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A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM USING
AN INCOMPLETE SOLUTION OF THE SUBPROBLEM

WALTER MURRAY* AND FraNcIscoO J. PrieTo!

*Systems Optimization Laboratory
Department of Operations Research
Stanford University

tDept. de Estadistica y Econometria
Universidad Carlos I1I de Madrid

Abstract

We analyze sequential quadratic programming (SQP) methods to solve non-
linear constrained optimization problems that are more flexible in their def-
inition than standard SQP methods. The type of flexibility introduced is
motivated by the necessity to deviate from the standard approach when
solving large problems. Specifically we no longer require a minimizer of
the QP subproblem to be determined or particular Lagrange multiplier es-
timates to be used. Our main focus is on an SQP algorithm that uses a
particular augmented Lagrangian merit function. New results are derived
for this algorithm under weaker conditions than previously assumed; in
particular, it is not assumed that the iterates lie on a compact set.

1. Introduction

The problem of interest is the following:

minimize F(z)
zERN NP
8.t c(z) 2 0,

where F: " — R and ¢ : ®* — R™. Since we shall not assume second derivatives are
known, computing z*, a point satisfying the first-order KKT conditions for NP is the best
that can be achieved. Such points are feasible and satisfy the following conditions:

VF(:::*)=VC($*)TA*, /\’;cj-(x*):() j=1,....m (1.1)

for some nonnegative multiplier vector A € R™. Whenever the term “KKT point” is
used in the following sections, what will be meant is a point satisfying the first-order KK'T
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conditions for NP. Despite this theoretical limitation we shall prefer some KKT points to
others in order to try and satisfy our real purpose of finding a minimizer. For example, if
the initial estimate is feasible we do not wish to converge to a nearby KKT point if at that
point the objective function is higher.

We use the term stationary point to denote a point that is feasible and satisfies (1.1) for
some multiplier vector A € ®™ that is not necessarily nonnegative.

Typically SQP algorithms generate a sequence of points {z;} converging to a solution,
by solving at each point, zx, a quadratic program (QP) of the form

e VF( T, + 1 TH
ml;\ég%‘lze (zk)'p+ 3p" Hip QP
s.t. e(zk) + Ve(zk)p > 0

for some positive definite matrix Hy. Let py (referred to as the search direction) denote the
unique solution to QP. We define zx41 = zx + axpk, where the steplength «y is chosen to
achieve a reduction in a merit function.

SQP algorithms are viewed by many as the best approach to the solution of NP when n
is small ( < 200 ). As the size of the problem grows, usually so does the relative importance
of the effort to solve QP when compared to the total effort. Indeed for many large problems
the effort to solve QP dominates the total effort.

When the minimizer of QP is used to define the search direction, it is not necessary in any
theoretical discussion of an SQP algorithm to define how the QP subproblem is solved. All
implementations of SQP methods currently available use an active-set method to solve the
QP subproblem. For a comprehensive survey of active-set methods see [GMW81], [Fle87]
and [GMSWO91]. The potential number of iterations to solve a QP using an active-set
method grows exponentially with n. In practice the number of iterations grows rnuch more
slowly than exponential (if this was not the case active-set methods would be hopelessly
inefficient). Nonetheless, the number of iterations required to solve a large QP is usually
large. In any implementation of an SQP method it is necessary to limit the number of
iterations allowed to solve a given QP subproblem. If the QP solution process is terminated
prematurely the SQP algorithm may break down. It is in part for this reason that the
development of SQP methods for large-scale problems has been inhibited. Evern for small
problems there are occasions when the number of QP iterations is excessive. Since the
definition of “small” continues to increase as computers become more poweriul we can
expect the cost of solving the subproblems to grow in importance.

In the algorithms presented here we have endeavored to improve the efficiesicy of SQP
methods by circumventing the need to determine the minimizer of QP. We show that a
suitable search direction may be computed from information available at any stationary
point of QP. Stationary points occur as iterates within most active-set methods to solve QP
and for such methods the number of iterations to determine a stationary point increases
only linearly with the size of the problem. Consequently, the search direction may be found
by applying an active-set method to QP and terminating the procedure early.

It may be thought that by expending much less effort to compute the search direction,
the number of iterations for the outer algorithm may increase. However, it has been observed
that large numbers of QP iterations are required only when z, is a poor approximation to

z¥, that is, when the QP subproblem does not model the nonlinear problem well. We
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hypothesize that a search direction based on the minimizer of such subproblems is little
better than using information at a stationary point. Our preliminary results reported in
Section 6 support this hypothesis.

Not solving the QP subproblem also implies that we do not know the QP multipliers,
which are often used to estimate the multipliers of NP. In general, SQP methods usually
use some specific estimate of the NP multipliers in the definition of the method and hence
in the proof of convergence. When solving large problems specific definitions of multiplier
estimates are not always computationally attractive. In our analysis we allow for flexibility
in how multipliers are defined by requiring only that the multiplier estimates satisfy certain
conditions.

Incomplete solutions for QP subproblems

There have been other proposals to define the search direction for an SQP algorithm other
than as the minimizer of the QP subproblem. In Dembo and Tulowitzki [DT85] an algorithm
is analyzed for which the search direction p; has the property that

Ik = pill = ollpxl)),

where p’;; denotes the minimizer for the k-th QP subproblem.

We follow a different approach and define a search direction for which the effort to
compute it has a guaranteed bound. A different algorithm, but using the same approach,
was suggested by Gurwitz and Overton [GO89]. However, no global convergence results
were given for their algorithm.

In the course of solving a QP an active-set method generates iterates that are stationary
points. We show that such points may be used to construct a suitable search direction. The
step to the stationary point is not in general an adequate search direction. However, if
the stationary point is not a minimizer then there exist nonoptimal multipliers. We show
how an auxiliary direction may be constructed using information about the nonoptimal
multipliers. This auxiliary direction, when combined with the step to the stationary point,
gives a suitable search direction.

Terminating the QP algorithm prior to obtaining a solution impacts the SQP algorithm
in a number of critical ways. Not only is the search direction different, but also the QP
multipliers will not be available. The merit function of principal interest requires the defi-
nition of a search direction in the space of the multipliers. In the past, this search direction
has been defined using the QP multipliers. The fact that such multipliers are positive was
crucial in the analysis of these algorithms. The consequences of terminating the QP solution
process early are therefore far reaching.

The remainder of this paper is organized as follows. Section 2 describes the form of
the general algorithm, and the definition of the search direction. Section 3 studies the
convergence properties of the algorithm; it is shown that such an algorithm is globally
convergent. In Section 4 we show that the algorithm converges superlinearly. We also show
that the penalty parameter used in the merit function is bounded. Section 5 considers the
use of alternative merit functions. Finally, Section 6 presents numerical results obtained
from an implementation that uses the merit function of principal interest.



2. Description of the algorithm

The search direction we propose could be used with most of the merit functions analyzed
in the literature. However, our primary interest is the following merit function:

La(z,),8,p) = F(z) = M{c(z) - 5) + Lp(c(z) - 5)T(c(z) - s) , (2.1)

where s > 0 are slack variables, and the scalar p is known as the penalty parameter.

This merit function was suggested by Gill et al. [GMSW86b] and is used in the SQP
code NPSOL. It is similar to merit functions proposed by Wright [Wri76] and Schittkowski
[Sch81]. Although our primary interest is this specific merit function, we also show (Section
5) how the ideas discussed can be extended to the use of other merit functions. The reason
for our focus on this merit function is due to the success in practice of NPSOL. The merit
function is also used in a new SQP code, LSSQP [Eld91], designed to solve large problems.

The search is performed on an expanded space, including the Lagrange multiplier es-
timates A, and the slack variables s. The symbols p, £ and ¢ will be used to denote the
components of the search direction on the corresponding subspaces. In this case, the value
of the merit function as a function of the steplength will be denoted by

$(a) = La(c + ap, A + ab, s + aq, p). (2.2)

The derivative of ¢ with respect to a is denoted by ¢'. Also, ¢x(a) and ¢} (a) will be used
© to indicate the values of ¢ and ¢’ evaluated at (zk, pr, Mk, €k, Sky Gk P)-
The following conventions will be used in the rest of the paper:

gk = VF(zy), Ak = Ve(zg), ck = e(zk),

and the symbols A and é will be used with the same meaning as Ag and cg, but restricted
to the set of active constraints at the given point. The term active constraint will be used
to designate a constraint that is satisfied exactly at the current point (¢;(z) = 0 in NP, or
a;rp = —c¢; in QP), and the set of all constraints active at a given point will be referred to
as the active set at the point.

The objective function for the QP subproblem will be denoted by ¥ (p),

Yr(p) = gip + $p Hip. (2.3)

Sometimes, 1 will denote the function of one variable ¥i(v) = ¥(p + vd).
' For any vector v, the notation v~ will be used to denote the vector whose j-th element
is defined as
v; = — min(0,v;).

Finally, the symbol e denotes the vector (1,...,1)T, and symbols of the form S, denote
fixed scalars related to properties of the problem, or the implementation of the algorithm,
where “abc” identifies the specific scalar represented.
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The algorithm

We first present an outline of the algorithm. Given Hy positive definite, g and Ag, select
p-120,0< <<, B2 e (2o)lloos By > ||| and 8, > 0.

Algorithm ETSQP

k<20
repeat
Obtain the search direction py from the QP subproblem

min, Yr(p) = gFp + 1p7 Hip

s.t. Arp+cer >0

Compute puk, an estimate of A* such that ||u|| < 8,
Ek — Bk — Ak
if pr_1 =0

Compute s; from (sg); = max(0,(ck);)
else

Compute si from (sx); = max(0, (ck); — (Ak);/pr-1)
end if

gk — Arpr + ck — Sk
if ¢},(0) < —3pTHipy

Pk < Pk-~1

else \ -
+ A —p ck —
Pk < max<2pk—1, ¢k(pk) ( b / k)2 ( k Sk)aﬁp)
llex ~ skl

end if
if ¢r(1) < & (0) + 0} (0)

a1
else

Select & € (0, 1) to satisfy

£1(8) < 64(0) + 7ah(0), |#4(&)] < —né4(0)

end if
while c(zy + apx) 7 —Bce or ¢r(a) > ¢x(0) + 0ag}(0) do

& — &f2
end do
ap — &

Tk41 Tk Pk
() - (5 e ()
Compute gg41, Ak41 and ceqy
Update Hy to form Hyyq
k—k+1

until convergence




The following are some comments on the steps of the algorithm.
o At each point z;, we form the QP subproblem
minimize gip + 3pTHip (2.4a)
subject to Agp > —ck, (2.4b)
and determine a stationary point for QP, that is, a point pi satisfying

gk + Hipr = AL i, (2.52)
Arpr + ¢k > 0, 7L (A + cx) = 0, (2.5b)

for some vector m; € R™.

From information available at the stationary point we construct a search direction p;
and pi an estimate of M. The precise conditions that pr and u; need to satisfy are
given later in this section. If p; = 0, we set Ay = pj and terminate. Otherwise, we
compute the search direction in the space of the multiplier estimates £ as

€k = pk — Ak (2.6)

¢ The slack variables s; are computed from

max (0, (ck);) if pg-1 =0,
(sk)j = { (2.7)

max (0, (ck)]‘ - -(—/\—k-)l'

p ) otherwise.
k-1

These values minimize the merit function (2.1) at (zk, Ag, pk-1) With respect to the
slack variables.

The slack variables s; appear in the merit function (2.1) as part of the term ¢x — s;.
From (2.7), this term takes the value

min (0, (ck);) if pg—1 =0,
(ex); = (si)j = min ((ck)j, (p)‘k)j) otherwise. (2.8)
We shall require the following inequality:
ek ll < llew = skl (29)

To simplify the notation in the justification of this result, we drop the subscript k.
If ¢; — s; = ¢; then clearly |¢c; — s;| = |¢;| 2 |} ].

If ¢; —s; # ¢j and ¢; > 0, then ¢; = 0 < |¢; — s;|. Otherwise, ¢; —s; # ¢; and ¢; < 0.
From (2.8) we get ¢; — s; < ¢; < 0, and hence |¢; — s;| > |¢;| > |¢;|. We have shown
le; | < |ej — s;| under all circumstances, implying (2.9).
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e The search direction in the space of the slack variables gy is set to the vector of slack
variables for the QP subproblem, i.e.

gk = AkPk + ¢k — Sk. (2.10)

For a linear constraint this choice keeps the corresponding slack variable at its opti-
mum value.

e The penalty parameter will not be modified if the condition
$1(0) < ~3piHeps, (2.11)

is satisfied, where ¢y (o) is defined in (2.2). Otherwise, we define the penalty parameter
as

Pk = max(ka—laﬁk,ﬂp)v (2-12)
where 3, is some positive constant,
Pr(pr) + (A = )T (cx — 1)
llek = skll?

and v, was defined in (2.3). It will be shown that the definition (2.12) ensures that
(pk, €k, k) is a sufficient descent direction for the merit function, in the sense that
condition (2.11) holds for this value of the penalty parameter.

Pr = , (2.13)

o The steplength a; > 0 is computed to reduce ¢i(«) while keeping the constraint
violation bounded. The termination conditions for the linesearch are as follows:

If

k(1) — ¢k(0) < 0¢(0), (2.14)
set & = 1. Otherwise, find an & € (0, 1) such that
or(&) — ¢k(0) < aagi(0) (2.15a)
Pk(&) 2 n4%(0), (2.15b)
where 0 < o < < 1.
If the condition
(zk + ap) 2 ~Pet (2.16)

holds, we define ax = &; otherwise we compute oy by performing a backtracking
linesearch from & until (2.15a) and (2.16) are both satisfied. It will be shown later
that such a steplength always exists, and that Algorithm ETSQP is well defined. This
definition of the steplength ensures that ¢(zx) > —f.e for all k. A more sophisticated
algorithm could be used to determine aj when (2.16) does not hold. However, we
anticipate such events will be rare.

¢ Finally, 2 and A are updated from

T4 _ Tk Pk
(,\kﬂ)‘(Ak)*“*(fk)' (2.17)



The definition of the search direction

At each iteration of ETSQP an inner iteration is performed to determine the search di-
rection by solving the QP subproblem (2.4) using an active-set method. The following is
an outline of a suitable algorithm to determine the search direction. The outer iteration
subscript has been omitted, and the subscript ¢ refers to the inner iterations.

