its opti-
mum value.

• The penalty parameter will not be modified if the condition

17'
¢_(0) _< _pkHkpk, (2.11)

is satisfied, where Ck(a) is defined in (2.2). Otherwise, we define the penalty parameter
as

Pk = max(2pk-l,_k,flo), (2.12)

where tip is some positive constant,

Ck(Pk) + (2_k- _k)r(ck- _k)
/Sk= lick_ ski[2 , (2.13)

and Ck was defined in (2.3). It will be shown that the definition (2.12) ensures that
(Pk,_ck,qk) is a sufficient descent direction for the merit function, in the sense that
condition (2.11) holds for this value of the penalty parameter.

• The steplength ak > 0 is computed to reduce Ck(a) while keeping the constraint
violation bounded. The termination conditions for the linesearch are as follows:

If

Ck(1)- Ck(0) <_a¢_(0), (2.14)

set & = 1. Otherwise, find an 6 E (0, 1) such that

Ck(_)- Ck(o)< _¢_(0) (2.15a)
G(_) _>.,G(o), (2.15b)

where0< a< r/< 1.

If the condition

c(zk + 6pk) >_ -fl_e (2.16)

holds, we define ak = &; otherwise we compute ak by performing a backtracking

linesearch from & until (2.15a) and (2.16) are both satisfied, lt will be shown later
that such a steplength always exists, and that Algorithm ETSQP is well defined. This

definition of the steplength ensures that c(xk) >_-fl_e for all k. A more sophisticated
algorithm could be used to determine ak when (2.16) does not hold. However, we
anticipate such events will be rare.

• Finally, x/_ and Ak are updated from

Ak+_ = ,_k +ak _k "



The definition of the search direction

At each iteration of ETSQP an inner iteration is performed to determine the search di-
rection by solving the QP subproblem (2.4) using an active-set method. The following is

an outline of a suitable algorithm to determine the search direction. The outer iteration
subscript has been omitted, and the subscript i refers to the inner iterations.

We assume that positive constants tip,/_b, 7M have been defined.

Algorithm SD

Compute Po satisfying:

Apo + c >_O, IlPoll<- _p c- , gTpo <_flp lC-II

Form ,4o, the active-set matrix at po, as the set of all rows in A corresponding to
active QP constraints at po
i_O

repeat

Compute pi from -4i 0 -Tri 0
T

( { cjTajpiafpi
7i _min 1,infj ,aT_i < 0})

P_+1 _ Pi + 7iP_
Set Ai+_ to be the active-set matrix at pi+1
i_i+l

until (pi, _ri) satisfy (2.5)

71" e-- 7ri

if Tr >0m

p_
else

Define v to satisfy: IV I : l, V _> 0, vjTrj <_0 Vj, v T:r <_Hbmini 7tj
Compute dby solving: min{_d I A_d= v}
d d/lldll

7 _ min( -(g+dTHdHp)Td, infj{ -cj+aTdaT_ I aTd < O} , "YM)

if _5+ 7d[I > 11151
p_ _+Td

else

end if
end if
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Some comments on this procedure are presented below.

• An initial feasible point Po of the QP subproblem is obtained.

When tile minimizer of the QP is used as the search direction, then, given the. unique-
ness of p, the choice of Po is irrelevant. If we determine the search direction from a

stationary point that is not a minimizer, the seque,,ce of stationary points that we
compute depends directly on the value of po. We wish to define the initial point ii_

such a manner that ali st_tionary points are satisfactory points at which to terminate

the solution process, lt will be see,, that the following conditions on po _re suf[icient
to ensure our objective.

- For some constant _v > 0,

liP01]-<.@llc-II and g'rpo <_flpllc-II. (2.18)

• A sequence of feasible descent steps are taken, for example, by first conlputing the

step Pi to the minimizer of the QP on the current working set as the solution (if the
system of equations

A_ 0 -rr, 0 ' (2.19)

where pi is tile current estimate. A step 7i is taken, where 7i is obtained as either one

or the step to the nearest constraint,

7i = min(1,inf{ cj+a_'piT,_ l a:_'Pi < 0}). (2.20)
a aj Pi "

The QP algorithm may be terminated at any stationary point /5. (Algorithln SD is
terminated at the first stationary point.) lt will be seen in the proofs that to always
use/5 as the sea,rch direction will not in generM ensure conw_'rgence.

• If/_ is the minimizer of the QP subproblem, that is, ii"7r _>0, the search direction p is
delined as p = 17,otherwise

{ + ivII ll< + #,zll,
P

/? otherwise, (2.21)
,%

where the vector d and the scalar "}are computed with the following properties:

- d is feasible with respect to the a.ctive QP constraints at/?, Aid > 1), and ii. llas

,,,,it norm, flail= I.
- The rate of descent along d is sutficiently large. Specitically, we require

(Itr) + 9)Td <_f_bnlin.iTri, (2.22)

for some positiw_ constant !_b.
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There are many procedures for computing a suitable vector d; we now describe

one such procedure (see algorithm SD). It proceeds by defining an auxiliary
vector v with the following properties

[]v[I= 1, v >_O, vjrj <_"0 Vj, v Tlr <_fib min tj;

such a vector can be obtained for example by letting

1 if rj < 0vi = 0 otherwise

We then compute d the least-length solution of AiY = v and set

d = d/lldl[. (2.23)

- The scalar _ is given by
5' - min('_, :y,7M), (2.24)

where 7M is a specified upper bound oil the steplength,

_=inf_,{ CJayd+ aT/5 ] aTd< 0}, (2.25)

is tile largest feasible step from/5 along d, and

(g + H/5)Td (2.26)
:_ = _ dTHd ,

is the step to lhe minimizer of q_,(/5+ Td).

,, The multiplier estimates

Equatign (2.6) defining the search direction oil the multiplier space _k requires the compu-
tation of an estimate ttk for the Lagrange multipliers. The estimates {pk} are then used to

update {Ak}, the Lagrange multiplier estimate used in the merit function. To allow flexi-
] bilily in algorithm design we have chosen to specify conditions on the multipliers estimates

Pk rather than give explicit definitions.
lt will be shown t_)at the following conditions on ttk are sufficient to ensure that the

algorithm is globally convergent.

MC1. The estimates ttk are uniformly beunded in norm, that is [l#kll < l_u < oc.

MC2. The complementarity condition pT(Akpk + ck) = 0 is satisfied at ali iterations.

We may satis_' these conditions by choosing Irk = 0. Condition MC2 is made for
convenience; condition MC1 and the form in which the multiplier estimates are updated

inlt)l.v that {Ak} are uniformly bounded

Lemma 2.1. If co,,ditio,t MC1 holds, then IIAkl]< /J_, for all k.
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Proof. The proof is by induction. We select/3, to satisfy lib011_,. From (2.17),

hk+l =hk+ak(#k--hk), k>_O. (2.27)

Using norm inequalities and 0 < ak _<1, we have

II. k+ll-< kll kil+ (1-  k)l!hkll_<k/3. + (1- -/3.,

required. !

Second-order information

We choose the matrices {Hk} to be positive definite and bounded, with bounded condition
number. In practice, such matrices may be generated (see [GMSWS6a]) by updating a
quasi-Newton approximation to the Hessian of the Lagrangian function or the Hessian of

the augmented Lagrangian function in each iteration together with certain safeguards (for
example, if the factors of Hk are updated, by enforcing bounds on the size of the elements,

and ensuring sufficiently positive diagonal elements). These conditions can be written as
follows:

HC1. 31rH < CX::)is the largest eigenvalue of {Hk}.

HC2. /3svH > 0 is the smallest eigenvalue of {H/C}.

3. Global convergence results

The results in this section establish global convergence properties for algorithm ETSQP.

We first introduce the assumptions under which we shall show convergence, and then we

prove the following reaults:

• The iterates {xk} lie on a compact set.

- In Lemma 3.1 we show that the quantities associated with the algorithm are well
defined at all points.

- In Lemma 3.2 it is shown that if [Ix/cii is large then liPcii cannot be arbitrarily
small.

- In Lemma 3.3 we show that p computed using algorithm SD satisfies

1 T
¢(p) _ gtp + ._p Hp <_-flip T Hp +/_2[[c - si[,

where til and/32 are positive constants.

- Lemma 3.4 proves that the sequence {x/c} lies on a compact set.

- Lemma 3.5 shows that the sequence {p/,} also remains bounded.

• The sequence {liP/cii} dominates the sequence {[[x/c- x*[[}, where x* denotes a h:KT
point closest to xk. The main implication of this result is that []Pk[[---*0 is sufficient
to ensure that x/c _ x*, a KKT point of NP.
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- It is shown in Lemma 3.6 that, under the assumptions we make, the KKT points

for problem N P are isolated.

- Lemma 3.7 introduces another preliminary result, proving that if Pk ---*0 along

a subsequence then along this subsequence Ilxk -- x*ll ---, O, where x* is a KKT

point for NP nearest to xk. Moreover, for large enough k, Pk is the minimizer of
the QP subproblem, and the correct active set at x* is identified.

- The proof that IlPklldominates Ilxk - x*ll is given in Lemma 3.8.

• Bounds on the growth of the penalty parameter Pk.

We cannot prove that Pk will remain bounded in the algorithm without stronger con-

ditions on the multiplier estimate #k, but we can show that its growth is bounded by
certain quantities related with the algorithm, and that is enough to prove convergence.

- We show in Lemma 3.9 that at all the iterations where the penalty parameter is

modified the following bounds hold,

PkllCk- skll <_ N and pkllpkll 2 <_ N.

- In Lemma 3.10 and Lemma 3.11 we show that similar inequalities hold at ali
iterations.

• The steplength ak is bounded away from zero if we are not close to a solution.

- We first need a bound on the second derivatives of ¢(a). In Lemma 3.12 we

prove that Ck(ak) _< N for some positive constant N.

- In Lemma 3.13we show that, if Ilpkllis large enough, there exists a value (_i> 0

independent of the iteration such that ak >__i.

• In Theorem 3.1 we show that xk _ x*.

• Finally, we prove that ,_k --* )_*.

- This result requires stronger conditions on the multiplier estimate #k than just
MC1 and MC2. We start by introducing a third condition MC3.

- Lemma 3.14 strengthens the result in Lemma 3.13 showing that, under the new
conditions on the multipliers, r-_kis uniformly bounded away from zero.

- In Theorem 3.2 we show that Ak --* A*.

Assumptions

Some of the following assumptions make use of the concepts of stationary points and KKT

points at infinity. We will say that NP has a stationary point at infinity if there exist
sequences {xk} and {rlk} such that [[Xkll---' c¢ and/or Ilrlkll---, _, and

T
ck---,O, A_r/k-gk---,O, r]kck_O.

If in addition to these conditions we also have r]_- _ 0 , then we have a KKT point at
infinity.

We make the following assumptions:
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Al. For some constant tic > 0, the global minimum of the problem

minimize F(x)

s.t. c(x)> - ce,
is bounded below.

A2. There exist no KKT points at infinity for _.oblem NP.

A3. F, cj and their first and second derivatives are continuous and uniformly bounded in
norm on a compact set.

A4. The Jacobian corresponding to the active constraints at all KKT points has full rank.

A5. A feasible point Pk0 exists to all the QP subproblems, satisfying

IlPk011-<flpllc_ll and gTpk o < flpllC'_[I

for some constant tip > 0.

A6. Strict complementarity holds at ali stationary points of NP, including stationary points

at infinity, if they exist.

AT. Tile reduced Hessian of the Lagrangian function is nonsingular at all KKT points.

The larger the value of tic, the stronger is assumption Al. There will be problems, for

example F(x) = f(x)Tf(z), where it is known a priori that assumption A1 holds with
tic = oo. Also, if A1 does not hold with tic = 0 then it is possible for any reasonable

algorithm to diverge.
Assumption A5 imposes conditions on the initial point for the QP. It is possible that

no point satisfies these conditions; this would be the case for example if one of the QP
subproblems generated by the algorithm is not feasible. Nevertheless, by introducing an

additional variable it is possible to construct a modified problem for which this condition
is satisfied trivially. Consider the problem

minimize 9v(x,_) = (1 -w)F(x) +w_2
(x,_)e_n+1

s.t. c(x)+_e>_O and _:>_0,

where _ E _ and w E [0, 1]. The KKT points for this problem are also KKT points for NP
if NP is feasible and w is sufficiently close to one. The modified problem is always feasible,
arid the corresponding QP subproblem takes the form

minimize (1--w)gkTp+wp+½(pr /5)Hk(p,_)e_,_+1

s.t. ck + Akp + _ke +/se >_0

_k+p>0.

For this QP subproblem the point

0 )p II( k+  k¢)-Iloo
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is feasible since we can ensure that xk >_0. Therefore there always exists a feasible point

that satisfies A5 with tip = 1 since [[Po[[= [[(ck + _ke)-[[oo and

( P ) =_,,(_k+_k_)-,,oo< ,,(_k+_k_.)-,,,v_'Tp0= ((1--w)gT w) oo,

implying that Assumption Ag is redundant for the modified problem.

Existence of the iterates

We start by showing that all the quantities associated with the algorithm are well defined.

In particular, we show that the choice of penalty parameter ensures (2.11) is satisfied and
that the steple'agth exists.

Lemma 3.1. Under assumptions A3, A5 and conditions HG1, HC2, the procedures given

in the algorithm to compute the values of the penalty parameter Pk and the steplength ak
are well defined.

