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ABSTRACT

Theoretical analyses are developed for the multi-phase deflagration of porous energetic solids,

such as degraded nitramine propellants, that experience significant gas flow in the solid preheat

region and are characterized by the presence of exothermic reactions in a bubbling melt layer at

their surfaces. Relative motion between the gas and condensed phases is taken into account in

both regions, and expressions for the mass burning rate and other quantities of interest, such as

temperature and volume-fraction profiles, are derived by activation-energy asymptotics. The model

extends recent work by allowing for gas flow in the unburned solid, and by incorporating pressure

effects through the gas-phase equation of state. As a consequence, it is demonstrated how most

aspects of the deflagration wave, including its structure, propagation speed and final temperature,

depend on the local pressure in the two-phase regions.
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EFFECTS OF TWO-PHASE FLOW ON THE

° DEFLAGRATION OF POROUS ENERGETIC MATERIALS

P

1. Introduction

The combustion behavior of energetic materials (e.g., solid propellants) has long been of in-

terest in the fields of propulsion and pyrotechnics. In many such applications, it is becoming

increasingly clear that two-phase flow effects play an important role, especially since, during com-

bustion, most homogeneous solid propellants develop thin multi-phase layers at their surfaces in

which finite-rate exothermic reactions occur. In addition, there is a growing interest in the be-

havior of porous energetic solids, since even initially dense materials can develop significant void

fractions if, at any time, they are exposed to abnormal thermal environments. The deflagration

characteristics of such "damaged" materials may then differ significantly from those of the pristine

material due, at least in part, to gas flow in the solid/gas preheat region. The presence of gas in the

porous solid in turn results in a more pronounced two-phase effect in the multi-phase surface layer,

such as in the liquid melt region of nitramine propellants, which thus tend to exhibit extensive

bubbling in an exothermic foam layer. The present analysis is largely applicable to this latter class

of propellants.

Describing phenomena associated with two-phase flow is inherently much more difficult than

analyzing those occurring within a single phase. There are, first of all, certain fundamental diffi-

culties that generally require the formulation of constitutive relations in order to obtain a closed

model (cf. Drew [1], Baer and Nunziato [2]). Second, but of even greater significance from the

standpoint of analysis, is the fact that the degree of nonlinearity in any model is increased by the

appearance of appropriate volume-fraction variables that multiply each quantity associated with

a particular phase. As a consequence, much of the early two-phase work in this area tended to

treat the two-phase medium as a single phase with suitably "averaged" properties (cf. Maksimov

and Merzhanov [3], Merzhanov [4]). This, in effect, requires the velocity (and temperature) of

each phase to be same, precluding many of the predominant effects associated with combustion

processes that involve two-phase flow.

We have recently addressed some of these concerns in several papers (Margolis, Williams and

Armstrong [5], Margolis and Williams [6], Li, Williams and Margolis [7]). To be able to focus clearly

on the effects of two-phase flow, the description of the chemistry was deliberately simplified. In

particular, a one-step exothermic process

R(c)-., P(g) (1)

e

was considered in [5] and [6], where R(c) is the condensed (liquid) reactant, and P(g) is the

gaseous product. Thus, each phase is a pure species, and gas-phase reactions were either neglected
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or assumed to be remote, as was the solid/liquid interface. In [7], a more elaborate mechanism,

motivated by knowledge of nitramine chemistry and given by

R(c) _ P(g), R(c) _ R(g), R(g) --, P(g) (2)

was adopted, where R(g) is a gaseous reactant. In each of these studies, the goal was to clarify

certain two-phase effects associated with different velocities (and, in [5] and [6], temperatures) for

each phase. Though not directly applicable to propellant deflagration, related two-phase modelling

that accounts for velocity differences between phases has been used in the study of filtration

combustion (cf. Aldushin [8], Shkadinsky et al. [9]).

The purpose of the present work is to extend the analysis of [5] in several important respects.

First, we formulate a more complete problem that explicitly includes melting of the unburned solid.

Second, we assume that the unburned solid material has nonzero porosity, resulting in two-phase

flow throughout the preheat and reaction zones. In our previous work, the effects of two-phase

flow were confined to the reaction zone, which would be equivalent to assuming zero porosity for

the solid in the present model. Finally, the fact that the gas phase exists throughout the unburned

solid/liquid material leads us to relax the constant-density assumption that was adopted for the

gas in our earlier work. In particular, we now allow for variable gas density according to a gas-

phase equation of state that allows us to consider the effects of pressure on the various quantities

of interest. These generalizations lead to a number of interesting effects directly attributable to

the influences of two-phase flow (cf. Aldushin and Zeinenko [10]). For the present, we confine our

attention to steady deflagration, leaving consideration of instability and other nonsteady effects

(cf. [6]) for future work.

To put what follows in better perspective, we note that there have been a number of early

investigations specifically focused on the steady deflagration of porous energetic solids. The moti-

vation for the work of Kuo and Summerfield [11], for example, was to explain the high deflagration

velocities often observed for porous propellants. The physical explanation of the source of the

increased burning velocity in this model was later clarified by Ermolayev, Borisov and Khasainov

[12] as arising from compressional heating rather than interphase convective heat transfer, and

our allowance for variable gas density permits inclusion of effects of this type of heating. Ear-

lier theoretical analyses of the combustion of porous propellants were published in the Russian

literature and are cited in [11] and [12]. Later formulations of equations for describing the com-

bustion of porous materials were motivated, like the present work, also by the desire to be able

to calculate unsteady processes as well. In that vein, Gough and Zwarts [13] presented what, at

that time, was the most logical set of conservation equations for combustion of porous propellants,

excluding detonative transitions, and they clearly demonstrated inconsistencies in the equations •

employed in earlier works. Indeed, in a review of research performed prior to 1980, Gokhale and

Krier [14] acknowledge one such inconsistency in a footnote. More recent work by these and other

authors have resulted in improved conservation equations, ultimately leading to the formulation

of Baer and Nunziato [2], which is one that has demonstrated the capability of calculating many
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time-dependent effects, including the transition from deflagration to detonation, and that can be

. , considered to be the most general formulation currently available.

