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LIE GROUP INVARIANT FINITE DIFFERENCE SCHEMES FOR THE
NEUTRON DIFFUSION EQUATION

ABSTRACT
by
Peter James Jaegers

Finite difference techniques are used to solve a variety of differential equations. For the
neutron diffusion equation, the typical local truncation error for standard finite difference
approximation is on the order of the mesh spacing squared. To improve the accuracy of the finite
difference approximation of the diffusion equation, the invariance properties of the original
differential equation have been incorporated into the finite difference equations. Using the concept
of an invariant difference operator, the invariant difference approximations of the multi-group
neutron diffusion equation were determined in one-dimensional slab and two-dimensional
Cartesian coordinates, for multiple region problems. These invariant difference equations were
defined to lie upon a cell edged mesh as opposed to the standard difference equations, which lie
upon a cell centered mesh. Results for a variety of source approximations showed that the
invariant difference equations were able to determine the eigenvalue with greater accuracy, for a
given mesh spacing, than the standard difference approximation. The local truncation errors for
these invariant difference schemes were found to be highly dependent upon the source
approximation used, and the type of source distribution played a greater role in determining the
accuracy of the invariant difference scheme than the local truncation error.



1 INTRODUCTION

Differential equations play an important role in our understanding of nature. Typically though,
the determination of an analytic solution can be extremely difficult. Even if an analytic solution can
be found, the numerical evaluation of the solution can be no easy task. It is, therefore, desirable in
many situations to use numerical methods to solve differential equations. In the ensuing
discussion we will limit ourselves to finite difference techniques for the solution of differential

equations.

Numerical methods have the drawback that they usually find an approximate solution to the
differential equations being simulated. For typical finite difference simulations the error associated
with the simulation is usually a function of the mesh size. This error can be made arbitrarily small
by using smaller and smaller mesh spacing. However, with this increase in accuracy comes the
requirement of a greater investment in computational resources such as computer memory and
time, since more difference equations must be solved. Therefore, it is desirable to determine finite

difference formulations that retain accuracy without a prohibitive amount of computational

investment,

One would expect that difference schemes that preserve the properties of the solution of an
original differential equation would be more accurate. To this end, difference schemes that

incorporate the symmetry properties of the original differential equation have been investigated.

In gas dynamics, Shokin [1] has studied difference schemes for which the first differential

approximation of the difference equations is invariant under the same group of Lie point




transformations as the gas dynamics equations. While Shokin's difference scheme has lead to an
improvement in accuracy, the fact that the differential approximation is invariant does not
guarantee that higher order approximations are invariant; hence, this method can not produce
difference equations whose exact solution coincides with the exact solution to the differential

equations being simulated.

Axford has reported in references 2 and 3 that difference schemes which are invariant under the
same group of Lie point transformations admitted by the differential equations can lead to
difference equations whose exact solution agrees with the exact solution of the simulated

differential equations.

The purpose of the author's research has been to investigate invariant finite difference schemes
which admit the same group of Lie point transformations that are admitted by the differential
equations being simulated. Special emphasis has been placed upon solving the second order
ordinary differential equations and second order elliptic partial differential equations that arise in the

study of reactor physics, namely, the steady state multi-group diffusion equation given by
VoDV () - Zrg (D)9 g(F) + Sg(f) =0 (1.1)

where Dg(r) is the gth energy group diffusion coefficient, Zr g(r) is the gth energy group removal
cross section, and ¢g(r) is the gth group neutron flux. Sg(r) is the gth group source, which can
include sources from fission, scattering, and external sources as given by

G G
Sed) =Y Zgogbg® +—’-‘f2 V¢ g0g (@) + Sg ext(?) (1.2)
g'=1 g'=1



where Zg'_g is the group g' to g scattering cross section, X is the probability that a fission neutron
is born into group g, A is the eigenvalue, v is the average number of neutrons per fission, Xt g is
the g'th group's fission cross section, and Sg ex; is the external source of neutrons. Equation (1.1)
is a particularly useful form, since it easily lends itself to source iteration calculations. Results will
be presented that demonstrate that these types of difference schemes offer distinct advantages in
that one can achieve greater accuracy with fewer mesh points then is possible with conventional
difference schemes. In fact, it will be shown that under certain circumstances, invariant difference

schemes will produce the exact solution of the original differential equation.






2 FINITE DIFFERENCE TECHNIQUES

A common method by which differential equations are solved is through the use of finite
differences. In the finite difference technique, the differential equation to be solved is simulated by
approximating the derivatives with differences over some small interval. This leads to a set of
algebraic equations for which the unknowns are to be determined on a set of points defined by
some mesh. When formulating finite difference simulations, several things need to be considered:
1) what is the error associated which the simulation; 2) is the finite difference simulation consistent
with the original differential equation; 3) does the simulation have the properties of stability and
convergence? In this section, we will explore the construction and solution of standard types of

difference equations and answer the above questions.

2.1 Construction of a Finite Difference Approximation of the Diffusion Equation

There are several ways to derive finite difference simulations of differential equations. An
overview of these methods can be found in references 4 through 10. Typically, derivatives in the

differential equation are approximated using some sort of truncated Taylor series.

As an example, we consider the dependent variable U, which depends on the independent
variable x. Defining the grid locations x;4+1 = x; + h and x;.1 = x; - h, where h is the mesh spacing,

we can expand U(x;+1) and U(x;.1) in a Taylor series about x; to yield

U(xis1) = U(x) + h Ux;) + 1123 U'(x) +- - 2.1)
and
Uxi.p) = Uxp) - h U(x;) + hzz- U'x) +-- . (2.2)

5



Subtracting equations (2.1) and (2.2) and truncating the terms of order h? and greater yields
U(xi.1) - Uxi) = 2h U(xy) (2.3)

Solving for U'(xj), we obtain the two-point central difference approximation for a first order

derivative as

U(Xi+1) - U(X.1) .

U'(xi) = h

(2.4)

Next adding equations (2.1) and (2.2) and truncating terms of the order h3 and greater leads to the

three point central difference approximation for a second order derivative given by

U(xi41) - U(xp) + U(x.1) '

U'(x) = 2

(2.5)

In a similar manner, partial derivatives can also be approximated. Consider the case of a
dependent variable U, and the independent variables x and y. We can expand the terms U(xj+1,Y;)

and U(xi.1,yj), while holding y constant, in a Taylor series as

AU(x;,y;) .\ h2 9*U(xiy)) .o

Uxiary)) = Ulkisy)) + h—5- 2 ox2

(2.6)

and

oU(x;,y;) +h392U(Xi,yj) .

U(xi.1,¥) = U(x;yj) - h ox 2 dx2

2.7)
As before, upon adding we arrive at the three-point central difference approximation for the second

partial derivative of U with respect to x given by

02U (x;,y)) _ Uxirny)) - 2U(xiy;)) + UlXi-1,y;)
ox2 h2 '

(2.8)



Other types of difference approximations can be derived in a similar manner.

We will consider two specific examples of finite difference approximations for the one-energy
group neutron diffusion equation with constant material properties. The first case will be one-

dimensional in slab geometry, and the second will be two-dimensional in Cartesian coordinates.