Proof. We drop the subscript k denoting the iteration number, to simplify the notation.

Consider the gradient of the merit function LA, defined in (2.1), with respect to x, A
and s,

g(x)- A(x)TA + pA(x)T(c(x)- s)VLA(x,A,s) = -(c(x)- s) ) . (3.1)- p(c(x)- s)

It follows from (2.6), (2.10) and (2.2)that ¢'(0)is given by

¢'(0)= prg_ prAr_+pprAr(__ _)_ (c- _)r_+_rq_ pqr(__ _)
= pTg + (2A - #)T(c- s) -- PllC- s I2, (3.2)

where g, A, and c are evaluated at x.

If [lc- s[I = 0, from (2.9) and (2.18) we have Po = 0, and since _b(p) = pTg + ½pTHp <_
_b(p0) = 0 it follows that

1 T
¢'(0) = pTg <_ 7P Hp,

implying that p does not need to be modified.

If [[c- si[ > 0, we obtain from (3.2) that for p =/5 (defined in (2.13))

l pT ,,¢'(0) = gTp + (2A -- #)T(c -- s) --/511c- sll2= -_- hp,

which implies the desired descent condition (2.11) is satisfied for ali p >_/5.

An immediate consequence of (2.11) and the properties of Hk is the following bound on
the directional derivative:

Ctk(O ) < --l j_sv H IlPkll2. (3.3)

lt follows from the procedure to increase the value of the penalty parameter (see (2.12))

that Pk _ c_ if and only if the parameter is increased an infinite number of times.



3. Global convergence results I5

We also need to prove that the value of ak introduced in the algorithm is well defined.

We show that if condition (2.14) is not satisfied, a steplength &k E (0, 1) that satisfies

conditions (2.15) always exists (see, for example, Mor6 and Sorensen [MS84]).
Define the functions

x(a) -- ¢(_) - ¢(0)- _¢'(0)
¢(a) = ¢'(_)- _¢'(0),

and note that from a < r/and ¢'(0) < 0, implied by (2.11), we have

x'(a) = ¢'(a) - _¢'(0)< ¢'(_)- _¢'(0)= ((_), (3.4)

for any a.

If (2.14) does not hold,

¢(1)-¢(0) > _¢'(0) _ x(1)> 0,

and we also have X(0) = 0. From these two results and the mean-value theorem, there will
be a point & E [0, l] such that X'(5) > 0, and from (3.4), ((5) > 0.

From ¢'(0) < 0 we have ((0) < 0, and the continuity of _ (assumption A3) will imply

the existence of a zero of (,"in (0,5). Let d denote the smallest point iii (0,5) such that
((5) = O, that is,

¢'(_)= _¢'(0), (3.5)

and condition (2.15b) is satisfied at d.

From ((0) < 0 we must have

((a) < 0 Va E [0,&) ¢_ ¢'(c_) < 7?¢'(0) Va E [0, d), (3.6)

implying that condition (2.15b) is not satisfied for any point in [0, &).
Finally, from (3.4) and (3.6), we have

_'(_) < 0 w e [0,_),

and this together with X(0) = 0 implies X(6) < 0, that is,

¢(_)- ¢(0) < ad¢'(0), (3.7)

showing that c_ satisfies both conditions (2.15) simultaneously.

We still need to consider condition (2.16). For the function h(a) = c(x + e_p) + _e we
have from (2.4b)

h'(O)= Ap> -_.

If .-½_ > cj > -_5_, we have hi(O) > 0 and h_(O) > !/_.... 2 > 0; if cj >_ -½_ then hj(O) >_

{/_c > 0 and in any case there exists a value 5 > 0 such that hj(o_) > 0 (implying cj(x+exp) >_
-/3_) for all j and ali c_E [0, &], implying that for _ E [0, rain(6,&)] both conditions (2.1ha)
and (2.16) hold simultaneously. |

This lemma implies that all the quantities associated with tile algorithm are well defined.
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Boundedness of the iterates

To prove global convergence we show first that if assumptions A1 and A2 hold, all points
in the sequence {xk} generated by the algorithm lie on a compact set. We start by showing

that for Ilxkll large enough we cannot have IlPkll arbitrary small.

Lemma 3.2. Under assumptions A2 and A6 and condition HC1, there exist positive con-

stants i and e such that Ilxkll >_U _ IlPkll >- e.

Proof. Assume this result does not hold. Then, for any positive constants M and e we

can find iterates such that Ilxkll >_ M and IlPkll < e, and we could construct a sequence

{xk), and its associated sequence {Pk}, along which Ilxkll --, o0 and IlPkll -* 0. For this
sequence, from IlPkll--' 0 and (2.4b), we must have IIc_-II--, 0. Also, from the definition of

pk, (2.21), it must hold that IliSkll--' 0, and from (2.5a) and MC1, we must have

[IATTrk - gkll = IlUkiSkl --* 0.

Since I]Pkll --* 0 and [[/51,[[--' 0, using (2.21) and Ildall = 1, we also have either 7k --* 0

or 7k = 0 for k large enough. It then follows from (2.24) that either min(_k, 7k) -* 0 or
"_k= 7k = 0 for k large enough. If 7k --' 0 along a subsequence, then (2.25) implies for some

constraint j that (Trk)j -* 0 and cj(xk) --* O, but this would contradict assumption A6. If
"_1¢--* 0 along a subsequence, then from (2.26) and (2.22) we get [l_r_-II--. 0.

The properties of this sequence,

•kll- I1 ; 0, IIA  k- gkll-*0,

and either II_r_-II-* 0 or I1_-[I = 0 for k large enough imply there exists a KKT point at
infinity, which violates assumption A2, so the lemma must hold. |

Another result we need for the compactness proof is a bound on the value of the QP

oh:,_ctive function at the incomplete solution for the QP.

Lemma 3.3. Under assumption A5 and conditions HC1, HC2, for p computed by algo-
rithm SD there exist constants til > 0 and ft2 > 0 such that

¢(p) _ gTp + ½pTHp <_-flip T Hp + fl211c- ell.

Proof. The result will be shown by considering first the initial point for the QP, po, and
then the descent achieved in each QP iteration.

By definition
¢(Po)= 1 T poTHpo-TPo H po + gTpo +

Since [[Po[[</_p[[C-[[ and gTpo <_flp[[C-[[ (assumption A5), condition HC1 on U implies

1 T 2 - 2
¢(Po) < -_po Hpo + flp[[C-[[-lt- fltv].lflp[]¢ [[ (3.8)

1 2Consider the quadratic function b7 + _c7 where b < 0 and c > O; then for all 3' E
[0,-b/c] (between 0 and the minimizer), we have

b 1 2 _1 .7 <-- _ 7(b+c 7)<0 _ b7+_c 7 < c7 2 (3.9)
c
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The change in the QP objective function at any intermediate QP iteration i can be
represented as

77iui adl -F?i(g + Hpi)Tdi, (3.10)

where di is used to denote the QP step obtained from (2.19) or the final step d defined in

(2.23), and 7i is a feasible steplength bounded by the steplength to the minimizer along vi, as
defined in (2.20) or (2.24). We have dTHdi > 0 (from condition HC2) and (g+ Hpi)Tdi < 0

(from condition (2.22) and minj rj < 0), implying that we can apply the bound (3.9) to
(3.10) to obtain

1 2 T
_)(Pi-t-1)- _)(Pi) _ -'_[i di Hdi. (3.11)

If we have taken N iterations to compute p (the search direction), by adding the in-
equalities (3.11) for i-- 0,...,g and using (3.8) we obtain

N

¢(p) = ¢(p0)+ _(¢(p_)- _(p_-_))
i=1

N

1 T-< 7(P0 Hpo + Z 72 dTHdi) + _PllC-[I +/_lvH/_2pllc-[} 2 (3.12)
i=l

We can use the convexity of the function pTHp (implied by property HC2) to write

n 1 N n 1

pToHpo+ Z?_dTHdi > (Po+ ZTidi)Tn(po+ '_-_,7idi)= N +"-'----1pTHp"i=1 -- N + 1 i=1 i=_

This result together with (3.12) implies

1

¢(P)-< 2(U + 1) pTHp+/3PIle-II +/3h'H_2pIIC-IIT" (3.13)

Since c- >_fl_e the desired result follows from this inequality and (2.9). II
We can now prove the main result of this section.

Lemma 3.4. Under assumptions Al, A2, A3, A5 and A6, and conditions MC1, HC1

and HC2, the sequence {xk } generated by the algorithm lies on a compact .set.

Proof. First we show the set of points at which the penalty parameter is modified lies on

a compact set. If Pk remains bounded it follows from the manner the penalty pararneter is
modified, (2 12), that there is only a finite set of such points. Therefore we need only study

the case when pk _ _. Consider the iterations k where the penalty parameter is modified.

From condition MC1 and the boundedness of the multiplier estimates Ak (Lemma 2.1), we
have

112,_k- _kll< 211Akll+ II#kl -<aft.. (3.14)

This result, together with the definition of the penalty parameter (2.13), and Lemma 3.3
gives

1 T
Pkllck- skll2 _<g_°Pk+ 7PkHkPk + (2Ak - #k)T(ck -- Sk)

_<(/h + 3/_.)llck- 8kll- _1pTHkpk. (3.15)
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As we have assumed pk _ oo, (3.15)implies []ck- sk[] _ 0, and from (2.9) also []e_-[I_ 0.

From Lemma 3.3 and (3.14) we have

wk =- gTpk + (2,kk- #k)T(ck - 8k) (3.16a,)

<- --TPkl-THkpk--- fllpTHt-vk + (til + 3flt,)llck - skll. (3.16b)

If IlPkll > e > 0 along an infinite subsequence, then it follows from lick - skll _ 0 and
MC2 that there exists an index K such that for all k > K in the subsequence,

(¢_p+ 3ft.)lick-skll< fl_pTHkpk.

From (3.16b) we obtain the following bound on wk,

i T
wk <_--TpkHkpk, (3.17)

fork >_K. From(3.163)and the bounds(3.17)and(3.2),we have for sufficiently large k

lT¢'k(o)- _k - Pkllck- _kll2< _k < _PkHkpk.

This last inequality implies that pk is not modified for all k > K, which contradicts our

assumption that the penalty parameter was modified an infinite number of times.

We have shown that IlPk] --* 0 along the subsequence at which the penalty parameter
is modified. The boundedness of Izkllalong this subsequence follows from Lemma 3.2.

We now consider those points corresponding to iterations where the penalty parameter

is not modified. From condition (2.16) on the hnesearch and assumption Al, we have

F(xk) > flF > -_ for ali k. Also, from Lemma 2.1 II_kllis bounded, implying that

(ft2 m fl t'fl_) >-ce. (3.18)LA(xk,,_k, sk,pk) > flF- max _2flo ,

Since Ilxk is bounded when pk # Pk-1 and LA(Xk,,_k, sk, pk) is reduced when pk = pk-1 it
follows that LA(Xk,)_k, Sk,pk) is bounded. Moreover, the reduction in LA(xk,,_k, sk,pk)is
bounded for a sequence of iterations for which Pk is not changed. Let I denote the index

at which pk is modified and let I < k < K denote the iterates for which pk remains fixed.
It follows from the above reasoning that there exists N such that

K

¢, - ¢,," = Y'_(¢k - ¢k+1) _< N, (3.19)
k=l

where to simplify the notation we have used Ck = Ck(0).
From the termination condition for the linesearch (2.153), (3.3) and (3.19), we a.lso have

K K

½o_.H_ _kllPkll2 < _(¢k- Ck+,)<N. (3.20)
k=I k=l

This result implies that ak[ pkllis bounded. Hence if Ilzkllis not bounded there must exist

sets of iterates with indices, say sl + 1 < k < rt for I = 1,2,..., such that Iz._,ll< M,
Ixkll> M for M large enough, limt--,_ rt = oo, and limt--.oo IIx_,ll--,_. lt follows that ii
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M is chosen so that M > max{llxxll} then Pk is constant in the interval sz _< k _<rl. The

existence of an index such that Ilxszll < M is assured since we have IIx111< M and at least
one index in the interval for which Ilxk[I > M. From these assumptions and definitions it
follows that

rl --1

akllPkll >_ Ilxr,- xs,[I--* oo. (3.21)
k--si

It follows from Lemma 3.2 that IlPkll > e for st + 1 _<k _<rl. From (3.21) we get

rl-1 rl--1

 JllpJlJ>  jJlpjJl+ ,Jlp,lJ oo,
j--sl j--sl-t-1

but this contradicts (3.20), implying that the points generated by the algorithm must lie
on a compact set. |

To complete this section, we show that the search direction computed from the QP

subproblem is bounded.

Lemma 3.5. Under the assumptions of Lemma 3.4, the sequence {Pk} is bounded.

Proof. We drop the subscript k in the proof.

As all the steps taken in the solution of the QP subproblem are descent steps, we have

from (2.3),

1 T 1
¢(P0)>_ ¢(P) = gTp+ Tp Hp= ½11H½p+ y-'_gl] 2- ½gTy-lg,

implying from HC2 and Ilall <_ Ila + bll + Ilbll,

 llpll <- I H½pl <-IIH-½gll + IIH½p+ H-½gl <<-I H-½gll + _/2_b(p0)+ .qrH-lg.

The boundedness of I pll follows from this result Lemma 3.4, conditions HC1 and HC2 and
the bound (3.8). |

It is tacitly assumed in the remaining proofs that the assumptions Al-A7 and condi-
tions MC1, MC2, HC1 and HC2 hold.