We assume that positive constants B,, 85, Y have been defined.

Algorithm SD
Compute pg satisfying:
Apo+e20,  lipoll < Bolle™ll,  g7po < Bolle”|

Form Ay, the active-set matrix at pg, as the set of all rows in A corresponding to
active QP constraints at pg

10
repeat
) H AT pi \_{( -9-Hp;
Compute p; from ( /ii 0 ) ( _; ) = ( 0
Yi <——mm(1 mf {— J+a pz <0})
p

Pi+1 :_ Y + ’szz
Set A;4; to be the active-set matrix at p;4q

te—i+1
until (p;, 7;) satisfy (2.5)
P« pi
T —
ifr >0
p—p
else
Define v to satisfy: ||o|| =1, v>0, wvmr <0Vj, olr<Bymin;n;
Compute d by solving: mln{(ZTd | Aid = v}

d — d/|dj| .
. (9+ Hp)'d . . CJ+ap T

v — mm(—THd—,me{ ——-;;——— | aj d < 0} ’)’M)
if |7 + vd|| > |15l

pe—p+7d
else

pep
end if

end if
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Some comments on this procedure are presented below.

An initial feasible point py of the QP subproblem is obtained.

When the minimizer of the QP is used as the search direction, then, given the unique-
ness of p, the choice of pg is irrelevant. If we determine the search direction from a
stationary point that is not a minimizer, the sequence of stationary points that we
compute depends directly on the value of py. We wish to define the initial point in
such a manner that all stationary points are satisfactory points at which to terminate
the solution process. It will be seen that the following conditions on py are sufficient
to ensure our objective,

— For some constant g, > 0,
Ipoll < Bplle™l| and  g"po < Bylle”. (2.18)

A sequence of feasible descent steps are taken, for example, by first computing the
step p; to the minimizer of the QP on the current working set as the solution of the

system of equations
H AT pi —-g— Hp; ORT
</ii 0 )(—m)_ ( 0 ’ (219}

where p; is the current estimate. A step v, is taken, where v; is obtained as cither one
or the step to the nearest constraint,

c; + al'p; ,
v = min(l,iuf{—-i—fff—h | a}p’i < 0}). (2.20)
J Dy

g

The QP algorithm may be terminated at any stationary point p. (Algorithin SD is
terminated at the first stationary point.) It will be seen in the proofs that to always
use p as the search direction will not in general ensure convergence.

If pis the minimizer of the QP subproblem, that is, if # > 0, the search direction p is
defined as p = P, otherwise

= { pdd il < I+ 5l 21)

D otherwise,
where the vector d and the scalar ¥ are computed with the following properties:

— d is feasible with respect to the active QP constraints at p, A;d > 0, and it has
unit norm, {|d|| = 1.

—~ The rate of descent along d is sufficiently large. Specifically, we require
(Hp+ A)ld < By min;m;, (2.22)

for some positive constant 3.



[

10

There are many procedures for computing a suitable vector d; we now describe
one such procedure (see algorithm SD). It proceeds by defining an auxiliary
vector v with the following properties

lofj =1, ©v>0, wvjm <0Vy, vIr < By mjin )i

such a vector can be obtained for example by letting

s = 1 if 7; <0
771 0 otherwise

We then compute d the least-length solution of Ay = v and set
d = d/||d]|. (2.23)

— The scalar ¥ is given by
;i' = min(?v:y"fM)a (224)

where v, is a specified upper bound on the steplength,

_CJ‘ + a;rf)

= | a]d < 0}, (2.25)
J

¥ = inf
7= inf{
is the largest feasible step from p along d, and

(g+ Hp)'d

Y=o R (2.26)

is the step to the minimizer of (p + vd).

The multiplier estimates

Equation (2.6) defining the search direction on the multiplier space £ requires the compu-
tation of an estimate p for the Lagrange multipliers. The estimates {ux} are then used to
update {Ai}, the Lagrange multiplier estimate used in the merit function. To allow flexi-
bility in algorithm design we have chosen to specify conditions on the multipliers estimates
ux rather than give explicit definitions.

It will be shown tnat the following conditions on yy are sufficient to ensure that the
algorithm is globally convergent.

MC1. The estimates p; are uniformly beunded in norm, that is |juxf| < 3, < oc.
MC2. The complementarity condition ;1{( Agpr + ) = 0 is satisfied at all iterations.

We may satisfy these conditions by choosing px = 0. Condition MC2 is made for
convenience; condition MC1 and the form in which the multiplier estimates are updated

imply that {Ax} are uniformly bounded

Lemma 2.1. If condition MC1 holds, then ||Ax|} < 8, for all k.
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Proof. The proof is by induction. We select 8, to satisfy ||Xo|| < B,. From (2.17),
Ak+1 = A+ a(pe — Ak), k2>0. (2.27)
Using norm inequalities and 0 < ai < 1, we have

IMesall < olliell + (1= cr )l Akl < kB + (1 = ak)Bu = Bu,

as required. §

Second-order information

We choose the matrices { Hi} to be positive definite and bounded, with bounded condition
number. In practice, such matrices may be generated (see [GMSW86a]) by updating a
quasi-Newton approximation to the Hessian of the Lagrangian function or the Hessian of
the augmented Lagrangian function in each iteration together with certain safeguards (for
example, if the factors of Hy are updated, by enforcing bounds on the size of the elements,
and ensuring sufficiently positive diagonal elements). These conditions can be written as
follows:

HC1. 1,4 < oo is the largest eigenvalue of { Hy}.

HC2. B,,5 > 0 is the smallest eigenvalue of {Hy}.

3. Global convergence results

The results in this section establish global convergence properties for algorithm ETSQP.
We first introduce the assumptions under which we shall show convergence, and then we
prove the following results:

o The iterates {z} lie on a compact set.

— In Lemma 3.1 we show that the quantities associated with the algorithm are well
defined at all points.

In Lemma 3.2 it is shown that if ||z.|| is large then ||pk|| cannot be arbitrarily
small.

}

In Lemma 3.3 we show that p computed using algorithm SD satisfies

w(p)=gTp+3p T Hp < —Bip" Hp + Baflc - s,

where ; and 3; are positive constants.

Lemma 3.4 proves that the sequence {z} lies on a compact set.

}

Lemma 3.5 shows that the sequence {px} also remains bounded.

o The sequence {||pi]|} dominates the sequence {||zx — z*||}, where z* denotes a KKT
point closest to zx. The main implication of this result is that ||pk]] — 0 is sufficient
to ensure that z; — z*, a KKT point of NP.
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— It is shown in Lemma 3.6 that, under the assumptions we make, the KKT points
for problem NP are isolated.

— Lemma 3.7 introduces another preliminary result, proving that if p, — 0 along
a subsequence then along this subsequence ||z — z*|| — 0, where z* is a KKT
point for NP nearest to zx. Moreover, for large enough k, px is the minimizer of
the QP subproblem, and the correct active set at z* is identified.

~ The proof that ||px|| dominates ||zx — z*|| is given in Lemma 3.8.

¢ Bounds on the growth of the penalty parameter pg.

We cannot prove that px will remain bounded in the algorithm without stronger con-
ditions on the multiplier estimate i, but we can show that its growth is bounded by
certain quantities related with the algorithm, and that is enough to prove convergence.

— We show in Lemma 3.9 that at all the iterations where the penalty parameter is
modified the following bounds hold,

pillee — skl <N and  pillpill* < N.

— In Lemma 3.10 and Lemma 3.11 we show that similar inequalities hold at all
iterations.

o The steplength ) is bounded away from z:ro if we are not close to a solution.
— We first need a bound on the second derivatives of ¢(a). In Lemma 3.12 we
prove that ¢x(ag) < N for some positive constant N.
— In Lemma 3.13 we show that, if ||px|| is large enough, there exists a value & > 0
independent of the iteration such that ay > a.
o In Theorem 3.1 we show that z; — z*.
e Finally, we prove that Ay — A*.
~ This result requires stronger conditions on the multiplier estimate p than just

MC1 and MC2. We start by introducing a third condition MC3.

— Lemma 3.14 strengthens the result in Lemma 3.13 showing that, under the new
conditions on the multipliers, a4 is uniformly bounded away from zero.

— In Theorem 3.2 we show that Ay — X*.

Assumptions

Some of the following assumptions make use of the concepts of stationary points and KKT
points at infinity. We will say that NP has a stationary point at infinity if there exist
sequences {zx} and {nx} such that ||z|| — oo and/or ||nk|| — oo, and

g =0, Almk—gx—0, nick—0.

If in addition to these conditions we also have n; — 0, then we have a KKT point at
infinity.
We make the following assumptions:
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A1l. For some constant 8. > 0, the global minimum of the problem

minimize F(z)
zER"
s.t. c(z) 2 —Pee,

is bounded below.
A2. There exist no KKT points at infinity for r..oblem NP.

A3. F, c; and their first and second derivatives are continuous and uniformly bounded in
norm on a compact set.

Ad4. The Jacobian corresponding to the active constraints at all KKT points has full rank.

A5. A feasible point pi, exists to all the QP subproblems, satisfying

IPkoll < Bollexll  and  gfpry < Bpllck |l
for some constant 3, > 0.

AB6. Strict complementarity holds at all stationary points of NP, including stationary points
at infinity, if they exist.

A7. The reduced Hessian of the Lagrangian function is nonsingular at all KKT points.

The larger the value of 3., the stronger is assumption A1l. There will be problems, for
example F(z) = f(z)T f(z), where it is known a priori that assumption A1 holds with
B. = oo. Also, if A1l does not hold with §. = 0 then it is possible for any reasonable
algorithm to diverge.

Assumption A5 imposes conditions on the initial point for the QP. It is possible that
no point satisfies these conditions; this would be the case for example if one of the QP
subproblems generated by the algorithm is not feasible. Nevertheless, by introducing an
additional variable it is possible to construct a modified problem for which this condition
is satisfied trivially. Consider the problem

(rgyg;gghz& F(z,z2) = (1 —w)F(z) + wZ
s.t. c(z)+Ze>0 and Z >0,

where £ € R and w € [0, 1]. The KKT points for this problem are also KKT points for NP
if NP is feasible and w is sufficiently close to one. The modified problem is always feasible,
and the corresponding QP subproblem takes the form

1 — T s+ (T 5\H p
AT AL DR
s.t. ck+ Axp+ Tre +pe 20

Tr+p20.

For this QP subproblem the point

_(P)_ 0
po_(ﬁ>—(ll(6k+ike)“!loo)
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is feasible since we can ensure that Z; > 0. Therefore there always exists a feasible point
that satisfies A5 with 8, = 1 since ||po|| = ||(ck + Zr€) ™|l and

vAlm = ((1-w)f w) ( ’ ) = wl(ek + F1e) oo < 1k + E4) o
implying that Assumption A5 is redundant for the modified problem.

Existence of the iterates

We start by showing that all the quantities associated with the algorithm are well defined.
In particular, we show that the choice of penalty parameter ensures (2.11) is satisfied and
that the stepleagth exists.

Lemma 3.1. Under assumptions A3, A5 and conditions HC1, HC2, the procedures given
in the algorithm to compute the values of the penalty parameter pi and the steplength oy
are well defined.

Proof. We drop the subscript k denoting the iteration number, to simplify the notation.
Consider the gradient of the merit function L,, defined in (2.1), with respect to z, A
and s,
9() = A(z)TA + pA(z)T(c(z) - 5)
VLi(z,A,s)= —(e(z) — 8) . (3.1)
A - ple(z) - s)

It follows from (2.6), (2.10) and (2.2) that ¢’(0) is given by

¢'(0) = pTg — pTATA+ ppTAT(c — 5) = (c - 8)T€ + ATg - pg(c - )
= pTg + (22 = w)T(c~s) = plle - s|1%, (3.2)

where g, A, and c are evaluated at .
If |le — s|| = 0, from (2.9) and (2.18) we have py = 0, and since ¥(p) = pTg + %pTHp <
¥(po) = 0 it follows that
¢'(0)=p'g < —3p  Hp,

implying that p does not need to be modified.
If |lc — s|| > 0, we obtain from (3.2) that for p = p (defined in (2.13))

#(0) = gTp+ (22 — )T (c - 8) = plle = sl|* = ~3p" Hp,

which implies the desired descent condition (2.11) is satisfied for all p > 4.
An immediate consequence of (2.11) and the properties of Hy is the following bound on
the directional derivative:
¢;c(0) < ‘%ﬂsuH'IPk“z- (33)

It follows from the procedure to increase the value of the penalty parameter (see (2.12))
that py — oo if and only if the parameter is increased an infinite number of times.
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We also need to prove that the value of aj introduced in the algorithm is well defined.
We show that if condition (2.14) is not satisfied, a steplength & € (0, 1) that satisfies
conditions (2.15) always exists (see, for example, Moré and Sorensen [MS84)).

Define the functions

X( $(c) — ¢(0) — oad'(0)
C( ¢I(a) - 77¢’(0)7

and note that from ¢ < 7 and ¢'(0) < 0, implied by (2.11), we have

X'(@) = ¢'(a) = 0¢/(0) < ¢'(a) ~ n4'(0) = ((ar), (3.4)

a)
a)

for any o.
If (2.14) does not hold,

é(1) — #0) > od'(0) = x(1)>0,

and we also have x(0) = 0. From these two results and the mean-value theorem, there will
be a point & € [0, 1] such that x/(&) > 0, and from (3.4), {(&) > 0.

From ¢/(0) < 0 we have ((0) < 0, and the continuity of { (assumption A3) will imply
the existence of a zero of ( in (0,&). Let & denote the smallest point in (0,&) such that
{(&) = 0, that is,

¢'(a) = 1¢'(0), (3.5)

and condition (2.15b) is satisfied at .
From ¢(0) < 0 we must have

((a) <0 VYa€el0,a) & ¢(a)<nd(0) Vace]lo,a), (3.6)

implying that condition (2.15b) is not satisfied for any point in [0, &).
Finally, from (3.4) and (3.6), we have

X' (@) <0 VYa€[0,a),
and this together with x(0) = 0 implies x(&) < 0, that is,

¢(a) - ¢(0) < 0ag'(0), (3.7)

showing that a satisfies both conditions (2.15) simultaneously.
We still need to consider condition (2.16). For the function h(e) = ¢(z + ap) + B.e we
have from (2.4b)
h'(0) = Ap > —c.