The one-group one-dimensional neutron diffusion equation with constant material properties in

slab geometry is

2
DO o) +Sx) =0 (2.9)

dx?

where 0 < x < a and the boundary conditions are specified at the right and left hand surfaces as
either Neumann or Dirichlet. The finite difference approximation is found by evaluating equation

(2.6) at the grid point x = x; and substituting (2.5) into (2.9) to yield

D O(Xiv1) - 20(X;) + O(xi.1)
2

" - ZRO(x;) + S(xj) = 0. (2.10)

Defining ¢; = ¢(x;) and S; = S(x;), equation (2.10) can be rewritten as

D Giv1 - 20; + 0.

) -ZRo; +Si=0 . (2.11)

Thus we arrive at a set of algebraic equations from which the unknowns ¢; can be found.

In two-dimensional Cartesian coordinates, the one-group diffusion equation with constant
material properties is

2
p9xy) o 020(x,y)
dx2 dy?

7

- ZRO(x,y) + S(x,y) =0 , (2.12)



where 0 < x < aand 0 <y < b and the boundary conditions are either Neumann or Dirichlet at the
outer surfaces. As before, the finite difference approximation is found by evaluating this equation
at the grid point (x;,yj). Difference approximations for the partial derivatives as given by (2.8) and
another similar approximation for the partial derivative with respect to y are then substituted into
equation (2.12); thus arriving at

D Oir1,j - 20;; + 051 +D Gij+1 - 2055 + i1
Ax? Ay?

-ZrO;j +S5ij=0, (2.13)

where Ax? and Ay? are the x and y direction mesh spacings respectively.

2.2 Local Truncation Error

Since few finite difference simulations of differential equations produce the exact solution of
the differential equation, it is important to know the error associated with the simulation.
Considering that most difference schemes are based on a truncated Taylor series, the error

associated with the difference scheme at a grid point is called the local truncation error.

The local truncation error, €;, can be determined by replacing the unknowns in the difference
equation by the exact solution of the differential equation. That is, if the solution, u = {uy,

...,uN}, of the difference equation, Aj(u) = O, is replaced by the solution of the differential

equation, U, then the local truncation error is given by g; = Aj(U).

To illustrate this process, we will first consider the one-dimensional diffusion equation as
given by (2.9). Let ®(x) be the exact solution of this differential equation. A finite difference
approximation of (2.9) was found to be (2.11). Substituting the exact solution ®(x) into (2.11)

yields




=D ¢(Xi+|) - 2¢(X|) + (D(xi-l) _ XR(D(X

&
h2

i)+ S(xp) . (2.14)

Next, expanding the exact solution in a Taylor series about the point x = x; yields

do(x)) , p2 d*O(xi)

D(xi41) = P(x)) +h i R (2.15)
and
®(xi.1) = B(x;) - h dd(’ii"i) + h23 dz:;(;i) o (2.16)
Substituting (2.15) and (2.16) into (2.14) yields
& =[D®"(x)) - SrD(x;) + S(x)] + lll-;- @M(x;) + O(h?) . 2.17)

However ®(x;) is the exact solution of equation (2.9) when (2.9) is evaluated at x = xj, so the

bracketed term in (2.17) is zero, and the iccal truncation error is given by

g = %1-22- o(x,) + O(h?) (2.18)

where ®(V)(x;) is the fourth order derivative of ®(x) evaluated at grid point x;.

We will now consider the truncation error for the two-dimensional diffusion equation. As with

the one-dimensional case, we let ®(x) be the exact solution of (2.12). We then substitute the exact

solution into the finite difference approximation (2.13) to give

Pivtj - 2Pij + Pictj |y Pijer - 2Pij + Py
Ax? Ay?

D

-Zr®Pi;+S5;=0 . (2.19)

The exact solution is then expanded in a Taylor series to yield



€ij=|D Gl +D G
J dx? dy?

Ax2 a4¢’i‘j + Ay? a4<bi‘,-

STed i + S
"IN T T o (a0

+ O(Ax4,Ay%) .

However, since ®(x,y) is the exact solution of (2.12) evaluated at the grid point (x,y) = (Xj,yj), the

bracketed term is zero yielding the local truncation error as

e A2 9P Ay2 0t
M2 9xé 12 gy4

+ O(Ax4,Ay%) . (2.20)

Thus as expected, for both of these finite difference simulations, the local truncation errors depend

on the square of the mesh spacing and tend to zero as the mesh spacings become small.

2.3 Consistency of a Finite Difference Scheme

Sometimes it may be possible to derive a difference scheme that produces a solution to a
different differential equation than the equation being simulated. Such a difference scheme is said
to be inconsistent. A finite difference equation is said to be consistent with a differential equation if
the solution of the finite difference equation converges to the solution of the differential equation as
the mesh spacing tends to zero. Consistency can be formulated several ways, see reference 5, but
the easiest formulation is to say that the local truncation error must go to zero as the mesh spacing
goes to zero. In our two example difference schemes, (2.10) and (2.13), it was found that the
local truncation errors, as given by (2.18) and (2.20), clearly tended to zero as the mesh spacings
tended to zero. Therefore, the difference schemes, (2.10) and (2.13), were consistent with the

differential equations being simulated.

10



2.4 Stability and Convergence

Much has been written in the literature about stability and convergence, see references 10, 14,
16, and 17. In particular it has been shown that the source iteration calculation used to solve the
discrete form of the neutron diffusion equation is stable and convergent; references 14, 16, and 17
contain detailed discussions and proofs of the stability and convergence. Since this subject is well

known a discussion of this topic will not be presented here.

11
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3 GROUP ANALYSIS OF THE NEUTRON DIFFUSION EQUATION

The determination of a group of point transformations admitted by a differential equation can be
found systematically from the transformation theory of differential equations first proposed by
Sophus Lie, references 3,11,12, and 13. The group of point transformations admitted by the
neutron diffusion equation will be constructed and used later to formulate invariant difference

schemes.

3.1 A Brief Introduction to Group Theory

In this section, a brief discussion of the definitions and theory of a group of Lie point

transformations is presented.

3.1.1 Continuous Point Transformations
We will consider the case of one dependent variable, y, and one independent variable, x. Let a

set of point transformations be given by

»|

= f(x,y;a) (3.1a)
and
y = g(x,y;a) (3.1b)

where "a" is a parameter. The functions f(x,y;a) and g(x,y;a) are assumed to be continuous and
continuously differentiable to all orders in the parameter "a". As the parameter "a" varies, (3.1a)

and (3.1b) transform the point P(x,y) into the point P'( x, y) by

X = f(x,y;ap + da) (3.2a)

and

13




y = g(x,y:a0 + da) , (3.2b)

where ag is an identity element such that

x = f(x,y;a0) (3.3a)

and

y = g(x,y:ap). (3.3b)

If 8a is sufficiently small then the point P'( X, J) can be close to the desired point P(x,y). These

transformation are called continuous point transformations.

3.1.2 Definition of a Group of Continuous Point Transformations

For a set of continuous point transformation given by (3.1a) and (3.1b), each value of the
parameter "a", called the group parameter, labels a different element of the set. A group is defined
as a set of elements together with a binary operation that satisfies the four group axioms namely,

closure, existence of an identity element, existence of an inverse element, and associativity of a

binary operation. A binary operation is the successive performance of two transformations.