The sequence of search directions {Pk}

In this section we relate the behavior of the sequence {xk - x*}, where x* denotes a KKT

point closest to zk, to that of the sequence {Pk}. In particular, we show that IlPkll _ 0
implies xk --* x*, and so it is enough to prove that IIPkll --* 0 to establish global convergence.

Although the KKT point x* introduced above may not be unique, the assumptions made

on the problem, and more specifically assumption A7, imply that if Ilxk - x*ll is sufficiently
small then x* is unique, as the following Lemma shows. This result allows us to work with

a well-defined sequence {xk - x*}, at least close to a KKT point; it will also imply that the
limit point of the sequence generated by the algorithm is unique.

Lemma 3.6. The KKT points for problem NP are isolated.
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Proof. Assume that the result does not hold, and let x* denote a KKT point for NP

that is not isolated, that is, for any e > 0 there exists a KKT point y_ _ x* satisfying

IIz* - yell < e. Consequently, there exists a sequence {Yk} such that yk is a KKT point for
all k, Yk _ x* and Yk -'* x*.

For sufficiently small IIx* - Ykll the active sets at yk and x* must be the-sume,:otherwise
we would have for some constraint j that cj(x*) = 0 with both cj(yk) > 0 and (hk)j = 0

along some subsequence, where hk is the multiplier vector at Yk. From assumptions A3

and A4 and (1.1) we have hk -* h*, the multiplier vector at x*, but this would imply
$

cj(x*) = hj = 0, contradicting assumption A6.
Let Zk denote a basis for the =,ull-space of V_(yk), the Jacobian of the active constraints

at Yk, and Z* denote the cor:esponding basis at x*. _mong all possible bases, Zk is selected
to have continuous first derivatives in a ball around x*. It follows from A4 and the fact the

active set is constant that such bases exist.

For any element of the sequence yk and for x* we have from (1.1)

ZTVF(yk) = 0 and z*TvF(x *) = O.

The Taylor series expansion of ZTVF(yk) around x* gives

0 = zTVF(yk)= zT(VF(yk)- Vc(yk)T,k *)

= z*T(VF(x *) - Vc(x*)rh *) + (VZ(x*)(VF(x*)- Vc(x*)Vh *)

+ z*Tv2L(x*,h*))(yk - x*)+ o( lYk - x*l]), (3.22)

where L(x,h) is the Lagrangian function of NP. Using (1.1) in (3.22), and dividing by
IlYk - x* II gives

Yk - x*

z*Tv2L(x*,h*)hk = o(1), where 6k = IlYk - x*ll" (3.23)

Let _ denote the subset of constraints active at x* and Yk. If e is sufficiently small then

5k satisfies

e(yk)= 0 = w(x*)(yk- x*)+ o(llyk-  *11) ve( *)hk= o(1). (3.24)

Finally, for any convergent subsequence of the bounded sequence {6k}, with limit 6, we

have from (3.23) and (3.24),

z*Tv2L(x*,h*)6 = O, V_(x*)5 = 0,

contradicting assumption AT. |

This result, together with A2, implies that the number of KKT points lying on any
compact region is finite. The distinctness and finiteness of the KKT points implies the
existence of e* > 0 such that for any two KKT points, say x* and x*, we have IIx*l-x*211:> 2e*.

It follows that if Ilxk- x*ll < e*, where x* is a KKT point nearest to xk, then x* is unique.
We now analyze the sequence of search directions {Pk}. The following result shows that

as pk _ 0 we get close to KKT points of NP and we only need to consider values Ph obtained
as the minimizers for the corresponding subproblems. We complete this result by showing

that a small value of IlPkll also implies that the correct active set at x* is identified, in the
sense that the active QP constraints at pk correspond to the active NP constraints at x*.
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Lemma 3.7. If along a subsequence Pk _ 0 then along this subsequence Ilxk - x*ll -_ O,

where x* is a KKT point nearest to xk. For k large enough, x* is unique, pk is the QP
minimizer and the correct active set at x* is identified.

Proof. A subsequence such that pk _ 0 exists if and only if a subsequence exists such

that Pk --* 0 and the active set at pk is constant. Let {r} denote the sequence of indices for

such a subsequence.
From the definition (2.21) of Pr it follows immediately that Atpr + cr >_O. From Pr -* 0

and assumption A3 it must hold that c;- -, 0 and isr _ 0.

From (2.5) we have

(3.25)A r7r_-gr-Hr/Sr=0 and 7fT(At/Sr+ct)=0.

Since Pr --* 0 it follows that

T 7rTer 0 and c7 0. (3.26)A r 7rr - gr -'_ 0, ---+ ---*

We now show that for large enough r that pr must have been computed as the minimizer

for the QP. It follows from p_ _ 0 and Ildrll = 1 that either there exists K such that for all
7' > K we have % = 0 or 7r _ 0 (see (2.24)). If we assume the latter it follows that

min('_r, "_r) _ 0.

• If 7r --* 0 along a subsequence, then from (2.25) along this subsequence we will have
' for some constraint j

Vcj(xr)T(_r + ;yrdr) + cj(xr) = 0 and (Trr)j = 0,

which implies that

cj(xr) _ 0 and (rr)j = 0,

contradicting assumption A6.

• If 7r _ 0 along a subsequence, then from (2.22),

----_ 0_

which implies from condition nel and ] dr[I = 1 that _r(O)= (H_pr + gr)7'dr '-' O.
This result and condition (2.22) on d imply that for some constraint j we have (_'_)j <

0, (Trr)j _ 0 and Vej(xr)Tpr -_ ej(Xr) '- 0, giving

cj(xr) ---,0 and (7r_)j _ 0,

and again contradicting assumption A6.

We conclude therefore that % = 0 for r > K and this together with (3.25) implies PT is the

minimizer of the QP subproblem. For r large enough 7r_ >_ 0, which together with (3.26)

and assumption A3 implies [Ixr - x*l] _ 0, where x* is the nearest KKT point to xr. For

r large enough x* is unique.
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Finally, we prove that for r large enough the active set of the QP coincides with the
active set of NP at x*. First note that for r large enough the active set of the QP must
be a subset of the constraints active at x*, otherwise pr is a step to a nonactive constraint

implying IIprll > e > 0. Assume that for the subsequence we have Vcj(x,.)pr + Cj(Xr) > 0
and cj(x*) = O. From (2.5b) we must have (Trr)j = 0, implying from the convergence of rr

,
that )_j = 0, but this violates assumption A6, and for r large enough the correct active set
is known. II

This result shows that there is an e > 0 such that if IIpkll < e, then pk is the solution of
the QP subproblem, and the correct active set is known.

We have just shown that if Pk -+ 0 _long a subsequence, then xk --+x*. Tc. show pk _ 0,

we need a stronger result, giving a relationship between the rates of convergence of the
sequences {xk- x*} and {Pk}.

Lemma 3.8. If x* denotes a KKT point closest to xk, then there ezists a constant M such
that

Ilxk- x*ll-<MIIPklI.

Proof. If IlPkll> ' forall k then the resultholds trivially sinceIlzklland IIz*llare both
bounded. Again let {r} denote the indices of a subsequence such that Pr ---' 0 and the

active set at Pr is constant. From Lemma 3.7, for this subsequence we have Ilzr- z*ll_ o.
We assume for the rest of this proof that r is large enough so that x* is unique, pr is the
minimizer of the QP and the correct active set has been identified.

Let (_, ft, and _ denote the corresponding quantities restricted to the constraints in the
active set. From assumption A4 we know that A* has full row rank, and we assume that r
is large enough so that tT,r also has full rank.

Let ZT denote a basis for the null space of .4r, with uniformly bounded norm and

continuous first derivatives. From the optimality conditions for pr, (2.5), we get

- Ar ,_ ) (3.27)
h(x) = A,. pr = - cr = - cr "

Since h(x*) = 0, we have from the Taylor series expansion that

hi(xr) = Sj((Or)j)(xr - x*),

where Sj((Or)j) = Vhj(x* + (OT)j(Xr- X*)) and 0 < (Or)j _< 1. We have therefore

( zTgr ) =-s(°r)(_-_*)vr" (3.2S)

From (3.22) we get

S(O)= ( z*Tv2L(x*,)_*) )A(x*)
and assumptions A4 and A7 imply that S(0) is non-singular, lt follows that for sufficiently
large values of r, S(O,.) is also nonsingular, lt then follows from (3.28) that for some positive
constant M1,

IIx_- x*ll_<Ma(llZTgrll+ II_rll). (3.2,q)
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From assumption A3, property HC1 and (3.27) it follows that

M211Prll >--I]ZTgrll + I]crl], (3.30)

for some positive constant M2.

Since the subsequence (Pk} such that Pk --_ 0 is composed of a finite number of subse-

quences for which pr --+ 0 and the active set at Pr is constant, the required result follows

from (3.29) and (3.30). |

Bounds on the penalty parameter

The conditions we have imposed on the algorithm (and more specifically on the multiplier

estimate) are not sufficient to ensure that the penalty parameter is bounded. However,
bounds on Pk are related to the behavior of different quantities irl the algorithm, and in

particular to IlPkl]and lick- ski. The following Lemmas introduce bounds ol) the size of pk
in terms of these quantities. We start by presenting the results for those iterations where

the penalty parameter is modified, and then we extend the results to general iterations.
The notation kz is used in all that follows to indicate iterations at which the value of

the penalty parameter needs to be modified.

Lemma 3.9. For any iteration kt in which the value of p is modified,

Ph_[[Ch,-- sh, [I <- N and Phz[]ph_[ 2 __N,

for some constant N.

Proof. All quantities in the proof refer to iteration kt, and so this subscript is dropped.
From the definition of _, (2.13), and I,emma 3.3 we get

, :r s)_llc - s ]2 = gTp + _p Hp+ - -

< --j3,pTHp+ 132c - s I+ (2A - #)T(c- s) <_(/_2 +I 2A -  II)I -  .II,

where /_1 and ft2 are positive constants. From (3.14) and the above result we obtain the
first bound in the Lemma,

_ll c - sll _<3/3_+/_2. (3.31)

If the penalty parameter needs to be modified, condition (2.11) cannot ho:d for/5 =_ph,-,,

and (3.2) implies

1 T
¢'(0) = gTp + (2A- #)T(c -- s)- _llc- sll 2 > -_p Hp.

lt follows that

gTp + ½pTHp + (2A- #)T(c --s) > 0. (3.32)

Replacingin(3.32)thebound forgTp + ½pTHp givenirtLemma 3.3we obtain

s) sll> _,pTHp :::¢"
pTHp.> (3.33)
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From condition HC2 we have [[pl!2 < (1/_s,,H)pTHp. If we multiply both sides of this
inequality by i_and use (3.33) to bound pTHp, we obtain

3_ 3_(3f_ + 82)

where the last inequality follows from (3.31). The second desired bound then follows from

2_>p. |
We now extend these results to all iterations. To simplify notation, we shall use I and

K :o denote kz and kt+l respectively. Thus, the penalty parameter is increased at zt and
xh- in order to satisfy :ondition (2.11), and remains fixed at Pl for iterations I,..., K - 1.

Lemma 3.10. There exists a constant M such that for ali l,

kt+1-1

Ok, _ II_kPkll2< M. (3.34)
k=kt

Proof. For 1 < k < K -. I, property (2.15a) imposed by the choice of mk, and the fact
'hat the penalty parameter is not increased, imply that

Ok- 6k+i> -aak¢_,.

Summing these inequaliues for k = I to K - 1, 0 _<cr_ .< 1 together with (3.3) gives

K-1

½_h _ II_kPkll2< ¢,- ¢,¢. (3.35)
k=l

Consi(tor the term P,(¢l -Os-). From (2.2),

pe = pF- pAT(c- s) + -}pmllc- ,_112.

This equation, together with the boundedness of p,llc, - s,jl and p,llcs- - sKII (implied by

ph > p_ and Lemma ;I.9), and that of the multiplier estimates (Lemma 2.1), implies that
h)r some ,'_11> 0,

P,(¢,- Cs-) < Mi + p,(F,- FK). (3.36)

('onsider now iterations tor which IIP_[I< (, so that Lemma 3.7 a.nplies and p, has been
obtained a.s the minimizer for the subprobiem (for ali other iterations Lemma 3.9 implies
that p, is bounded, and the result follows from Assumption A3, (3.36) and (3.35)). |

Expanding Fl,- and cs- about xi, we get
!

F_: - F, = (xs. - z,)Tg, + O(llx, - xKlt 2) (3.37a)

cs. - c, = A,(xs. - x,) + O(llx,- zh-llm). (3.37b)

From Lemma 3.8 we have

]1./'.- .T*[! < ]k'f_i!'n:![ and [!_l:- "_*l!--< }L'fF[i_,:[I" (:{'21_
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As Pt was obtained as the solution of the QP, condition (2.5a) must hold with multiplier

vector 7rr >_0. This condition together with (3.37a), (3.37b) and (3.38) implies

Ft - F_: = (ct - ch')Trrt + O (max(llp,[I 2, Ilpgll2)). (3.39)

Using again (2.5),

ctTTrl = --piT AtTTrt = --gtTpl --p1THtpt.

Since p is increased at iteration I, we must have that condition (2.11) cannot hold at that
iteration, implying

_1 T
¢',(0) = g,rp, + (2At- #t)Z(c, - st)- p,_,[Ic, - s,[[ 2 > 7P, Htp,.

