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ABSTRACT

Theoretical analyses are developed for the multi-phase deflagration of porous energetic solids,
such as degraded nitramine propellants, that experience significant gas flow in the solid preheat
region and are characterized by the presence of exothermic reactions in a bubbling melt layer at
their surfaces. Relative motion between the gas and condensed phases is taken into account in
both regions, and expressions for the mass burning rate and other quantities of interest, such as
temperature and volume-fraction profiles, are derived by activation-energy asymptotics. The model
extends recent work by allowing for gas flow in the unburned solid, and by incorporating pressure
effects through the gas-phase equation of state. As a consequence, it is demonstrated how most
aspects of the deflagration wave, including its structure, propagation speed and final temperature,
depend on the local pressure in the two-phase regions.
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EFFECTS OF TWO-PHASE FLOW ON THE
'DEFLAGRATION OF POROUS ENERGETIC MATERIALS

1. Introduction

The combustion behavior of energetic materials (e.g., solid propellants) has long been of in-
terest in the fields of propulsion and pyrotechnics. In many such applications, it is becoming
increasingly clear that two-phase flow effects play an important role, especially since, during com-
bustion, most homogeneous solid propellants develop thin multi-phase layers at their surfaces in
which finite-rate exothermic reactions occur. In addition, there is a growing interest in the be-
havior of porous energetic solids, since even initially dense materials can develop significant void
fractions if, at any time, they are exposed to abnormal thermal environments. The deflagration
characteristics of such “damaged” materials may then differ significantly from those of the pristine
material due, at least in part, to gas flow in the solid/gas preheat region. The presence of gas in the
porous solid in turn results in a more pronounced two-phase effect in the multi-phase surface layer,
such as in the liquid melt region of nitramine propellants, which thus tend to exhibit extensive
bubbling in an exothermic foam layer. The present analysis is largely applicable to this latter class
of propellants.

Describing phenomena associated with two-phase flow is inherently much more difficult than
analyzing those occurring within a single phase. There are, first of all, certain fundamental diffi-
culties that generally require the formulation of constitutive relations in order to obtain a closed
model (cf. Drew [1], Baer and Nunziato [2]). Second, but of even greater significance from the
standpoint of analysis, is the fact that the degree of nonlinearity in any model is increased by the
appearance of appropriate volume-fraction variables that multiply each quantity associated with
a particular phase. As a consequence, much of the early two-phase work in this area tended to
treat the two-phase medium as a single phase with suitably “averaged” properties (cf. Maksimov
and Merzhanov (3], Merzhanov [4]). This, in effect, requires the velocity (and temperature) of
each phase to be same, precluding many of the predominant effects associated with combustion
processes that involve two-phase flow.

We have recently addressed some of these concerns in several papers (Margolis, Williams and
Armstrong [5], Margolis and Williams [6], Li, Williams and Margolis [7]). To be able to focus clearly
on the effects of two-phase flow, the description of the chemistry was deliberately simplified. In
particular, a one-step exothermic process

R(c) - P(g) (1)

was considered in [5] and [6], where R(c) is the condensed (liquid) reactant, and P(g) is the
gaseous product. Thus, each phase is a pure species, and gas-phase reactions were either neglected
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or assumed to be remote, as was the solid/liquid interface. In [7], a more elaborate mechanism,
motivated by knowledge of nitramine chemistry and given by

R(c) = P(g), R(c) « R(9), R(g)— P(9) (2)

was adopted, where R(g) is a gaseous reactant. In each of these studies, the goal was to clarify
certain two-phase effects associated with different velocities (and, in [5] and [6], temperatures) for
each phase. Though not directly applicable to propellant deflagration, related two-phase modelling
that accounts for velocity differences between phases has been used in the study of filtration
combustion (cf. Aldushin [8], Shkadinsky et al. [9]).

The purpose of the present work is to extend the analysis of [5] in several important respects.
First, we formulate a more complete problem that explicitly includes melting of the unburned solid.
Second, we assume that the unburned solid material has nonzero porosity, resulting in two-phase
flow throughout the preheat and reaction zones. In our previous work, the effects of two-phase
flow were confined to the reaction zone, which would be equivalent to assuming zero porosity for
the solid in the present model. Finally, the fact that the gas phase exists throughout the unburned
solid/liquid material leads us to relax the constant-density assumption that was adopted for the
gas in our earlier work. In particular, we now allow for variable gas density according to a gas-
phase equation of state that allows us to consider the effects of pressure on the various quantities
of interest. These generalizations lead to a number of interesting effects directly attributable to
the influences of two-phase flow (cf. Aldushin and Zeinenko [10]). For the present, we confine our
attention to steady deflagration, leaving consideration of instability and other nonsteady effects
(cf. [6]) for future work.

To put what follows in better perspective, we note that there have been a number of early
investigations specifically focused on the steady deflagration of porous energetic solids. The moti-
vation for the work of Kuo and Summerfield [11], for example, was to explain the high deflagration
velocities often observed for porous propellants. The physical explanation of the source of the
increased burning velocity in this model was later clarified by Ermolayev, Borisov and Khasainov
[12] as arising from compressional heating rather than interphase convective heat transfer, and
our allowance for variable gas density permits inclusion of effects of this type of heating. Ear-
lier theoretical analyses of the combustion of porous propellants were published in the Russian
literature and are cited in [11] and [12]. Later formulations of equations for describing the com-
bustion of porous materials were motivated, like the present work, also by the desire to be able
to calculate unsteady processes as well. In that vein, Gough and Zwarts [13] presented what, at
that time, was the most logical set of conservation equations for combustion of porous propellants,
excluding detonative transitions, and they clearly demonstrated inconsistencies in the equations
employed in earlier works. Indeed, in a review of research performed prior to 1980, Gokhale and
Krier [14] acknowledge one such inconsistency in a footnote. More recent work by these and other
authors have resulted in improved conservation equations, ultimately leading to the formulation
of Baer and Nunziato [2], which is one that has demonstrated the capability of calculating many
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time-dependent effects, including the transition from deflagration to detonation, and that can be
considered to be the most general formulation currently available.