Consider two transformations, the first given by (3.1a) and (3.1b) and the second given by

X = f(X,y;b) (3.4a)
and
y = g(X.¥sb). (3.4b)
Closure is satisfied if
X = f(f(x,y:a),g(x.,y;a);b) = f(x,y;c(a,b)) (3.5a)

14




and

y = g(f(x.y:a).g(x.y:a)b) = g(x,yic(a,b)) (3.5b)

where c(a,b) is called the composition function.

The existence of an identity element axiom is satisfied for some value of the group parameter

"ag" provided that

x = f(x,y;a0) = X (3.6a)
and

y = g(x.y:a0) =y. (3.6b)

The existence of an inverse element axiom is satisfied if some value of the group parameter "a"

exists such as

x = f(X,y;a) (3.7a)
and

y = g(x.y;a). (3.7b)

Finally, the associativity axiom states given three values of the group parameter a, b, and c and

their corresponding transformation denoted by T,, Tp, and T¢, then
(Ta, To)Te = Ta(Tp, To). (3.8)

If the equations (3.1a) and (3.1b) satisfy the above group axioms, then they are called the finite

equations of the group.

15




3.1.3 Definition of the Coordinate Functions of an Infinitesimal
Transformation

Let the group parameter be a = a, + da, where da is a small change in the group parameter

away from the identity element. Equations (3.1a) and (3.1b) can be written as

X = f(x,y;ag + 0a) (3.92)

and

y = g(x,y;ap + Oa). (3.9b)

Expanding (3.9a) and (3.9b) in a Taylor series about the identity element yields

X = f(x,y;a0) +§—f(-%z—:i@8a+- . (3.10a)
and
¥ = g(x,y;a0) +§—g(—%’—Z—;aﬂ)ﬁa+- . (3.10b)

Since 8a is arbitrarily small, the higher order terms in da can be neglected, and thus with the use of

(3.3a) and (3.3b), equations (3.10a) and (3.10b) can be written as

T = x4 Q_f(_xéz;ao) Sa (3.10a)
and
oy +ag()sz;ao)§a. (3.11b)

Defining 8x = x - x and 8y = y - y as the change induced in the variables x and y by a small

change in the group parameter away from the identity, we arrive at

16




SX:Qf_(ia’Z_;EQZSQ :@(x,y)ﬁa (3.12a)

and

5y = ag(gz;ao) Sa = n(x,y)da , (3.12b)

which are called the infinitesimal transformations of the group. The functions &(x,y) and n(x.y)

are called the coordinate functions of the infinitesimal transformation.

3.1.4 The Definition of the Group Generator of the Infinitesimal
Transformation

The change in a function, F(x,y), due to a small change in the group parameter away from the

identity can be given by
OF(x,y) = F(x+06x,y+8y) - F(x,y) . (3.13)
Substituting (3.12a) and (3.12b) into (3.3) gives

OF(x,y) = F(x+&da,y+nda) - F(x,y) . (3.14)

Expanding F(x+£0a,y+nda) in a Taylor series and neglecting terms in 8a2 and higher, we obtain

_ dF(x,y) dF(x,y)
OF(x,y) = Sy =5+ n(x,y)——————ay da . (3.15)
Introducing the notation
~ d N
U= q(x,y)5;+n(x,y)§§, (3.16)
equation (3.15) can be written as
8F(x,y) = UF(x,y)da (3.17)
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where U is called the group generator or the symbol of the infinitesimal transformation. The group

generator can also be defined as

8F(x,y) _ &x IF(x.y) 8y oF(x.y)
da Sa OX 8a dy

= &(x,y) aF(x y) +n(x.y) BF(’;Y ) (3.18)
where
8x dy _
OK = E(x,y) and =~ =n(x,y) . (3.19)
da da

The operator 83, is called the group operator or the Lie derivative.

3.1.5 The Invariance Properties oi Equations

A function, F(x,y) = O, is said to be invariant under the action of a group of point

transformations if

UF(x,y) =0 . (3.20)

Given a function F(x,y) = 0, equation (3.20) can be used to determine the coordinate functions

of the infinitesimal transformation.

To examine the invariance of differential equations, it is necessary to know how the derivatives
transform; therefore, further coordinate functions are needed. These coordinate functions along
with the coordinate functions for the dependent and independent variables comprise the extended

infinitesimal transformation. Consider 1 kth order ordinary differential equation, (ODE), given by

F(x,y,y',...,y&K)) = 0. Taking the Liz derivative yields
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SF _ sxaF By oF Sy 3F+._ dyK) 9F

. —_ (3.21)
da da e da ay §a 9Y' da dy)
However, using (3.19) and defining the coordinate function for the jth derivative as
. . j)
NOys- y0) = 2
da
equation (3.21) can be rewritten as
8F - oF IF | nx vy IF (k) @ 9F (329
5 06y 5+ (%) gy TTUYY) e AN Ry ) .(3.22)
Introducing the kth extension of the group generator, equation (3.22) can be written as
OF = GF(x,y.y', - y®), (3.23)
da
where
0% 2 M (k) (k)9
&(x,y) +n(x,y) —+n (X,5,¥) 5=+ M (xy, - y®)y—— (3.24)
ox a oy(k)

The coordinate functions for the derivatives can be writter in terms of the derivatives of the
coordinate functions of the dependent and independent variables. For one dependent and

independent variable, the general formula for the derivative coordinate function is

N0,y - y®) = Dl D(x,y, - -yi-D) - yODE(x,y) | (3.25)

where ﬁx is the total derivative operator and for j = 1, 1(0) = n(x,y). A kth order ODE is invariant

under a group of point transformations if

G“F(x,y, - y®) = 0, when F(x,y, --,y®) = 0. (3.26)
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Equation (3.26) leads to an over-determined system of partial differential equations, (P.D.E.'s),

from which the coordinate functions §(x,y) and n(x,y) can be found.

3.1.6 More General Lie Algebra
Typically, one encounters a situation in which there are systems of partial differential
equations. Consider the case in which there are n independent and m dependent variables; a set of
point transformations is given by
Xi = fi(X1; - Xn,Y1v - Ymars-a) 1<i<n (3.27a)
and
¥i = g(X1y X Y1rYmedrra)  lsjsm. (3.27b)
Equations (3.27a) and (3.27b) comprise an r-parameter group of point transformation if they

satisfy the four group axioms as stated earlier. The corresponding group generator for this case is

given by
n . a
= 2 Ei.s(X, Y) + 2 n;j, s(x.y) (3.28a)
i= Xj j=1
where the coordinate functions are given by
Bf
&is(X,y) =5+ ~la=do . (3.28b)
) =8 |32 3.28b)
n;j, s(x y Ja, a=ag » (3.