There are many possible pitfalls in attempting to formulate self-consistent conservation equa-

tions for multiphase combustion. For example, in some of the earlier work, there have been
e

attempts to simplify the problem by ascribing the same hydrostatic pressure to the gaseous and

condensed phases. However, in Eq. (10) of our previous paper [5] we have shown that if there is

interphase mass transfer between two phases and the average velocities of the two phases differ,

then the average hydrostatic pressures in the two phases must also be allowed to differ for interface

momentum conservation to be preserved. As the requisite modeling has evolved, such pitfalls have

been recognized and avoided. For example, the approach in the Ph.D. thesis of Gough, cited

in [13], properly takes into account the pressure difference between phases, as does the formula-

tion of Baer and Nunziato [2]. For brevity in presenting the formulation employed here, we do

not reiterate the full equations but instead give only the simplified forms that will be needed in

the subsequent analysis. Thus, for _xample, the condensed-phase pressure will not appear in the

following formulation, since compressibilities of condensed phases are negligible for the problems
addressed here.

2. Formulation

A sketch of the physical problem is shown in Fig. 1. In an unconfined environment, the

- unburned porous solid lies generally to the left, and the burned gas products lie to the right. The

two are separated by a deflagration wave that moves from right to left, converting the former

into the latter. The structure of the combustion wave consists of a solid/gas preheat region, the

melting surface that marks the left boundary of a liquid/gas preheat region, and a relatively thin

exothermic reaction zone in which chemical reaction occurs according to Eq. (1). In what follows,

we will restrict attention to one spatial dimension (_), and use the subscripts s, l and g to denote

solid, liquid and gas-phase quantities, respectively. The porous solid thus extends to _ -- -oo,

where conditions are denoted by the subscript u, while the product gases extend to _ -- +oo,

where conditions are identified by the subscript b. The appearance of a tilde over a symbol (e.g.,

_) will denote a dimensional quantity.

The governing system of equations consists of conservation equations for continuity, momen-

turn and energy in the two-phase solid/gas and liquid/gas regions to the left and right of the

melting surface _ = _,n. Denoting the gas-phase volume fraction by c_, continuity in the region

. 5: > :_,_ is expressed separately for the liquid and gas phases as

. "_[(1-a)Pt]+'_x[(1-ot)Ptfit]=-APt(1-ot)exp-E,t/R°Tt , x,>xm, (3)

_(a_g) +_--_ (c_figfig) =/l/_t(1 -a)exp -Et//_°_ , :_ > 5:,n, (4)
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where _, _, T and _"denote density, velocity, temperature and time, respectively. For simplicity,

we will assume a constant value for _z, but not for _g. As discussed in [5], the evaluation of the

Arrhenius reaction rate is based on conditions (e.g., temperature) in the liquid phase, and may

be interpreted as a contribution to a constitutive relation for that medium. In that expression,
El is the overall activation energy, _ is the universal gas constant, and A. is the exponential

reciprocal-time prefactor which, for simplicity, will be assumed constant. For this type of global

kinetic modelling, however, it may be reasonable to assign a pressure, as well as a temperature,

dependency to 3]. Finally, in place of Eq. (4), it is convenient to use the overall liquid/gas

continuity equation, obtained by summing Eqs. (3) and (4) as

0 0

In the solid/gas region _ < _,_, we assume for the solid phase a constant density ,6, and zero

velocity (_, - 0), with a = a, also constant in this region. Gas-phase continuity for _ < _,_ is

thus independent of the solid phase and is given by

0

= 0, < (6)

Conservation of energy for each phase in the liquid/gas region is given by

where _, _ and _ denote heat capacity (at constant volume for the liquid, and at constant pressure

for the gas, both asstuned constant), thermal conductivity and pressure, respectively, (_ is the

heat release for the global reaction (1) at temperature _, and/_'_ is an interphase heat-transfer

coefficient (cf. [5]). Because of the small Mach number and the small ratio of gas-to-liquid densities

in the problems to be considered, no terms involving the the liquid pressure _ appear in Eq. (7),

and ttze gas pressure _ depends only on t in Eq. (8). We remark that the term involving _ arises

from the contribution to the rate of change of the internal energy of the gas from the sum of the

rate of surface work -O(a_)/O_ and the rate of volume work -_Oa/O_ performed by the gas.

Relating the internal energy (_) of the gas to its enthalpy (h_) according to the thermodynamic

identity _ = h_ - _/_ then results in the first term on the righthand side of Eq. (8).

As in the case of overall continuity, we will use in place of Eq. (8) the overall liquid/gas energy

equation (the sum of Eqs. (7) and (8)), and, in addition, use liquid-phase continuity, Eq. (3), to
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eliminate the reaction-rate terms in this equation and in Eq. (7). Thus, in place of Eqs. (7) and
• (8),we havethe.liquidandoverallenergyequations

o [_,(1- _)(_+_,_,)]+F/ F/ _'(_- _)" _ (9)

O
o_

= _ -a)_- + Aga + a , £:> :_,_.