There are many possible pitfalls in attempting to formulate self-consistent conservation equa-
tions for multiphase combustion. For example, in some of the earlier work, there have been
attempts to simplify the problem by ascribing the same hydrostatic pressure to the gaseous and
condensed phases. However, in Eq. (10) of our previous paper [5] we have shown that if there is
interphase mass transfer between two phases and the average velocities of the two phases differ,
then the average hydrostatic pressures in the two phases must also be allowed to differ for interface
momentum conservation to be preserved. As the requisite modeling has evolved, such pitfalls have
been recognized and avoided. For example, the approach in the Ph. D. thesis of Gough, cited
in [13], properly takes into account the pressure difference between phases, as does the formula-
tion of Baer and Nunziato [2]. For brevity in presenting the formulation employed here, we do
not reiterate the full equations but instead give only the simplified forms that will be needed in
the subsequent analysis. Thus, for example, the condensed-phase pressure will not appear in the
following formulation, since compressibilities of condensed phases are negligible for the problems
addressed here.

2. Formulation

A sketch of the physical problem is shown in Fig. 1. In an unconfined environment, the
unburned porous solid lies generally to the left, and the burned gas products lie to the right. The
two are separated by a deflagration wave that moves from right to left, converting the former
into the latter. The structure of the combustion wave consists of a solid/gas preheat region, the
melting surface that marks the left boundary of a liquid/gas preheat region, and a relatively thin
exothermic reaction zone in which chemical reaction occurs according to Eq. (1). In what follows,
we will restrict attention to one spatial dimension (Z), and use the subscripts s, | and g to denote
solid, liquid and gas-phase quantities, respectively. The porous solid thus extends to & = —oo,
where conditions are denoted by the subscript u, while the product gases extend to & = +o0o,
where conditions are identified by the subscript . The appearance of a tilde over a symbol (e.g.,
%) will denote a dimensional quantity.

The governing system of equations consists of conservation equations for continuity, momen-
tum and energy in the two-phase solid/gas and liquid/gas regions to the left and right of the
melting surface £ = Z,,. Denoting the gas-phase volume fraction by a, continuity in the region
Z > I, is expressed separately for the liquid and gas phases as

. a . . = ) Bor g
210 - p) + o [0 - @] = ~Ap( - d)exp (~B/RR), &>8m, (@)
a ~ a -~ o~ 1~ r 150 ~ ~
— 9 e qUg) = /) - - i) ™m)
at(ap)+6$(apu) Api(1 a)exp( Ei/R T) >z 4)
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where j, @ , T and £ denote density, velocity, temperature and time, respectively. For simplicity,
we will assume a constant value for 5;, but not for 5,. As discussed in [5], the evaluation of the
Arrhenius reaction rate is based on conditions (e.g., temperature) in the liquid phase, and may
be interpreted as a contribution to a constitutive relation for that medium. In that expression,
E; is the overall activation energy, R° is the universal gas constant, and A is the exponential
reciprocal-time prefactor which, for simplicity, will be assumed constant. For this type of global
kinetic modelling, however, it may be reasonable to assign a pressure, as well as a temperature,
dependency to A. Finally, in place of Eq. (4), it is convenient to use the overall liquid/gas
continuity equation, obtained by summing Eqgs. (3) and (4) as

(/] . - (o] n o < o s

In the solid/gas region £ < %,,, we assume for the solid phase a constant density g, and zero
velocity (i, = 0), with & = a, also constant in this region. Gas-phase continuity for & < %, is
thus independent of the solid phase and is given by

ap. g ,. . - a
—é-t§+5§(p,ug)=0, F < Em. (6)

Conservation of energy for each phase in the liquid/gas region is given by

dr.. 21 B ... .1 8 |« Ty
5 [PtCI(l - a)Tl} + Fr [chlul(l - a)T;] ~ % [,\;(1 - a)'bg]

=QAp (1 —a)exp (—Et/fl"f';) + Ky, (f’g - Tg) y E>Em,

-gt: (Bozeody) + % (Bocotisas) - 5% (:\,a%%’-) = aa;’t. +Ry(Bi-T), £>8m, (®
where &, A and 7 denote heat capacity (at constant volume for the liquid, and at constant pressure
for the gas, both assumed constant), thermal conductivity and pressure, respectively, Q is the
heat release for the global reaction (1) at temperature Ty, and K, 1 is an interphase heat-transfer
coefficient (cf. [5]). Because of the small Mach number and the small ratio of gas-to-liquid densities
in the problems to be considered, no terms involving the the liquid pressure f; appear in Eq. (7),
and the gas pressure fiy depends only on { in Eq. (8). We remark that the term involving f, arises
from the contribution to the rate of change of the internal energy of the gas from the sum of the
rate of surface work —8(aiigf,)/8% and the rate of volume work —f,0c;/8% performed by the gas.
Relating the internal energy (€,) of the gas to its enthalpy (fzg) according to the thermodynamic
identity €, = hg — B4/5, then results in the first term on the righthand side of Eq. (8).