If -—%ﬁc > ¢; 2 —f, we have k;(0) > 0 and h;(O) > -;—ﬂc >0;if ¢; > ~%ﬂc then h;(0)
1B. > 0and in any case there exists a value @ > 0 such that h;(a) > 0 (implying ¢;(z+ap)
—f.) for all j and all « € [0, @], implying that for @ € [0, min(&, @)] both conditions (2.15a)
and (2.16) hold simultaneously. 1

This lemma implies that all the quantities associated with the algorithm are well defined.

2
2
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Boundedness of the iterates

To prove global convergence we show first that if assumptions A1 and A2 hold, all points
in the sequence {z;} generated by the algorithm lie on a compact set. We start by showing
that for ||zk|| large enough we cannot have ||px|| arbitrary small.

Lemma 3.2. Under assumptions A2 and A6 and condition HC1, there ezist positive con-
stants M and € such that ||zl > M = ||p]| > €

Proof. Assume this result does not hold. Then, for any positive constants M and € we
can find iterates such that ||zg|| > M and ||pk|]| < €, and we could construct a sequence
{zx}, and its associated sequence {px}, along which ||zx|| — oo and ||px[| — 0. For this
sequence, from ||px|| — 0 and (2.4b), we must have ||c; || — 0. Also, from the definition of
Pk, (2.21), it must hold that ||px|| — 0, and from (2.5a) and MC1, we must have

AT 7k — gill = || Hipell — 0.

Since ||pk|| — 0 and [|pk|| — 0, using (2.21) and ||dx|| = 1, we also have either 7, — 0
or 1 = 0 for k large enough. It then follows from (2.24) that either min(7x, ) — 0 or
4% = 9k = 0 for k large enough. If 3 — 0 along a subsequence, then (2.25) implies for some
constraint 7 that (w¢); — 0 and ¢;(zx) — 0, but this would contradict assumption A6. If
4% — 0 along a subsequence, then from (2.26) and (2.22) we get |7 || — 0.

The properties of this sequence,

okl = o0, ezl = 0, [lA¥7x = gill = 0,

and either |jm; || = 0 or |7 || = 0 for k large enough imply there exists a KKT point at
infinity, which violates assumption A2, so the lemma must hold. @

Another result we need for the compactness proof is a bound on the value of the QP
c¢biactive function at the incomplete solution for the QP.

Lemma 3.3. Under assumption A5 and conditions HC1, HC2, for p computed by algo-
rithm SD there exist constants §1 > 0 and [, > 0 such that

Y(p)=g"p+ ipTHp < —Bip" Hp + Ballc — 5.

Proof. The result will be shown by considering first the initial point for the QP, py, and
then the descent achieved in each QP iteration.
By definition

¥(po) = =375 Hpo + 97 po + Pl Hpo.
Since [|pol| < Byllc™|| and gTpo < Bpllc™|| (assumption A5), condition HC1 on H implies
P(po) < 525 Hpo + Blle™ Il + BBl lle™|I” (3.8)

Consider the quadratic function by + %c72, where b < 0 and ¢ > 0; then for all v €
[0, —b/¢] (between 0 and the minimizer), we have

b .
<=2 = qb+en) <0 = by+ger’ <—zert (3.9)



3. Global convergence results 17

The change in the QP objective function at any intermediate QP iteration ¢ can be
represented as

$(pis1) = Y(pi) = 3y Hd; + vi(g + Hp:)  d, (3.10)

where d; is used to denote the QP step obtained from (2.19) or the final step d defined in
(2.23), and v; is a feasible steplength bounded by the steplength to the minimizer along v;, as
defined in (2.20) or (2.24). We have d Hd; > 0 (from condition HC2) and (g+ Hp;)Td; < 0
(from condition (2.22) and min; 7; < 0), implying that we can apply the bound (3.9) to
(3.10) to obtain

Y(pis1) - Y(pi) < —372dl Hds. (3.11)

If we have taken N iterations to compute p (the search direction), by adding the in-
equalities (3.11) for ¢ = 0,..., N and using (3.8) we obtain

I

N
B(po) + D_(¥(pi) = $(piz1))

i=1

N
~L(pl Hpo+ Y v dT Hd) + Bylle™|| + BrorrB2l|e™ || (3.12)

=1

¥(p)

IN

We can use the convexity of the function pT Hp (implied by property HC2) to write

N N N
1 _
P Hpo+ Y _vldl Hdi > (ot D vid) T H(po+ 3 midk) = ] p" Hp.
1=1 i=1 i=1
This result together with (3.12) implies
1 - -2 q1-
V) S~y P At BelleIl+ Bl (3.13)

Since ¢~ > f.e the desired result follows from this inequality and (2.9). 1
We can now prove the main result of this section.

Lemma 3.4. Under assumptions Al, A2, A3, A5 and A6, and conditions MC1, HC1
and HC2, the sequence {z\} generated by the algorithm lies on a compact set.

Proof. First we show the set of points at which the penalty parameter is modified lies on
a compact set. If p; remains bounded it follows from the manner the penalty parameter is
modified, (2 12), that there is only a finite set of such points. Therefore we need only study
the case when py — 0o. Consider the iterations & where the penalty parameter is modified.
From condition MC1 and the boundedness of the multiplier estimates Ay (Lemma 2.1), we
have

120 = uell < 2ell + Nl < 3, (3.14)

This result, together with the definition of the penalty parameter (2.13), and Lemma 3.3
gives
prllek = skll® < gk i + 3ok Hipe + (2% ~ i) (ex — 1)
< (B1 +3B,)llex = sill = Bipf Hpee. (8.15)



18

As we have assumed p; — oo, (3.15) implies ||cx — si|| — 0, and from (2.9) also ||c; || — 0.
From Lemma 3.3 and (3.14) we have

wk = gk + (22 — mk)T (ck — ) (3.16a)

< —3pT Hyp — Bupf Hivw + (B1 + 3Bu)llek — skll. (3.16b)

If ||pkl| > € > 0 along an infinite subsequence, then it follows from ||cx — sk|| — 0 and
MC2 that there exists an index K such that for all K > K in the subsequence,

(B + 3Bu)llck — skll < By p¥ Hipx.
From (3.16b) we obtain the following bound on wy,
wi < —3pk Hipr, (3.17)
for k > K. From (3.16a) and the bounds (3.17) and (3.2), we have for sufficiently large &k
$4(0) = wi — prller — skll* < we < —1pk Hepe.

This last inequality implies that pi is not modified for all k > K, which contradicts our
assumption that the penalty parameter was modified an infinite number of times.
We have shown that ||pk|| — 0 along the subsequence at which the penalty parameter
is modified. The boundedness of ||zx|| along this subsequence follows from Lemma 3.2.
We now consider those points corresponding to iterations where the penalty parameter
is not modified. From condition (2.16) on the linesearch and assumption A1, we have
F(zy) > Br > —oo for all k. Also, from Lemma 2.1 ||A|| is bounded, implying that

2

LA(wka )‘kask’ Pk) > ﬁF - max (%3mﬂuﬂ6> > —00. (3]8)
p

Since ||z|| is bounded when px # px—1 and L.(zk, Ak, Sk, pk) is reduced when py = pj_y it
follows that L A(zk, Ak, Sk, pk) is bounded. Moreover, the reduction in L,(z, Ak, sk, pk) is
bounded for a sequence of iterations for which pi is not changed. Let I denote the index
at which pi is modified and let I < k < K denote the iterates for which p; remains fixed.
It follows from the above reasoning that there exists N such that

«
b1 —bi =D (b = dk41) < N, (3.19)

k=1

where to simplify the notation we have used ¢ = ¢x(0).
From the termination condition for the linesearch (2.15a), (3.3) and (3.19), we also have

K K
20Ben Y crllpell® < D (dk — drar) < N. (3.20)
k=1 k=1

This result implies that ay||pk|| is bounded. Hence if ||zk|| is not bounded there must exist
sets of iterates with indices, say s+ 1 < k < ryfor l = 1,2,..., such that ||z, || < M,
lzk]| > M for M large enough, limj_,o 71 = 00, and limj_,q ||z, || — o00. It follows that if
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M is chosen so that M > max{||z||} then py is constant in the interval s; < k < 7. The
existence of an index such that ||z, || < M is assured since we have ||z,|| < M and at least
one index in the interval for which ||zx|| > M. From these assumptions and definitions it

follows that
ri—1

Y akllpell > [|lzr, - 24| = o0. (3.21)

k=s;

It follows from Lemma 3.2 that [|pg|| > € for s; + 1 < & < r;. From (3.21) we get

ri~1 ri—1
" ajllpill? > € > asllpill + agllps ) — oo,
=i jmorg

but this contradicts (3.20), implying that the points generated by the algorithm must lie
on a compact set. § ,

To complete this section, we show that the search direction computed from the QP
subproblem is bounded.

Lemma 3.5. Under the assumptions of Lemma 3.4, the sequence {pi} is bounded.
Proof. We drop the subscript £ in the proof.

As all the steps taken in the solution of the QP subproblem are descent steps, we have
from (2.3),

1 ~1 _
P(po) > ¥(p) =g p+3p " Hp=L||H2p+ H2g|t - LgTH g,

implying from HC2 and ||a|| < ||a + b|| + |||,

1 1 1 -1 ~1 p —
VBoarllpll < 130l < [H - 3gll + |H3p+ H-3gll < [H 3]l + \/20(po) + g7 H1g.

The boundedness of ||p|| follows from this result Lemma 3.4, conditions HC1 and HC2 and
the bound (3.8). &

It is tacitly assumed in the remaining proofs that the assumptions A1-A7 and condi-
tions MC1, MC2, HC1 and HC2 hold.

The sequence of search directions {p;}

In this section we relate the behavior of the sequence {z; — 2*}, where 2* denotes a KKT
point closest to zx, to that of the sequence {py}. In particular, we show that ||px|| — 0
implies zy — z*, and so it is enough to prove that ||px|| — O to establish global convergence.

Although the KKT point z* introduced above may not be unique, the assumptions made
on the problem, and more specifically assumption A7, imply that if ||z, — z*|| is sufficiently
small then z* is unique, as the following Lemma shows. This result allows us to work with
a well-defined sequence {z — a;*}, at least close to a KKT point; it will also imply that the
limit point of the sequence generated by the algorithm is unique.

Lemma 3.6. The KKT points for problem NP are isolated.
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Proof. Assume that the result does not hold, and let z* denote a KKT point for NP
that is not isolated, that is, for any € > 0 there exists a KKT point y, # z* satisfying
l#* = yell < €. Consequently, there exists a sequence {yx} such that y; is a KKT point for
all k, yx # «* and y, — z*.

For sufficiently small [|Jz* — yx|| the active sets at yx and z* must be thesaime; otherwise
we would have for some constraint j that ¢;(z*) = 0 with both ¢;(yx) > 0 and (Xx); = 0
along some subsequence, where Ay is the multiplier vector at y;. From assumptions A3
and A4 and (1.1) we have Ay — A*, the multiplier vector at z*, but this would imply
c;(z*) = /\’; = 0, contradicting assumption A6.

Let Z) denote a basis for the null-space of Vé(yx), the Jacobian of the active constraints
at yx, and Z* denote the cor.esponding basis at #*. Among all possible bases, Z; is selected
to have continuous first derivatives in a ball around z*. It follows from A4 and the fact the
active set is constant that such bases exist.

For any element of the sequence y; and for * we have from (1.1)

ZIVF(y) =0 and  ZYVF() = 0.
The Taylor series expansion of Z;{VF(yk) around z* gives
0 = ZIVF() = ZL(VF(yi) — Ve(yr)TAY)
= 2*T(VF(*) - Ve(a*)TN) + (VZ(2*)(VF(z*) - Ve(a*)TA*)
+ 2L, X))k - ) + ol — <)), (3.22)

where L(z,A) is the Lagrangian function of NP. Using (1.1) in (3.22), and dividing by
llyx — *|| gives
*
T Ye — r
Z¥ V2L(z*, M)6k = o(1),  where = § = ———r. 3.23
(@, X")65 = 1) e (3.23)
Let ¢ denote the subset of constraints active at z* and yx. If € is sufficiently small then
b, satisfies

é(u) = 0 = Ve ) (g — o) +o(llye — ) = Vé(a")bk = o(1). (3.24)

Finally, for any convergent subsequence of the bounded sequence {6}, with limit &, we
have from (3.23) and (3.24),

Z*TO (W)= 0,  Vi(z")s=0,

contradicting assumption A7. @

This result, together with A2, implies that the number of KKT points lying on any
compact region is finite. The distinctness and finiteness of the KKT points implies the
existence of € > 0 such that for any two KK'T points, say z¥ and 2%, we have ||z} —z}|| > 2¢*.
It follows that if ||z — z*|| < €, where 2* is a KKT point nearest to zx, then ¥ is unique.

We now analyze the sequence of search directions {px}. The following result shows that
as pr — 0 we get close to KKT points of NP and we only need to consider values pj obtained
as the minimizers for the corresponding subproblems. We complete this result by showing
that a small value of ||pk|| also implies that the correct active set at 2* is identified, in the
sense that the active QP constraints at py correspond to the active NP constraints at z*.
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Lemma 3.7. If along a subsequence py — 0 then along this subsequence ||z\ — z*|| — 0,
where z* is a KKT point nearest to zy. For k large enough, ¥ is unique, pi is the QP
minimizer and the correct active set at &* is identified.

Proof. A subsequence such that p, — 0 exists if and only if a subsequence exists such
that pr — 0 and the active set at py is constant. Let {r} denote the sequence of indices for
such a subsequence.

From the definition (2.21) of p, it follows immediately that A.p, + ¢, > 0. From p, — 0
and assumption A3 it must hold that ¢ — 0 and p, — 0.