Ina similarfashion,conservationofenergyinthesolid/gasregionisexpressedas

[_._.(1-_°)_o]- _ _o(1-_.)_

_o[
or"

O [_,(1 a O,_, O,/_e] _g (12)

whereEq. (12)describesoverallenergyconservationandisobtainedbysummingEq.(11)forthe

solidandthecorrespondingequationforthegasphase.

Althoughanalagousequationsmay bewrittenformomentum conservation,theydonotneed

tobeintroducedexplicitlyforthepresentclassofproblems.Asremarkedabove,theapproximation

ofsmallMach numberimpliesthatthegaspressurePeisindependentofthespatialcoordinate.

The gasisassumedtobe ideal,whencePe iscoupledtotheotherfieldvariablesthroughthe

gas-phaseequationofstate,

whereWs isthemolecularweightoftheproductgas.Considerationofcondensed-phasemomentum

leads,inprinciple,toanequationfortheliquid-phasevelocityQ_(cf.[5]).This,however,introduces

considerableadditionalcomplexityintotheproblemandinvolvesintroducingmomentum-transfer

parametersand otherquantitiesthataredifficulttodetermine.Accordingly,earlystudies(cf.

[3],[4])tendedtoinvokethesimpleassumptionthatcondensed-and gas-phasevelocitieswere

- identical; thatis, fi_= Qg.More recentwork,however,has shownthatsuchan approximation

notonlyviolatesorder-of-magnitudeestimatesmade inmomentum conservation[5],butalsofails

. toaccountforpotentiallysignificantphenomenaassociatedwithconvectiveenthalpytransportby

thegasrelativetoenthalpytransportinthecondenseaphases(cf.[10]).On theotherhand,the

approximationthatthecondensedvelocityequalthecondensedmassburningratedividedby the

9
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condensed-phase density is consistent with momentum conservation in the absence of viscous and

surface-tension-gradient forces [5]. In the present context, this implies that, since _, = 0,

fit---'_- - 1 , (14) .

where d_,_/d_ < 0 is the (unknown) propagation velocity of the melting surface. When these forces

are present, viscosity tends to increase fit (since us > ut), whereas surface-tension gradients tend

to decrease _z. Order-of-magnitude estimates suggest that the former effect is negligible, while the

latter may be more pronounced [5], leading to a decreasing evolutionary dependence of _ with

respect to the volume fraction a. Postulating this dependence to be linear, Eq. (14) may be

generalized according to

d_,_ [_. (1-sa)-,] (15)

where an expression for the parameter s > 0, representing the difference between Marangoni and

viscous effects, was derived in [5]. For simplicity, and because of uncertainties in values of surface

tensions, we will mainly confine our attention in the present work to the case s = 0, although

certain results for s _ 0 will also be given.

The above equations now constitute a closed set for the variables a, ug, _, Tg, Ts, _g and

Ps. The problem is thus completely determined once initial and boundary conditions (including

interface relations at _ = _) are specified. In the present work, we will not be concerned with

the initial-value problem, but only the long-time solution corresponding to a steadily propagating

deflagration. Thus, the required boundary conditions are given by

at _ct. for _ < _:,,_; u9 --,0, Tg ---*_'o _ _'_, as _: ---,-co, (16)

(_--,I, _g --*_, Tt--*C_g--,CTbas _:_ +oo, (17)

where theburned temperatureTb istobe determined,and theboundary conditionon pressure

impliesthat_g = I};everywhere.Finally,denotingby 4- superscriptsq11antitiesevaluatedst

= _, thecontinuityand jump conditionsacrossthemeltingsurfaceare

_" =/_+, (18)

T_--Tg+, C_,"=_+ ---T,n, (19)

conservl_tionofcondensed-gildgas-phasemass fluxes,

(?) ( (,o,(1-a,)_t - =(1-a+)_ a+- dt / '
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and conservation of condensed- and gas-phase enthalpy fluxes,

" + " dTl lI - a,) A,-_-'dT']] ' d,%m"(1-a )_"_'[s-=_ -(1 = _,%(1- a,)--TT._
- s=i_ (22)

I
where % is the heat of melting of the solid at temperature T = 0 (% being negative when melting

is endothermic). From EelS. (15), (20) and (21) we obtain the relations

a+_+ __,fi_ = d_ (_,_a+) (24)---_-

_, - a + = s¢_+(1 - _+). (25)

In the limit s = 0, Eqs, (24) - (25) reduce to the statement that a and _g are continuous across

:_= _._.

3. Nondimensionalizations and the Steady-State Problem

In the present work, we will confine our attention to the case of a steadily propagating deflagra-

tion that propagates with the (unknown) speed U = -d_m/dt, which is a convenient characteristic

velocity for the problem. Assuming constant values for heat capacities and thermal conductivities,
we then introduce the nondimensional variables

_,_o0 _,_,0_ T°"'_ _"g & (26)z = .---=.---_. t = = t, Ts,t,g = -'-="-, ut,e = -- Pg = ,

where p_ = _ll¢'g//_°iv. denotes the gas density at the unburned temperature T.. In addition, the

nondimensional parameters

eg _o ¢_ _, _= U= ---:-_,_, _=_ t=- __ _ %=---

_ (2_)A,Kt_
K.9 = AsKs,e Kt_ = N = ----=.. A = .....AsA e_ N

_0 _ ' rb_] 2 ' ROTb ' _sesO 2

are defined. It may be remarked that h is the appropriate burning-rate eigenvalue, the determi-

nation of which will provide the propagation speed U.