The pre_ '.ous two results imply

p,rtTc, < .-p,½p, TH,p, + pt(2A, - #,)r(c, - st)- p,p,__[[c, - s,[[ 2,

and this, together with the positive-definiteness of Ht (condition HC2), the boundedness
of the multipliers (condition MC1 and Lemma 2.1) and Lemma 3.9, gives

PtctTrr,< p,(2,_,- i_,)T(c,- s,) < M2, (3.40)

for some M2 > 0.

Consider now the term cKTrrt in (13.39). From 7r_ _>0 we must have

T
--ptcKrt _ plc_.Trl

and from (2.9) we have IIc?,.ll_<IIc_.- s,,-II. Using p, < p,,. and Lemma 3.9, we conclude
that there exists a constant M3 such that

-- plcKTrl < Ma. (3.41)

Finally, consider the third term on the right-hand side of (3.39). lt follows from

Lemma 3.9 and the relation pl < pj,. that there exi.,ts M4 and M5 such that

p,l[p,l[2 < M4 and p, llp,,.[I2 < Ms,

and hence for some constant ,Ms

p,O(max(llp, II2, lip,,-112))< M6. (3.42)

Combining (3.40), (3.41) and (3.42), we obtain the bound

pl(Fl - Ft_) < M2 + M3 + M6,

which, together with (3.36) and (3.35) implies the desired result. II

Lemma 3.11. There exists a constant M such that, for ali k,
.

Pkllck -- s_ll_<M. (3.43)
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Proof. As in the preceding Lemma, let I = kl and K = kl+l. From Lemma 3.9, (3.43) is
immediate for k = I and k = K.

To verify a bound for k = I + 1,..., K - 1 we analyze some intermediate iterations k

and k + 1. We drop the iteration subscript; also let quantities evaluated at xk+l be denoted
with a tilde.

From (2.8), p_(_j- _j) = min(p_j, _j). Consider the following two cases:

• If p_'j > -I_jl, then

p,l_j- gjl < IXjl. (3.44)

• Assume now that p_'j < -I_jl. Expanding the j-th constraint function around xk
gives

aj = _j+ _arp+ O(ll_pl12).
Rewriting the previous expression, we obtain:

5j = (1 - o_)cj + a(aTp + cj) + O(ll_PllZ). (3.45)

Adding and subtracting (1 - a).sj on the right-hand side of (3.45) gives

_j = (1-o_)(cj- sj)+ (1-_)sj +o_(aTp+cj)+O(ll,:_pl}'_). (3.46)

Since si, aTp + cj, o_and 1 - c_are all non-negative, we get

(_- _)_j+ _(_p + c_)> 0,
and using this bound in (3.46) we obtain

_j >_(1 - _)(cj - si) + O(ll_pll2). (3.47)

Since we assume pt_j < -I_jl we have _.j = _j - gj <_ O. Using this bound and
1 - c_ <_1 in (3.47) we get the following inequality:

-ej = lejl- lej- _jl-<-(1- _)(cj- si)+ O(ll_pll2)_<Ici- sjl + O(ll_plle).
Multiplying both sides by p_ gives

P,l_j- _Jl < p,lcj - sjl + p,O(ll_pll2). (3.48)

For a given iteration k < K- 1 and constraint j we have one of the following two situations:

• For some iteration 1, I < l <_ k, p_(ct)j >_ -I(At)jl. if we_dd (3.48) for iterations
r =/,..., k - 1, and use (3.44), we get

k-1 k-1

ml(ck)j - (sk)jl < ml(ct)j - (st)ii + p_O(_-'_ II_p_l}z) _<I(,X_bl+ p,O(_--_II_p_ll=).
r=l r=l

The boundedness of p,l(c_)j - (s_)jl then follows from Lemmas 2.1 and 3.10.

• For ali iterations l, I < l < k we have p,(ct)j < -I(a_bl. Weadd (3.48) for r = I to
k - 1, to obtain

k-1

p,l(c_)j - (s_)jl < p,[(c,)j - (s,)j[ + p,O(__, II_p_ll_),
r=l

and now the desired result follows from Lemmas 3.9 and 3.10. II
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Boundedness of _k

Given the result of Lemma 3.10, ai1 that is left to establish the global convergence of the

algorithm is to show that the steplength is bounded away from zero. As a consequence of
the weak assumptions imposed on tile multiplier estimate #k, it is not possible to show that

such a bound exists. However, it can be proved that the bound does exist if there is no
subsequence along which I]Pkll_ 0. This is enough to prove convergence.

We first derive a bound on the norm of the second derivative along the linesearch.

Lemma 3.12. For 0 < 0 < (_k, there exists a positive constant N such that

¢_(0) _<N.

Proof. We again drop the subscript k. From (3.1),

V2LA = ( V2F- _j(/_j - #(cj - sj))V2cj + pATA -AT -pAT )-pA-AI0 pie .

From the definition of ¢, given in (2.2), we get

¢"(0) = pTWp + __jp(cj(O)- sj(O))pTV2cj(O)p

+ p(m(O)p - q)r(m(O)p - q) - 2_T(m(O)p - q), (3.49)

where the argument 0 denotes quantities evaluated at x + 0p, except for s(0) = .s + 0q and

w = V F(0)- Ej(. j + 0 j)V2ej(0).

We now derive bounds on the terms on the right-hand side of (3.49). For the tirst term
we can write

pTWp <_NIIIp2II <_Ml, (3.50)

for some constant M_, using assumption A3, the boundedness of II_ll and II_ll (condition

MC1 and Lemma 2.1), and the boundedness of Ilpll(Lemma 3.5).

Expanding cj in a Taylor series about x gives

102pTV2ecj(O) = cj(x) + Oaj(x)Tp + 7 j(Oj)p,

where 0 < Oj < 0. Using (2.10) and multiplying both sides by p gives

p(cj(O) -(si(O)) = p(1 - O)(cj(x) - sj) + P½02PrV_cj(Oj)p.

Lemma 3.11 implies that plcj(x)- sjl is bounded, Lemma 3.10 implies that pllOpll2 is

bounded for 0 _< c_, and assumption A3 implies that IIV2cj(Oj)ll is also bounded. Conse-
quently,

p I(cj(O)- si(0)) I _< N,

where N is a constant. This result and Lemma 3.5 imply the second term in (3.49) is also

bounded, that is,

Ip( j(o)- sj(o))p 'v2j(O)p!<_N2IIpll<,gs,
i
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where N2 and M2 are constants.

Consider now pllA(O)p- qll2, the third term on the right-hand side of (3.49). Using
Taylor series, we have

aj(x + Op)Tp = aTp + OpTV2cj(Oj)p, (3.52)

where 0 < 0j < 0. From (2.10) and Lemmas 3.10 and 3.11, we obtain

pl[A(O)p-qll2<_M3, (3.53)

where M3 is a constant.

From (3.52), (2.10), assumption A3 and the boundedness of II_ll (Lemma 2.1), the final
term on the right-hand side of (3.49) is also bounded,

-2_T(m(O)p-q) = -2_T(mp- q) + _ _jOpTV2cj(Oj)p <_2_T(c-- s) + N4[Ipll2 <_M4, (3.54)
J

where N4 and M4 are constants.

The desired bound follows from (3.49), (3.50), (3.51), (3.53) and (3.54). 1

Lemma3.1a. Fora_y_> O,if llPkll> _thereexistsa ,at,e _(_)s_chthat"k > C_(_)> O,
where _k is the steplength computed by the algorithm.

Proof. We drop the subscript k corresponding to the iteration number. We start by

proving that & (as defined in (2.14) and (2.15))is bounded away from zero if IlPll > e. If
condition (2.14) is satisfied at a given iteration, then 5 = 1, trivially bounded away from
zero. We assume therefore that 5 is chosen to satisfy (2.15).

In the proof of Lemma 3.1 it was shown that the linesearch procedure was well defined,

and in particular, that there exists a value c_e (0, 1] satisfying (2.15) and such that condition
(2.155) is not satisfied for any value of c_E [0,6); see (3.5), (3.7) and (3.6).

From the Taylor series expansion of ¢' at 5 we have

¢'(_) = ¢'(0) + 5¢"(0),

where 0 < 0 < 6. Therefore, using (3.5) and noting that r/< 1 and ¢'(0) < 0, we obtain

__¢'(_) - 4(o) I¢'(0)1
¢,,(0) : (1- _)¢,,(0) (3.55)

(Since & > 0, 0 must be such that ¢"(0) > 0.)

If [IP[ -> e, then from (3.3) we have that I¢'(0)[ _> ½13_vHe2, and from Lemma 3.12 we
also have ¢"(0) _<N, implying

- 2N

If condition (2.16) is satisfied for 6, then the previous bound holds for c_. Otherwise, for

some constraint j we must have hj(6_) =_cj(x + c_p)+/3c < 0 (using the notation introduced

in Lemma 3.1). If hi(0) > ½/3_> 0, from the continuity of h there exists a value ek < 5 such
that hi(5) = 0 and hi(a) >_0 for all c_E [0, D]. From the mean-value theorem

6 = nj(5)- nj(0) = nj(0)
h_(0) Ih_(0)l'
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for some 0 e [0, &]. But as Ih_(0)l= laj(x + Op)Tpl< K for some It" > 0 (from assumption
Aa and the boundedness of Ilpll,Lemma 3.5), we have

> --._ (3.56)- 2K

If hi(O) < ½_c, we must have from (2.4b)

l aTp >_ 1hi(O)= -cj = _- hi(O).>__.

From hi(O) > 0 and hi(5) < 0 there must exist a value _ < 5 such that h}(d) < (), implying

the existence of & < & such that h}(5) = 0 and h}(c_) _>0 for all (z e [0,&] (also, hj((_) >_0
for all (r (: [0, &]). From the mean-value theorem,

= h_(_)- h_'(o)_ h_(o)
h_(o) Ih_(o)l'

for some 0 e [0, _]. But h}(0) > ½_, and [hy(O)l = IpTV2cj(x + Op)pl <_h" for some/t" > 0,
from assumption A3 and the boundedness of IIPlI, Lemma 3.5, implying agMn

> _. (3.57)

The procedure to construct _ will ensure that _ > £5 and so the result l)resented in
the Lemma will hold. II

We can now prove the global convergence theorem for the algorithm.

Theorem 3.1. The sequence {x/c} generated by the algorithm converges to a unique Kh'T

point for NP.

Proof.

lt follows from Lemma 3.8 that to prove Ilxk - x*ll --, 0, it is sufficient to show

liralip/cii-_0. (:_,,_,s)
/c---_ ox)

If (3.58) is true then there exists It" such that II_/c- _*11< _*/2andIlPkll< <*foraUk > ],',
where 2e* is the minimum distance between two KKT points, lt. follows that x* is unique
for k > It" (the sequen(:e converges to the unique KKT point nearest to xi,.), otherwise it

implies that for some k > K that either IIx/c - x*ll > (*/2 or lP/cII> e*. (_onscquently, to

prove the theorem it is sufficient to show (3.58) is true.
If liP/cII= 0 for any k, the algorithm terminates and the theorem is true. ilence we

assume that [IP/c{I# 0 for any k. If p/c _ 0, there must exist a subsequence {pr}, and a
positive constant (, such that [IPt[]> e for ali I. In this case, from i_emrna 3.13 there will
exist a uniform lower bound on at, t_l > (_ > 0, but then

ptll_,tptll>_c_(pt_ _,

contradicting the fact that p/cll(_/cp/c[Iis bounded (Lemma 3.10).
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In the bounded case, we know that there exists a value/5 and an iteration index [( such

that p = fi for all k _>/(. Again, the proof is by contradiction. Consider only indices l such
that 1 >/l'. Every such iteration after/( must yield a strict decrease in the merit function
because the termination condition for the linesearch (2.15a), together with the boundedness

of the steplength (from Lemma 3.13 and IlPlll > e) and (3.3)imply

dPl(Otl) - 0)1(0) _< O'Oq_b_(0) _ -½nllPtll < 0.

The adjustment of the slack variables s in (2.7) can only lead to a further reduction in the
merit function, as LA is quadratic in s and the minimizer with respect to sj is given by

cj - )_j/p. From the fact that the penalty parameter is not modified, for iterations from the
subsequence we have

Therefore, since the merit function with p = _ decreases by at least a fixed quantity at

every step in the subsequence, it must be unbounded below, contradicting (3.18). It follows

that (3.58) must hold. II

Having established the global convergence of the algorithm, the next step is to show that
the multiplier estimate )_k -_ _*. In order to prove this result, we need to strengthen our
conditions on the multiplier estimate #k (if #k does not converge then )_k will not converge

either). The additional condition is

X$ /_$MC3. ]#k - ,_*]= O(I]xk - ), where denotes any multiplier vector associated wi_h
a KKT point closest to xk.

This condition requires that 3, in condition MC1 be chosen so that

3. >_IIA*II. (3.59)

Estimates satisfying MC1, MC2 and MC3 may be obtained by computing a multiplier
for the "active" constraints (say, least-squares estimates of least length), and expanding to

the full multiplier space by augmenting this vector with zeros corresponding to the inactive
constraints. If such an estimate does not satisfy MC1, then a suitable estimate may be

determined by appropriate scaling. The multipliers at the stationary point of the QP also

satisfy the three conditions. Note that if x* is not unique then from Lemma 3.6, Ilxk-x*ll > e
for some e > 0, and MC3 holds for any vector #k that is bounded.