From (2.5) we have

ATr, — g, — H,p, =0 and 7X(Apr +e¢) = 0. (3.25)
Since p, — 0 it follows that
ATz, —g. -0, 7lc, -0 and ¢ — 0. (3.26)

We now show that for large enough r that p, must have been computed as the minimizer
for the QP. It follows from p, — 0 and ||d,|| = 1 that either there exists K such that for all
r > K we have v, = 0 or 7, — 0 (see (2.24)). If we assume the latter it follows that

min(¥,,%-) — 0.

e If %, — 0 along a subsequence, then from (2.25) along this subsequence we will have
for some constraint j

ch(xT)T(ﬁT + '—Y'rdr) + Cj(l'r) =0 and (71'1')]' =0,

which implies that

contradicting assumption A6.
e If 4, — 0 along a subsequence, then from (2.22),

o)
dTH.d,

0,

which implies from condition HC1 and ||d,|| = 1 that ¥/(0) = (H.p, + g:.)7d, — 0.
This result and condition (2.22) on d imply that for some constraint j we have (7, ); <
0, (m,); — 0 and Ve;(z.)Tp + ¢;j(z,) = 0, giving

¢j(z;) — 0 and (m); =0,
and again contradicting assumption A6.

We conclude therefore that v, = 0 for » > K and this together with (3.25) implies p, is the
minimizer of the QP subproblem. For r large enough 7, > 0, which together with (3.26)
and assumption A3 implies ||z, — z*|| — 0, where 2* is the nearest KKT point to z,. For
7 large enough z* is unique.
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Finally, we prove that for r large enough the active set of the QP coincides with the
active set of NP at z*. First note that for 7 large enough the active set of the QP must
be a subset of the constraints active at z*, otherwise p, is a step to a nonactive constraint
implying [|p;|| > € > 0. Assume that for the subsequence we have Vc;(z,)p, + cj(z,) > 0
and ¢j(2*) = 0. From (2.5b) we must have (r,); = 0, implying from the convergence of r,
that /\’; = 0, but this violates assumption A6, and for r large enough the correct active set
is known. §

This result shows that there is an € > 0 such that if ||px|| < €, then py is the solution of
the QP subproblem, and the correct active set is known.

We have just shown that if p, — 0 along a subsequence, then z; — z*. To show py — 0,
we need a stronger result, giving a relationship between the rates of convergence of the
sequences {zj — 2*} and {px}.

Lemma 3.8. Ifz* denotes a KKT point closest to zk, then there exists a constant M such
that
*
lzx — 27| < M|pk|.

Proof. If {|pk|| > € for all k then the result holds trivially since ||zx|| and ||z*{| are both
bounded. Again let {r} denote the indices of a subsequence such that p, — 0 and the
active set at p, is constant. From Lemma 3.7, for this subsequence we have ||z, — z*|| — 0.
We assume for the rest of this proof that 7 is large enough so that z* is unique, p, is the
minimizer of the QP and the correct active set has been identified.

Let é, A and # denote the corresponding quantities restricted to the constraints in the
active set. From assumption A4 we know that A* has full row rank, and we assume that 7
is large enough so that A, also has full rank.

Let Z, denote a basis for the null space of A,, with uniformly bounded norm and
continuous first derivatives. From the optimality conditions for p,, (2.5), we get

_( Z'H, — Z% g, _ ZT(gr - AZ‘:\*)
h(w)=( A )pr——( s =TT : (3.27)
Since h(z*) = 0, we have from the Taylor series expansion that
hi(z:) = S5((6:);)(2, - &),
where 5;((8,);) = Vhj(z* + (6,);(z, ~ 2*)) and 0 < (8,); < 1. We have therefore

( 2 ) = —S(6,)(z, — %) (3.28)

ér

From (3.22) we get

A(z*)

and assumptions A4 and AT imply that S(0) is non-singular. It follows that for sufficiently
large values of r, 5(8,) is also nonsingular. It then follows from (3.28) that for some positive
constant My,

o= (77

llzr = 2|} < ML 2] g: 1l + & 1)- (3.29)
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From assumption A3, property HC1 and (3.27) it follows that
Ma|lpll > 127 ge [l + &I, (3.30)

for some positive constant Mj.
Since the subsequence {pi} such that pr — 0 is composed of a finite number of subse-

quences for which p, — 0 and the active set at p, is constant, the required result follows
from (3.29) and (3.30). ®

Bounds on the penalty parameter

The conditions we have imposed on the algorithm (and more specifically on the multiplier
estimate) are not sufficient to ensure that the penalty parameter is bounded. However,
bounds on pi are related to the behavior of different quantities in the algorithm, and in
particular to ||px|| and |jex — sk||. The following Lemmas introduce bounds ou the size of pi
in terms of these quantities. We start by presenting the results for those iterations where
the penalty parameter is modified, and then we extend the results to general iterations.

The notation k; is used in all that follows to indicate iterations at which the value of
the penalty parameter needs to be modified.

Lemma 3.9. For any iteration ki in which the value of p is modified,
llex, — sk ll < N and Pkl < N
PkiilCk kil = Pk ||Pk, > y
for some constant N .

Proof. All quantities in the proof refer to iteration k;, and so this subscript is dropped.
From the definition of p, (2.13), and Lemma 3.3 we get

plle=sli? = ¢"p+ 3pTHp+ (22— ) (c - )
< —BipTHp + falle — sll + (27— )T (e — 8) < (Ba + 1122 = e — 1l

where ; and (3, are positive constants. From (3.14) and the above result we obtain the
first bound in the Lemma,

plic = sl < 3B, + Ba. (3.31)
If the penalty parameter needs to be modified, condition (2.11) cannot hcid for p = pi, -1,
and (3.2) implies
#(0) = gTp+ (22— ) (c = 8) = plle - sl* > —3p" Hp.
It follows that
T 1 T T g ¢
gp+3p Hp+(2A—p) (c—s)>0. (3.32)
Replacing in (3.32) the bound for glp+ %pTHp given in Lemma 3.3 we obtain

lle sl > pT Hp. (3.33)

(2X - ¥ (c—s)+ Balle - s|| > BipTHp = 9-‘?1

1
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From condition HC2 we have ||p|'> < (1/8,v#) pT Hp. If we multiply both sides of this
inequality by p and use (3.33) to bound p? Hp, we obtain

Ppe B g Pul3t Br)
P Ps ﬂlﬂwH p“c 3” < ﬂlﬂwH '

where the last inequality follows from (3.31). The second desired bound then follows from
2p2p. 8

We now extend these results io all iterations. To simplify notation, we shall use / and
K 1o denote k; and kj4; respectively. Thus, the penalty parameter is increased at z, and
1, in order vo satisfy -ondition (2.11), and remains fixed at p; for iterations /,..., K — 1.

R 2 .
plipll* < p
l ” IB.wH

Lemma 3.10. There ezists a constant M such that for all l,

k‘+X ‘—l

ok, Y llewprll® < M. (3.34)
k=k;

Proof. For I < k < K -~ 1, property (2.15a) imposed by the choize of ai, and the fact
that the penalty parameter is not increased, imply that

Pk = Skp1 2 -0 P
Summing these inequalivies for k = I to K — 1, 0 < o, < 1 together with (3.3) gives

K-1
Yobuwr Y lowpkl® < 6, — ok (3.35)
k=1

Cousider the term p,(¢; - ¢x ). From (2.2),
po = pF — pAT(c ~ s) + 3p*|lc — s/,

This equation, together with the boundedness of p;|lc; — ;|| and p;|jcx — skl (implied by
pr > p; and Lemma 3.9), and that of the multiplier estimates (Lemma 2.1), implies that
for some M, > 0,

Pi(d) — Px) < My + pi(Fy = Fy). (3.36)

Consider now iterations for which ||p;|| < ¢, so that Lemma 3.7 anplies and p, uas been
obtained as the minimizer for the subprobiem (for all other iterations Lemma 3.9 implies
that p, is bounded, and the result follows from Assumption A3, (3.36) and (3.35)).

Expanding Fj and cx about z,, we get

FK"F) = (I;\——I,)Tg,-{-O(“.’c,—:cKH2) (3373)
ek — ¢ = Az — 21) + Oz, — z&l?). (3.37b)

From Lemma 3.8 we have

e =< M ipell. (3.38)
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As p, was obtained as the solution of the QP, condition (2.5a) must hold with multiplier
vector 7; > 0. This condition together with (3.37a), (3.37b) and (3.38) implies

Fi = Fi = (e = ex)Tr; + O (max(|p: |2, [Ip«l|?)). (3.39)
Using again (2.5),
CITTr! = "PITAJTWI = —ngPI - plTHIpI'

Since p is increased at iteration I, we must have that condition (2.11) cannot hold at that
iteration, implying

¢1(0) = ngPI +(2A, - #I)T(Cl = 81) = pralles = -‘31”2 > —%plTHIpI-
Tlie pre' ious two results imply
PIWITCJ < "'pl%plTHlpl + P1(2)‘1 - P«I)T(CI - 31) - P!PI-:HC! - 31”2a

and this, together with the positive-definiteness of H, (condition HC2), the boundedness
of the multipliers {(condition MC1 and Lemma 2.1) and Lemma 3.9, gives

P:CITWJ < pr(2A; — #I)T(CI - 81) < My, (3.40)

for some My > 0.

Consider now the term ¢, 7T

7, in (3.39). From 7; > 0 we must have
T -T
—PICE T S PiCy T

and from (2.9) we have ||cy|| < |lck — sk|l. Using p; < px and Lemma 3.9, we conclude
that there exists a constant M3 such that

- p,c,\'Tﬂ', < Msj. (3.41)

Finally, consider the third term on the right-hand side of (3.39). It follows {rom
Lemma 3.9 and the relation p; < py that there exitts M4 and Ms such that

P:”I’I“2 <My and pllpill® < Ms,
and hence for some constant Mg
pi0 (max(llp,llz,llp;‘—llz)) < M. (3.42)
Combining (3.40), (3.41) and (3.42), we obtain the bound
pilF; — Fr) < My + M3 + Mg,
which, together with (3.36) and (3.35) implies the desired result. @§
Lemma 3.11. There ezists a constant M such that, for all k,

Prllex — skll < M. (3.43)
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Proof. As in the preceding Lemma, let I = k; and K = ki41. From Lemma 3.9, (3.43) is
immediate for k = I and k = K.

To verify a bound for k = I + 1,..., K — 1 we analyze some intermediate iterations k
and k+ 1. We drop the iteration subscript; also let quantities evaluated at x4+, be denoted
with a tilde.

From (2.8), p;(é; — ;) = min(p,é;,);). Consider the following two cases:

o If p,&; > —|};|, then )
pilf; - 551 < 131 (3.44)
e Assume now that p,¢; < ~|X;]. Expanding the j-th constraint function around z
gives
& = ¢; + aa]p + O(|lep|*).
Rewriting the previous expression, we obtain:

& = (1 - a)ej + a(ajp + ¢;) + O([lepl®). (3.45)
Adding and subtracting (1 — a)s; on the right-hand side of (3.45) gives
& = (1-a)(¢j - ;) + (1 - @)sj + alafp + ¢;) + O(|lapll*). (3.46)

Since s;, a;rp + ¢j, @ and 1 — a are all non-negative, we get
(1-a)s; + a(a;rp+ ¢;) 2 0,
and using this bound in (3.46) we obtain
& 2 (1= e)(cj = 55) + Ollapll*). (3.47)

Since we assume p,;é; < —|A;| we have & = & — §; < 0. Using this bound and
1 - a <1in (3.47) we get the following inequality:

—& = &1 = 1&; - §| < =(1 = a)(¢j = 5;) + Ollepl|*) < le; = sj| + O(llep]*).
Multiplying both sides by p, gives
pilE; = 51 < pilej = s;1 + piO(llepl®). (3.48)
For a given iteration k < K — 1 and constraint j we have one of the following two situations:

e For some iteration |, I < | < k, p;,(c1); > —|(A1);|. If we add (3.48) for iterations
r=1,...,k -1, and use (3.44), we get

k-1 k-1
pil(er); = (sk)il < pal(en); = (i1 + PO lerpel?) < 1(N)s1 + £:O(Y Newpelf?).
r=l r=l

The boundedness of p,|(ck); — (sk);| then follows from Lemmas 2.1 and 3.10.

e For all iterations [, I < ! < k we have p;(¢1); < —|(A1);]. We add (3.48) for » = [ to
k — 1, to obtain

k-1
pil(er); = (sk);] < puller); = (s1)51 + PIO(Z llarpr|‘2)a
r=I

and now the desired result follows from Lemmas 3.9 and 3.10. §
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Boundedness of a;

Given the result of Lemma 3.10, all that is left to esvablish the global convergence of the
algorithm is to show that the steplength is bounded away from zero. As a consequence of
the weak assumptions imposed on the multiplier estimate yy, it is not possible to show that
such a bound exists. However, it can be proved that the bound does exist if there is no
subsequence along which ||pg]| — 0. This is enough to prove convergence.

We first derive a bound on the norm of the second derivative along the linesearch.

Lemma 3.12. For 0 < 0 < ag, there ezists a positive constant N such that
$(8) < N.
Proof. We again drop the subscript £. From (3.1),
V2F — T;(A = plcj — 8))V2¢; + pATA  —AT  —pAT

VzLA - “'A 0 ]
—pA 1 pl

From the definition of ¢, given in (2.2), we get
¢"(8) = p"Wp + Tjp(ci(8) — 5;(8))p"Ve;(0)p
+ p(A(B)p - 0)T(A(B)p - q) — 26T(A(B)p - q), (3.49)
where the argument 6 denotes quantities evaluated at z 4 6p, except for s(8) = s + 0g and
W = V2F(8) — S.(A; +88)Vc;(8).

We now derive bounds on the terms on the right-hand side of (3.49). For the first term

we can write
p"Wp < Niflp?l| < My, (3.50)

for some constant My, using assumption A3, the boundedness of ||A[| and ||£]] (condition
MC1 and Lemma 2.1), and the boundedness of ||p|| (Lemma 3.5).
Expanding ¢; in a Taylor series about z gives
¢;(6) = cj(2) + ba;(2)"p + 56%pTV¢;(6;)p.
where 0 < 6; < 6. Using (2.10) and multiplying both sides by p gives
p(c;(8) — (5;(8)) = p(1 = 0)(cj(x) — 55) + p 367D V2e;(6;)p.