X=(X1;-Xnh Y=(1s Yymp and a=(ay;-a) for s = 1, . . . ,r. As before, in dealing with

differential equations the extensions of the group generators are required to determine how the
derivatives transform under the action of the group. The formulae for these coordinate functions

can become quite complicated.
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As a specific example, we will consider the results for one dependent variable, ¢, and two

independent variables, x and y. The second extension of the group generator for this case is

o 0 0
U(2)=§1 §;+§2§~+ﬂ——+n§(‘)——+n‘y”i

) ya d9 S 00x aa% (3.29a)
Q=+ ——+ R —+ ) —

I ey | 00y 0y

where
1 _om —a_'l_ail_ 95, 3]
Ll i e i e (6. S o (2.29b)
m_on [on o&| &, & p &
Lt o e e (0 o (2.29)
o 0’n 9%, 0%, on 9§ o€,
@ _ ) (9% M 951, 5952
Mxx Ix2 “'{2 %30 axz}‘t’x Ix2 ¢y+[a¢ 2 ax}q’xx 2 3% xy
3 2 2 32 2
+ _2’%_ 22—&"‘1" (¢x)2 -2 9% Ox0y - §21 (¢x)3 ‘a_gzz'(q’x)zq)y (3.29d)
o dxadd oxd0 o o
o€, €2 €2
-3— x¥Wxx ~ xx‘z““‘ x¥Yxy »
% Ox B_¢¢y¢ % OxOxy
n [ 9%, Frln 2%, | 2
(2) - () = . - -
Ty =% = 533y +L;xa¢ axay} O +Lay8¢ Bxay} b -5 Oy
an 9§ d& o€, 0%, ( . |9 0% 0%,
T T TG | Yxy TR Yxx T T + - - X
+[a¢ x oy |y ? axaq)( 2 362 9xd0 ayaq)}q’ * (3.29)
0%, (. p 9% 9%, a8, 08,
- X/ T T oYX T4 \Yx -2—= X -2 x¥x
a0 (0] a (o, . (00 2y Dby~ et
1y o 952
a¢ ¢y¢xx a¢ ¢x¢yy )
and

21




o [ ot 9%, 9% . [am o5 , %1
(2) _ 2 . . | — - _i_ .
Yy 8y2 +{ aya¢ ay2 y ay2 ¢ + a¢ q)yy 8 ¢ y
2 32 az
iz—“-?-aéz (0, -2 25 b0, - %2 2 (o) - == S L (0,04 (3.291)
30> dydd dydd 30° 30°
X 3 )
é(; ¢y¢yy ai: x¢yy 2 i] ¢y¢xv .

In the next sections, these results will be used to determine the Lie group of point
transformations that are admitted by the neutron diffusion equations in one-dimensional slab

geometry and two-dimensional Cartesian geometry.

3.2 Determination of the Invariance Condition for the Neutron Diffusion Equation
in One-Dimensional Slab Geometry

Here we will consider the case of the multi-group, one-dimensional neutron diffusion equation

with constant properties as given by

Fg(X,05(%),0g(X),05(x)) = Dyghg(x) - Tp y0g(X) + Sg(x) =0, (3.30)

where Dy is the group g diffusion length and ZR g is the group g removal cross section. We now

recognize that equation (3.30) will be of identical form for each energy group; therefore, we can

omit the subscript g, and the invariance condition for (3.30) is

~ 2 0 ”"
TPFR(x.000).0 (21,6 (1)) = 0 (3.31)
whenever F(x,0(x),0'(x),0"(x)) = 0, where 6(2) is the second extension of the group generator as

given by (3.24). Upon performing the differentiations, the expanded invariance condition is

ESx(X) - NZR + DNy + DO'(2My4-Exe) + DO (Mgy-2E9)

3 (3.32)
- D6 Epg + DO"(ny-Ex-20'Eg) = 0
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where the subscripts indicate partial differentiations. Using (3.30), the second derivative of the

flux is eliminated from (3.32) with the result that

ésx(x) - nZR + anx + D¢I(2nx¢'§xx) + D¢'2(ﬂ¢¢'2§x¢)

3 (3.33)
- D" Epp + (ZRO-S(X))(Ny-Ex-20'E9) = 0 .

However, since § = §(x,9) and n = n{x,9) the coefficicnts on the various powers of ¢' must be

equal to zero. This results in a system of P.D.E.'s that are used to solve for the coordinate

functions £(x,9) and 1(x,0); specifically these are

§¢,¢, =0, (3.34a)
Ngo - 26x =0, (3.34b)
D(2n4 - Exx) - 286¢(Zr0 - S(x) =0, (3.34¢)
and
Dnxx - ZrN + ESx(x) + (Zro -S(X))(ﬂq, -8 =0. (3.34d)

If S(x) is assumed to be any general function of x, then it is found that & = 0 and 1 = 1(x),

where 11(x) satisfies

Dnyx(x) - Zrn(x) =0, (3.35)

or for each energy group

Dgngxx(X) - Zr gNg(x) = 0. (3.36)
The group generator for the one dimensional, multi-group diffusion equation is

0
a¢g(x)

Ug =1g(x) (3.37)
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and is of the special form called an evolutionary vector field.

3.3 Determination of the Invariance Condition for the Neutron Diffusion Equation
in Two-Dimensional Cartesian Geometry

The multi-group, two-dimensional neutron diffusion equation is

F(X,y,05(X,¥),0g x(X,¥).0g y(X,¥),0g xx(X,¥),0g xy(X,¥),0g,yy(X,¥y))

(3.38
= Dgbg xx(X,y) + Dgbg yy(X,y) - ZR gd(X,y) + Sg(x,y) =0, :

As with the one-dimensional case, we will drop the subscript g since the form of equation (3.38)
will be the same for all groups. Using the second extension of the group generator as given by

equation (3.29a) with definitions (3.29b) though (3.29f) the invariance condition is

G(Z{F(x’y’(b(x'Y)aQ’x(x'y):¢y(x"Y),¢xx(xvY)’¢xy(xsY)aq)yy(x,Y))] =0. (3.39)

Upon expanding out the terms in equation (3.39) and using equation (3.38) to eliminate ¢xx, we
arrive at a system of P.D.E.'s for which the coordinate functions &;(x,y,9), &2(x,y,0), and
n(x,y,9) can be solved. Since these expressions are quite complicated they will not be presented
here; however, if there are no assumptions about the source S(x,y) then one obtains the

evolutionary form of the group generator as

Gg =Ng(X,y) (3.40)
a¢g(xvY)
where the coordinate function ng(x,y) satisfies the homogeneous diffusion equation,
Dgng,xx(x,Y) + Dgng,yy(X,Y) - ):R,gng(xs}’) =0. (3.41)

The results of Sections 3.2 and 3.3 will be used later to obtain an invariant finite difference scheme

for the neutron diffusion equation. In particular equations (3.37) and (3.40) will be used in the
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next section to derive the extension of the group generator to grid points, which will then be used

in Chapters S and 6 to formulate the invariant finite difference schemes.
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4 GROUP INVARIANT DIFFERENCE SCHEMES

As stated earlier, the objective of the author's research is to improve difference schemes by
incorporating the invariance properties of the differential equation being simulated into the finite
difference simulation to produce invariant difference schemes. There are, however, several

definitions of what is meant by an invariant difference scheme.

In reference 1, Shokin defines an invariant difference scheme to be a finite difference scheme
whose first differential approximation admits a group of point transformations. Shokin's
definition implies that the group acts on a space, whose coordinates include the dependent and
independent variables, the grid spacings and derivatives up to one order greater than appears in the
original differential equations. Therefore, higher order differential approximations of the
difference scheme are not guaranteed to be admitted by the group; thus, Shokin's definition can not
lead to difference equations, whose solution agrees with the exact solution of the differential
equations being simulated. It is important to note that this type of invariant difference scheme leads

to greatly improved difference equations for the solution of the gas dynamics equations.