As in the case of overall continuity, we will use in place of Eq. (8) the overall liquid/gas energy
equation (the sum of Eqs. (7) and (8)), and, in addition, use liquid-phase continuity, Eq. (3), to
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eliminate the reaction-rate terms in this equation and in Eq. (7). Thus, in place of Eqs. (7) and
(8), we have the liquid and overall energy equations

2 [0 - 0@+ 2] + 2 [atu1 - a)(@ +&T)] - 2 [Az(l )‘”"]

(9)
=klg (Tg‘f’l) ’ i>i'm:
0. - S 6 P . x = A
5 |1 - (@ + &) + py50T) + 8- [mw(l - a)(Q +&T)) + Boyigaly]
~ 10)
9 I A . (
i}
63:['\'(1 az)a~ age ]+am, £>&m.
In a similar fashion, conservation of energy in the solid/gas region is expressed as
0 i) oT, ~ - = .
a [ngg(l - aa)Ta] - ?5" [A,(l a,)"a‘i—] = K‘g (Tg - Tg) 3 T < xm, (11)
8 6 . =
~ ~ 12)
) or,] e, (
L9 5
a.. [/\a( a)a- +’\gaaa ]+aaat y T<Zm,

where Eq. (12) describes overall energy conservation and is obtained by summing Eq. (11) for the
solid and the corresponding equation for the gas phase.

Although analagous equations may be written for momentum conservation, they do not need
to be introduced explicitly for the present class of problems. As remarked above, the approximation
of small Mach number implies that the gas pressure , is independent of the spatial coordinate.
The gas is assumed to be ideal, whence i, is coupled to the other field variables through the
gas-phase equation of state,

By = poR°Ty/ Wy, (13)

where Wg is the molecular weight of the product gas. Consideration of condensed-phase momentum
leads, in principle, to an equation for the liquid-phase velocity #; (cf. [5]). This, however, introduces
considerable additional complexity into the problem and involves introducing momentum-transfer
parameters and other quantities that are difficult to determine. Accordingly, early studies (cf.
(3], [4]) tended to invoke the simple assumption that condensed- and gas-phase velocities were
identical; that is, %; = iy, More recent work, however, has shown that such an approximation
not only violates order-of-magnitude estimates made in momentum conservation (5], but also fails
to account for potentially significant phenomena associated with convective enthalpy transport by
the gas relative to enthalpy transport in the condensea phases (cf. [10]). On the other hand, the
approximation that the condensed velocity equal the condensed mass burning rate divided by the
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condensed-phase density is consistent with momentum conservation in the absence of viscous and
surface-tension-gradient forces [5]. In the present context, this implies that, since i, = 0,

m-tin (B )
iy = 5 (ﬁl 1), (14)

where dZ,,/df < 0 is the (unknown) propagation velocity of the melting surface. When these forces
are present, viscosity tends to increase 4 (since i, > i), whereas surface-tension gradients tend
to decrease %;. Order-of-magnitude estimates suggest that the former effect is negligible, while the
latter may be more pronounced (5], leading to a decreasing evolutionary dependence of i; with
respect to the volume fraction a. Postulating this dependence to be linear, Eq. (14) may be
generalized according to

ij=—-—2 [—-— (1-sa) - 1] : (15)

where an expression for the parameter s > 0, representing the difference between Marangoni and
viscous effects, was derived in [5]. For simplicity, and because of uncertainties in values of surface
tensions, we will mainly confine our attention in the present work to the case s = 0, although
certain results for s 3 0 will also be given.

The above equations now constitute a closed set for the variables a, g, T, Tg, T, py and
Pg. The problem is thus completely determined once initial and boundary conditions (including
interface relations at # = #,,) are specified. In the present work, we will not be concerned with
the initial-value problem, but only the long-time solution corresponding to a steadily propagating
deflagration. Thus, the required boundary conditions are given by

a—a, for £ <ipm; Gg—0, T,—T,—T, as - —00, (16)
a—1, fo—p), Ty—»Ty—T as - +o0, (17)

where the burned temperature T} is to be determined, and the boundary condition on pressure
implies that §; = fj everywhere. Finally, denoting by + superscripts quantities evaluated at
% = X, the continuity and jump conditions across the melting surface are

Py = ﬁ;s (18)

Ty =T}, T;7 =T} =T, (19)

conservation of condensed- and gas-phase mass fluxes,

_ [ din (., di
(1 -an (-%2) = -av (a7 - B2, (20)
a, (a; - i‘%) =at (ﬁ:; ~ %"—') , (21)
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and conservation of condensed- and gas-phase enthalpy fluxes,

(l - a+)/\1m - (1 - a.):\.% = 507'(1 - a‘).di:u_
i=z,“,‘, E=Fm dt (22)
. - o -~ d-'im -~ dz
+ [plcl(l -at) (ur - 'E{") — PsCs(l — ay) ( d;n)] Tm'
ati ‘Z , - a,)«gtg; L= 0, (23)

where 7, is the heat of melting of the solid at temperature 7" = 0 (5, being negative when melting
is endothermic). From Eqgs. (15), (20) and (21) we obtain the relations

-~

tat _ o = ITm
o’y —ayly = ~—

(o — ), (24)
a, —at =sa*t(1 -at). (25)

In the limit s = 0, Egs. (24) - (25) reduce to the statement that o and 4, are continuous across

= ZT;a.