Lemma 3.11 implies that plc;(z) — s;| is bounded, Lemma 3.10 implies that p||8p||* is
bounded for § < «, and assumption A3 implies that [|V2c;(8;)|| is also bounded. Conse-
quently,

pl(e;(8) = 5;(0)] < N,
where N is a constant. This result and Lemma 3.5 imply the second term in (3.49) is also
bounded, that is,

le(q(f)) — 55(0)2772¢;(6)p] < Nallpll* < Ma, (3.51)
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where Ny and M, are constants.
Consider now p||A(6)p — ¢||?, the third term on the right-hand side of (3.49). Using
Taylor series, we have
a;(z + 6p)"p = alp + 0p"V?¢;(6;)p, (3.52)

where 0 < §; < 6. From (2.10) and Lemmas 3.10 and 3.11, we obtain
pllA(B)p — ql|* < Ms, (3.53)

where M3 is a constant.
From (3.52), (2.10), assumption A3 and the boundedness of ||£|| (Lemma 2.1), the final
term on the right-hand side of (3.49) is also bounded,

- 2T(A(0)p—q) = ~26"(Ap— ) + 326897V 7¢;(0;)p < 26T(c )+ Nallpll* < My, (3.54)

J

where N4 and M, are constants.
The desired bound follows from (3.49), (3.50), (3.51), (3.53) and (3.54). 1

Lemma 3.13. For anye > 0, if ||pk|| > € there exists a value &(€) such that o) > @(e) > 0,
where ay is the steplength computed by the algorithm.

Proof. We drop the subscript k& corresponding to the iteration number. We start by
proving that & (as defined in (2.14) and (2.15)) is bounded away from zero if ||p|| > €. If
condition (2.14) is satisfied at a given iteration, then & = 1, trivially bounded away from
zero. We assume therefore that & is chosen to satisfy (2.15).

In the proof of Lemma 3.1 it was shown that the linesearch procedure was well defined,
and in particular, that there exists a value & € (0, 1] satisfying (2.15) and such that condition
(2.15b) is not satisfied for any value of a € [0, &); see (3.5), (3.7) and (3.6).

From the Taylor series expansion of ¢’ at & we have

¢'(a) = ¢'(0) + ag"(6),

where 0 < § < G. Therefore, using (3.5) and noting that n < 1 and ¢'(0) < 0, we obtain

_#@-90) _,_1#0) .
ORI TON (359

(Since & > 0, @ must be such that ¢"(8) > 0.)

If ||p|l > ¢, then from (3.3) we have that |¢'(0)| > 18,,n€?, and from Lemma 3.12 we

also have ¢"(8) < N, implying
. ﬂsvH 2
a > -2—1\7—6 .

If condition (2.16) is satisfied for &, then the previous bound holds for a. Otherwise, for
some constraint j we must have h;(&) = c;(z + ép) + B, < 0 (using the notation introduced
in Lemma 3.1). If h;(0) > %ﬁc > 0, from the continuity of h there exists a value @ < & such
that h;j(@) = 0 and h;(a) > 0 for all « € [0,&]. From the mean-value theorem

hi(@) — hi(0) _ h;(0)
h;(0) LA

a =
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for some 6 € [0,a]. But as [h}(8)| = |a;(z + 8p)T'p| < K for some K > 0 (from assumption
A3 and the boundedness of ||p||, Lemma 3.5), we have

Be

Y > .
“Z 9K

(3.56)

-

If h;(0) < r}ﬂc, we must have from (2.4b),
R5(0) = alp > —¢j = e — h;i(0) > 3B..

From h;(0) > 0 and hj(&) < 0 there must exist a value & < d such that h(&) < 0, implying
the existence of & < & such that h%(&) = 0 and (@) > 0 for all @ € [0, G] (also, hj(a) > 0
for all @ € [0,@]). From the mean-value theorem,

Ri(&) - K(0)  K(0)
RYE) RO

a=

for some § € [0,a]. But A%(0) > 36, and |RY(8)| = |p" V2c;(z + 0p)p| < K for some K > 0,
from assumption A3 and the boundedness of ||p||, Lemma 3.5, implying again

@ > —=. (3.57)

2K
The procedure to construct o will ensure that a > 712-61, and so the result presented in
the Lemma will hold. §
We can now prove the global convergence theorem for the algorithm.

Theorem 3.1. The sequence {x} generated by the algorithm converges to a unique KKT
point for NP.

Proof.
It follows from Lemma 3.8 that to prove |lzx — 2*|| — 0, it is sufficient to show

lim |kl — 0. (3.58)
k—o00

If (3.58) is true then there exists K such that ||zj —z*|| < € /2 and ||pi|| < € for all k > K,
where 2¢* is the minimum distance between two KKT points. It follows that z* is unique
for K > K (the sequence converges to the unique KKT point nearest to z,),
implies that for some k > K that either [lzx — z*[| > €/2 or [|pi|| > ¢*. Consequently, to
prove the theorem it is sufficient to show (3.58) is true.

If {[px|| = 0 for any k, the algorithm terminates and the theorem is true. Hence we
assume that [|pk|| # 0 for any k. If pr /4 0, there must exist a subsequence {p;}, and a
positive constant ¢, such that ||p/|| > ¢ for all . In this case, from Lemma 3.13 there will
exist a uniform lower bound on ay, a; > @ > 0, but then

otherwise it

pilleapil| > aepy — oo,

contradicting the fact that pi|laxpk|| is bounded (Lemma 3.10).
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In the bounded case, we know that there exists a value g and an iteration index K such
that p = p for all k¥ > K. Again, the proof is by contradiction. Consider only indices [ such
that | > K. Every such iteration after K must yield a strict decrease in the merit function
because the termination condition for the linesearch (2.15a), together with the boundedness
of the steplength (from Lemma 3.13 and ||pi|| > €) and (3.3) imply

di(ar) — i(0) < cyj(0) < —3o@Bau|lpll* < 0.

The adjustment of the slack variables s in (2.7) can only lead to a further reduction in the
merit function, as L, is quadratic in s and the minimizer with respect to s; is given by
¢; — Aj/p. From the fact that the penalty parameter is not modified, for iterations from the
subsequence we have

d(z141) — $(z1) < ~LoaBsune’.

Therefore, since the merit function with p = § decreases by at least a fixed quantity at
every step in the subsequence, it must be unbounded below, contradicting (3.18). It follows
that (3.58) must hold.

Having established the global convergence of the algorithm, the next step is to show that
the multiplier estimate Ay — A*. In order to prove this result, we need to strengthen our
conditions on the multiplier estimate uj (if ux does not converge then Ax will not converge
either). The additional condition is

MC3. ||ux — A*|| = O(||zx — 2*||), where A* denotes any multiplier vector associated with
a KKT point closest to zx.

This condition requires that 3, in condition MC1 be chosen so that
B 2 1IN (3.59)

Estimates satisfying MC1, MC2 and MC3 may be obtained by computing a multiplier
for the “active” constraints (say, least-squares estimates of least length), and expanding to
the full multiplier space by augmenting this vector with zeros corresponding to the inactive
constraints. If such an estimate does not satisfy MC1, then a suitable estimate may be
determined by appropriate scaling. The multipliers at the stationary point of the QP also
satisfy the three conditions. Note that if z* is not unique then from Lemma 3.6, lze—2*| > ¢
for some € > 0, and MC3 holds for any vector pi that is bounded.

We first show that under the stronger conditions on pi the steplength ay is uniformly
bounded away from zero.

Lemma 3.14. Under MC3 and all earlier assumptions and conditions, oy > @ > 0.

Proof. We again drop the subscript k. We first tighten the bound on ¢"(8) given in
Lemma 3.12. From (3.50) and (3.51), we have that the first two terms on the right-hand
side of (3.49) are bounded by a multiple of ||p||*. From (3.52),(2.10),(3.54) and Lemmas 3.10
and 3.11 we may obtain the following bound on the remaining terms on the right-hand side
of (3.49)

p(A0)p - ¢)(A(B)p - q) — 26T(A(8)p — q) < p(c—3$)T(c—s)+26T(c—s)+ M||p||*, (3.60)
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for some constant M.
Observe that from (3.2) and (2.4b),

ple—3)(c—s)+26T(c—s) = ¢ (0)+pTg + uT(c - s)
~¢'(0)+ p'(g = ATu) — pTs. (3.61)
Using Taylor expansions and Lemma 3.8 it follows that
1 T B
P9 = ATw) = p'g" - A* ) + O(lIplI*) = (3" = WA p + O(lIp)*).

From this result and MC3 there exists a constant M such that

p(g — ATu) < Mjp||. (3.62)

From pg — A*, strict complementarity at a KKT point (assumption A6), and the fact
that the correct active set is identified for ||p|| small enough (Lemma 3.7), we eventually
have 2 > 0 and pTs > 0. Consequently, it follows from (3.49), (3.50), (3.51), (3.60), (3.61)
and (3.62) that

94 (0) < =41, (0) + N Ipll”
for some constant N > 0. This result and (3.3) can be used with (3.55) to imply that there
exists a value & satisfying (2.15) such that

ﬂsvH“p2” - (1 _ ’f}) ﬂsuH
(ﬂsv” + QN)HPZ(I (ﬂsvll + 2N)

The desired result then follows from an argument identical to that given in the final part
of Lemma 3.13. @

This lemma also implies that the effort needed to compute the value for the steplength
is uniformly bounded in the algorithm. We now establish the convergence of the multiplier
estimate.

&> (1-n) > 0,

Theorem 3.2. Under MC3 and all other assumptions and conditions,

lim Mg = A5
Proof. From (2.27),
k
Akt = 3 Vikki, (3.63)
7=0
where
k
Tk = o, e =0 [ (1=al), 1<k, (3.64)

r=l+1

with aj = 1 and a] = o, [ > 1. (This convention is used because of the special initial
condition that Ay =ug.) From Lemma 3.14 and (3.64), we observe that

0<a<a; <1 foralll, (3.65a)
k
Yok =1, (3.65b)
=0
e < (1 =a)k ) I<k, (3.65¢)
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From condition MC3 we have
i = X+ Mydity, (3.66)

with |Mg| < M, 8 = ||z — 2*|| and ||tx|| = 1. From Theorem 3.1, for any € > 0 we can
choose a value K so that, for k > K,

|Miby| < %e. (3.67)

Given any € > 0, we can also define an iteration index K3 with the following property:

€

k<
VS T+ 28,)
for k > K5+ 1. Let K = max(K,, K3). Then, from (3.63) and (3.66), we have for k > 2K,

(1-a (3.68)

K k
Mept = Domkm+ D (A + Midin).
1=0 I=K+1

Hence it follows from (3.65b) that
K k
Megr = X =Dl = A+ Y Myt
1=0 I=K+1

From the bounds on ||y (condition MC1), ||t]|, and (3.59), we obtain

K k
[Mkgr = A< 280D e+ Y vl MGy (3.69)
=0 =K 41

Since we assume k > 2K, it follows from (3.65a) and (3.65c) that

K K K
S S(-aft < S -a) K < (K + 1)1 - @)F.
=0 =0 1=0

Using (3.68), we thus obtain the following bound for the first term on the right-hand side
of (3.69):

K
2ﬂuz71k < %f- (3°7O)
=0
To bound the second term in (3.69), we use (3.65b) and (3.67):
k k
Y viIMidi] < ge Dy < e (3.71)
1=K +1 1=K +1

Combining (3.69)-(3.71), we obtain the following result: given any ¢ > 0, we can find K
such that
Ak = Xl <€ for k>2K +1,

which implies the desired result. |
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4. Rate of convergence

In this Section we shall show under additional assumptions on the multiplier estimate that
the algorithm converges at a superlinear rate, independently of the asymptotic behavior of
the penalty parameter.
Since py — 0, we may assume without loss of generality that py has been obtained as
the minimizer for the QP subproblem, and that the correct active set has been identified.
We again start by presenting an outline of the steps taken.

e Bounds on the rate of growth of the penalty parameter introduced in Lemmas 3.9,
3.10 and 3.11 are tightened.

— In Lemma 4.1 we prove that at all iterations at which pg is increased (if we have
an infinite sequence of such iterations)

2
pellex — skl = 0 and  piflpell — 0.
— In Lemma 4.2 and Lemma 4.3 these results are extended to all iterations.
o In Lemma 4.4 it is shown that /Lz'sk = 0 for sufficiently large k.

o Lemma 4.5 proves the superlinear convergence of the sequence {xy + prp — «*}, under
certain assumptions on Hy.

e For k sufficiently large, ax = 1.
- Lemima 4.6 gives the relationship between the descent in one iteration ¢p(1) —
#1(0) and the initial derivative in the linesearch ¢}(0).
~ Theorem 4.1 shows that a, = | for all sufficiently large k, implying superlinear
(1()“V(;‘rg(‘."(:(‘-.
o Finally, Theorem 4.2 shows that under an additional condition on the multipliers, the
penally parameter remains bounded.
The first two Lemmas introduce refinements on the results presented in Lemmas 3.9,

3.10 and 3.11, and their proofs are based on the corresponding proofs for these Lemmas.

Lemma 4.1. If k; — oo, where k; denotes an iteration at which the penalty parameter is
increased, then

lim pylle, — skl =0 and  lim pyllpgll* = 0.

[— 00 {—00
Proof. We drop the subscript k; in what follows.

Since p is the minimizer of QP, condition (2.5a) holds for a nonnegative vector 7. From

(2.4b) and (2.5a) we have g'p + %pTHp = —nT¢ and using this result in the definition of

py (2.13),
plle = s||* = -:L-pr]'llp +@2A=p—-m)T(c—s)—aTs <[22 = ju = ||| = s]|.
From (2.12) we have p < 2p, and using Theorem 3.2, MC3 and m, — A we obtain

m pg,llek, — skl € 2 lim (|20, = pg, = 7g |} = 0. (4.1)
=00 =00

Finally, from (3.33) and (4.1) we have limio, pk,||pg,||* = 0, completing the proof. @
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Lemma 4.2. For general iterations k, limy_,o, pk||px]|? = 0.

Proof. Define I = k; and K = k4.
If p is bounded, the result follows from Theorem 3.1. If p is increased in an infinite
number of iterations, from (3.35) and Lemma 3.13 we only need to show that ¢; — ¢, — 0.
From the boundedness of ||Ak|| (Lemma 2.1), Lemma 4.1 and the fact that p; < py, we
have

pilAT(er = s))l < 2| A4l lles = il = 0,
pl|)‘KT(CK —si)| < 2/’K||’\K|| “CK - skl = 0.