• Transforming to the moving coordinate _ = x + t whose origin is defined to be x_n, and

introducing the above nondimensionalizations, steadily propagating deflagrations for the problem

. formulated in Section 2 will be determined as solutions of the steady eigenvalue problem

d

[_(u_+ _)]=o, _< o, (2s)
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d It(1 - a)('ul + 1) + 'P_pg('ue + 1)] -- 0 _"> 0 (29)d_ ' '
4

[(1-a)(u,+l)1--A(1-a)exp N 1-g , _>0, (30)

(1-a.) _ =Ko9(%- To), _<o, (31)

r_ [(1 - a)(u, + 1)(Q 4- b_)] - l_ (1 - (_) + rbK, e(T , - _), _ > 0, (32)

(1-_o)-_ + + NP_._(u. 1) = (1 - o(.)--_- + [a,, , _"< O, (33)

d[r(1-a)(u,+l)(Q+bTt).Pl_a(ue+l)oeT,] _ /(1 a.-_-+la e>0 (34)

pgT, = 1, (35)

Ul= 1(1 - r - s(z), (36)

subject to the boundary conditions

a=a, for _<0; u 9--,0, Tg_To--,1 as _-co, (37)

4

a-*l, Tl -*Tg -* Tb as _ --* -t-oo , (38)

and the melting-surface (_ = 0) conditions

T; =T,+=T.., T; =%+, (39)

_+(u + "t-1) -- a,(u_" -I- 1), a, - o_+ - sa+(1 - o(+), (40)

a + -ao =0, (41)
_=0+ _ _=0-

+, d"]'}I
dT"I [b(1 a+)(l sc_+) (I c_,)]Tr.(42)I(1-a )-_"[_-o+-(1- (z,)-_- - -(1-a,)% + .... ._-o-

We remark that Eqs. (28) - (30) were obtained directly from the continuity equations (3), (5) and

(6), and Eqs. (31) - (34) were obtained from Eqs. (9) - (12) using the gas-phase equation of state

(13).

Thus, the final model for steady, planar deflagration that has been derived is given by Eqs. (28)

- (42). An important and realistic limiting case, which results in some additional simplification,

is to consider the limit of infinitely fast interphase heat transfer (i.e., Kog, Klg _ c¢). In that

limit, Eqs. (31) and (32) imply that T, = Tg _=T in the region _ < 0, and T_ = Tg = T in the

region _ > 0. The model then reduces to a single-temperature model, which is analyzed in the

next section. The case of large, but finite, values of the interphase heat-transfer coefficients, which
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permit separate temperatures for each phase, is then considered in a subsequent section. Both

. . cases will be analyzed in the limit of large activation energy (N :_ 1).

o

4. Analysis of the Single-Temperature Model

In the limit that K,g and Ktg are both infinite, the model (28) - (42) reduces, in the limit

s = 6, to a subproblem written in terms of the single temperature variable T that denotes the

common temperature of all phases at a given spatial location. In particular, we obtain in this limit

the reduced problem given by

+1) =0, _<0, (43)

--'d(1-a)=-rA(1-a)exp[N(1-_-)]d_ , _>0, (45)

(1 - a,)-_ + f/)a,N(u 9 + 11 = (1 - a° +/c_,)-_ , e < 0, (46)
w,

[(_-.)(Q+_.)+_.(_,+_)]= [_(_-.) + , ¢>0, (,,)
" subject to

ug-+0, T _ 1 as _--_-¢x), (48)

a_l, T _ Tb as _--_ +oo, (49)

T=T,_, a=aa, ug continuous at _=0, (50)

dTl_=o+ -(1- aa +/a.) dTI-_-[/(1 - a.) + l'a.] = (1 - a.)[-% + (b- 1)Tin] , (51)_=0-

where the overall enthalpy-fiux conservation condition (51) is obtained from the sum of Eqs. (41)

and (42), and where the final burned temperature Tb and the flame-speed eigenvalue A are to be

determined.

The solution in the region _ < 0, where chemical activity is absent, as well as expressions for

Tb and ug,oo --- ugle=oo, are obtained as follows. From Eqs. (43) and (48), we have

- ug+l=T, _<0, (52)

and hence ug[e.=o =Tm - 1. Equations (44) and (50) then imply

ug+l-a+a'(f-1)T _>0 (53)

13



which, upon evaluation at _ = c¢, determines ug,_ in terms of Tb through Eq. (49) as

1+._,!_- 1)T _- 1. (54)

Taming attention to the energy equations (46) and (47), we may readily perform a single integration

and use Eqs. (52) - (54) to obtain

. art

[1 4- _.(_5- 1)] (T - 1) = (1- c_. + la.)-_, _"< O, (55)

dT

{b(1-_)+b[a+a,(,-1)]}T-[/(m-c_)+/_]-_-(1-a)Q+b[m.a.(,-1)]Tb, _'>0.
(56)

A second integration of Eq. (55) then implies that

[ 1 + ._,(_b.-. 1) _]1+ a,(/- 1)T(¢) - 1 + (T,_ - 1)exp [ , _<0 (57)

which, from Eq. (52), also determines ua(_) in the region ¢ < 0. In addition, subtracting Eq. (55)

evaluated at ¢ - 0- from Eq. (56) evaluated at _ = 0+ and using the jump condition (51), we

obtain a relation for Tb given by

(1 - _,)(Q + 1 + %) + ?_,

Tb- b[1 + c_,(_- 1)] ' (58) .

which, from Eq. (54), determines ug,oo as

1

ug,c_ = _-_(1 - c_,)(Q + 1 + % - Oh). (59)

It can be shown by means of similar manipulations that identical results (58) and (59) are obtained

from the two-temperature model (28) - (42), so the burned temperature and final gas velocity are

independent of the rate of interphase heat transfer.