8

3. Nondimensionalizations and the Steady-State Problem

In the present work, we will confine our attention to the case of a steadily propagating deflagra-
tion that propagates with the (unknown) speed U = —d#,y, /df, which is a convenient characteristic
velocity for the problem. Assuming constant values for heat capacities and thermal conductivities,
we then introduce the nondimensional variables

ﬁaaaﬁ~ ﬁ é U Ta i,9 '&l ﬁ
T="%, t=-——m—o-=t, T 28 e = =2, =2 26
)" ’ Aa alg = Tu l,g U Pg = p ( )

where gy = fg Wg /R°T., denotes the gas density at the unburned temperature T,. In addition, the
nondimensional parameters

~u kY -~ -~ ~
7‘=£.)"l‘, 7= f.'g': l'—'éiy l=i\—" b’—"g") b=gg) ‘YO‘::':Y—‘:-’ Q=~Q"’ 4
p' p' Aa Ao 8 c.! c,Tu C,Tu (27)
X‘K‘,g - X;ng = E[ A= X‘A‘- e_N
“E Rap’ ¢ nRer: BT’ FXRC

are defined. It may be remarked that A is the appropriate burning-rate eigenvalue, the determi-
nation of which will provide the propagation speed .

Transforming to the moving coordinate £ = z 4 ¢t whose origin is defined to be z.,,, and
introducing the above nondimensionalizations, steadily propagating deflagrations for the problem
formulated in Section 2 will be determined as solutions of the steady eigenvalue problem

.d%-[pg(ug+l)]=0, <0, (28)
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% [r(1 - a)(w + 1) + Pap,(ug +1)] =0, £>0, (29)

%[(1 - a)(u +1)] = -A(1 - a)exp [N (1 - %)] » £€>0, (30)

(1-a) (G - Z5) =K@, -1, <0, @)

Zl0 -0+ 0@+ =t [a- S +riyr,-m), €30, @

- dT, . dT,
- ..._‘ Phoy. — = — - 2 -9
(1-a,) T +rba,d£(u9+1) P [(1 ) Q, d{] , €<0, (33)

d s d
z [r(l — @) (us +1)(Q + bT1) + Fhalu, + l)png] oF [1(1 —a)=t +za—~‘!] £>0, (34)
png =1, (35)
w=>(1-r-sa), (36)
subject to the boundary conditions
a=qa, for §<0; ug—0, T,—>T,—1 as £ = —o0, (37)
a—1l, T|»Ty—-T, as £ = +00, (38)
and the melting-surface (¢ = 0) conditions
T, =T =Tn, T; =T}, (39)
at(uy +1) =a,(u; +1), a,-a* =sat(l-at), (40)
dT dT,
at—2 -a,—2 =0, 41
d£ £=0+ d€ £=0- ( )
(-0 8 ooyl o (- a1 - at)(1 - s0%) = (1 - )] T (42)
df €=0+ d£ &=0-

We remark that Eqs. (28) - (30) were obtained directly from the continuity equations (3), (5) and
(6), and Eqgs. (31) - (34) were obtained from Eqs. (9) - (12) using the gas-phase equation of state
(13).

Thus, the final model for steady, planar deflagration that has been derived is given by Eqs. (28)
- (42). An important and realistic limiting case, which results in some additional simplification,
is to consider the limit of infinitely fast interphase heat transfer (i.e., K,q, Kig — 00). In that
limit, Eqs. (31) and (32) imply that T, = T, = T in the region £ < 0, and T; = T, = T in the
region £ > 0. The model then reduces to a single-temperature model, which is analyzed in the
next section. The case of large, but finite, values of the interphase heat-transfer coefficients, which
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permit separate temperatures for each phase, is then considered in a subsequent section. Both
cases will be analyzed in the limit of large activation energy (N > 1).

4. Analysis of the Single-Temperature Model

In the limit that K,, and K, are both infinite, the model (28) - (42) reduces, in the limit
s = U, to a subproblem written in terms of the single temperature variable T that denotes the
common temperature of all phases at a given spatial location. In particular, we obtain in this limit
the reduced problem given by '

& [T+ =0, €<, (43)
d .1

&[(1—a)+ra?(ug+l)]=0, §>0, (44)
%(1—a)=—rA(1—a)exp[N(l—%)], £§>0, (45)

ar . d _df. s dT]
(l"a‘)TdE”b"’&("”“)‘dg [(1 a,+la,)d§] , £€<0, (46)
%[(1—a)(Q+bT)+f8a(u,,+1)] =Ed£-{[l(1—a)+fa] %} , £>0, (47)

subject to

ug—0, T—1asf—-00, (48)
a—1, T—T, as £ = +00, (49)
T=T,, a=aqa,, u, continuous at £=0, (50)
[1(1 —a,) +z‘a.] % o (1-a, +ia,)% " (1= a)) [Y+ (b= DTm],  (51)

where the overall enthalpy-flux conservation condition (51) is obtained from the sum of Egs. (41)
and (42), and where the final burned temperature 7, and the flame-speed eigenvalue A are to be
determined.

The solution in the region £ < 0, where chemical activity is absent, as well as expressions for
Ty and Ug,0 = Ug|,_,, 8re Obtained as follows. From Egs. (43) and (48), we have

u+1=T, £<0, (52)
and hence ug|._o = Trm — 1. Equations (44) and (50) then imply

a+ aa(';' - 1)
of
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which, upon evaluation at £ = oo, determines uy oo in terms of Tj through Eq. (49) as

liﬁv.él‘:__l_)n —~1. (54)

Ug,00 =

Turning attention to the energy equations (46) and (47), we may readily perform a single integration
and use Eqgs. (52) - (54) to obtain

[1 4+ au(rb - 1)] (T—1)=(1—a.+fa.)%, £<0, (55)

{1 -a) +bla+ay(F -]} T = [1 - ) + o] %-(1—a)q+8[1+a.(f—1)m, £>0.