We also have from Lemma 4.1,
priller = s = 0, piillex — skll* — 0.
These results and the definition of ¢, (2.2), imply
pi(¢r = ¢x) — pi(F1 = Fi) = 0. (4.2)
We now analyze the asymptotic behavior of the term p,(F; — F ). We have
Fy = Fy = (¢; = cx)Tr, + O (max([lp|1% o).

Using the same arguments as in the proof of Lemma 3.10, inequality (3.40) also holds in
this case, and from (3.14),

pimier < pilles = silll|2A = il € 3Bpiller = sill. (4.3)
A second bound for this term can be obtained from m; > 0 and s; > 0, implying
pimiler 2 pym (e = 1) > —pallmililles = sill. (4.4)
Since ||7,|| is bounded, it follows from applying Lemma 4.1 to (4.3) and (4.4) that
p,7r,Tc, — 0. (4.5)
From (2.9), the boundedness of ||r,|| and Lemma 4.1,
- PICKTWI < P!CK_TTFI < pillmilillex = skll = 0. (4.6)
We can again use Lemma 4.1 to obtain
p:0 (max([lps|1*, Ipll*)) = 0. (4.7)

From (3.39), (4.5), (4.6) and (4.7) we have that the sequence {p,(F; — F )} is bounded
above by a sequence that converges to zero. It then follows from ¢, — ¢, > 0 and (4.2) that
pi(¢; — ¢x) — 0 and the desired result follows from (3.35) and Lemma 3.14. &

Lemma 4.3. For general iterations k, limg_ prllck — sk|| = 0.
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4. Rate of convergence

Proof. If p is bounded the result follows from c* > 0, X* > 0, T = 0, Theorems 3.1
and 3.2 and (2.8).
We assume therefore that p is increased an infinite number of times. Consider two cases:

e If constraint j is such that c’g > 0, then )\3f = 0 and from (2.8),
plej — sj| = | min(pej, Aj)l,
but from Theorem 3.2 and assumption A8, eventually A; < pc;, implying
plej = 551 = |A;] = 0.
e For those j such that c; = 0, implying /\*; > 0, consider iteration indices large enough

that the correct active set is identified (Lemma 3.7), implying a;l‘]H- c; = 0. From the
Taylor series expansion for ¢; and the boundedness of the steplength,

cj(wr + axpr) = ej(zk) + crar) Pk + O(Nawpill®) = (1 = aw)ej(zx) + O(llpell®),

Recurring this relationship for &, I < k < K, we get

k-1 k-1
pr(ex); = paler); = pi [T = a)(en); + 2, O (3 [Imill?),
l:[ {=I
but as 0 < o < | we must have
k-1 ‘
pel(en);l < pil(er);] + /’zO(Z Hmllz)- (4.8)
=1

From c’; = (), assumption A6 and (2.8), eventually it must hold that p,|(¢;); ~(s,),] =
pile(i);], and using Lemma 4.1, (4.8) and Lemma 4.2,

pl(er)il — 0.
From this result, definition (2.8), assumption A8 and Theorem 3.2, for k large enongh
pel(er); = (sk);l = T min(pe(er)j, (M)l = 1pa(er);| — 0.

This completes the proof. @

Lemma 4.4. For k large enough plsy = 0.

Proof. If constraint j is such that (:j > 0, then for k large enough (er); > ¢ > 0, and
(ak);l'pk + (ek); > 3¢ > 0. It therefore follows from MC2 that (s); = 0.

If j is such that (’; = 0, then from assumption A6, /\’; > 0. Also, from Lemma 4.3,
pr((er); = (8k);) = min(pi(er);, (Ax);) — 0, and for large enough k Theorem 3.2 will imply
prler); < (Ak);; these two results and definition (2.7) imply

(Ak);

sk); = max (0, (ex); — ——L) = (
(), = max (0, (cx), = =) =0,
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completing the result. @

To prove that the algorithm converges superlinearly it is necessary to assume that Hy
converges to an approximation of V2_L(z*,X*) in some sense, where L(z,)) denotes the
Lagrangian function for problem NP.

Define Wy, as

Wi = V2, L(zk, \) = V2 F(zr) — O (M) Vagei(zi). (4.9)
;

We impose the following additional condition on H:

HC3. Following Boggs, Tolle and Wang [BTW82], we assume

1 ZE(Hi — Wepkll = ollpxl),

where Zj is a basis for the null space of Ag, the Jacobian of zj of those constraints
active at ¢*, that is bounded in norm and has its smallest singular value bounded
away from 0.

The proof proceeds by first showing that the sequence {zj + px — z*} converges super-
linearly, and then proving that a steplength of one is eventually attained.
The following lemma corresponds to Theorem 3.1 in [BTW82].

Lemma 4.5. Under assumptions A1-AT7, and conditions MC1-MC3, HC1-HC3,
Iz + pi ~ z*[| = o(l|zk — =*|)). (4.10)

The results presented on bounds for the growth rate of the penalty parameter allow us
to obtain an asymptotic expansion for the quantities involved in the linesearch termination
criterion. We want to prove that condition (2.14) is satisfied for k sufficiently large. It
is shown in the following lemma that the satisfaction of (2.14) is directly related to the
asymptotic properties of T} = pZ(gk - AZyk) + kapk.

Lemma 4.6. The following relationship holds:
$k(1) — k(0) = 364(0) + 3Tk + o([Ipell?).

Proof. In the proof we drop the subscript k£, and we denote quantities associated with
Tk + pr by a tilde, that is, F' = F(zk + px) while F = F(zy).
From the definition of the merit function (2.2) and (2.1) we have
$(1)=¢(0) = F— F—pl(e~s~q)+ A(c~9)

+Le-s—qTe-s-g) - Elc-9)l(c-s). (4.11)
From the Taylor series expansion of ¢ around z and (2.10) we have

& —s;—q; =& ~cj—alp=3pTV2ep + o(|Ip]|*),
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and using this result with the Taylor expansions for ¢ and F in (4.11) we obtain

$(1) — ¢(0) = ¢'p+ 3p"VEFp — 151, P"V2eip + A(c - 5)
+ E5(p"V%eip)? - £(e = 5)T(e — 5) + o{lIpll*). (4.12)
From (2.6), condition MC3 and Theorem 3.2 we have
=A+&=A+0o(1). (4.13)

Also, from Lemma 4.2 and assumption A3 we have ppTVZc;p = o(1). Replacing these
results in (4.12) and reordering the terms we obtain

$(1) - ¢(0) = ¢Tp+ 1pTV2Fp — 15X pTV2¢e;p + 324 — ) (e — 5)
+4uTle = ) = E(e = 5)T(e— ) + ol lIpI1).

I

Using (4.9) and (3.2) to simplify this expression,
B(1) - 6(0) = 16'(0) + £ (6"p + P"Wp + uT(c - 5)) + o([pI|?). (4.14)

Finally, from condition MC2 we have uTc = —uTAp, and from Lemma 4.4 we know that
eventually uTs = 0, implying in particular that uTs = o(||p||?), and replacing these bounds
in (4.14) we have

$(1) = $(0) = 36'(0) + 1 (p"™Wp + p"(g — AT)) + o(plI*),

completing the result. §

The main result of this section is given in the next theorem. It is shown that, if condition
MC3 is replaced by a stronger condition, then after a finite number of iterations a steplength
of one is taken for all iterations thereafter, implying that the algorithm achieves superlinear
convergence. The new condition is

MC3. || = X'l = ol|lzx — 2*)-

It is possible to prove superlinear convergence without the need to strengthen the con-
ditions on the multipliers. It is shown in [Pr89] that there exists a constant M such that if
pk > M, condition MC3 is sufficient.

Theorem 4.1. If MC3’ and all other assumptions and conditions hold then eventually a
unit step is always taken and the algorithm converges superlinearly.

Proof. As in Powell and Yuan [PY86], observe that the continuity of second derivatives
gives the following relationships:

Il

F(zk + pr) F(zy) + %(g(zk) + g9(zk + Pk))TPk + o(|lpell*)

, (4.15)
ek +pe) = clze) + 5(Alze) + Alze + i) ok + olllpel).
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From the Taylor series expansions ve have

F(ze+px) = F(zi) - g(zx)Tpe + 3pTV2F(zi)pi + o ||pr,'?)

) 4.16
zet ) = o(ze) + ai(zk) Tk + 1IV2e,(mps + oflpill?), 16

and since (4.10) and Lemma 3.8 imply g(zx+px) = g* +o(llpxll), a;( .« +px) = a’;-}-o(l]pku),
we get from (4.15) and (4.16) that (we drop the subscript k)

P’V Ep = (¢ - 9)"p + ollpll) (4.17a)
p’Vie;p = (d} - a;)Tp + o([|p]l?). (4.17b)

Condition MC3, Theorem 3.2 and (4.13) give 3_; A; pT‘Vzcjp =35 M pTV2e,p + o{ilpl|?),
and if we apply this bound to the result of adding (4.17a) to (4.17b) multiplied by A;, we

have
o T ~
pWp=pT(g" - A" u) - pT(g - ATu) + o([|p}l?). (4.18)
(‘ondition MC3’. (1.1) and Lemma 3.8 imply
T T .
plg" — A* ) = pTAY (N — ) = o(|Ipil?),

anda from (4.18).
. Trrs R T
= p"Wp+pTg— ATu) = pT(g" = A* p) + o(|Ipl|?) = o(llp]|?). (4.19)
From Lemina 4.6 and (4.19) we get
é(1) = 0(0) = 1¢'(0) + o(||pl|?).

Sinice ©'(0) < 0. the above relationship and Theorem 3.1 imply that condition (2.14) is
eventually satisfied {or & sufficiently large.
Regarding condition (2.16), we can use Taylor series expansions for ¢; to write

o)z + p) = ¢;(zk) + aj(zic + 6;p6) i (4.20)
for some 6, € [0. 1], and
a]('rk + (}JPk)TPk = a)(Ik)Tpk + szz‘»‘](lk + éjPl:)Pk~ (4.21)

for 8 <[0.6,]. i
Using Theorem 3.1 and the boundedness of ||V2e,(zx + 8;pi)|| (from Assumption A3
and “emima 3.4) in (4.21). for k large enough

ay(zk + 6,p6) i > a;(zi) pic - 18..
and from (2.4b).
T T. 1 - 1
“_](I‘{ + OJPk) Pk > a)(Ik) Pk — 71}(‘ > —C](‘Lk) - 'fﬁr

Replacing this bound in (4.20). we obtain for all k large enough c(zy + pi) > —%;}pe. and
condition (2.16) will also be satisfied, giving z¢4; = z4 + pi. The required result then
follows from Lemma 4.5.
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Boundedness of the penalty parameter

The last result in this section shows that, if condition MC3’ is replaced by a slightly
stronger condition, the penalty parameter needs to be modified in at most a finite number of
iterations (and consequently it remains bounded). The criterion presented will be satisfied,
for example, by the least-squares multipliers computed at z, + pk.

Theorem 4.2. If the multiplier estimates py in the algorithm satisfy
Ik = Nl = OCllex + px = =), (4.22)

and all other assumptions and conditions hold then there ezists a constant M such that
pr < M jorall k.

Proof. We may assuine k large enough so that ax = 1. From (2.5), (2.4b) and r}{:sk > 1),
we have
9lpk + pEHpr = prAkTy = —clmi < —(ex — 8x) T, (4.23)

where 7, denotes the QP multipliers at iteration k. From (3.2), (4.23) and the fact that a
unit steplength is accepted, it fellows that

&4 (0) =< —piHepk + 120k—1 = stk — Tillller — sill — prllex — sell. (4.24)

From (4.22), HC2, Lemma 3.8 and ||m; — A*|| = O(||pkl|) we must have

¢ : T
N2pk-1 = pie = mell € My |Ipell < May/ P Hipk

for some positive constants My, M. It then follows using a? + b? > 2ab that

201 — px = millllex = skll < Moy/pTHipiller — sl < 3pfHipe + S M3 |lex — skl
implying from (4.24) that
$(0) < —3piHipk + (3M] = pi)llex — sill®.

From this inequality it follows that if pi > %M;‘, condition (2.11) will be satistied. and
the penalty parameter will not be increased. Given that we are using the rule (2.12) for
updating pg, it must hold that px < M. &

5. Other Merit Functions

Several merit functions have been proposed and analyzed in the literature {a review can
be found in Powell [Po87]). The question arises if the convergence results using early
termination in the solution of the QP subproblem depend on our specific merit function. or
if they are fairly independent of this choice. We shall show in this section that the choice
of merit function is not critical. What we present is how to adapt our SQP algorithm to
the use of other merit functions rather than examine other methods explicitly to see if the
particular QP subproblem posed and the manner the search is performed can be adapicd
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to the use of an incomplete solution. For example, we still perform a search in the z and A
spaces. Slack variables do not appear in the merit functions we shall consider, consequently
the search in the space of the slack variables is no longer required.

We have selected as examples the study of two particular merit functions. The first one
corresponds to a class of merit functions that includes among others the ¢; merit function
analyzed in Han [Han76], Byrd and Nocedal [BN88] and Burke and Han [BH&9]. This
general merit function takes the form:

$(z,A) = F(z) + ATe™(2) + plle™ ()|, (5.1)

where an £, norm (1 < p < oo) is used, and c;(x) = max(0, —c;(z)). The second merit
function we consider is

$(z,A) = Fz)+ Ale™(2) + 3plle™(2)I13. (5.2)

This merit function has been studied among others by Powell and Yuan [PY86] (applied
to the equality-constrained problems only) and Schittkowski [Sch81]. Unlike either of these
algorithms, where the multiplier estimate A was treated as a function of the iterate A(x).
we do not explicitly define the form of the multiplier estimates although the ones used in
both methods satisfy the criteria MC1, MC2 and MC3. Indeed the one used in [PYR6]
also satisfies MC3’.