The expressions (58) and (59) indicate that there are significant variations of the final burned

temperature and gas velocity with pressure, since these quantities depend on the gas-to-solid

density ratio _, which in turn is proportional to i_ according to

--= wgpg = (60)- -o

where "yis the ratio of specific heats for the gas. This important effect arises from the two-phase

nature of the flow, coupled with the thermal expansion of the gas and the porosity of the solid,

both of which strongly influence the degree of gas-phase convective transport of enthalpy relative

to the reactive condensed phase. In the limit i_ --, 0 (i.e., _ --, 0), we see that ug,oo --, c¢ and

Tb "* T_b,where
1

T_b-- _(Q + 1 + %). (61)

14



Since there is effectively no gas-phase enthalpy content in this limit, T_b is also the value of Tb in

'. ' the limit of zero porosity (a, --, 0). Indeed, in dimensional terms, _b = (_,Tu + Q + _,)/cs, which

is equivalent to that obtained in [5], where zero porosity _f the condensed material was assumed

and thermal expansion of the gas was neglected. For nonzero values of pressure and porosity,

some of the heat released by the energetic material must be used to raise the temperature of the

nonreacting product gas in the unburned solid from unity to Tb. Consequently, both Tb and the

final gas velocity us,oo are decreasing functions of the nondimensional gas-phase density P, which

increases with pressure according to Eq. (61). Plots of Tb and us,oo as a function of P for several

values of a, are shown in Figs. 2 and 3, respectively.

In order to determine the burning-rate eigenvalue, we must complete our analysis of the

liquid/gas region {_> 0. In this regard, Eqs. (45) and (56) constitute two equations for T and

a in this region, with us then determined by Eq. (53) and the eigenvalue A det,_=mlined by the

boundary conditions. In order to handle the Arrhenius nonlinearity, we exploit the largeness of

the nondimensional activation energy N and analyze the problem in the asymptotic limit N _ 1.

In the limit N --, oo, all chemical activity is concentrated in a very thin region where T is

within O(1/N) of Tb. Denoting the location of this thin zone by _r > 0, we see that the semi-

infinite liquid/gas region is comprised of a preheat zone (0 < _ < _r) where chemical activity is

exponentially small, the thin reaction zone where the chemical reaction goes to completion, and a

burned region _ > _,. Thus, we conclude from Eq. (45) that

a., (62)c_= I, _>_r,
m

and from Eq. (53),

us = P-l(1 - Q_,+ Q_sP)Tb-- 1 = US,_, _ > Cr. (63)

Since T is within O(1/N) of Tb in the reaction zone, the analysis of this thin region requires the

use of a stretched coordinate (see below). As a result, T is continuous with respect to the O(1)

outer variable _ at _ -- _, and thus the gas velocity jumps across _ = _ by the amount

t_sl(=(+ - %l(=6; = 1(1 - P)(1 - Ot,)Tb, (64)

which is positive assuming the gas density is less than that of the unburned solid (i.e., P < 1).

Finally, using Eq. (62), Eq. (56) may be integrated a second time to completely determine the

outer temperature profile

1) 1
r

T(_)= B + (Tin- B) exp L - a,)+ _ '

(65)

Tb , _ _ _r ,
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where

B -_ (1 - c_,)(1 -t- "y,) -4-PI:_,p
b(1 - c_.)+ P_. ' (66) •

and T({_) for _ < 0 was given by Eq. (57). The location Cr of the reaction zone, which appears as
w

a sheet on the scale of the outer variable _, is thus determined by Eqs. (65) from continuity of T

_r--b(1- a,)q-_ba,In _ .

The determinationofthe burning-rateeigenvalueA, as wellas the spatialevolutionof the

variablesa and us (whicharediscontinuouson the scaleofthe outervariable{_),requiresan

analysisofthethinreaction-zoneregioninthevicinityof_r.We thusintroducea stretchedinner

variablerland a normalizedtemperaturevariableO definedby

T-1

e --- Tb--"_--l' _7--"_(_- _r), (68)

where

/3 -- (1 - Tbl)N >> 1, (69)

and seek solutions in the form of the expansions
,i

a ~ a0 + _-tal +/_-2a2 +... , (70)

ug ,...uo + _-tul + 13-2u2 +... , (71) .

O _ 1 + 13-101 +/3-202 +... , (72)

A .__(Ao +/3-1AI + _-°A2 +... ). (73)

From Eq. (53), the coefficients in the expansion of % are given in terms of the a_ and 0i according
to

1

U0 --"_ [_0 q"O_.(r -- 1)] Tb -- 1,
(74)

Ul'--'-z [ao-i-a.(_--l)](Tb--1)81q- (e--1)Tbal ,
_or

and so forth. Substituting these expansions into Eqs. (45) and (56), collecting coefficients of like

powers of/3, and requiring that the inner reaction-zone solution match with the outer solutions

for _ < _ and _ > _ then leads to a sequence of problems for the recursive determination of the

coefficients in Eqs. (70) - (73). In particular, at leading order the inner problem is given by
A

d___0= rho(1- _o)e°_ (75)
dw

m

[l q- (l'-t)ao] -_=Tb-ldO'D (1 - ao) , (76)
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subject to the matching conditions
i

ao --*o., 01--,g'r/ as ,7..-,-_, (77)

ao..-+ 1, 0t -40 as r/---,+oo. (78)

Here, .D and E are defined as

1 dT[ (79)D - (b - b)Tb + Q, E _ Tb -- 1 d_ _=_;'

where the latter is calculated from Eq. (65).