(56)
A second integration of Eq. (55) then implies that
14 a,(fb—1)
T(€) = 1 + (Tp — 1 T " lel, €<o0 57
©) ( )exP[1+a.(z-1) E] 3 (57)

which, from Eq. (52), also determines ug4(€) in the region £ < 0. In addition, subiracting Eq. (55)
evaluated at £ = 0~ from Eq. (56) evaluated at £ = 0% and using the jump condition (51), we
obtain a relation for T} given by

_ (1-e)(@+1+1,) +7ba,

T, = , 58
’ B[l +au(7 - 1)] (%)
which, from Eq. (54), determines ug o 8s
1 R
Ug,o0 = %(1 -, (Q+ 147, —7b). (59)

It can be shown by means of similar manipulations that identical results (58) and (59) are obtained
from the two-temperature model (28) - (42), so the burned temperature and final gas velocity are
independent of the rate of interphase heat transfer.

The expressions (58) and (59) indicate that there are significant variations of the final burned
temperature and gas velocity with pressure, since these quantities depend on the gas-to-solid
density ratio £, which in turn is proportional to fg according to

By _ Wiy _ 12
Ps

7 —s— = =
BoR°T,  Byly(1 -7 )T,

(60)

where « is the ratio of specific heats for the gas. This important effect arises from the two-phase
nature of the flow, coupled with the thermal expansion of the gas and the porosity of the solid,
both of which strongly influence the degree of gas-phase convective transport of enthalpy relative
to the reactive condensed phase. In the limit 5; — 0 (i.e., # — 0), we see that ug e — 0o and
Ty — TP, where

Tt’z%(@+1+%>. (61)
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Since there is effectively no gas-phase enthalpy content in this limit, 72 is also the value of T} in
the limit of zero porosity (o, — 0). Indeed, in dimensional terms, f',? = @ETu+Q+%)/ €q, which
is equivalent to that obtained in [5], where zero porosity o the condensed material was assumed
and thermal expansion of the gas was neglected. For nonzero values of pressure and porosity,
some of the heat released by the energetic material must be used to raise the temperature of the
nonreacting product gas in the unburned solid from unity to 7,. Consequently, both T}, and the
final gas velocity uy,0 are decreasing functions of the nondimensional gas-phase density #, which
increases with pressure according to Eq. (61). Plots of T}, and u4,., 88 a function of # for several
values of a, are shown in Figs. 2 and 3, respectively.

In order to determine the burning-rate eigenvalue, we must complete our analysis of the
liquid/gas region £ > 0. In this regard, Eqs. (45) and (56) constitute two equations for T and
a in this region, with u, then determined by Eq. (53) and the eigenvalue A detzrmined by the
boundary conditions. In order to handle the Arrhenius nonlinearity, we exploit the largeness of
the nondimensional activation energy N and analyze the problem in the asymptotic limit N » 1.

In the limit N — oo, all chemical activity is concentrated in a very thin region where T is
within O(1/N) of Tp. Denoting the location of this thin zone by & > 0, we see that the semi-
infinite liquid/gas region is comprised of a preheat zone (0 < £ < &) where chemical activity is
exponentially small, the thin reaction zone where the chemical reaction goes to completion, and a
burned region £ > &-. Thus, we conclude from Eq. (45) that

_Ja, &< &
“”{L £>6, (62)
and from Eq. (53), _— c<e
-1, <&,
Ug = {9-1(1—01. + 0 )T =1 = tigeor €3> & (63)

Since T is within O(1/N) of T} in the reaction zone, the analysis of this thin region requires the
use of a stretched coordinate (see below). As a result, T is continuous with respect to the O(1)
outer variable £ at £ = &, and thus the gas velocity jumps across £ = & by the amount

1 "
u9|¢=§,’f - "9‘5=¢; = ;(1 -7)(1 - a,)Th, (64)

which is positive assuming the gas density is less than that of the unburned solid (i.e., # < 1).
Finally, using Eq. (62), Eq. (56) may be integrated a second time to completely determine the
outer temperature profile

( _ 1+ a,(fb~1)
14+ (Tm —1)exp [-———-————Ha‘(i_l) E] , §<0
T(§) = b(1 — a,) + 7ba, (65)
B+(Tm—B)exp[l(1-—a,)+ia, 5], 0<E<é,
gTba €>E1"
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where )
T b1 - a,) +7ba,
and T'(§) for £ < 0 was given by Eq. (57). The location &, of the reaction zone, which appears as

a sheet on the scale of the outer variable £, is thus determined by Eqgs. (65) from continuity of T'
8s

, (66)

£r = b(l - a‘) + ‘f'BC!,

The determination of the burning-rate eigenvalue A, as well as the spatial evolution of the
variables a and u, (which are discontinuous on the scale of the outer variable §), requires an

analysis of the thin reaction-zone region in the vicinity of £.. We thus introduce a stretched inner
variable 1 and a normalized temperature variable © defined by

(1-a,)+la, 1n(T""B) . (67)

Tm—B

T-1
9=§_'-;—:—1-, n=p&-¢&), (68)
where
B=(1-T,)N>1, (69)

and seek solutions in the form of the expansions

a~a+ B 'y +B8 %+, (70)
ug ~uo + B uy + B %ug + -+, (71)
O~1+8710,+87%0,+---, (72)
A~BAo+ B8 A+ B8 %A +--). (73)