A second definition is that employed by Axford, references 2 and 3, which states that a
difference scheme is invariant under a group of point transformations if it admits the extension of
the group to the grid point values of the difference scheme. This definition implies that the
extensions of the group generators act upon a space whose coordinates are the dependent and
independent variables evaluated at the grid points. Axford has shown in reference 2 that such
difference schemes can lead to difference equations whose solution agrees with the exact solution

of the differential equation being simulated.
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The focus of the author's research is to explore more fully invariant difference schemes of the
type based upon Axford's definition of an invariant difference scheme. Considerations such as the

consistency of these invariant difference schemes and the truncation error will be addressed.

4.1 Extension of the Group to Grid Point Values for One Dependent and
Independent Variable

In this section we will examine the construction of the invariance condition for a finite
difference equation. Currently the discussion will be limited to the case of one dependent and

independent variable. Consider the finite difference equation as given by
H(xi-l’xirxi+l‘Yi-l’yii)'i-H) =0, (4.1)

where the x;'s are the independent variables and the yj's are the dependent variables evaluated at
the grid locations, i.e. y(x;j) = y;. As with a differential equation, the invariance condition can be

determined by taking the Lie derivative of (4.1) which is

SH - (P = Sxiy OH | 8% OH | 8x;yy OH 8% OH
da 6a 9%l §a OXi  §a OXi  §a OXisl
; Oyin OH 8y oH _ dyiv OH =0,

Sa OYi1  8a 9¥i  §a OYisl

(4.2)

~(D) . . o .
where U is the symbol or generator of the infinitesimal transformation of the group extended to

the grid point values. For a differential equation that admits an evolutionary vector field, the

infinitesimal point transformations are given by

>
I
»”

(4.3)

and

y=y+7n(x,y)da. (4.4)
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Since the independent variable does not transform under the action of the group, the invariance

condition (4.2) reduces to

(P 2 Syt O By dH By OH

=0. 4.5
§a 9Yi1  §a i Sa OYi+l (4:3)

To determine the coordinate functions we need to extend the infinitesimal transformations

X; = X; (4.6)
and
i = y(x) + @é%%a = yi + N(Xiy)Ba .7
to
Yiel = yY(Xip1) + §X(g"a—"iﬁﬁa (4.8)
and
YT = y(xi) + 5’%—% (4.9)

where Xj+1 = Xj + Ax* and x.| = Xj + Ax". We start by expanding y(Xi,1) in a Taylor series as

x*)k dy(xi)

A
FRia1) = Flkivt) = 5060 + Z o (4.10)
However, the kth order derivative transforms as
kg kg, k
d Y(ﬂ = d y(X) - d Y(X) + n(k)(X,Y)Sa , (4 1)

dxk dxk dxk
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where N(k)(x,y) is the coordinate function for the kth derivative given by (3.35). Substituting (4.7)

and (4.11) into (4.10) yields

ok gk > ok
o = ¥ + 3 (ax) ), [n(xi.yin p) @i‘%—nm(xi,ynJBa (4.12)
k=1 k=1 '

or

= +k
Y(Xis1) = y(Xi+1) +[n(xi,)’i)+ Z &Aﬁ*,”)—ﬂ(k)(xi.)’i)}&- (4.13)
k=1

For an evolutionary vector field (§ = 0) the coordinate functions for the kth order derivatives

are simply given by

n“"(x,y) - S‘f_“i’_‘ll , (4.14)
dxk

s0 (4.13) reduces to

+ k d 1201
Y(Xi+1) = Y(Xis1) {ﬂ(xuh) + Z (Ax ) n(:zky )J (4.15)

Next comparing (4.8) with (4.15) we see that the coordinate function for the dependent variable at

the grid point X4 is

k
Sy(xis1) _ = (i) + 2 (Ax+) d*n(xi,yi) _

5 Ik (4.16)
a

For the neutron diffusion equation, equation (4.16) can be further simplified by the fact that the

dependent variable's coordinate function is only a function of x, (x,y) = n(x), thus
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i - )% din(x;
M=n(xi)+ y (Ax*)* d'n(xi)

” 2N g e (4.17)

In a similar manner, we can determine the coordinate function for y(x;.1) as

(Ax)k dnixi) _
K “EXT*—H(XMM (4.18)

dy(Xi.1)
da

=n(xj) + Z
k=1

Therefore, the group generator extended to neighboring grid points is given by

5@ 2 nixe 1 9 N RN
U™ = n(xl.l)ayi.l + N(x) 3y; + N(Xis1) i (4.19)

It should be noted that in the derivation of the extension of the group generator to grid points there
were no assumptions placed upon the grid spacing; therefore either uniform mesh spacing or
variable mesh spacing can be used. This result will be used to determine the invariance condition

for the finite difference approximation of the diffusion equation in Chapter 5.

4.2 Extension of the Group to Grid Point Values for One Dependent and Two
Independent Variables

Here we will consider the construction of the invariance condition for a finite difference
equation which depends on a dependent variable, ¢; j, and the independent variables x; and yj. The

five point finite difference equation is given by

H(Xi.1,X0:Xi+ 1,Yj- 1Y) Yj+ 1,0i-1,u01§-1,:0i -0+ 1, j+1) = 0 . (4.20)

As in the previous section, the invariance condition is found by taking the Lie derivative of

expression (4.20), thus arriving at
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8H _ @y = 8%l OH oH _ &x 0H _ 8xis1 oH
da da axi-l Sa O%i  da OXial
6yJ 1 JH 8)’] oH SYJH oH
52 Vi1 52 9%  8a il
+5¢i-l.j dH +5¢i,1.-1 oH +5¢n,1 oH +5¢x+u oH +5¢i.j+1 oH
Sa 00i.1; Oa i1 Oa 00y Ba 30y B2 90ij.

(4.21)

=0.

The infinitesimal point transformations of a differential equation that admits an evolutionary vector

field are
X=X, (4.22)
y=y, (4.23)
and
0X,9) = 0(x,y) + N(x.y,0)da . (4.24)
Equation (4.21) can be simplified to
Oy - iy OH 8¢ij1 oH
da  dbi.1 da  dbi -1 (4.25)

+5¢i,j oH +5¢i+1.j oH +5¢i,j+1 oH
8a 3¢i; Sa O%in; B2 O0iju

=0,

since the independent variables, x and y, do not transform under the action of the group. As in the
previous section, we need to determine the coordinate functions by extending the infinitesimal

transformations, as given by equations (4.22) through (4.24) when evaluated at grid point (i,j), to

" 00i.1,j ,

0i-1j = Qi1 + 9ic1 da, (4.26)
da

- 501

®ij-1 = Oij-1 + 0ijq1 da, (4.27)
da
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8¢|+1 J

¢1+1j = 0j+1,j + da (4.28)
da
and
St :
Gije1 = Oijer1 + Oier o (4.29)
da

To determine these coordinate functions, we proceed as in the previous section by expanding

ai+1.j in a Taylor series about the point (xj,y;j) as

Ax+)k ok ¢,
¢1+1] (Dlj' 2 (@axry? X) aka (4.30)

However, the kth order derivatives of the dependent variable transform as

FOET) _ 0%y . o
ok oxk M W(xy.0)0a, (4.31)

where the coordinate function for the kth derivative, n(k) [(X.y,0) is given by

M. =Din ) - Di&ifi,..i,.j- Next we substitute (4.24) and (4.31) into (4.30) to yield

i (Ax+)k 0% ;