We first show that under the stronger conditions on #/¢ the steplength c_k is uniformly

bounded away from zero.

Lemma 3.14. Under MC3 and all earlier assumptions and conditions, r-_k>_i-_> O.

Proof. We again drop the subscript k. We first tighten the bound on ¢"(0) given in
Lemma 3.12. From (3.50) and (3.51), we have that the first two terms on the right-hand

side of (3.49)are bounded by a multiple of Ilpll2. From (3.52), (2.10), (3.54) and Lemmas 3.10
and 3.11 we may obtain the following bound on the remaining terms on the right-hand side

of (3.49)

p(A(O)p-q)T(A(O)p-q)- 2_T(A(O)p-q) <_p(c- ,s)T(c - s)+ 2_T(c - s)+ MIIPll2, (3._0)
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for some constant M.

Observe that from (3.2) and (2.4b),

- -¢'(0) + pT(g _ AT#) _ ,Ts. (3.61)

Using Taylor expansions and Lemma 3.8 it follows that

pZig _ AT#) = pT(g* _ A.T#) + O(]lpl]2) = (A* - p)Tm*p + O(llpl12).

From this result and MC3 there exists a coristant/_/such that

pr(g_ AT),)< %111p112 (3.6e)

From #k _ A*,strict complementarity at a KKT point (assumption A6), and the fact

that the correct active set is identified for IlPll small enough (Lemma 3.7), we eventually
have Iz -> 0 and #Ts > O. Consequently, it follows from (3.49), (3.50), (3.51), (3.60), (3.61)
and (3.62) that

¢_(0) < -¢_.(0)+ Nllpkll 2

for some constant N > 0. This result and (3.3) ca.n be used with (3.55) to imply that ther(,
exists a value 5 satisfying (2.15) such that

,; > (1- ,1)(Z._..+ 2N)[ip211= (1- _)(Z,.. + 2N) > 0,
The desired result then follows from an argument identical to that given in the tinal part
of Lemma 3.13. I

This lemma also implies that the effort needed to compute the value for the steplengt},

is uniformly bounded in tile algorithm. We now establish the convergence or the ntultipli(,r
estimate.

Theorem 3.2. Under MC3 and ali other assumptions and conditions,

lira Ak : A*.
k----*oo

Proof. From (2.27),
k

Ak+, : _ _jkj_j, (3.(i3)
j=o

where
k

7kk : (_, 7tk : _-t_ H (1 -,_:), l < k, (3.64)
r:/+l

, .*

with c_[_= 1 and _I = (tr, l > 1. (This convention is use(t l)eca,use of the special it,itial

condition that Ao ='#0.) From Lemma 3.ld and (3.64), we observe that

0 < (_ < _r_l< 1 for ali l, (3.(i5a)
k

ETlk : 1, (3.65b)
l=0

3'_,__<(1 - (:_)k-t, l < k. (3.65(,)
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From condition MC3 we have

#k = A* + Mk_ktk, (3.66)

with [Mk[ _< M, &k = [[xk - x*[[ and []tk[] = 1. From Theorem 3.1, for any e > 0 we can
choose a value K1 so that, for k >_ K1,

IMk kl< ½E. (3.67)

Given any ¢ > 0, we can also define an iteration index K2 with the following property:

e (3.68)
(1 - _)k _< 2(k + 1)(1 + 2_,)

for k ;2_K2 + 1. Let K = max(K_, K2). Then, from (3.63)and (3.66), we have for k >_2K,

K k

Ak+, : _-_7,k#, + _ 7,k(A* + M,_,t,).
I=0 I=K+I

Hence it follows from (3.65b) that

K k

Ak+l- A* = ZTlk(#l- A*)+ Z 71kMl_ltt.
I=0 l=K+l

From the bounds on II_tll (condition MC1), Ilttll, and (3.59), we obtain

K k

2/_, _ 7lk + _ 7tklMt_tl. (3.69)
l=0 /=K+I

Since we assume k >_2K, it follows from (3.65a) and (3.65c)that

K K K

_[_71k_<_(I- _)k-tN _-_(I- a)2g-t_<(K+ 1)(1-- 5)K.
1=0 i=0 1=0

Using (3.68), we thus obtain the following bound for the first term on the right-hand side
of (3.69):

K

2_. _ 71k < ½e. (3.70)
1=0

To bound the second term in (3.69), we use (3.65b) and (3.67)"

k k

7zklMt&t[ _< ½e _z_ 7,k _<½e. (3.71)
I=K+I I=K+I

Combining (3.69)-(3.71), we obtain the following result: given any e > 0, we can find K
such that

IIAk-A*II_<¢ for k >_2K 4- 1,

which implies the desired result. 1
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4. Rate of convergence

In this Section we sh_dl show under additional assumptions on tile multiplier estinlate that

tile algorithm converges at a superlinear rate, independently of tile asyml)t()tic behavior ()f

the penalty parameter.
Since Pk _ 0, we may assume without loss of generality that pk has bee,li obta, ine(I a.s

the minimizer for the QP subproblem, and that the correct active set has been ittentified.

We again start by presenting an outline of the steps taken.

• Bounds on the rate of growth of tile penalty parameter introduced in l_emlnas 3.q,

3.1() and 3.11 are tightened.

- In l, emma 4.1 we prove that at ali iterations a.t which pk is increasetl (if we tla,w;

an infinite sequence of such iterations)

Pkllck o and r,kllPkll--, 0.

_- In Lemma. 4.2 and Lemma 4.3 these results are extended to ali iterations.

• in Lemma 4.4 ii; is shown that tl,Tsk - 0 for sufficiently large k.

• l_ernma 4.5 prtwes tile superlinear convergence of the sequence txk + pk - :r*}, under

certain assumptions on Hk.

• For k sufficiently large, (ek = 1.

-- I_ernlna 4.6 giw_s the rela,tionshil) between the descent in t)ne iteration ¢/_k(l) -

(,hk({))and the initial derivative in the linesearch ¢_k({)).

- Theorem 4.1 shows that _rk = 1 for ali suttit:iently I_u'ge k, implying sup_rlinear

co II ve rgen ce.

• Fin_dly, Thet)rem 4.2 shows th_tt under an _dditional condition on the inultilfliers, the

penalty parameter remains bounded.

The first two l,emmas introduce refinements on tile results presente¢t in l,elnmas 3.9,

3.1(I and 3.11, and their proofs are based on the corresponding proofs for these l,enlma,s.

Lemma 4.1. if kt _ oc, where kt denotes au iteration at which the p_stalty para'mc(eV i._
increased, then

|i,. Pk,ll"k,- II= o and Ii,,, pk,llp ,ll2= 0.
l---,(x, l_c_

Proof. We drop tilt subscript kt in what follows.

Since p is the minimizer of QP, condition (2.5a) holds for a nonnegatiw_ wwtc)r r. lh'olli

(2.4b) and (2.5a) we have gTp + ½pTHp = _TrTc and using this result in the definition of
_, (2.13),

_ _ pT#11_ . 11 -½ Hp+ (2,_- #- 7r)T(c- s)- 71"Ts <_ 112A- #- 7r{lll, _'- .sll.

From (2.12) we have p < 2ft, and using Theor(,nl 3.2, MC3 and 7r_ _ A* we obtait_

aim p_tlJckt - ,s_tH< 2 lira [12A/ct- tta_ - 7ratlI -- 0. (,1.1)
1-_oo -- 1--*o_

Fina,lly, from (3.33) and (4.1) we have limt__._jp_,llp_,ll 2 = 0, completing the l)r()of, l
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Lemma 4.2. For general iterations k, limk_-.ooPkllPkll2 - 0.

Proof. Define I = kt and K = k1+1.

If p is bounded, the result follows from Theorem 3.1. If p is increased in an infinite
number of iterations, from (3.35) and Lemma 3.13 we only need to show that ¢I - ¢i,- --* 0.

From the boundedness of II_kll(Lemma 2.1), Lemma 4.1 and the fact that Pl < P,,-, we
have

Ptl)_,Z(cl- st)l <_2p,ll_,lllie,- s,II--+0,
PIIAKT(cK -- SK)I < 2p,,-IIA,_IIIIc_-- sKII-_ 0.

We also have from Lemma 4.1,

p,211e,-s, II_ --,0, p,211c_,.- sKII2_ 0.

These results and the definition of ¢, (2.2), imply

p,(¢, - CK) - pt(F, - Fh.) _ O. (4.2)

We now analyze the asymptotic behavior of the term pr(Ft - F_,.). We have

Fr- FK - (ct- cK)TTr,-[-O(max(llprllZ, llP,¢ll2)).

Using the same arguments as in the proof of Lemma 3.10, inequality (3.40) also holds in

this case, and from (3.14),

PrTrrZc,< Prllc,- s,lll12'_,-roll-<3/_P,llc,- s,ll. (4.3)

A second bound for this term can be obtained from rr > 0 and sr >_0, implying

pre,Tc, >_pratT(c,- s,) >_-Prll'rrllllcr-s,ll. (4.4)

Since I1_,11is bounded,it follows from applying Lemma 4.1 to (4.3) and (4.4) that

prriZcr _ O. (4.5)

From(2.9),the boundednessof I1_,11and Lemma4.1,

- p,_,<r_r< PrCr<-zTr,<-p,ll_,llll_,<- sr,-II_ 0. (4.6)

We can again use Lemma 4.1 to obtain

p,O(max(llprll2,IIP,,.l12))_ 0. (4.7)

From (3.39), (4.5), (4.6) and (4.7) we have that the sequence {pr(Fr- Fr,-)} is bounded
above by a sequence that converges to zero. It then follows from ¢i - ¢1," >__0 and (4.2) that

P_(¢x - CK) _ 0 and the desired result follows from (3.35) and Lemma 3.14. |

Lemma 4.3. For general iterations k, limk--,oo pkllck -- sail = O.
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Proof. If p is bounded the result follows from c* >_ 0, ,k* >_0, A*T* = 0, Theorems 3.1

and 3.2 and (2.8).
We assume therefore that p is increased an infinite number of times. Consider two (:ases'

• If constraint j is such that cj > 0, then )_j = 0 and from (2.8),

plcj - sjl - I min(pcj,Aj)l,

but from Theorem 3.2 and assumption A6, eventually )_j < pcj, implying

pl,-'j-_jl- I_jl-_ 0.

• For those j such that c* = 0, implying ,k*.> 0, consider iteration indices l,_rge enough'3 3

that the correct active set is identified (Lemma 3.7), implying a_i0+ cj -=-0. From the
Taylor series expansion for cj and the boundedness of the steplength,

cj(xk + otkpk) = cj(xk) + otk(ak)ypk + O(ll-kPkll2) - (1- ,),k)cj(xk) + O(llpkll2),

Recurring this relationship for k, I < k < h', we get

k-I k-I

: ,,,,(ck)j: #,II( +,,o(E IIp,ll ),
l=l I=I

but as 0 < _t _< 1 we must have

k-I

Pkl(,-'k)jl_<,,l(_,)jl+ p,O(_ IlPtll_). (4.X)
l=l

From tj* = 0, assumption A6 and (2.8), eventua.lly, ii, must hold that p_](c_):i -(._ ).i}=
p,lc(,)jI, and using Lemma,l.l, (4.8)and Lemma. 4.2,

,_l(,'k)jl_ 0.

From this result, detinition (2.8), assumption A6 and Theor(:m :1.2, for k large ear,ugh

Pkl(ck)j- (.sk)jl = I min(pk(ck)j,(Ak)j)l = I,k("k).il-"0.

This completes the proof, il

Lemma 4.4. bbv k large enough tz_'.sk= O.

.*
Proofi If constraint j is such that c; > 0, then for k large enough (c_.)i > _ > (}, a.nd

1
(ak)i_'pk + (ck).i _ 7_ > 0. lt thereh)re follows from MC2 that (#k).i = 0.

,
If j is such that tj'* = 0, then from assumption A6, Aj > 0. Als(), fr(mi l,(,lilnla, ,'1.',_,

Pk((ck)j -- (,.%).i) = min(pk(ck)j, (Ak)j) ---*0, and for ia,rge enough k TIm()roni 3.2 will il_ll)ly
pk(ck)j <_(,_k).i; these tw()results and (lelinil,ion (2.7)imply

(,,_)j= ,,,,_x(0,(,,_), (_)j) = 0,Pk
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completing the result. |

To prove that the algorithm converges superlinearly it is necessary to assume that Hk

converges to an approximation of V_zL(x*,,k* ) in some sense, where L(x,)_) denotes the

Lagrangian function for problem NP.
Define Wk as

Wk = V2_L(xk,)_k) = V2zF(xk)- _()_k)jV2xcj(xk). (4.9)
J

We impose the following additional condition on Hk:

HC3. Following Boggs, To[le and Wang [BTW82], we assume

IIzT(Hk- Wk)pkll = o(llPkll),

where Zk is a basis for the null space of Ak, the Jacobian of xk of those constraints

active at x*, that is bounded in norm and has its smallest singular value bounded
away from 0.

The proof proceeds by first showing that the sequence {xk + pk - x*} converges super-

linearly, and then proving that a steplength of one is eventually attained.
The following lemma corresponds to Theorem 3.1 in [BTW82].