We still assume A1-A7 hold for the problem. However, when the merit function (5.1)
is used, the multiplier estimate py is only reqaired to satisfy MC1. This condition is trivial
to satisfly. For example, we may choose Ay = 0 and jx = 0 making the search in the
multiplier space void. Such a choice reduces (5.1) to the well-known ¢; merit function and
our algorithm becomes very similar to that analyzed in [Han76]. When (5.2) is used, we
assume conditions MC1 and MC2 hold. We have also assumed in the proofs that Ay > 0
and up > 0. We omit the proofs that the iterates lie on a compact set. For the first merit
function (5.1) this proof is relatively straightforward, since it will be shown that the penalty
parameter is bounded. The proof for the second merit function (5.2) is very similar to that
for the Augmented Lagrangian merit function.

The criteria (2.15) for the choice of steplength ay assume the merit function has contin-
uous first derivatives. This property does not necessarily hold for the merit functions under
consideration. Therefore we use the following criteria for determining a value vy,

Define ]

Ay = !]Z‘Pk + (& - /\k)l‘('~(:l:k) = pille™(zp)l]. {(H.3)

We start by selecting a value &y satisfying

Sk(ak) = ooy + dppr, Ak + Gpbi) < Or(0) + 0k Dy, (5.1)
and either
g 2y >0 (5.D)
or
Qg > Yyl and Gr(ak) > dp(0) + ooy, (5.6)

where 0 < v/ < v, < 1,0 < <o < 1and ar > 0. For a discussion of these criteria and

a1 r o~ SR AN PN HE | ~et TONAOT]
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In addition to these conditions, we also also want to limit the size of the infeasibilities. If
&y satisfies condition (2.16), then we let ax = éx. Otherwise, we compute ax by performing
a backtracking linesearch from & until conditions (5.4) and (2.16) are both satisfied.

Our preference for the criteria given in Section 2 is based on our belief that in practice
they lead to a better choice of a. In the definition of our algorithm we could have used
other steplength criteria without impacting the convergence properties.

The following basic relationships will be used to establish the convergence results,

¢ (z + ap) < |cj(z + ap) - ¢j(z) — aq; p| min(0,c;(z) + aa; p) (h.7a)

—min(0, ¢j( x)+aa p) < (1 - ajc; (z) (5.7b)
~wlAp < —|le™(z) ”l (5.7¢)

-QAp < - (z). (5.7d)

In these inequalities A = Ve(z). Also, Q0 is a diagonal matrix such that —Q Ap is an element
of the subdifferential of ¢~(z 4+ ap) at @ = 0. The diagonal entries of Q take values in [0, 1],
are zero whenever c;(z) > 0 and take the value one whenever cj(z) < 0. Finally, wl Ap
represents an element of d¢(0), the subdifferential of p(a) = |le=(z + ap)|li at 0. The

elements of w are given by
(.‘; i—-1
wj = (R);; T

and have the property that wTe(z) = —||c=(2)||:.
Consider now the case when ¢ has been defined from (5.1). From our assumption that
Ak > 0 and (2.4b),
AL Agp + k) > 0

for all k. It follows from this inequality and the relationships given in (5.7) that
$1(0) = gipk + &le™ (zk) — MQuArpr = prwfArpr < Oy

We select pi such that
A < *'Pk”kl’k (H.8)

This rule is analogous to the ones used in Byrd and Nocedal [BN8&], and Burke and Han
[BH8Y.
The first step is to establish that such a value of p exists. From (3.13) and (5.3) we have

Ak < =5+ B0)pEHip + Balleg || = (&6 = M) e = pllegll. (5.9)
If we now use (2.6), property MC1 and Lemma 2.1 to bound the multiplier term
(& = M) e < Nk = 2Xellllei 1| < 3Bullei s
we obtain in (5.9)
Ak < =5+ BopLHEpe + (B2 + 38, = p)llei .

Defining p, = (2 + ‘i/j,“ for any value p > Pu condition (5.8) is satisfied for any k. This

l'(ﬁllll dlSU HII(JW\ Llld! bllt" vn‘nn un 14 WI}} Teiiain Luuu\!‘\! in ”" “"""‘”"“



Theorem 5.1. The algorithm modified to use the merit function (5.1) converges globally.

Proof. Given the bound in Lemma 3.8, it suffices to show that ||pk|| — 0.

As p cannot grow without bound, any strategy for increasing p by a finite quantity
whenever it is required to increase p implies that there exists an iteration value K such that
pr = px for all k > K. We consider only iterations of this form. For k > K, from (5.4),
(5.8) and condition MC2,

dlak) — Plok-1) < apnAp < —1fsur k|| pell®.
From the boundedness of ¢ (assumption A3), it follows that
agllpell* = 0. (5.10)

If ||pkl| — 0, convergence follows from Lemma 3.8. Otherwise, if for a subsequence
lpell > €, from (5.10) we must have ey — 0 along the subsequence, and from the termination
conditions for the linesearcii (5.4), (5.5) and (5.6), &x — 0, as the step required to satisfy
condition (2.16) is uniformly bounded away from zerc (see (3.56) and (3.57)). Finally, from
(5.6) we must also have & — 0.

In the following relationships we drop the subscript k corresponding to the iteration
number, and we denote by a tilde the value of functions evaluated at = + ap (i.e.: ¢ =
c(z + ap)).

From the definition of the merit function (5.1),

#(a@) — ¢(0) = agTp+ A& — ™)+ a€Te —aplle||
+(F = F—ag'p)+ pllle|| = (1 = @)e”])).

For the last term, from (5.7a) and (5.7b), it follows that
le=ll = (1 = a@)[le™|| < ||é — c — aApl|,
and

$la) — $(0) < ag'p+ A& =)+ ate” — aplle”|

+(F - F—ag'p)+pl|é - c — adp||.

If we use again (5.7a) and (5.7b) on the terms associated with the multiplier estimates
(given that by assumption A + @€ > 0), and the Taylor series expansions for /' and ¢, we
obtain

$(@) - ¢(0) < ag'p+ (A + @6)|e; — ¢ — @alp| + (1 — a)ATe”
~NTe™ 4 a(1 - a)ETe — aplle™ || + O(llapll?).

After simplifying this expression we have

—~

) = B(0) < &(gTp + (6 = N)Te™ = plle™ll) + a2l [N+ O(llopl?). (5.11)
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Replacing this bound in (5.6) implies
0< (1-0)ah +a*(e |l lIéll + O(llanl®). (5.12)

Since from (5.8) and condition HC2, A < —fBsu||p||?, and we have assumed that lIpll > €,
it follows by taking limits along the subsequence that

0 < —(1-0)Bue.
However, this is not possible, implying ||pk|| — 0 for the whole sequence. W
Consider now the second merit function (5.2). The subgradient along the search direc-

tion at (@, Ax) is given by

$1.(0) = glpk + e (zi) — M Arpr — pre™ (21) Akpi < Ay,
where

Ak = gipe + (6 — M)Te™ (2k) = pille™ (@l "

Note that Ax > 0 implies

(QUAk + pre; ) (Axpe + k) > 0.

In this case it is not immediately evident that pi remains bounded. The convergence
proof we give is similar to the one introduced in Section 3. The definition of p given in that
section will be preserved, except ¢ — s is replaced by ¢™.

Theorem 5.2. The algorithm modified to use the merit function. (5.2) converges globally.

Proof. Again, from Lemma 3.8 it is enough to show that ||pk|| — 0.

First assume that p is bounded. The argument used is similar to the one in Theorem 5.1.
From (5.4), (5.8), condition MC2 and the boundedness of ¢, (5.10) must hold also for this
case.

If ||pk]l — 0, convergence follows from Lemma 3.8. Otherwise, if for a subsequence
lpx|| > €, from (5.10) we must have a; — 0, and from condition (5.6) and the boundedness
of the step to satisfy (2.16), & — 0.

From (5.2), (5.7a) and (5.7b), we also have (we again drop the index k in the following
relationships, and use a tilde to indicate values at = + &p)

#(a) — $(0) < agTp+ AT(E™ — ™)+ ag%e - p(a - 3a*)e|?
+pllé - ¢ - aApl|(3l1g - c - &Apl| + |(c + 34p) ")
+ (F - F - &ng)i

and again using (5.7a) and (5.7b) on the terms associated with the multiplier estimates, we
obtain

6(a) - $(0) < a(g%p + (€~ N)Te™ = plle™|12)
+allem |l (llell + $olle™N) + OCllanl). (5.13)
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Replacing this bound in (5.6) implies
0 < (1-0)aa +a|c™ | ([l€ll + dplle™ll) + OClapl). (5.14)

Since from (5.8) and condition HC2, A < —f,,4]|p||?, and we have assumed that [|p]| > €
and p is bounded, it follows by taking limits along the subsequence that

0 < —(1=0)Bue.

However, this is not possible, which implies ||pk|| — 0 for the whole sequence.
Assume now that pj, grows without bound. In this case we have that for all iterations
where the value of the penalty parameter is increased

prllepll < Ki o and  pyllpkll? < Ka.

The proof of this result is basically that of Lemma 3.9. From these bounds it is possible to
show that we must also have

pellpell® < K

for all k (the proof is similar to the one for Lemma 3.10), irplying px — 0 and the conver-
gence of the algorithm. 1

6. Numerical Results

In this section we present numerical results obtained from an implementation of our algo-
rithm. As a first step we have modified the code NPSOL. We have called the modified
routine INPSOL. Apart from the definition of the search direction all other aspects of
INPSOL are identical to those of NPSOL. A detailed description of NPSOL is given in Gill
et al. [GMSW86a). It should be noted that NPSOL does not incorporate linear constraints
into the merit function. An initial point is obtained that is feasible with respect to the linear
constraints and thereafter feasibility is retained (by incorporating the linear constraints in
the QP subproblem). On many practical problems the feasible region with respect to the
linear constraints is compact. On such problems this approach ensures assumption A2 is
satisfied, and assumption A1l is implied by A3.

The purpose of the testing reported is to demonstrate that the efficiency and robustness
of the modified algorithm are comparable to those of NPSOL. Naturally, we can only test the
hypothesis on the domain of problems NPSOL is designed to solve, namely problems having
a small number of variables and constraints, although on these problems the opportunities
for improvement are limited, as we discuss later. What this implementation really tests
is whether the introduction of flexibility in the determination of the search direction has
a significant cost. The parameter . was set to infinity to avoid differences with NPSOL
arising due entirely to the linesearch.

The search direction

The algorithm described in Section 2 allows for considerable flexibility of design. We de-
scribe here the specific choices made in our implementation. The search direction py is
computed according to the following steps. (The subscript k£ is dropped from now on.)
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An initial feasible point for each QP subproblem, py, is obtained following the same
procedure as NPSOL. No special effort was made to satisfy conditions (2.18) since on
the problems tested no failure was detected that could be attributed to the size of

[Ipoll-

The active-set method used in NPSOL was terminated at p, the first stationary point.
The multipliers 7 at p are then computed. Define # as #; = 7;{|q;||.

Let €,, denote machine precision. If

Vi, ;> —vem, (6.1)
then p is taken as the search direction.
If (6.1) does not hold a step that moves off a subset of the active constraints is

computed. To identify the set of active constraints to be deleted, define my;, =
min; 7;, and introduce a vector e; as

] llagll i &5 < 1073 T, .
(e:); = { 0 otherwise. (6.2)

There is also a limit of 50 on the maximum number of constraints to be deleted. If
(6.2) is satisfied by more than 50 active constraints, only the ones having the smallest
multipliers are deleted. For most problems this limit has no effect, since the total
number of constraints is less than 50.

The direction d that moves off the selected constraints is obtained as the least-length
solution of the system Au = e; ; that is, we define

d=Y(AY) e,
where Y denotes a basis for the range-space of A7.

We obtain the search direction p from (2.21), as

[ A I < Bl + 3,
- i otherwise,

where 7 was defined as in (2.24) with 7, = 10!° and S, = 100 (with this value the
step p + 4d is accepted in nearly all cases).

Finally, the multiplier estimate used to define the linesearch is taken to be 7 if p = p.
Otherwise, it is taken to be the least-squares estimate pu, obtained from

AATu, = Ag.
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Test problems

The two algorithms, NPSOL and INPSOL, have been compared by solving a collection of
114 problems from the literature. The problems have been obtained from the following
sources:

o Problem 1 is the example problem distributed with NPSOL; its description can be
found in [GMSW86a). Problems 3 and 4 are slight reformulations of the same problem,
where the bounds —1 < z3 < 1 have been replaced by the constraint z2 < 1. Problem
3 uses the starting point

iz 2112 11
3)3°1003°3°3'37 3 3/

o Descriptions for problems 6 and 1215 can be found in [MS82]. The version of problem
6 considered is the one corresponding to a value 7' = 10. Problems 12 and 13 start
from point (d) for Wright No. 4 as indicated in the reference, while problems 14 and
15 start from points (a) and (b) for Wright No. 9, respectively.

o A description of the SQUARE ROOT problems (17-20) and of EXP6 (9) can be found
in Fraley [Fra88].

e Problems 21-30 were obtained from Boggs and Tolle [BT84].
o All problems having names starting with “HS” are from Hock and Schittkowski [HS81].

¢ Problems 85-95 can be found in Dembo [Dem76].

All the above problems have been used in the past to test NPSOL. It should be noted
that the problems in this group are small; the average number of variables is 10, and the
average number of constraints is 6. Nevertheless, many of these problems are considered
hard to solve. Moreover, for some of these problems the assumptions made to establish
the convergence results fail to hold; for example, in some cases the Jacobian of the active
NP constraints at z* is singular, or no feasible points exist for some QP subproblems. In
problem 42 no feasible point exists for NP.
The algorithms have also been tested on another group of problems.

o The structural optimization problems 99-114 are described in Ringertz [Rin88]. The
letters “I” and “E” in the problem name indicate if the formulation used included
explicitly the displacement variables (“E”) or eliminated them in advance. Also, the
following number (10, 25, 36 or 63) denotes the number of bars in the truss considered.
Finally, whenever a number is included at the end of the name (006, 040 or 060), the
initial point taken has been modified to be z; = 6, 40 or 60 respectively.