From Eq. (53), the coefficients in the expansion of u, are given in terms of the o; and 6; according
to 1
o =% [0 + as(?* = 1)] Tp - 1, -
1
w = ooz {fao + 0 (F = 1) (- 101+ 227 - l)Tbal} ,
aof oo

and so forth. Substituting these expansions into Eqs. (45) and (56), collecting coefficients of like
powers of 3, and requiring that the inner reaction-zone solution match with the outer solutions
for £ < &, and £ > &, then leads to a sequence of problems for the recursive determination of the
coefficients in Eqs. (70) - (73). In particular, at leading order the inner problem is given by

do

-# =rAo(l — ap) e’ (75)
. d, D
[l + (- l)ao] rie -7_‘;:_1(1 - o), (76)
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subject to the matching conditions

| 0o — Qy, 01~Enasn—»;oo, (1)
ag—1, 6; =0 as n— +00. (78)

Here, D and E are defined as

1 dT

D= (b-HT E= —_— ,
G-0T+Q, Ty =10 |og-

(79)

where the latter is calculated from Eq. (65).

The problem (75) - (78) is readily solved by employing ap as the independent variable. Thus,
using Eq. (75), Ea. {76) may be written as

. dé D
rAo [l +(- l)ao] e’ a-al; =TH-1 (80)

which is readily integrated from «, (at 7 = —00) to any ap <1 to give

D o da
fr(ao) - Y —_— 81
" (Ty = D)rAo ./;, L+ (I -Dag &

Evaluating Eq. (81) at ap = 1 (at which §; = 0) thus determines the leading-order coefficient Ag
in the expansion of the burning-rate eigenvalue as

D i )
Ao = (Tb"l)r(i—l)lnlil_,_(i__l)a']1 l#l

(82)
L2 __1-a,) 1=1
(Tb - 1)1'[ o e
Substitution of this resuit in Eq. (80) for arbitrary ap then completely determines 6, () as
mp+d—nm}—mp+d—om] )
In ' n e y l#1
61(a0) = -1 [+ (- ] (3)

m(ﬁﬁiﬁ), [=1.

1 - a‘

The determination of ag(n), and hence 6;(n), then follows directly from Eq. (75). For example,
when[=1 (equal gas and liquid thermal conductivities), we obtain

a, +exp [I='D(1 - a,)/(T}, — 1)]
14+exp(l-'D(1-a,)/(Ty -1)] '’

ao(n) = (84)

where the matching condition (77) has been used to evaluate the constant of integration.
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From Eq. (82) and the definition of A [see the last of Egs. (27) and Eq. (73)], the leading-order
expression for the dimensional propagation speed U is given by

02 ~ T(Tb - 1)/& e-N
BDpsCs

where the last factor, which contains the complete dependence of the burning rate on the thermal
conductivities, is given by

g, ), (85)

A= 5 #3
FGa i =4 I (/4 By —Aas])* 77 (36)
N/ -a), Mg =X,

in which the second expression for the thermal conductivity factor f is the formal limit of the first
for the case of equal thermal conductivities of the liquid and gas phases. This factor collapses to that
obtained in [5] in the limit o, = 0 (i.e., in the limit of zero porosity of the solid). It is readily shown
that f is an increasing function of both X, and X; individually (i.e., 8f/8X, > 0 and 8f/8%; > 0 for
:\9 /A1 # 1), so that the propagation speed increases as the thermal conductivity of either the liquid
or the gas phase increases. In addition, the thermal conductivity of the phase having the higher
thermal conductivity exerts the greater influence on U because a higher proportion of the heat is
transferred through the more highly conducting phase. For example, in the limit X,/ 5\9 > 1, we
have f ~ Xi/In[(1 — a,)Ai/Ag), while in the opposite regime Ag/A; 3> 1, we have f ~ X;/1In(1/a,)
for 0 < a, < 1. Finally, we observe that to this leading order of approximation, I does not depend
on the thermal conductivity of the solid, and thus the conductivities of the phases that coexist
in the reaction zone play the dominant role in determining the propagation speed. Plots of f/X;
versus :\, /X;, for several values of a,, are shown in Fig. 4.

Since U is exponentially sensititive to the burned temperature through the largeness of the
nondimensional activation energy N = Ei/R°T, = E;/R°T, T} in Eq. (85), the influence of pressure
on the propagation speed is dominated by its effects on T}, (see Fig. 2). Thus, since increases in
pressure serve to decrease T}, in the present problem because of increases in the gas density as
discussed above, the propagation speed is exponentially sensitive to changes in pressure.

The above conclusions regarding the propagation velocity were drawn for the case of equal gas-
and condensed-phase temperatures (resulting from infinitely large values of the interphase heat-
transfer parameters K,, and K,,). In the next section it will be shown how small, but nonzero,
temperature differences between coexisting phases affect these results by considering the effects of
large, but finite values of the interphase heat-transfer coefficients. It will be seen that this two-
temperature regime can be treated as a perturbation of the single-temperature model and that the
first effects of finite rates of interphase heat transfer are felt in the two-phase reaction zone.
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5. Perturbation Analysis of the Two-Temperature Model

Returning to the two-temperature model (28) - (42), the first effects of finite rates of interphase
heat transfer are felt as a perturbation of the single temperature results when K, is 0O(B?), where
(8 is the large activation-energy parameter defined in Eq. (69). Thus, we introduce scaled versions
kig = k and k,, of Ky and K,,, respectively, as

Klg = 162"’ Kag = ﬂzklg’ (87)

and seek solutions both outside and inside the reaction zone as expansions in appropriate powers
of 8~1. In particular, the outer solutions are now expressed in the form

a~a®+572? 4.
ug ~ u) + 72 +. (88)

Theg ~TO + ﬁ"T‘f?g +-

where, again restricting consideration to the case s = 0, the leading-order terms are identical to
the (outer) solution given in the previous section in the single-temperature limit Ky, K,; — oo,
and perturbations from that solution enter at the same order as the order of K, and K,,. That is,
a®, 4 and T© are given by Eqs. (62), (63) and (65), respectively, where, as noted previously,
the burned temperature T}, given by Eq. (58) is independent of interphase heat-transfer effects.