The problem (75) - (78) is readily solved by employing ao as the independent variable. Thus,

using Eq. (75), F_: (76) may be written as

rAo[l+ (i-/)ao]
d01 D

eel
d_-"_-- Tb_-- l ' (80)

which is readily integrated from _m (at 17= -oo) to any C_o_< 1 to give

D fQ_o d_oeOx(°Le)----"(Tb -- 1)'rAo , l -t- (_'-1)_o"
(81)

" Evaluating Eq. (81) at ao - 1 (at which 01 = 0) thus determines the leading-order coefficient Ao

in the expansion of the burning-rate eigenvalue as
i,

Ao= (Tb- 1)r(t- Z) Z+(i--Z)a° ' (82)

_l,)r/(1 - a.), l= I.

Substitution of this result in Eq. (80) for arbitrary _o then completely determines 01(oo) as

iIn l|

Lt+ (83)el(ao) = lni'- In (i'- l)o,]

{o0-o.)In \1 -a,, '

The determination of a0(r/), and hence Ol(r/), then follows directly from Eq. (75). For example,

. when l'= l (equal gas and liquid thermal conductivities), we obtain

Oo(,) = o, +exp [/-1D(1 -o,)/(Tb- 1)] , (84)
. 1 + exp[/-1D(1 -a,)i(Tb- 1)]

where the matching condition (77) has been used to evaluate the constant of integration.
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From Eq. (82) and the definition of A [see the last of Eqs. (27) and Eq. (73)], the leading-order

expression for the dimensional propagation speed U is given by

02~ r(Tb- 1), e-N
_D_,_, "/(_g' _')' (85) .

where the last factor, which contains the complete dependence of the burning rate on the thermal

conductivlties, is given by

/(I - a.), =

in which the second expression for the thermal conductivity factor / is the formal limit of the first

for the case of equal thermal conductivities of the liquid and gas phases. This factor collapses to that

obtained in [5] in the limit c_, : 0 (i.e., in the limit of zero porosity of the solid). It is readily shown

that .f is an increasing function of both _ and _l individually (i.e., 0//aX 8 > 0 and a//8_ > 0 for

_g/_ _ I), so that the propagation speed increases as the thermal conductivity of either the liquid

or the gas phase increases. In addition, the thermal conductivity of the phase having the higher

thermal conductivity exerts the greater influence on 0 because a higher proportion of the heat is

transferred through the more highly conducting phase. For example, in the limit _t/),8 >> 1, we

have / _ _l/ln[(1 - (x,)_l/_g], while in the opposite regime _g/_, _ 1, we have / _ _¢/ln(1/cx,)

for0 < ao < 1. Finally, we observe that to this leading order of approximation, 0 does not depend

on the thermal conductivity of the solid, and thus the conductivities of the phases that coexist

in the reaction zone play the dominant role in determining the propagation speed. Plots of//_t

versus _/_z, for several values of as, are shown in Fig. 4.

S_.nce 0 is exponentially sensititive to the burned temperature through the largeness of the

nondimensional activation energy N = Et/[l°Tb = Ez/R°TuTb in Eq. (85), the influence of pressure

on the propagation speed is dominated by its effects on Tb (see Fig. 2). Thus, since increases in

pressure serve to decrease Tb in the present problem because of increases in the gas density as

discussed above, the propagation speed is exponentially sensitive to changes in pressure.

The above conclusions regarding the propagation velocity were drawn for the case of equal gas-

and condensed-phase temperatures (resulting from infinitely large values of the interphase heat-

transfer parameters Ka9 and Kog). In the next section it will be shown how small, but nonzero,

temperature differences between coexisting phases affect these results by considering the effects of

large, but finite values of the interphase heat-transfer coefficients. It will be seen that this two-

temperature regime can be treated as a perturbation of the single-temperature model and that the

first effects of finite rates of interphase heat transfer are felt in the two-phase reaction zone.
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5. Perturbation Analysis of the Two-Temperature Model

Returning to the two-temperature model (28) - (42), the first effects of finite rates of interphase

. heat transfer are felt as a perturbation of the single temperature results when Kls is O(3_), where
3 Is the large activation-energy parameter defined in Eq. (69). Thus, we introduce scaled versions

kt8 - k and kjg of Ktg and K,e, respectively, as

Ktg= 32k, K,g= _2k,g, (87)

and seek solutions both outside and inside the reaction zone as expansions in appropriate powers

of 3 -1 . In particular, the outer solutions are now expressed in the form

c_~ o_(°) +/_-2a(2) +... ,

fi-2.v(2)
Tt,,,9 _ T (°) + _- "t,,,_ +"" ,

where, again restricting consideration to the case s = 0, the leading-order terms are identical to

the (outer) solution given in the previous section in the single-temperature limit Kte, K,e --*co,

and perturbations from that soluti(m enter at the same order as the order of Kze and K, 8. That is,
• a (°), u(e°) and T (°) are given by Eqs. (62), (63) and (65), respectively, where, as noted previously,

the burned temperature Tb given by Eq. (58) is independent of interphase heat-transfer effects.

To determine the burning-rateeigenvalue A, weagain considerthe inner reaction-zone problem.