Lemma 4.5. Under assumptions Al-A7, and conditions MC1-MC3, HC1-HC3,

IIk + pk-  *11-o(llmk- (4,10)

The results presented on bounds for the growth rate of the penalty parameter allow us
to obtain an asymptotic expansion for tile quantities involved in the linesearch termination

criterion. We want to prove that condition (2.14) is satisfied for k sufficiently large, lt

is shown in the following lemma that the satisfaction of (2.14) is directly related to the

asymptotic properties of Tk =-pT(gk - AT#k)+ PkZ_4ZkPk.

Lemma 4.6. The following relationship holds:

¢k(1)- Ck(0) -- ½¢_(0) + ½Tk + o(I pkll2).

Proof. In the proof we drop the subscript k, and we denote quantities associated with
xk + pk by a tilde, that is,/_ - F(xk + Pl,) while F = F(zk).

From the definition of the merit function (2.2) and (2.1) we have

¢(1)-¢(0) = /_--F--#T(_-s-q)+AT(c--s)

P _ P s)T(c s). (4.11)+ -_( --s--q)T(e--s--q)---_(c-- --

From the Taylor series expansion of c around x and (2.10) we have

c.i - sj qj _j - cj -- aTp 1 T 2 12- = = v + o(llvl ),
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and using this result with the Taylor expansions for c and F in (4.11) we obtain

1 T 2
¢(1)- ¢(0) = gTp+ 7P V Fp- ½Ej#jpTV2cjp+ )_T(c-- s)

_ ( _p _(_p _)r(_ _)+ o(flpff,_). (4.12)+ 8Ej,pTV2cjp, 2- - _

From (2.6), condition MC3 and Theorem 3.2 we have

Also, from Lemma 4.2 and assumption A3 we have ppT_72cjp = o(1). Replacing these
results in (4.12) and reordering the terms we obtain

1 _Tr'72 pTr2¢(1)-¢(0) = gTp+Tp v FP-½Ej,_ j cjp+½(2,_-#)r(c-s)

nt_ _ _1.T(C _ _S) - _p (c- s)T(c- s) + o(llpll2).

Using (4.9) and (3.2) to simplify this expression,

¢(1)-¢(0) = ½¢'(0) + ½(gTp+pTWp+ #T(c-- .s)) + o([Ip 2). (4.1'1)

Finally, from condition MC2 we have #Tc = -#TAp, and from Lemma 4.4 we know that

eventually #Ts = 0, implying in particular that #Ta = o([[pll2), and replacing these bounds

in (4.14) we have

¢(1)- ¢(0) = 1¢'(0) + ½(pTWp+ pT(g_ AT#)) + o(llp 2),

completing the result. II

The main result of this section is given in the next theorem, lt is shown that, ii"condition
MC3 is replaced by a stronger condition, then after a finite number of iterations a steplength

of one is taken for all iterations thereafter, implying that the algorithm achieves superlinear
convergence. The new condition is

MCa'. II_k- _*11-o(llxk- x*ll).

lt is possible to prove superlinear convergence without the need to strengthen the con-

ditions on the multipliers, lt is shown in [Pr89] that there exists a constant M such that ii'

pk > M, condition MC3 is sufficient.

Theorem 4.1. If MC3' and all other assumptions and conditions hold then eventually a
unit step is always taken and the algorithm converges svperlinearly.

Proof. As in Powell and Yuan [PY86], observe that the continuity of second derivativ(,s
gives the following relationships:

r(xk + pk) F(xk)+ ½(g(xk)+.q(xk + pk)) z I'_- pk+ o(llpkl)
(4.1,_))1

o( [IPk ll2 ) •c(xk + pk) = c(xk) + 7(A(xk) + A(xk + Pk))Pk +
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From the Taylor series expansions we have

F(zk + Pk) = F(xk) :-g(xk)Tpk + ½pkTV2F(xk)pk + o(llpki!2) (4.16)
cj(xk + Pk) = q(zk) + a.i(xk)Tpk + ½pkT_V2cj(xk)pk + o(llpktl2),

and since (4.10)and Lemma 3.8 imply g(xk +pk ) = g* +o([Ipkll), aj(',i_ +pk ) = aj +o([Ipkll),
we get from (4.15) and (4.16) that (we drop the subscript k)

pTV2Fp -- (9" - 9)Tp + o(llp[I 2) (4.17a)

pTV2cjp= (a*j- ai)rp + o([Ipl12). (4.17b)

('ondition MC3, Theorem 3.2 and (4.I3) give _j ,XjprV2cjp = y'_j #jpTV2cjp + o(ilpll2),
and if we apply this bound to the result of adding (4.17a) to (4.17b) multiphed by )U, we
}1ave

pTH/p = pT(9* . A*Tu)_ pT(g_ AT#)+ o(llpll2). (4.18)

('ondition MC3'. (l.1) and Lemma 3.8 imply

T * T = pT A, T ,k*p (.q -,4' tL) ( -/z) - o(llpil2),

all(i from (4. i 8).

T= prWp + pT(g _ ,47)z) = pT(g* _ A,T#)+ o(llpll2)_ o(llpl12). (4.19)

From Lemma 4.6 and (4.19) we get

0(1) - _(0) = ,-}_'(0)+ o(llpl12).

Since o'(0) < 0, the above relationship and Theorem 3.1 imply that condition (2.14) is

ow_n_ually satistied for k sufficiently large.

Regarding condilion (2.16), we can use Taylor series expansions for cj to write

cT(xk + Pk) = cj(xk) + aj(x_: + Ojpk)Tpk (,:1.20)

f()r s()tn,' 0_ _. [0. 1], and

T 2
aj(xk + Ojp_)Tpk = a.l(xk)'l"pk + pkV cj(xk + 07ph)pk, (,1.21)

l'sing Theorem 3.1 and the boundedness of IlV2c-j(xk + (_jP_:)II (from Assumption Aa
alt,t ':,eretria 3.,1) irt (4.21). for k large enough

aj(xk + Ojpk)Vpk >_ aj(xk)1'pk - ½/3,.,

a,l(t fronl (2.,11_),J

a._(x_: + 07p_r)'l'pk > a.l(xk)Tpk -- _l:_c >_ -cj(xk) - ½/Jc.

1 t:Replacing this bound in (4.20), we obtain for all k large enough c(xk + Pk) > -7_L :, and
condili(m (2.16) will als() be satisfied, giving xk+l = xk _ p_ The required result then

fi)llows from Lemma 4.5. II
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Boundedness of the penalty parameter

The last result in this section shows that, if condition MC3' is replaced by a slightly

stronger condition, the penalty parameter needs to be modified in at most a finite number of

iterations (and consequeotly it remains bounded). The criterion presented will be satisfied,
for example, by the least-squares multipliers computed at xk + pk.

Theorem 4.2. If the multiplier estimates #k in the algorithm satisfy

II k -  *11= O(llzk+ pk- x*ll), (4.22)

and ali other assumptions and conditions hold then there exists a constant M such that
Pk <_ M for all k.

Proof. We may assume k large enough so that ak 1. From (2.5), (2.4b) and T > 0.-- 7rk '_k _

we }laVe

T prHkpk = prAkrck = --(ck skgkPk + --cT_k _ -- )TTrk, (4 23)

where 7rk denotes the QP multipliers at iteration k. From (3.2), (4.23) and the fact that a

unit steplength is accepted, it fellows that

cba(O)=< -p_'Hkpk + 112¢tk-I -- #k -- 7r._llllck--,skll- Pkllck -,sk[I 2- (4.24)

From (4.'22), He2, Lernma 3.8 and ilTrk- $*ll = o(llpkil) we must have

i T
112#k-1 - Izk - 7rkll< Ma Ilpkll< M2_/pkHkpk

for some positive constants Ml, M_. lt then follows using a 2 4- b2 > 2ab thal

, T sk[I112#k-a - #k - 7rkllllck-skll < M2¢pTIIkpklIck --.skll < 7PkHkPk + 7

implying from (4.24) that

1 T 1 2 2
0_(0) _<--TpkHkpk + (7M2 - Pk)llck -,ski[

From this inequality it tbllows that if pk _> ½M_, condition (2.11) will be satisfied, atJd
the penalty parameter will not be increased. Given that we are using the rule (2.12) for
updating Pk, it must hold that pk < M_. II

5. Other Merit Functions

Several merit functions have been proposed and analyzed in the literature (a review can

be found in Powell [Po87]). The question arises if the convergence results usi,g ,arlv
termination in the solution of the QP subproblem depend on our specific merit function, or
if they are fairly independent of this choice. We shall show in this section that tl_o choice
of merit function is not critical. What we present is how to adapt our SQP algorithn_ t_,
the use of other merit functions rather than examine other methods explicitly to see if tl_e

- particular QP subproblem posed and tii_, manner the searci_ is performed can be adat,i,',l
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to the use of an incomplete solution. For example, we still perform a search in the x and A
spaces. Slack variables do not appear in the merit functions we shall consider, consequently
the search in the space of the slack variables is no longer required.

We have selected as examples the study of two particular merit functions. The first one

corresponds to a class of merit functions that includes among others the el merit function
analyzed in Ha,, [Han76], Byrd and Nocedal [BN88] and Burke and ltan [BH89]. This
general merit function takes the form"

¢(x,;_) = F(x) + ATc-(x) + pllc-(z)llp, (.5.1)

where an fp norm (1 < p _< oc)is used, and c'_(x) - max(0,-ci(x)). The second merit
function we consider is

= F(x) + + ½PllC-(x)ll . (,5.2)

This merit function has been studied among others by Powell and Yuan [PY86] (applied
to the equality-constrained problems only) and Schittkowski [SchS1]. Unlike either of these

algorithms, where the multiplier estimate A was treated as a function of the iterate A(x),
we do not explicitly define the form of tile multiplier estimates although the ones used in
both methods satisfy, the criteria MC1, MC2 and MC3. Indeed the one us.d'o in [PY86]
also satisfies MC3 _.

We still assume Al-AT hoht for the problem, llowever, when the merit function (,5.1)

is used, the multiplier estimate #k is only reqaired to satisfy MC1. This condition is trivial
to satisfy. For example, we may choose A0 = 0 and Irk = 0 making the search in th(,

xnultil)lier space void. Such a choice reduces (5.1) to the well-known fl merit function and
our algorilhm becomes very similar to that analyzed in [fian76]. When (5.2) is used. we
assume conditions MC1 and MC2 hoht. We have also assumed in the proofs that A(__>0

and pk > 0. We omit the proofs that the iterates lie on acompact set. For the first nlerit

function (5.1)this proof is relatively straightforward, since it will 1)e shown that the penalty
parameter is bounded. The proof for the second merit function (5.2)is very similar t() that
for the Augmented Lagrangian merit function.

The (,riteria (2.15) for the choice of steplength :_k assume the merit funt:tion has c()nlila-

uous tirst derivatives. This prol)erty does not necessarily hold for tile merit t'unctions _Ln(l(,r
('onsiderati(m. Theretbre wt use the following criteria for determining a value :ra..

Deti ne
7"Ak - gkl k+ (& - Ak)'lc-(xk)- Pkllc-(zk)ll. (5.3

W(' start, t,y selecting a value dk satisfying

¢k(6k) = O(x_:4- 6kpk,,\k + 6k_k) < Ok(O) + q6kAk, (5..1

and either

6k > 7t >0 (5.5

or

6k > 7_6k and Ok(6k) > Ck(0) + a6kAk, (5.6)

where {1< 3'1< 7,, < 1, 0 < rl < rr < l and Ok > 0. For a discussion of these criteria and
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In addition to these conditions, we also also want to limit the size of the infeasibilities. If

5k satisfies condition (2.16), then we let ak = 5_. Otherwise, we compute c_k by performing
a backtracking linesearch from &k until conditions (5.4) and (2.16) are both satisfied.

Our preference for the criteria given in Section 2 is based on our belief that irl practi(:e
they lead to a better choice of c_k. In the definition of our algorithm we could haw; used
other steplength criteria without impacting the convergence properties.

Tile following basic relationships will be used to establish the convergence results,

_-/(x+ ,_p)< I_j(_+ o,p)- _j(x)- o+aT_pl- mir,(O, cj(x) + <ra_'p) (5.7a)

- min(0, ci(x) + otaTjp) < (1 - a)c-f(x) (5.7b)

-JAp <_-II_-(_)llt (5.7c)
-flAp <_ -c-(x). (5.7(1)

In these inequalities A = Vc(x). Also, f_ is a diagonal matrix such that -flAp is an ole,nerlt
of the subdifferential of c-(x + ap) at a = 0. The diagonal entries of ft take values in [(1,1],

are zero whenever ci(x ) > 0 and take the value one whenever cj(x) < 0. Finally, ,fl'Ap
represents an element of 0_(0), the subdifferential of _(c_) -= IIc-(x + ,_p)lltat 0. The

elements ot'w are given by

%=(_)ij(c_) t-',

and have the property that wTc(x)= -IIc-(x)llt.
Consider now the case when ¢ has been defined from (5.1). From our assumt)ti(),l thal,

,_a >_0 and (2.4t)),

,_hk(Akpk + ck) >_0

for all k. lt follows from this inequality and the relationships given in (5.7) that

= _:7"- - ATk_kAkPk- kPk _¢_(0) g_pk+,k_ (_k) pk_'A < _k.

We select Pk such that
1 T

Ak (_. -TpkHkpk. (5.S)

This rule is analogous to the ones used in Byrd and Nocedai [BN88], and Burke and llan
[Btt89].