To determine the burning-rate eigenvalue A, we again consider the inner reaction-zone problem.
We thus introduce the inner variable 7 defined in Eq. (68), but now we must allow for temperature
differences between the liquid and gas phases by defining (and expanding) two inner temperature
variables © and ¥ as

=%—1-~1+a-‘o,+ﬁ-’02+--
T -1 (89)
‘1’=-T§-:i-~1+ﬁ'1¢1+ﬂ'211’2+“'

Noting that the relationship (53) for u, remains valid (provided T is re-interpreted as T, in that
equation), the remaining variables o and u,, and the eigenvalue A, are then expanded as before
[see Eys. (70) - (74)]. The resulting leading-order inner problem obtained from substituting these
expansions into Eqgs. (30), (32) and (34) is given by

dao

—‘-1-5- = TAo(l - ao) eo‘ (90)
l(l - ao)—- + la %1/:1—1 = ﬁg:l_(l - ao), (91)
[(1 . )“"‘] -SRI | ok - ), (92)
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subject to the matching conditions

ao—+a;, Y16 ~Enas n——o0, o
ap—1, 6, -y =0 as n— 400, (93)
where D and E were defined in Eqs. (79) [with T = T in the latter, which is evaluated using Eq.
(65)]. We observe that the effects of interphase heat transfer, while absent from the leading-order
outer problem, are felt at leading order in the inner problem through Eq. (91).

The inner problem defined by Eqs. (90) - (93) is similar in form to that obtained in [5], and
the same solution procedure is adopted here. In particular, having already restricted consideration
to the physically realistic limit of high rates of interphase heat transfer according to Eqs. (87),
we carry this argument one step further by considering the limit in which the scaled interphase
parameter k itself is large. As a result, for 1 « k < B, solutions to the leading-order inner problem
can be sought as expansions in inverse powers of k as

ao~x+ka+k e+,
O ~0+k 'y kim0,
Vr~0+k +k 2o+,
Ao~p+ktpy+k2pp+0,

(94)

where the fact that 9, and 6, are the same to leading order follows from Eq. (92). Substitution of
these expansions into Eqs. (90) - (93) then gives a sequence of problems for recursively determining
the coefficients in Eqs. (94). The first two of these problems are given by

dx _ 9
d77 "'r“(l —X)e ) (95)
s de
[+d-1x 5 =0 -2, (%)
d dg| _  dx
la; {(1 —X)%] =t +7b(r1 — 1), (97)
X—as, 06~En, ¢ -7 —0asn——o00, (98)
x—1, 650, 71 —-¢1—0 as n— +o00, (99)
and
Xm 1 1 , 100
Zn =T =M+ m(=x) —waal €, (100)
d d
I "X) Tl ¢l (l“i)Xl“"‘? ~q1X1 5 (101)
dry d df dx1
[(1— X) ] an (den)"‘lh an +rb(r2 — ¢2), (102)
X1—0, ¢2—>7—0 as n— —o0, (103)
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X1 -0, m—d3—0 a8 n— 400, ' (104)

where .
_ D _(-hn+Q _Q+bn

“Th-1_ Th-1 ' B [

The subproblem defined by Eqs. (95), (96) and the matching conditions on x and 0 is identical
to tue leading-order problem (75) - (78) for the single-temperature model. Consequently, the
solution for u, the leading-order (with respect to k) approximation for Ao, is given by Eq. (82).
Similarly, the solution for 6(x), the leading-order approximation for both the liquid and gas-phase
temperatures (6; and 1), is given by Eq. (83) with the volume fraction ap replaced by its
leading-order approximation x. The scaled nondimensional excess 73 — ¢; of the condensed-phase
temperature over that of the gas phase is then determined from Eqs. (95) and (97) as

o B o g000 [ g M=) [, G- -
T -& b(l X)e"{q'z qll+(i—l)x[2+ l+(l‘—l)xj|}' (106)

aQ (105)

Since g2 > ¢1, Eq. (106) demonstrates that 7y —¢, is usually a positive quantity, especially for small
gas-phase conductivities (I < ) and/or as x approaches unity. This is physically reasonable since,
according to Eq. (7), the heat of reaction is initially deposited in the condensed phase, and there is
now some resistance to heat transfer. However, in the event that the gas-phase conductivity were
to exceed that of the liquid ({/1 3 1), then this temperature difference could become negative for
smaller values of the volume fraction (x) as a consequence of gas-phase heat conduction from the
hotter, nearly burned portion to the less hot, mostly unburned part of the reaction zone.