We thus introduce the inner variable r/defined in Eq. (68), but now we must allow for temperature

differences between the liquid and gas phases by defining (and expanding) two inner temperature
variables O and _ as

O= T_- 1 ,_ 1 +_-101 +3-202+... ,
Tb-- 1 (89)

= Tg- 1 ~ 1+ 3-_ +3-2_2 +...
Tb --1

Noting that the relationship (53) for ug remains valid (provided T is re-interpreted as Tg in that

equation), the remaining variables a and u9, and the eigenvalue A, are then expanded as before

[seeEqs. (70) - (74)]. The resulting leading-order inner problem obtained from substituting these

expansions into Eqs. (30), (32) and (34) is given by

da--2°= rAo(1 - ao) e°* (90)dr/
4

d01 : d_l D (1 - c_o) (91)/(1 - 0_0)'_ 4- LO_0-_"= Tb -- 1

d [ dO1] QTb+-bTbl-_d_°l_-_ (1 - a0)-_-j = + rbk(8_ - _,), (92)
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subject to the matching conditions
t

ao--*(_., _1--_01~E_/ as r/-4-oc,
(93)

oo_ 1, 01 _bl _0 as r/---_+oo,

where D and E were defined in Eqs. (79) [with T = T (°) in the latter, which is evaluated using Eq.

(66)]. We observe that the effects of interphase heat transfer, while absent from the leadlng-order
outer problem, are felt at leading order in the inner problem throngh Eq. (91).

The inner problem defined by Eqs. (90) - (93) is similar in form to that obtained in [5], lind

the same solution procedure is adopted here. In particular, having already restricted consideration

to the physically realistic limit of high rates of interphase heat transfer according to Eqs. (87),

we carry this argument one step further by considering the limit in which the scaled interphase

parameter k itself is large. As a result, for I << k _ _, solutions to the leading._rder inner problem

can be sought as expansions in inverse powers of k as

ao ._ X + k-lxl + k-2x2 +"" ,

0_ ,_ O+ k-_r_ + k-2r2 + ... ,
(94)

_)1"" 0 + k -t _)1+ k-202 +"" ,

Ao _ # + k-lpl + k-2#_ +...,

where the fact that _1 and 01 are the same to leading order follows from Eq. (92). Substitution of

these expansions into Eqs. (90) - (93) then gives a sequence of problems for recursivelydetermining
the coefficients in Eqs. (94). The first two of these problems are given by

d_x= r#(1- x)d (95)tiT/
dO

[l+(Z-Ox] = - x), (9o)

ld[dr/ dO] -q' _'_dx(I- X)_"_ = + rb(rl- ¢i), (97)

X"*ao, 0~E_, ¢)1_Tt_O as _-co, (98)

X"* 1, 0--+0, rl _Obl _0 as v}.-.-,+oo, (99)

and dxt ,-._ = r[_(1-x)_',+ _,(1-x)-_xx)d (loo)
. dTt _ d¢)1 dO

/(1- X)-d-_+ tx-_-= (l-i)Xl-_-qlx,, (lOl) "

(_ d, -q2dx'(1 - X)'_"_'j + rb(_ -_2), (102) -

XI ---*O, _b2---,T2 --*0 as r/--, --oo, (103)
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Xl--*0, __--*0 as r/--,+oo, (104)

' where

D (b - b)Tb+ Ct Ct+ bTb (105)
ql--Tb--1----Tb--1 .... ' q_-- Tb-1 "

The subproblem defined by Eqs. (95), (96) and the matching conditions on X and 0 is |denticsl

to t_e leading-order problem (75) - (78) for the single-temperature model. Consequently, the

solution for #, the leading-order (with respect to k) approximation for A0, is given by Eq. (82).

Similarly, the solution for 0(X), the leading-order approximation for both the liquid and gas-phase

temperatures (01 and _1), is given by Eq. (83) with the volume fraction a0 replaced by its
leading-order approximation X. The scaled nondimensional excess rl -_1 of the condensed-phase

temperature over that of the gas phase is then determined from Eqs. (95) and (97) as

n-Ol-_(1-x)e°(X) q2-qll+(l-l)x l+(l-l)x "

Since q2 > ql, Eq. (106) demonstrates that _1-_1 is usually s positive quantity, especially for small

gas-phase conductivities ([ _: l) and/or as X approaches unity. This is physically reasonable since,

according to Eq. (7), the heat of reaction is initially deposited in the condensed phase, and there is

now some resistance to heat trs_nsfer.However, in the event that the gas-phase conductivity were

to exceed that of the liquid (Ill :_ 1), then this temperature difference could become negative for

smaller values of the volume fraction (X) as a consequence of gas-phase heat conduction from the

. hotter, nearly burned portion to the less hot, mostly unburned part of the reaction zone.

To determine the effects of finite interphase heat transfer on the propagation speed, we need

to calculate the correction _1 to the burning-rate eigenvalue, which requires a consideration of the

next-order problem (100) - (104). Again transforming to X as the independent coordinate according

to Eq. (95), Eq. (100) may be solved for rt, and the result may be employed in Eq. (106) to

obtain an expression for _1. Substitution of these results Into Eq. (101) then produces s linear,

second-orderdifferential equation for Xl(X), which when solved subject to the boundary conditions

(98) - (99) and (103) -(104), determines #1. For simplicity, we illustrate this development only for

the case l - l. Consequently, from Eqs. (82), (83) and (106), we have

ql(1 -a,)

0-In( X-O_s)l-as' (107)

ql C_o)(1 x)[q2 2q1(1 X)],. = - ....