The first step is to establish that such a value ofp exists. From (3.13)and (5.3) we haw,

mk 5 --(1 AC t_ 1 T)PkHkPk+ _llc_ll- (_k- ak)r_ - pll('_.II. (5._))

If we now use (2.6), property MC1 and l_emma 2.1 tc) bound the multipli(,r term

(_k- ,_k)rc5_ Iltzk- 2,_kllll_Ell_<3/_,,11_.11,

we obtain in (5.9)

A_S -(½+ lh)p_'H_p_+(lh + :_I_,,-p)llc_-ll.

Defining pu = /_12-F 3ft,, for any Va]lie p __ Du condition (5.8) is satisfied for a.liy k. 'l'his
_, 1 1 • •

-- rPSllll, it.lbl) bllUWb _]1 ' ,I ...... I .... .1" ...;11 I ........ I,,,I II: *1,,, ,_1 ,,ritl,,,,al, I, hilt; Vcl.lllt_ _tIt p VVIII r_lll_lll ,,uu,,_,.., .......... g ...........
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Theorem 5.1. The algorithm modified to use the merit function (5.1) converges globally.

Proof. Given the bound in Lemma 3.8, it sumcesto showthat Ilpkll_ o.

As p cannot grow without bound, any strategy for increasing p by a finite quantity
whenever it is required to increase p implies that there exists an iteration value K such that

Pk = P_,-for ali k > K. We consider only iterations of this form. For k > It', from (5.4),

(5.8) and condition MC2,

¢(_k)- ¢(_k-_)_<_k_k _<--@,_,_kllPkll2.

From tile boundedness of ¢ (assumption A3), it follows that

_,,llPkll2_ 0. (5.10)

If Ilpkll -_ 0, convergence follows from Lemma 3.8. Otherwise, if for a subse(luence

Pk[ > (, from (5.10) we must have _rk_ 0 along the subsequence,and from the termination
conditions for the linesearc:; (5.4), (5.5) and (5.6), &k _ 0, as the step required to sa,tisfy

condition (2.16) is uniformly bounded away from zero, (see (3.56) and (3.57)). Finally, from

(5.6) we must also have 5k _ 0.
In the following relationships we drop the subscript k corresponding to the iteration

number, and we denote by a tilde the value of functions evaluated a,t x + t_p (i.e.' _ -

c(x + ap)).
From the definition of the merit function (5.1),

¢(a) - ¢(0) = a_rp 4-AT(_.- - c-) + _ (T_- __aPlt_-II

+ (_- F-agTp)+ P(II_-II-(1- a)ll_-II).

For the last term, from (5.7a,) and (5.7b), it follows that

la-II- (1 - a)Ic-I _<I1_-c - _Apl I,

_411 d

¢(/._) - ¢(0) < &gTp+ AT(a-_c-).4_6_T_-- apllc-II

+ (_ _ _ _ <qTp)+ Pl_- c - _AplI,

If we use again (5.7a) and (5.7b) on the terms associated with tlm multiplier estinlates

(given that by assumption A + 6_ > 0), and the Taylor series expansions for F and c, we
obtain

¢(6)-¢(:0) _<6gTp+ E.i(Aj +a_j)laj-cj-aaTpl + (1 - *))A7_'-

-- AT_- + a(1- r_)_Tc- - '_Pllc-II+ O(llaPll_).

After simplifying this expression we have

,_-d,(o_ < _;(.r..__ _)r,.-_,,!!,.-!!_ *'_!!_-! !!_!1* o_!!",'!!_- _.1 !/
_
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Replacing this bound in (5.6) implies

0 < (1- _)_A+ _llc-I111511+ O(llaPll2). (5.12)

Since from (5.8) and condition HC2, A < -_svnllpll2,and we have assumed that Ilpll> ',
it follows by taking limits along the subsequence that

0 <_-(1 - a)_lvH e2.

However, this is not possible, implying [JPkl[_ 0 for the whole sequence. |

Consider now the second merit function (5.2). The subgradient along the se&rch direc-

tion at (xk, ,_k) is given by

dp_(O)= gTpk + 5Tc-(zk) -- )_TakAkPk -- PkC-(zk)rAkpk < Ak,

where

Ak -- gTpk + (Sk - _k)Tc-(Xk)- Pkllc-(xk)ll2

Note that ,_k >_0 implies

(f/kAk + pkc'_)T(Akpk + ck) >_O.

In this case it is not immediately evident that Pk remains bounded. The convergence

proof we give is similar to the one introduced in Section 3. The definition of p given in that
section will be preserved, except c - s is replaced by c-.

Theorem 5.2. The algorithm modified to use the merit function (.5.2) converges globally.

Proof. Again, from Lemma 3.8 it is enough to show that IlPkll--, o.
First assume that p is bounded. The argument used is similar to the one in Theorem 5.1.

From (5.4), (5.8), condition MC2 and the boundedness of _b,(5.10) must hold also for this
case.

If IlPkll _ 0, convergence follows from Lemma 3.8. Otherwise, if for a subsequence

Ilpkll> E,from(5.10)wemust have ak _ 0, and from condition (5.6) and the boundedness
of the step to satisfy (2.16), &k _ 0.

From (5.2), (5.7a) and (5.7b), we also have (we again drop the index k in the following
relationships, and use a tilde to indicate values at x + 5p)

q_(5_)- q_(O)<_ &gTp + AT(_- _ c-) + &sT_- - p(_ - ½_2)11c-112

+ pilZ--c - _APll (½ll_ - c - c_mpll + II(c+ _ap)-II)

+ (,_- F- agVp),

and again using (5.7a) and (5.7b) on the terms associated with the multiplier estimates, we
obtain

_(6z) - qS(O) < &(gTp + (5 -- _) 7c- - pllc-II_)

+ a211c-II(11511+ _pllc-II)+ O(ll_pl12)• (5.13)
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Replacing this bound in (5.6) implies

< (1 - a)6A 4- 621]c-I] (I]_1]4- ½PI]C-II) 4. 0(I 5_p[]2). (5.14)0

Since from (5.8) and condition HC2, A _< -fls,_HI]P[ 2, and we have assumed that lp I >

and p is bounded, it follows by taking limits along the subsequence that

0 <_-(1 - a)fllvHE2.

However,thisisnotpossible,whichimplies]Pkll_ 0 forthewholesequence.
Assume now that Pk grows without bound. In this case we have that for all iterations

where the value of the penalty parameter is increased

Pk, ]c_ [J_< K1 and Pk,IPk, ] 2 _<K2.

The proof of this result is basically that of Lemma 3.9. From these bounds it is possible to
show that we must also have

pkllpkll2 <_l(

for all k (tile proof is similar to tile one for Lemma 3.10), implying Pk _ 0 and tlke conver-

gence of the algorithm. |

6. Numerical Results

In this section we present numerical results obtained from an implementation of our algo-
rithm. As a first step we have modified the code NPSOL. We have called the modified

routine INPSOL. Apart from the definition of the search direction ali other aspects of
INPSOL are identical to those of NPSOL. A detailed description of NPSOL is given in Gill

et al. [GMSW86a]. lt should be noted that NPSOL does not incorporate linear constraints
into the merit function. An initial point is obtained that is feasible with respect to the linear
(:onstraints and thereafter feasibility is retained (by incorporating the linear constraints in

the QP subproblem). On many practical problems the feasible region with respect to the
linear constraints is compact. On such problems this approach ensures assumption A2 is
satisfied, and assumption AI is implied by A3.

The purpose of the testing reported is to demonstrate that the efficiency and r()bustness

of the modified algorithm are comparable to those of NPSOL. Naturally, we can only test the
hypothesis on the domain of problems NPSOL is designed to solve, namely problems having
a small number of variables and constraints, although on these problems the opportunities

for improvement are limited, as we discuss later. What this implementation really tests
is whether the introduction of flexibility in the determination of the starch direction has

a significant cost. The parameter f_ was set to infinity to avoid differences with NPSOL
arising due entirely to the linesearch.

The search direction

The algorithm described in Section 2 allows for considerable flexibility of design. Wt d(,-
scribe here the specific choices made in our implementation. The search direction pk is

computed according to the following steps. (The subscript k is dropped from now on.)
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• An initial feasible point for each QP subproblem, po, is obtained following the same

procedure as NPSOL. No special effort was made to satisfy conditions (2.18) since on
the problems tested no failure was detected that could be attributed to the size of

lip011.

• The active-set method used in NPSOL was terminated at _5,the first stationary point.

The multipliers 7r at/5 are then computed. Define _ as _j = 7r.i[lajl].

• Let _M denote machine precision. If

Vj, _r5 >_--V_M, (6.1)

then i5 is taken as the search direction.

• If (6.1) does not hold a step that moves off a subset of tile active constraints is
computed. To identify the set of active constraints to be deleted, define 7rmi n ::

mini ffi, and introduce a vector e_ as

_" [ayll if _'j _<(]0-3_rmin, (6.2)
[ 0 otherwise.

• There is also a limit of 50 on the maximurn number of constraints to be deleted. If

(6.2) is satisfied by more than 50 active constraints, only the ones having the smallest
multipliers are deleted. For most problems this limit has no effect, since the total
number of constraints is less than 50.

• The direction d that moves off the selected constraints is obtained as the least-length

solution of the system Au = e_ ; that is, we define

d = Y(AY)-lel,

where Y denotes a basis for the range-space of AT.

• We obtain the search direction p from (2.21), as

P [ /5 otherwise,

where _ was defined as in (2.24) with 7M = 1010 and _stp = 100 (with this value the
step _5+ _d is accepted in nearly ali cases).

• Finally, the multiplier estimate used to define the linesearch is taken to be _ if p -- /3.

Otherwise, it is taken to be the least-squares estimate #L obtained from

AAT#L = Ag.
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Test problems

The two algorithms, NPSOL and INPSOL, have been compared by solving a collection of

114 problems from the literature. The problems have been obtained from the following
sources:

• Problem 1 is the example problem distributed with NPSOL; its description can be

found in [GMSW86a]. Problems 3 and 4 are slight reformulations of the same problem,

where the bounds -1 < x3 _<1 have been replaced by the constraint x32_< 1. Problem
3 uses the starting point

3' 3' 10' 3' 3' 3' 3' 3' 3 "

• Descriptions for problems 6 and 12-15 can be found in IMS82]. The version of problem
6 considered is the one corresponding to a value T = 10. Problems 12 and 13 start

from point (d) for Wright No. 4 as indicated in the reference, while problems 14 and
15 start from points (a) and (b) for Wright No. 9, respectively.

• A description of the SQUARE ROOT problems (17-20) and of EXP6 (9) can be found
in Fraley [Fra88].

• Problems 21-30 were obtained from Boggs and Tolle [BT84].

• All problems having names starting with "HS" are from Hock and Schittkowski [HS81].

• Problems 85-95 can be found in Dembo [Dem76].

All the above problems have been used in the past to test NPSOL. It should be noted
that the problems in this group are small; the average number of variables is 10, and the

average number of constraints is 6. Nevertheless, many of these problems are considered
hard to solve. Moreover, for some of these problems the assumptions made to establish

the convergence results fail to hold; for example, in some cases the Jacobian of the active
NP coastraints at z* is singular, or no feasible points exist for some QP subproblems. Irt

problem 42 no feasible point exists for NP.

The algorithms have also been tested on another group of problems.

• The structural optimization problems 99-114 are described in Ringertz [Rin88]. The
letters "I" and "E" in the problem name indicate if the formulation used included

explicitly the displacement variables ("E") or eliminated them in advance. Also, the

following number (10, 25, 36 or 63) denotes the number of bars in the truss considered.
Finally, whenever a number is included at the end of the name (006,040 or 060), tile

initial point taken has been modified to be xj = 6, 40 or 60 respectively.

These problems have been introduced due to the atypical behavior of quasi-Newton SQP
algorithms on them. For this group, the ratio of QP to nonlinear iterations is large when

compared to the size of the problem; on the first test set (problems 1-98) the average ratio
for NPSOL is 2 QP iterations per nonlinear iteration, while on problems 99-114 the average
ratio is 30.
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The normal behavior of NPSOL on the first set of test problems is to require a relatively

large number of QP iterations in the first few nonlinear iterations. Typically, the number

of QP iterations declines exponentially until near a KKT point, when only one iteration is

required. The STRUC problems depart from this "standard" behavior, in the sense that the

number of QP iterations declines much more gradually. (Although only one QP iteratioli

is required in the end, most nonlinear iterations require more.) This offers the possibility

of observing the reductions that can be achieved by using the early-termination criterion,

with limited distortion from the asymptotic behavior of NPSOL.

Finally, the problems in this second group are larger than the ones presented above;

the average number of variables is now 55, and the average number of (:onstraints is 100.

For ali the reasons mentioned, this set of problems provides a better environment in which

to test the ability of the proposed early-termination criterion to reduce the number of QP
iterations.

Computing environment

Version 4.02 of NPSOL was used in these comparisons. For this test set, ali parameters

used in the code have been fixed at their default values (see [GMSW86a]), No attempt was

made to improve the results by selecting a different set of parameters, lt would be difficult

to compare the relative effort to adjust input parameters for the two algorithms. The runs

were performed as batch jobs on a. DEC VAXstation II with 5 Mb main memory. The

operating system was VAX/VMS version 4.5, and the compiler used was VAX FOIITRAN

version 4.6 with default options.