To determine the effects of finite interphase heat transfer on the propagation speed, we need
to calculate the correction i3 to the burning-rate eigenvalue, which requires a consideration of the
next-order problem (100) - (104). Again transforming to x as the independent coordinate according
to Eq. (95), Eq. (100) may be solved for 71, and the result may be employed in Eq. (106) to
obtain an expression for ¢;. Substitution of these results into Eq. (101) then produces a linear,
second-order differential equation for x;(x), which when solved subject to the boundary conditions
(98) - (99) and (103) -(104), determines pu;. For simplicity, we illustrate this development only for
the case [ = I. Consequently, from Eqs. (82), (83) and (106), we have

=9 _
“—rl(l aa)a
9=1n<’1‘:g:), (107)

b1 =1~ Jolx— )1 =) @ - 201 - )],

where, from Eqs. (95) and (100), we obtain

W, x o _m
dx 1-x u
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Then, since Eqs. (95), (101) and the above expressions for 4 and 6 imply that

dn | _dd

X1
1 - +x—+(1-a,
( x)dx Xax ( a)(x_

a,)(1 - x) -

substituting the above expressions for 7, and ¢, into Eq. (109) yields a second-order equation for
X1 given by

0, (109)

x 1 dx l-a)x1  _ q1q2 2q3
-a—i;- + -1'-:_-;-7‘;(- + x — o)L — %)? = bl x(1+a,—-2x) - 'r_bI-X(l - x)(1+2a, —3x). (110)

The general solution to Eq. (110) is expressible in closed form as

a=0-0{a- o)l +s00l+a[x-adm(32) —a-a)]},  aw

where ¢; and ¢ are constants of integration associated with the homogeneous solution of Eq. (110),
and g(x), which arises from the particular solution, is given by

9(x) = gg—, {%‘- [2(1 + 2a,)q1 - (1 + @s)g2] I2(x) + % [(1 + 3a,)g2 — 2(1 + 6a, + 203)q1] Is(x)

+% [(4+50s)q1 = g2] Ta(x) - gm Is(x)} ,

(112)
where the indefinite integrals I (x) are defined as
n
In = / X d
0= ] T0x=anr ¥
-1 ( x"dx+/x"dx) 1 X" dx
(1-a) \J 1-x x—-a,) 1-a,) (x-a,)?
_ o 1, (nap”! a? _
=TT X @) T+ (1 —a A= a.)’) In(x - a) (113)
n-1 n
nlap~~1(x — a,)I nlag~3(x — a,)!
+yY g,
J}::_:, J@+Din -7 - 1)1 - a,) JZ___,:, iil(n— )1 - a,)?
_In(1-x) =1y - x)
Tyt im0

=1

forn =2, 3,4 and 5. We now observe from Eqgs. (111) - (113) that the solution for x; automatically
satisfies the boundary condition that x; — 0 as x — 1, whereas the condition that x; vanish as
X — a, determines c; as

c ——33——-[ —o(1-Le2 (114)
2 = 6(1 "‘03)2 QQ 10 8 QI .

We now may substitute Eq. (111) for x; into the expression (108) for 7;, whereupon the requirement
that 71 vanish as x — a, and as x — 1 determines the remaining constant of integration ¢; and
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the scaled correction y4 to the burning-rate eigenvalue. In particular, as x approaches unity, the
latter is obtained directly as

__a-ae)® 1
] 7} 541(1 a.)(4+a.)]. (118)

which, since always g2 > ¢y, is less than zero for all o,. Consequently, the propagation speed
increases as the resistance to interphase heat transfer increases (i.e., as k decreases, since the
magnitude of the correction to the eigenvalue Ao to leading order is inversely proportional to
k), consistent with the fact that this resistance causes the temperature of the liquid phase to
exceed that of the gas, as discussed earlier. That is, the heat of reaction, which is deposited in
the condensed phase, raises the temperature of this phase over what it would otherwise be if there

were no resistance to interphase heat transfer, thereby increasing the (liquid) temperature-sensitive
reaction rate.

6. Summary

A multi-phase flow theory has been developed for the deflagration of porous energetic materi-
als, such as degraded nitramine propellants, that undergo exothermic reactions in a liquid layer to
produce gaseous products. Both single- and two-temperature models were analyzed, the latter in a
perturbative fashion for large, but finite, interphase heat-transfer coefficients. The combination of
porosity and gas-phase thermal expansion was shown to lead to pressure-dependent temperatures,
resulting in a significant pressure sensitivity for the burned temperature, and hence the propagation
speed. Formulas for the latter were derived for the case of steady, planar burning using the method
of activation-energy asymptotics. It was demonstrated that increases in the conductivity of either
phase in the liquid/gas reaction region lead to increases in the burning velocity, while increased
resistance to interphase heat transfer generally has a similar effect by causing the condensed phase,
where the heat of reaction is initially deposited, to have a higher temperature than that of the gas.
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Porous
Unburned

Fig. 1. Deflagration of a porous energetic material with two-phase flow in both the solid/gas and
liquid/gas regions, with combustion occurring in the latter. The lower figure is a blow-up of
the multi-phase “flame” structure, consisting minimally of (1) a preheat zone containing a
melting front across which the porous solid changes into a bubbly liquid, or foam, and (2)
a thin liquid/gas reaction zone. Additional gas-phase reactions, suppressed in the present
work, may occur in a secondary gas-flame region (3) downstream from the primary two-phase
reaction zone (2).
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Fig. 2. Final burned temperature T} as a function of the gas-to-solid density ratio #, where the latter
is proportional to the gas-phase pressure, for several values of the initial gas-phase volume

fraction a,.
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Fig. 3. Final gas velocity u, o, 88 a function of # for several values of a,.
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Fig. 4. Dependence of the propagation speed on the gas and liquid thermal conductivities. Shown is
the thermal-conductivity factor f (:\9, Xt), normalized by ), as a function of the gas-to-liquid
thermal-conductivity ratio Xg / X for several values of a,.
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