These problems have been introduced due to the atypical behavior of quasi-Newton SQP
algorithms on them. For this group, the ratio of QP to nonlinear iterations is large when
compared to the size of the problem; on the first test set (problems 1-98) the average ratio
for NPSOL is 2 QP iterations per nonlinear iteration, while on problems 99-114 the average
ratio is 30.
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The normal behavior of NPSOL on the first set of test problems is to require a relatively
large number of QP iterations in the first few nonlinear iterations. Typically, the number
of QP iterations declines exponentially until near a KKT point, when only one iteration is
required. The STRUC problems depart from this “standard” behavior, in the sense that the
number of QP iterations declines much more gradually. (Although only one QP iteration
is required in the end, most nonlinear iterations require more.) This offers the possibility
of observing the reductions that can be achieved by using the early-termination criterion,
with limited distortion from the asymptotic behavior of NPSOL.

Finally, the problems in this second group are larger than the ones presented above;
the average number of variables is now 55, and the average number of constraints is 100.
For all the reasons mentioned, this set of problems provides a better environment in which
to test the ability of the proposed early-termination criterion to reduce the number of QP
iterations.

Computing environment

Version 4.02 of NPSOL was used in these comparisons. For this test set, all parameters
used in the code have been fixed at their default values (see [GMSW86a]). No attempt was
made to improve the results by selecting a different set of parameters. It would be difficult
to compare the relative effort to adjust input parameters for the two algorithms. The runs
were performed as batch jobs on a DEC VAXstation II with 5 Mb main memory. The
operating system was VAX/VMS version 4.5, and the compiler used was VAX FORTRAN
version 4.6 with default options.

Results

The results obtained from running both algorithms on the test set are presented in Table 2.

The parameters chosen to characterize the relative performance of both algorithms have
been: the number of outer (nonlinear) iterations for each problem; the number of calls to
the routine computing the values of the objective function, the constraint functions and
their derivatives (function evaluations); the total number of inner (QP) iterations for the
problem (this includes the number of iterations necessary to compute a feasible point); and
the running (CPU) time needed to solve the problem. The results corresponding to both
algorithms are given as a single entry in the tables, with the figures separated by a ”/”
symbol, in the form

NPSOL result/INPSOL result.

Given that most of the problems are not convex, the algorithms may converge to different
KKT points. Three such events occurred. Another possible outcome is failure—that is,
the algorithm terminates without finding a solution, because the iteration limit has been
exceeded, because no significant progress can be made at the current point with respect to
the merit function, or because the objective or constraint functions need to be evaluated at
a point for which they are not defined in the code. Such failures are indicated by “--".

For the set of 114 problems, NPSOL was able to find a KKT point in 107 cases, while
INPSOL was able to solve 105 problems. We should emphasize that only the default value
of the input parameters were used. Undoubtedly adjustment of the input parameters on the
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problems that failed would have led to more successes. The figures illustrate the reliability
of INPSOL.

Table 1 presents a summary of the results for the four quantities monitored in Table 2.
The average values have been computed as the geometric means for the ratios of the values
for NPSOL and for INPSOL; that is, averages larger than one indicate that the correspond-
ing value for NPSOL is larger than the value for INPSOL. Also, the averages exclude those
problems where one of the algorithms failed. Separate entries have been provided for prob-
lems 1-98 (the smaller problems), and for problems 99-114 (the structural optimization
problems).

TaBLE 1
Average Behavior: NPSOL vs. INPSOL

Problems
All 1-98 99-114

Nonlinear iterations 988 .979 1.044

Function evaluations | .994 .999 .963

QP iterations 1.190 | 1.112 | 1.884

CPU time 1.043 | 1.022 | 1.200

We now comment briefly on the implications of these results.

o The early-termination rule seems to behave very well regarding the numbers of non-
linear iterations and function evaluations; even if we are now using a search direction
of “worse quality” than in NPSOL, the numbers are very close for both algorithms.

¢ The number of QP iterations is reduced by 20% for the complete set. When judging
this figure we must take into account that the problems are small, implying that
the number of QP iterations required per nonlinear iteration is also small. (In fact,
the average value for the test set is 5.6 QP iterations per nonlinear iteration.) The
opportunity for improvement is correspondingly limited. Moreover, both codes use the
active set at the solution of the previous QP subproblem as a prediction for the correct ‘
active set in the current subproblem, resulting in a small number of QP iterations close
to a KKT point. As a result, significant savings achieved by incomplete solution of
QP subproblems in the early iterations are masked by a large number of subproblems
requiring only a few QP iterations. As an example, for problem 98 the largest number
of QP iterations needed in any nonlinear iteration is reduced from 57 for NPSOL to
15 for INPSOL. This effect is much less clear when we look at total numbers of QP
iterations (244 for NPSOL vs. 170 for INPSOL). Recall that it is necessary in any
implementation to limit the number of iterations taken to solve the subproblem. This
large reduction in the maximum number of iterations is encouraging. Moreover, it
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indicates that INPSOL and NPSOL took quite different paths to obtain a solution
on many of the problems. In the light of this fact the similarity of performance is
quite remarkable. Finally, the early-termination rule still requires a feasible point,
and the feasibility phase is the same as in NPSOL. When this phase accounts for
most of the total number of iterations, as with the STRUC problems, the possibility
of improvement is further diminished.

Nonetheless, it should be noted that for problems 99-114 the improvement obtained
is significantly greater than 20%, as the mean ratio is now 1.88; in fact, when we look
only at the larger problems, the relative performance of INPSOL improves markedly.
This offers the promise that for even larger problems the results obtained may he
substantially better than the values shown above.

The CPU time required by INPSOL is lower than the time for NPSOL, but hy a
factor that is much smaller than for the number of QP iterations. This is dne not
only to the fact that function evaluations can be expensive when compared to the
effort to solve cach QP subproblem, but also to some details in the implementation
that have been chosen to affect the number of QP iterations, even at the expense
of running time. For example, the multiplier estimate used for the linesearch (the
least-squares multiplier) is expensive to compute when many constraints are deleted
in the last step, as the factorization for the Jacobian of the active constraints must
be updated. There are still options to be explored that might reduce the CPU time
for the modified algorithm.



TABLE 2
Numerical Results

Nonlinear ~ Function QP CPU
No. Problem name iterations evaluations iterations  time (s)
1 NPSOL SAMPLE PROBLEM 12/13 16/18 45/34 3.69/3.61
2 SINGULAR 15/15 16/16 4/4 1.03/1.05
3 HEXAGON 15/16 21/23 32/29 4.41/4.41
4 HEXAGON (ALT. START) 11/11 16/14 35/26 3.56/3.26
5 LC7 7/9 9/11 13/16 .76/.95
6 ALAN MANNE'S PROBLEM 17/17 18/18 40/37 21.13/21.92
7  ROSEN-SUZUKI 8/8 11/11 9/9 81/.81
8 QP PROBLEM 8/10 9/11 23/15 1.10/1.04
9 EXP6 33/53 35/57 38/57 1.96/3.08
10 STEINKE2 —*/5 —/6 —/14 —/.87
11 NORWAY 4/6! 5/7 34/13 1.23/.65
12 MHW4 10/10 18/15 14/12 1.31/1.25
13 MHW9 30/19t 56/28 42/24 3.71/2.31
14 MHW9 INEQUALITY 1 28/23 38/28 59/40 3.41/2.73
15 MHWS9 INEQUALITY 2 41/14! 58/27 80/24 4.83/1.77
16 WOPLANT 25/29 29/33 44/35 6.85/7.17
17 SQUARE ROOT 1 v —)— —— —]—
18 SQUARE ROOT 2 23/23 36/36 0/0 5.01/5 32
19 SQUARE ROOT 3 6/6 9/9 7/7 .95/.94
20 SQUARE ROOT 4 b —)— ] —=
21 BT1 11/11 19/19 11/11 81/.83
22 BT2 9/9 14/14 9/9 71770
23  BT3 2/2 5/5 2/2 .19/.19
24 BT4 12/12 18/18 13/13 92/.92
25 BT5-HS63 6/6 9/9 8/8 .58/.58
26 BTe6-HS77 15/15 21/21 16/16 1.52/1.54
27 BT7 31/31 56/56 32/32 3.36/3.43
28 BTS8 1717 19/19 17/17 1.25/1.44
29 BT9-HS39 13/13 16/16 14/14 95/1.19
30 BTI0 8/8 11/11 0/0 .48/.52
31 BTI11-HS79 9/9 12/12 10/10 1.05/1.06
32 BT12 27/27 57/57 28/28 3.04/3.04
33 BTI13 32/32 44/44 34/34 2.61/2.62
34 POWELL TRIANGLES 23/15 37/16 36/23 3.27/2.28
35 POWELL BADLY SCALED 12/12 15/15 13/13 .85/.85
36 POWELL WRIGGLE 34/32 69/55 60/40 2.77/2.39
37 POWELL-MARATOS 6/6 77 6/6 .44/.44
38 HS72 77 8/8 8/8 69/.67
39 HS73 (CATTLE FEED) 4/4 5/5 4/4 .38/.36
40 HS107 11/11 18/18 27/18 2.77/2.56
41 MUKAI-POLAK 10/10 16/16 13/13 1.08/1.11
42 INFEASIBLE SUBPROBLEM = -—*/—* —)— —]— ]
43 HS26 47/47 64/64 48/48 3.39/3.41
44 HS32 2/4 3/5 3/5 .25/.38
45 HS46 55/55 58/58 56/56 5.26/4.98
46  HS51 2/2 5/5 2/2 18/.14
47 HSs52 2/2 5/5 2/2 .19/.16
48 HS53 2/2 5/5 2/2 19/.16
49 PENALTY1 A 16/16 18/19 77/41 20.01/16.49
50 PENALTY1 B 6/7 14/19 67/32 14.77/11.77
51  PENALTY1C 29/15 85/40 152/65 24.35/11.65
52 HS13 22/19 23/20 13/10 1.29/1.22
53  HS64 29/43 39/62 47/60 2.34/3.33
54 HS65 8/9 10/11 16/16 70/.78
55 HS70 36/—* 39/— 39/- - 3.33/—
56  HST71 5/7 6/9 9/9 .53/.67
57 HS74 10/26 15/48 14/28 1.17/2.68

* Failed to solve the problem.
t Converged to a different minimizer.
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TABLE 2 (CONT.)
Numerical results

Nonlinear  Function QP CPruU

No. Problem name iterations evaluations iterations time (s)

58 HS75 6/8 10/11 7/9 72/.90

59 HS78 10/10 14/14 11/11 1.15/1.15

60 HS80 8/8 10/10 8/8 .92/.92

61 HS81 14/14 20/20 15/15 1.57/1.60

62 HS84 —*/4 —/5 —/9 —7.51

63 HS85 17/14 18/15 33/20 4.00/3.12

64 HS86 (COLVILLE 1 6/7 8/8 11/11 .62/.64

65 HS87 (COLVILLE 6 11/8 18/9 18/14 1.63/1.23

66 HS93 12/12 15/15 14/14 1.36/1.38

67 HS95 11 2/2 1/1 15/.15

68 HS96 1/1 2/2 1/1 17/.15

69 HS97 3/3 6/6 3/3 .40/.41

70 HS98 3/3 6/6 8/8 43/.44

71 HS99 23/—* 44/— 74/— 3.99/—

72 HS100 14/14 29/29 18/18 2.07/2.02

73 HS104 18/18 20/20 23/23 3.36/3.37

74 HS105 43/—* 61/— 97/— 27.14/—

75 HS108 (HEXAGON) 24/32 45/49 57/87 6.78/9.36

76  HS109 11/10 13/11 25/29 3.23/3.26

77 HS110 6/6 9/9 24/15 .78/.69

78  HS111 41/49 64/75 44/52 8.08/9.05

79 HS112 (CHEMICAL EQ.) 19/—* 39/— 54/— 2.78/—

80 HS113 14/16 19/23 38/36 3.12/3.41

81 HS114 18/16 19/24 36/33 3.81/3.60

82 HS117 (COLVILLE 2 17/18 21/27 96/39 6.75/5.34

83 HS118 (LC PROBLEM) 4/4 6/6 20/20 1.35/1.40

84 HS119 (COLVILLE 7) 12/17 16/19 41/47 4.25/5.60

85 DEMBO 1B 281/—* 437/— 296/— 75.46/—

86 DEMBO 2-HS83 4/4 6/6 4/4 .54/.54

87 DEMBO 3 9/8 11/9 37/20 2.01/1.78

88 DEMBO 4A 19/19 23/23 24/24 3.53/3.31

89 DEMBO 4C 13/13 15/15 20/23 3.10/3.20

90 DEMBO 5-HS106 17/18 21/24 30/31 2.90/3.04

91 DEMBO 6-HS116 36/43 96,/69 144/248 21.84/29.65

92 DEMBO 7 19/12 24/15 126/68 15.54/9.82

93 DEMBO 8A 33/42 85/118 105/99 7.52/9.17

94 DEMBO 8B 29/29 69/71 88/73 6.51/6.45

95 DEMBO 8&C 25/27 60/68 89/65 6.19/6.06

96 OPF 18/17 19/18 53/51 468.12/456.10

97 GBD EQUILIBRIUM MOD. 5/6 6/7 37/26 6.22/6.10

98 WEAPON ASSIGNMENT 96/73 98/76 244/170 120.78/114.93

99 STRUCI10KON 18/17 34/30 65/42 13.67/11.73
100 STRUCE10KON 26/29 49/67 87/84 17.68/20.75
101 STRUCI10VAN 23/19 41/34 54/51 16.30/13.85
102 STRUCE10VAN —*/24 —/48 —/91 —/19.44
103 STRUCI25006 42/37 68/62 147/85 92.44/80.99
104 STRUCE25006 20/28 32/36 178/95 357.83/260.79
105 STRUCI25DAT 11/12 19/21 24/22 24.75/27.11
106 STRUCE25DAT 52/21 106/37 687/65 647.13/191.44
107 STRUCI36DAT 23/20 38/34 59/46 120.79/108.02
108 STRUCE36DAT 29/30 53/62 87/90 971.16/1021.87
109 STRUCI63040 117/112 211/202 6116/3091 8182.13/7159.03
110 STRUCE63040 375/—* 794/— 3545 /— 77286.64 /—

111 STRUCI63060 —*/98 —/244 — /3899 —/8281.02
112 STRUCE63060 63/115 150/316 6675/3407  25090.15/33228.42
113 STRUCI63DAT 246/136 354/412 9043/2060  12591.61/11424.54
114 STRUCE63DAT 52/72 86/145 8049/2858 41793.84/22740.66

* Failed to sclve the problem.
! Converged to a different minimizer.
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