Results

The results obtained from running both algorithms on the test set are presented in Table 2.

The parameters chosen to characterize the relative performance of both algorithms haw,

been: the number of outer (nonlinear) iterations for each problem; the number of calls to

the routine computing the values of the objective function, the constraint functions alld

their derivatives (function evaluations); the total number of inner (QP) iterations for the

problem (this includes the number of iterations necessary to compute a feasible point); and

the running (CPU) time needed to solve the problem. The results corresponding to both

algorithms are given as a single entry in the tables, with the figures separated by a "/"

symbol, in the form

NPSOL result/INPSOL result.

Given that most of the problems are not convex, the algorithms may converge to different

KKT points. Three such events occurred. Another possible outcome is failure---that is,

the algorithm terminates without finding a solution, because the iteration limit has been

exceeded, because no significant progress can be made at the current point with respe(:t to

the merit function, or because the objective or constraint functions need to be evaluated at

a point for which they are not defined in the code. Such failures are indicated by "---"

For the set of 114 problems, NPSOL was able to find a KKT point in 1(}7 cases, while

INPSOL was able to solve 105 problems. We should emphasize that only the default val_l(-)

of the input parameters were used. Undoubtedly adjustment of the input parameters on the
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problems that failed would have led to more successes. The figures illustrate the reliability
of INPSOL.

Table 1 presents a summary of the results for the four quantities monitored in Table 2.

The average values have been computed as the geometric means for the ratios of tile values
for NPSOL and for INPSOL; that is, averages larger than one indicate that the correspond-

ing value for NPSOL is larger than the value for INPSOL. Also, the averages exclude those
problems where one of the algorithms failed. Separate entries have been provided for prob-

lems 1-98 (the smaller problems), and for problems 99-114 (the structural optimization

problems).

TABLE 1

Average Behavior: NPSOL vs. INPSOL

Problems

All 1-98 99-114

Nonlinear iterations .988 .979 1.044

Function evaluations .994 .999 .963

QP iterations 1.190 1.112 1.884

CPU time 1.043 1.022 1.200

We now comment briefly on the implications of these results.

• The early-termination rule seems to behave very well regarding the numbers of non-
linear iterations and function evaluations; even if we are flow using a search direction

of "worse quality" than in NPSOL, the numbers are very close for both algorithms.

• The number of QP iterations is reduced by 20% for the complete set. When judging

this figure we must take into account that the problems are small, implying that
the number of QP iterations required per nonlinear iteration is also small. (In fact,

the average value for the test set is 5.6 QP iterations per nonlinear iteration.) TILe
opportunity for improvement is correspondingly limited. Moreover, both codes use tile
active set at the solution of the previous QP subproblem as a prediction for the correct

active set in the current subproblem, resulting in a small number of QP iterations close
to a KKT point. As a result, significant savings achieved by incomplete solution of

QP subproblems irl the early iterations are masked by a large number of subproblems
requiring only a few QP iterations. As an example, for problem 98 the largest number

of QP iterations needed in any nonlinear iteration is reduced from 57 for NPSOL to
15 for INPSOL. This effect is much less clear when we look at total numbers of QP

iterations (244 for NPSOL vs. 170 for INPSOL). Recall that it is necessary in any

implementation to limit the number of iterations taken to solve tile subproble_,l. This

large reduction in the maximum number of iterations is encouraging. Moreover, it
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indicates that INPSOL and NPSOL took quite different paths to obtain a solution
on many of the problems. In the light of this fact the similarity of l)erformance is

quite remarkable. Finally, tile early-termination rule still requires a feasible point,
and tile feasibility phase is the same as in NPSOL. When this phase acc()unts for

most of the total number of iterations, as with the STRU(_ prol)[ems, rh(: [mssibility
of improvement is further diminished.

Nonetheless, it should t)e noted that for problems 99-114 the iml)row'ment (_t)ta,ine(l
is signiticantly greater than 20%, as the mean ratio is now l.SS; in fa(:t_ when we Ic_<Jk

only at the larger problems, the relative performance of [NPS()I_ improves rrlarke<lly.
'['his offers the, promise that for even larger problems the results oi)l,_lined rlJ_y I_,

substantially better than the values sh<)w;i above.

• The CPU time required by INPS()I, is lower than til(: time for NI)SOl:, l)llt t)y a

factor that is much smaller than for the number of QP iterati<)ns. This is due ll()l.
only to the fact that function evaluations ('an be expensiv(: when (:()ml)ared t() the

elfort to solw'_ each QI ) subprol)lem, t)ut als<) to some details in the i,11l)lelnelltati_n
that have t)eeh chosen to affect the number of QI ) iterations, even at the ('xl)(,nse

of running time. For example, the multiplier estimate used for the linese_lvch (tb_,
least-squares multiplier) is expensive to compute when many ('onstraillts are (lel_,te(I

in til(: lasl, step, as tile fa(:torization for the Jacol)ian of the active ('()lLsl, railll,s lZlllSt
I)e Ul)tlate<l. There are still options to i)e exl)l<)r('(t that Inight r(,(lu<,e l,lle (_l'll l,iIll_,

for the m(_diiied aig()rithm.
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Numerical Results

Nonlinear Function QP CPU
No. Problem name iterations evaluations iterations time (s)

1 NPSOL SAMPLE PROBLEM 12/13 16/18 45/34 3.69/3.61
2 SINGULAR 15/15 16/16 4/4 1.03/1.05
3 HEXAGON 15/16 21/23 32/29 4.41/4.41
4 HEXAGON (ALT. START) ll/ll 16/14 35/26 3.56/3.26
5 LC7 7/9 9/11 13/16 .76/.95
6 ALAN MANNE'S PROBLEM 17/17 18/18 40/37 21.13/21.92
7 ROSEN-SUZUKI 8/8 li/li 9/9 .81/.81
8 QP PROBLEM 8/10 9/11 23/15 1.10/1.04

10 STEINKE2 -- -- --/14 --/.87
11 NORWAY 4 16t 5/7 34/13 1.23/.65
12 MHW4 10'/10 18/15 14/12 1.31/1.25
13 MHW9 30/19 t 56/28 42/24 3.71/2.31
14 MHW9 INEQUALITY 1 28/23 38/28 59/40 3.41/2.73
15 MHW9 INEQUALITY 2 41/14 t 58/27 80/24 4.83/1.77
16 WOPLANT 25/29 29/33 44/35 6.85/7.17

17 SQUARE ROOT, .... " / 0/o-
/

18 SQUARE ROOT 2 23/23 36 36 5.01/5 J2
19 SQUARE ROOT 3 6/6 9 19 7/7 .95/.94
20 SQUARE ROOT 4 --*/--* --/-- /
21 BT1 11/11 19t19 11/11 .81/.83
22 BT2 9/9 14 114 9/9 .71/.70
23 BT3 2/2 5 15 2/2 .19/.19
24 BT4 12/12 18 118 13/13 .92/.92
25 BTS-HS63 6/6 919 8/8 .58/.58
26 BT6-HS77 15/15 21'121 16/16 1.52/I.54
27 BT7 31/31 56156 32/32 3.36/3.43

7/17 19/19 17/17 .25/1.44
28 BT8 113/13 I29 BT9-HS39 16/16 14 II4 .95/1.19
30 BTI0 8/8 II/II 010 .48/.52
31 BT11-HS79 9/9 12/12 10/10 1.05/1.06
32 BT12 27/27 57/57 28/28 3.04/3.04
33 BTI3 32/32 44/44 34134 2.61/2.62
34 POWELL TRIANGLES 23/15 37/16 36123 3.27/2.28
35 POWELL BADLY SCALED 12/12 15/15 13/13 .85/.85
36 POWELL WRIGGLE 34/32 69/55 60/40 2.77/2.39
37 POWELL-MARATOS 6/6 7/7 616 .44/.44
38 HS72 7/7 8/8 8/8 .69/.67
39 HS73 (CATTLE FEED) 4 f4 5/5 4/4 .38/.36
40 HS107 11/11 18/18 27/18 2.77/2.56
41 MUKAI-POLAK 10/10 16/16 13/13 1.08/1.11
42 INFEASIBLE SUBPROBLEM --* --* ..... /
43 HS26 47147 64/64 48/48 3.39/3.41
44 HS32 2/4 315 315 .25/.38
45 HS46 55/55 58/58 56/56 5.26/4.98
46 HS51 2/2 515 2/2 .18/.14
47 HS52 2/2 515 2/2 .19/.16
48 HS53 2/2 5/5 2/2 .19/.16
49 PENALTY1 A 16/16 18/19 77 '41 20.01/16.49
50 PENALTY1 B 617 14119 67 '32 14.77/11.77
51 PENALTY1 C 29 '15 85/40 152 '65 2,1.35/11.65
52 HS13 22/19 23/20 13/10 1.29/1.22
53 HS64 29 '43 39/62 47/60 2.34/3.33
54 HS65 8/9 10/ll 16/16 .70/.78
55 HS70 36 --* 39 -- 39/- - 3.33/--
56 HS71 5/7 6/9 9/9 .53/.67
57 I-1S74 10 '26 15 '48 14/28 1.17/2.68

Failed to solve the problem.
Converged to a different minimizer.
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TABLE 2 (CONT.)
Numerical results

Nonlinear Function QP CPU
No. Problem name iterations evaluations iterations time (s)

58 HS75 6/8 10/11 7/9 .72/.90
59 HS78 I0/10 14/14 11/11 1.15/1.15
60 HS80 8/8 10/10 8/8 .92/.92
61 HS81 1.57/1.60
62 HS84 -- _ -- 1.51
63 HS85 17/14 18/15 33/20 4.00/'_.12
64 HS86 (COLVILLE I) 6/7 8/8 II/II .62/.64
65 HS87 (COLVILLE 6) 11/8 18/9 18/14 1.63/1.23
66 HS93 12/12 15/15 14/14 1.36/1.38 "
67 HS95 1/1 2/2 1/1 .15/.15
68 HS96 1/1 2/2 1/1 .11/.15
69 HS97 3/3 6/6 3/3 .40/.41

.so71 HS99 23/--" 4 7 3.99
72 HS100 14/14 29/29 18/18 2.07/2.02
73 HS104 18/18 20/20 23/23 3.36/3.37
74 HS105 43/--" 61/-- 97/-- 27.14/--
75 HS108 (HEXAGON) 24/32 45/49 57/87 6.78/9.36
76 HS109 ll/10 13/11 25/29 3.23/3.26
77 HSll0 6/6 9/9 24/15 .78/.69
78 HS111 41/49 64/75 44/52 8.08/9.05

19/--* 54/-- 2.78 / --79 HSl12 (CHEMICAL EQ.) 39/--
80 HS113 14/16 19/23 38/36 3.12/3.41
81 HS114 18/16 19/24 36/33 3.81/3.60
82 HSI17 (COLVILLE 2) 17/18 21/27 96/39 6.75/5.34
83 HSll8 (LC PROBLEM) 4/4 6/6 20/20 1.35/1.40
84 HSll9 (COLVILLE 7) 12/17 16/19 41/47 4.25/5.60
85 DEMBO IB 281/--* 437/-- 296/-- 75.46/--

87 DEMBO 3 37/20 2.01/1.78
88 DEMBO 4A 19/19 3 24/24 3.53/3.31
89 DEMBO 4C 13/13 15/15 20/23 3.10/3.20
90 DEMBO S-HS106 17/18 21/24 30/31 2.90/3.04
91 DEMBO 6-HS116 36/43 96/69 144/248 21.84/29.65
92 DEMBO 7 19/12 24/15 126/68 15.54/9.82
93 DEMBO 8A 33/42 85/118 10s 199 7.52/9.17
94 DEMBO 8B 29/29 69/71 88173 6.51/6.,15
95 DEMBO 8C 25/27 60/68 89 t65 6.19/6.06
96 OPF 18/17 19/18 53 151 468.12/456.10
97 GBD EQUILIBRIUM MOD. 5/6 6/7 37[26 6.22/6.10
98 WEAPON ASSIGNMENT 96/73 98/76 244 1170 120.78/114.93
99 STRUCI10KON 18/17 34/30 65[42 13.67/11.73

100 STRUCE10KON 26/29 49/67 87184 17.68/20.75
101 STRUCI10VAN 23/19 41/34 54/51 16.30/13.85
102 STRUCE10VAN _*/24 _/48 -- f91 --/19.44
103 STFtUCI25006 42/37 68 f62 147/85 92.44/80.99
104 STRUCE25006 20/28 32136 178/95 357.83/260.79
105 STRUCI25DAT 11/12 19 [21 24 [22 24.75/27.11
106 STRUCE25DAT 52/21 106/37 687 '65 647.13/191.44
107 STRUCI36DAT 23/20 38 f34 59/46 120.79/108.02
108 STRUCE36DAT 29/30 53 I62 87 '90 971.16/1021.87
109 STRUCI63040 117/112 211/202 6116 '3091 8182.13/7159.03

110 STRUCE63040 375/--* 7941_ 3545/-- 77286.64/--
I l STRUCI63060 -- /98 _ 1244 -- 13899 --/8281.02

112 STRUCE63060 63/115 150/316 6675 '3407 25090.15/33228.42
113 STRUCI63DAT 246/136 354/412 9043/2060 12591.61/I 1424.54

14 STRUCE63DAT 52/72 86/I 45 8049/2858 41793.84/22740.66

Failed to solve the problem.
Converged to a different minimizer.
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