where, from Eqs. (95) and (100), we obtain
.m

dXl + Xt #I (108)
_1 = d-"X" 1 -X _ "
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Then, since Eqs. (95), (101) and the above expressions for # and 0 imply that

dn X-_-d_l (X" X_ = 0, (109) '(1 - X)_X-X -t" + (1 -- a,) (_m)(i X)

substitutingthe aboveexpressionsfor _1and_1 into Eq. (109) yieldsa second-orderequationfor
x, _lvenby

2
_XI 1 dXl -t- (1 -(z,)Xl qlq2 ,. 2ql. ,.
-_--I- 1--_ d-"X" (X _.a,)(I _ x) 2 -- _TXtZ-I-a,-2X)-_-_-x_-X)(1-1-2(z,-3X). (110)

The generalsolutionto Eq. (110) is expressiblein closedform as

Xl---(1--X){(X-a,)[cl-l-g(x)]-t-c,[ (X-a.)In(X-a')\l-X -(1-or.)]}, (111)

where Cl and c2 are constants of integration associated with the homogeneous solution of Eq. (110),
and g(X), which arises from the particular solution, Is given by

{ 1ql a° [2(1 + 2ao)q_ - (1 + a°)el h(X) + g [(1 + _o)q2 - 2(1 + 6ao + 2a_)ql] h(X)9(x)= 7_ 3"

1 )+_ [(4+5a°)q_- q2114(x)- _q_Is(x) ,
(112)

where the indefinite integrals In(x) are defined as

In(X) - (1 - X)(X - a,) 2 dx

(/--_ 1 xndx + -.---.-- + --..-.--
-- (1 - a,) 2 1 - X X - (z, 1 - (z, (X - c_,)=

( (_an

) _(x - a.)...an.(X_ ¢=,)_1 -t- \'1 -a. -I- (1 : a.) 2_ (113)- -1 - a=

n-_ n_a_-J-_(x- a.p + 5-_ n!a."-J(x- a.p
+_=_j(j + z)!(n-j - 1)!(1-_.) _=_,-,jj!(n- j)!(1__.)2

ln(1 - X) _" n!(-1)J+l (1 - X)j

(1 - a°) = + 2._j_l ._j!(n - j)!

for n = 2, 3, 4 and 5. We now observe from Eqs. (111) - (113) that the solution for Xz automatically

satisfies the boundm'y condition that X_ --*0 as X --* 1, whereas the condition that Xl vanish as

X --*¢z°determines e2 as

a=z [q2- 2 (1 - _0c_2) q,] (114)c2= 6(_- _:)2

We now may substitute Eq. (111) forXI into the expression (108) for _'1,whereupon the requirement

that _'1vanish as X "-*amand as X --* 1 determines the remaining constant of integration Cl and
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the scaled correction #1 to the burning-rate eigenvalue. In particular, as X approaches unity, the
. latter is obtained directly as

--........... q2- _ql(l- a,)(4+ a,) , (115)

which, since always q2 > ql, is less than zero for all c_e. Consequently, the propagation speed

increases as the resistance to interphase heat transfer increases (i.e., as k decreases, since the

magnitude of the correction to the eigenvalue Ao to leading order is inversely proportional to

k), consistent with the fact that this resistance causes the temperature of the liquid phase to

exceed that of the gas, as discussed earlier. That is, the heat of reaction, which is deposited in

the condensed phase, raises the temperature of this phase over what it would otherwise be if there

were no resistance to interphase heat transfer, thereby increasing the (liquid) temperature-sensitive
reaction rate.

6.Summary

A multi-phase flow theory has been developed for the deflagration of porous energetic materi-

als, such as degraded nitramine propellants, that undergo exothermic reactions in a liquid layer to8

produce gaseous products. Both single- and two-temperature models were analyzed, the latter in a
perturbative fashion for large, but finite, interphase heat-transfer coefficients. The combination of

" porosity and gas-phase thermal expansion was shown to lead to pressure-dependent temperatures,

resulting in a significant pressure sensitivity for the burned temperature, and hence the propagation

speed. Formulas for the latter were derived for the case of steady, planar burning using the method

of activation-energy asymptotics. It was demonstrated that increases in the conductivity of either

phase in the liquid/gas reaction region lead to increases in the burning velocity, while increased

resistance to interphase heat transfer generally has a similareffect by causing the condensed phase,

where the heat of reaction is initially deposited, to have a higher temperature than that of the gas.
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Porous
Unburned

Solid

Meltingfront "_

, Porous
Solid

® ® ®
Fig, 1. Deflagration of a porous energetic material with two-phase flow in both the solid/gas and

liquid/gas regions, with combustion occurring in the latter. The lower figure is a blow-up of

the multi-phase 'q]ame" structure, consisting minimally of (1) a preheat zone containing a

melting front across which the porous solid changes into a bubbly liquid, or foam, and (2)

a thin liquid/gas reaction zone. Additional gas-phase reactions, suppressed in the present

work, may occur in a secondary gas-flame region (3) downstream from the primary two-phase
reaction zone (2).

25



Q ..

_. 6= 1.0
ua *

#= 8.0
7, - -0.5

¢}

7'b
a.=O

ao 0.25

Q
oS

a. = 0.75

o. a, = 0.99
ill

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 2. Final burned temperature T_ as a function of the gas-to-solid density ratio P, where the latter

is proportional to the gas-phase pressure, for several values of the initial gas-phase volume

fraction a,.
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Fig. 4. Dependence of the propagation speed on the gas and liquid thermal conductivities. Shown is

the thermal-conductivity factor f(Ag, _t), normalized by At, as a function of the gas-to-liquid

thermal-conductivity ratio _/_t for several values of a,.
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