Giv1,j = 0ij +
J J Kol k! axk

. (4.32)
+Yk
+ [n(xiij,(bi,j) +) % n®(x;,y5,0i ) ] da
k=1 X

or

— > +k
Bivt = Oren+ [n(xi,y,-,m.j) + 3 B 0000 } . (433)
k=1 :
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Upon comparing equations (4.33) and (4.28), we see that the coordinate function of the dependent

variable at the grid point (i+1,)) is

6¢i+1 J

da

oo A k
=030 + %, S n0xy;015) 5 (434
k=1 )

which can be simplified further for the neutron diffusion equation by making use of the fact that the
coordinate function, 1(x,y,$), is only a function of x and y to yield

6d)iﬂ,j

= N(Xir 1Y) = Nislj - (4.35)
da

In a similar manner, the coordinate functions for the points (i-1,j), (i,j-1) and (i,j+1) can be found;

to yield the extension of the group generator as

~(D 0 0 0
o )=ni-l.j + Mij-1 + Mij + Nislj + Mij+l
00i.1 90 j-1 90 00is1, i j+1

. (4.36)

This result will be used in Chapter 6 to determine the invariance condition for the two-dimensional

neutron diffusion equation.

4.3 More General Extensions of the Group to Grid Points

In the previous two sections, we explored the invariance conditions for finite difference
equations which depended only on the independent variables and the dependent variable evaluated
at the grid points. In many situations, it is desirable to have difference formulations which also
depend upon derivatives of the dependent variable evaluated at the grid points. In a manner similar
to the two previous sections we can extend the extensions of the group generator to grid point
values. As an example, we consider the first extension of the evolutionary vector field, as given
by
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0 = ) —2— + ) —2— (4.37)
0d(x) 99(x)
We wish to extend this vector field to grid point values us
gD g® , xit 9 80« 0 8xin 0 (4.38)

da d0xi1  Oa dOx;  Oa  O0ysi

: . . ~(D . . .
where the extension of the group to grid point values, 1) ), was determined in Section 4.1. For
the first extension of the evolutionary vector field that is admitted by the neutron diffusion

equation, the infinitesimal point transformations are

X=X, (4.39)
&ﬂ=wn+mn&, (4.40)

and
&®=%m+mm&, (4.41)

where n(x) is the solution of the homogeneous diffusion equation. In order to determine the
coordinate functions, we need to extend the infinitesimal transformations as given by equations

(4.39) through (4.41), when evaluated at the grid point x = xj, to

Oy (Xis1)

Ox(XiaD) = bx(Xis1) = Ox(Kiy1) + e (4.42)
a
and
éx(xi-l) = z4;)‘()“-1) = Ox(Xi1) + §q—)x—gi-']~)58 . (4.43)
a

As in Section 4.1, we begin by expanding Ex(xm) in a Taylor series as
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A )k dky(x
Balxis1) = Ox(xq) + Z Q) Codx) | (4.44)
=1 dx
However, the kth plus one derivative transforms as
d+o@  d* o) dk*lodx
q)(_‘) = q)( ) = ¢( ) nxl,...xh‘(X)sa . (4.45)

dick+l  dxk+l  dxkel
where Ty,...x,,,(X) is the kth plus one derivative of n(x) with respect to x. We now substitute

equations (4.45) and (4.41) into (4.44) to yield

+k gk+l1 +
dx(Xiat) = ¢x<x,)+2 (ax)? 47000 {nx( ,)+Z (A") Gl xh,(x.)}& (4.44)

or

Ox(Xia1) = Ox(Kis1) +Nx(Xis1)Ba . (4.45)

Comparing equations (4.45) and (4.42) we see that the coordinate function for ¢4(xj4+) is

O0x(Xj4+1)

= Nx(Xis1) (4.46)
da

The coordinate functions for other derivatives can be found in a similar manner. Results such as
these will be used in subsequent chapters to derive the group invariant difference equations for the
neutron diffusion equation. It should be noted that extending a group of point transformations to
grid points is relatively easy for the case at hand, i.e. for the evolutionary vector field whose
coordinate function depends only on the independent variable; it is not particularly clear how to

handle more general types of point transformations.
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5 LIE GROUP INVARIANT FINITE DIFFERENCE SCHEMES FOR THE
NEUTRON DIFFUSION EQUATION IN ONE-DIMENSIONAL SLAB
GEOMETRY

We begin this chapter by deriving the Lie group invariant finite difference approximation for
the neutron diffusion equation in slab geometry. Additionally the necessary interface equations for
multiple region problems will be derived. Specific numerical results will be provided to show the

utility of such difference schemes. Along the way, the issues of local truncation error,

consistency, and stability of the difference approximation will be addressed.

5.1 The Grid Space upon which the Solution is Determined

Before we begin the actual derivation of the invariant finite difference equations it is useful to
discuss the issue of upon which type of grid space the difference equations are to be based. There
are two types of grid spaces; the first is the cell centered mesh, and the second is the cell edged
mesh. Cell centered meshes get their name from the fact that the mesh points lie at the center of the
cell interval and do not fall on a interface, where as for the cell edged mesh, some mesh points fall
on an interface. Figures 5.1 and 5.2 show the differences between the cell centered and cell edged

mesh.

<4 Xx P
\ Interface

Figure 5.1 Cell Centered Mesh
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Figure 5.2 Cell Edged Mesh

In most reactor calculations, the cell centered mesh is used [9, 16,17]. Experience has shown
that standard finite difference schemes perform better when calculated on the cell centered mesh as
opposed to the cell edged mesh. This fact will be demonstrated later in Section 5.5.3. However,
for the invariant difference schemes yet to be derived, we will use the cell edged. The reason for
choosing the cell edged mesh stems from the manner by which the invariant difference equations at

the interface are derived. We will later demonstrate that this choice of mesh is acceptable.

5.2 Derivation of the Group Invariant Finite Difference Equations for the One-
Dimensional Region with Constant Material Properties

We begin our derivation of the group invariant difference equations be considering the multi-

group diffusion equation in one-dimensional slab geometry as given by

—{ M} T g0g(X) + Sg(x) =0, (5.1)

where Sg(x) contains both the sources due to fission and scattering. Since equation (5.2a) has the
same form for all energy groups, we will omit the subscript g in the ensuing discussion.
Additionally, we will assume that the material properties are piecewise constant; we will use the

diffusion equation in the form
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d%o(x)
dx?

D - TRO(X) + S(x) =0 . (5.2a)

For multiple material region problems the necessary interface conditions are continuity of current

and flux as given by

Ao (xa) ., do'(xy)
D dx =D dx (5.2b)
and
0 (xa) = 0" (xa) , (5.2¢)

where the superscripts + and - refer to the right and left hand sides of the interface and x, is the

interface location.

In Section 3.2, we found that equation (5.2a) admitted a group of point transformations whose

evolutionary vector field was given by

U=n®x) , (5.3)

where the coordinate function, 1(x), satisfied the homogenous diffusion equation

D

dzn(x) S TRN(X) =0. (5.4)

x2
The general solution of the homogeneous diffusion equation, (5.4), is readily found to be
1n(x) = A cosh(ax) + B sinh(ox) , (5.5)

where a2 = g / D, and A and B are coefficients which will shown later to cancel out. It is of

interest to note that this particular group of point transformations is not admitted by the boundary
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conditions, since both A and B are not zero; therefore, we only have partial invariance. As will be

shown, partial invariance will pose no difficulty in constructing the invariant difference equations.

We now introduce the concept of an invariant difference operator [19]. This concept is similar
to the differential operator in the study of differential equations. As an example of a differential

operator, we can rewrite equation (5.2a) as

Lo(x) +S(x) =0, (5.6a)
where the differential operator is
~ 2
L=Dd> .5;. (5.6b)
ixz N

The solution of equation (5.2a) can be written in terms of the homogeneous solution and the

particular solution as

0(x) = du(x) + ¢p(x) (5.7

where ¢H(x) is the homogeneous solution and ¢p(x) is the particular solution, which, respectively,

satisfy

Lonx) =0 (5.8)

and

Lop(x) + S(x) =0 . (5.9)

We now define the invariant difference equation as

£2¢i+Qi=0, (5.10)
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where Q is the invariant difference operator and Q; is the inhomogeneous source. The solution of
equation (5.2a) can be written as
0i = OH,i + Op,i (5.11)

where ¢y ; is the homogeneous solution which satisfies

Qou,i=0, (5.12)

and ¢p,; is the particular solution that satisfies

Qop; +Qi=0. (5.13)

~

Now the invariant difference operator, €, is determined such that equation (5.2a) is invariant under
the action of the group extended to grid points. The inhomogeneous source, Q;, is then determined

from equation (5.13) using the particular solution of equation (5.2a) as

Qi=-Qop,; . (5.14)
5.2.1 Construction of the Invariant Difference Operator

~

There are several methods by which the invariant difference operator, 2, may be constructed.

We will consider the three point central difference form of the invariant difference operator as
Q=p B - 280+ ). 2, (5.15)

where E" is the shift operator such that n = -1 is the backward shift, n = 0 is the null shift, and n =

+1 is the forward shift. The explicit form of equation (5.12) for the difference operator, (5.15), is

Qon,i =P [¢H,i-l -20nH, + ¢H.i+l] -ZrOH,i=0. (5.16)
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We now determine P;, such that equation (5.16) is invariant with respect to the group
generator, (5.3), when extended to grid points. In Section 4.1, we found that the extension of the

group generator to grid points was

~(D d d
0™ = ni="— e nis= + iy (5.17)
ddi.i 9o 00i+1
Operating on equation (5.16) with the group generator (5.17) yields
Pi[Mi - 2ni + Niwt) - ZrMi =0, (5.18)

where the 1); are given by equation (5.5) when evaluated at the grid points. Solving for P; yields

ZRN;
P = . 5.19
YoM - 2+ M G19)
If uniform mesh spacing is assumed for a given region, equation (5.29) can be simplified to
p= — R (5.20)
4 Sinh’{a AA]
2
where the coefficients A and B have canceled, and the invariant difference operator is
~ ~-1 ~0 ~+1
G- B2+ B o0 (5.21)

4 Sinh’{a AZL}

An alternative method by which the invariant difference operator may be derived consists of
using the second extension of the group generator extended to grid points. This method essentially
consists of determining the invariant difference approximation of the derivatives and substituting
these approximations into the differential operator. Using the arguments put forth in Section 4.3,

we find that the second extension of the group generator, (5.3), extended to grid points is
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g _ m_l__a____ N mj)__” + nm“@”‘“
99;., d0; 00i4)

+ Nx.i-1 J +nx.i—9““‘+nx.i+l‘ J (5.22)
a¢x.i-l aq)x.i a‘1’)&,i+l
d 0
+ Nxx,i-1 F Nux,i— + Nxx.i+l —
¢xx.i~l a¢xx.i ¢xx.i+l

We begin by operating on the flux. ${(x) with the differential operator (5.7) and evaluate this

expression at the grid point x = x; as

d20u,i
dx2

Loux) k=, =D + ZroOH; - (5.23)

We next operate on the flux, ¢y j, with the candidate difference operator, (5.25), to obtain

Qbu,i=P; [¢H.i~l - 204 + ¢H.i+1] + ZROH,; - (5.24)

Equating equations (5.23) and (5.24) yields

dou;
b d?;'l - ZrOH; = Pi [0t - 20H,+ Onint] - T, (5.25)
or
2,
b dil;'l = Pi[ Qi1 - 200 + O] - (5.26)

We now operate on equation (5.26) with the second extension of the group generator extended

to grid points as given by (5.22), which yields

p &M

= Pi[Mi-1 - 2ni + i) (5.27)
dx?

and solving for P; we obtain

43




p i

pi=——dx2 (5.28)
[Mi-1 - 2N + Mis)

Again if uniform mesh spacing is assumed, equation (5.28) reduces to

pp=—>DRo - IR (5.29)
4 Sinh¥(0Ax/2) 4 Sinh%(0lAX/2)

Equation (5.29) is identical to equation (5.20); and the invariant difference operator is again given

by

P A

- zREC. (5.30)
4 Sinh%(0AX/2)

Since equations (5.30) and (5.21) are identical, these two methods are consistent with each other.
The later method of deriving the invariant difference operator will prove to be of particular use

when deriving the interface equations for multiple region problems.

5.2.2 Determination of the Inhomogeneous Source Term
Now that the invariant difference operator, 2, has been determined, we need to determine the
inhomogeneous source term Q;. As stated earlier, the inhomogeneous source term is determined

by operating on the particular solution of equation (5.2a), when evaluated at the grid points, with

the invariant difference operator, (5.21) as

Qi=-Q¢p,. (5.31)

Therefore, we need to determine the particular solution of (5.2a). However, since the source

distribution, S(x), is based upon the unknown flux, the source distribution can not be determined



beforehand, and, therefore, the particular solution can not be determined. To get around this

problem, we will use an approximation for the source distribution.

There are several ways to approximate the source distribution; the simplest is to use a curve fit.
If we have some estimate of the flux at several points in the neighborhood of x = x;, then we can
estimate the source distribution due to fission and scattering in this neighborhood. As an example,

we can use a quadratic curve fit as given by

S(x) = S0t = 281+ Siat (x _ xy2 4 Siel = Siel (xx) + (5.32)
2Ax2 2Ax

where the Si's are the sources evaluated at the grid points. Using equation (5.2a) and the source

distribution as given by (5.28), we find that the particular solution is

op(x) = L[St 2281 ¥ Sial (¢ _ 2 4 Sie 250t (x4,
IR 2Ax2 2Ax (5.33)
+5i:1-25i +Sjy;
o2 Ty Ax?2

Now operating on this particular solution with the invariant difference operator, we find that

Qi=S;i +(Si.1 - 25; + Si+1)[ L. L } . (5.34)
(0Ax)? 4 SinhZAx/2]

Thus, the invariant finite difference equation of the neutron diffusion equation for this particular

example is

(031 - 201 + 0101)

- Zro; + 5
4 Sinhz{a éi’-‘-]
(5.35)
+(Si-1-2Si+Si+1)[ L. 1 }=0-
(0AX)? 4 Sinhd oAx/2]
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For the multiple energy group problem, equation (5.31) becomes for energy group g, 1<g<G,

ZR,g((pg,i-l - 20g,; + ¢g.i+1)
4 Sinhz[ozg -Aé&]

- ZRgbg.i + Sg.i

(5.36)

+ (Sg,i-l -28; + Sg.i+1)

L. L =0.
(0gAX)? 4 Sinh? otAx/2)

This is by no means the only possible form of a curve fit possible; one could assume that the
source distribution is simply equal to S; in the immediate neighborhood of x = x;, or one might try
higher order curve fits. Table 5.1 lists some sample source distributions and their corresponding
invariant source terms, Q;. The results presented thus far are only valid for a single region that has
uniform mesh spacing or constant material properties. In the next section, we will present results
that will allow for changes in the mesh spacing or material properties, both of which will be dealt

with using an invariant finite difference scheme at an interface.

5.3 Determination of the Group Invariant Difference Equations for an Interface
between Two Regions

In Section 5.2 we determined the multi-group invariant difference equations for the diffusion
equation at points that were interior to a given region in which the material properties and the mesh
spacing were uniform. We now need to determine the invariant difference equations for an

interface in order to link together the various regions.

We begin by deriving the Lie group invariant difference form of the net current interface
condition. The net current condition states that the neutron current exiting from one side of the

interface must equal the current entering the other side of the interface; mathematically this is given

by
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Table 5.1 Sample Source Distributions and the Corresponding Invariant Finite Difference Source

Terms

Sample Curve Fits of the Source Distribution

Inhomogeneous Source Terms for the Invariant
Finite Difference Equation

S(x) =§; Qi=S;
S(x) = Si.1 - 2S; + Sjyg (x-x;)? Qi =S;
2
28 + (Si-1 - 25 +Si+l)[ L. 1 }
+Sis1 = Sicl (y gy 4 (0Ax)? 4 Sinh%(0Ax)
2Ax
S(x) = Siz=28i + Sig (4 yy2 Qi=S;
2
24x + (Si - 2Si_1 +Si_2)[ 1 - 1 }
+35i-45i +Sip (xX)) + S (Ax)? 4 Sinh?(0AX)
2Ax
S(x) - Si - 2Si+l + Si+2 (X-Xi)2 Qi = Si
2
2 1 B S e
_38i=48ie1 + 812 (y gy 4 §; (0Ax)? 4 Sinh?(0Ax)
2Ax
S(x) = Sie1 =38 + 38y - Sig (_\ 33 Qi =S;
3
bax + (Si1 - 2§ +Si+l)[ L. L
4 Siel = 28i + Siey (432 (0Ax)? 4 Sinh%(aAx)
2Ax?
+ 2Si+1 + 3Si - 6Si_1 + Si_2 (X-Xi) + Si
6Ax
S(x) = Si:2 = 48i.1 + 65; - 4Si4; + Sisg (v Si.2 - 4Si.1 + 68; - 4Si41 + Si42
24Ax* Q= a2Ax2 .
+ 2512+ 28 - 2541 + Siyp (x-x;)? + i + 168;.) - 30S; + 16S;y) - Sis2
12Ax3 12
-Si. + 16S;.q - 30S; + 16Si.1 - Sis2 1o o2 | — 1
+= l 24A,:2 l (i) (0Ax)? 4 Sinh%(0AX/2)
4+ Siz2 - 8Si. +8Si4) - Siuo (x-x) + _Si2-48i, + 6§i - 48i41 + Sisp S;
12Ax 48 Sinh“(0tAx/2)
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D.

do(x) 4o
‘x=x.‘—D dx Ix:xa .

ix (5.37)

As before, the solution, ¢(x), can be written in terms of the homogeneous and particular portions

as

¢(x) = dx(x) + Op(x) , (5.38)
and the neutron current can be written as
do(x) _ - dou(x) . . dop(x)
D i =D i +D - (5.39)

We now seek an invariant difference approximation of the neutron current as

dd(x
DX =Ty (rer - 01 + X, (5.40)
where T; is determined from
doy(x
D ¢:}f ) h=x = Ti @nist - Oni1) (5.41)

such that equation (4.41) is invariant under the action of the group, and QX is determined using the
particular solution as

dop(x) I

QX =D—5

x=x - Ti (Qp,is1 - OP,i-1) - (5.42)

Using the first extension of the group generator extended to grid points as

ﬁ“D)=ﬂi-1-§—+ﬂii+T}i+x J
0.1 99; 90i41
3 3 3 (5.43)
+ MNx,i-1 + Myx,i —— + Ny i+l ,
Ox,i-1 90x,i Obx,i+1
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we operate on equation (5.41) to obtain

d .
DL =T (Mt - i) (5.44)
or
Dc:i—“i
T, =—-UX 5.45
b (Misn - Mict) >4

and if uniform mesh spacing is assumed equation (5.45) can be reduced to

T,=—Da (5.46)
2 Sinh(0lAx)

Thus the invariant difference approximation to the neutron current is

Dd(gix) ooy = Dou(dis1 - 0i-1) +0X, (5.47)

2 Sinh(aAx)

where QX is determined from equation (5.42) for some given form of the particular solution; and

the invariant difference approximation of the net neutron current interface condition is

Dor(@ist - 6i0) | (- - D70 (@it - 61)

: -2+ QX*. (5.48)
2 Sinh(0rAX) 2 Sinh(or*Ax")

We will now consider a specific example of the invariant difference equations at an interface.
Since the sources due to material properties on the left-hand side of the interface are not known on
the right-hand side of the interface and vise versa, we can use a backward and forward curve fit of
the source distributions, as given by the third and fourth entries in Table 5.1. This leads to explicit

expressions for QX- and QX+ as

49



Qx_=3s;-4S;_}+S}-z{ 1 1 } (5.49)
200 o'Ax"  Sinh(orAx-)

and

QX

+_ - 38T +48},, - Saz[ 1 1 } : (5.50)

20" o*Ax+  Sinh(otAx*)

where the superscripts - and + indicate whether material properties on the left-hand side and the

right-hand side of the interface are respectively used.

We are now ready to formulate the invariant difference equation at the interface for a general
one-dimensional problem. We start by writing the invariant three point central difference equations
for the left and right-hand sides of the interface as

Za(03.1 - 267 + ¢i41)

-ZR0Oi+Q;=0 (5.51)
4 smh’{a- é%‘—'

and

Sa(071 - 207 + 01)
4 Sinhz{a“ é-;—*]

- IR +Qf =0, (5.52)

where the Qj's are determined from equation (5.31) using the appropriate particular solutions.

Now the unknowns ¢;,; and ¢;'.1 can not be determined since these points do not really exist.

Therefore, using equations (5.51), (5.52) and the current interface equation (5.48), we eliminate

the terms, ¢;,, and ¢i.1, to arrive at
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_ Do 4. __D;ﬂ.;_{ | + 2Sinh2(or A% )| ¢
Sinh(avAx)  Sinh(orAx) 2

. D'o* 1+2Sinh2(a+-A—Xi)] of + —Dt  oF (5.53)
Sinh(a*Ax*) 2 Sinh(ot*Ax+)

Sinh2(ow A%y Sinh%(ort Ax )
2 TQi+2 2 _Q-QX +QX*=0.

+2
oSinh(orAx)  a*Sinh(atAx*)

We now apply the interface condition of continuity of the flux as ¢; = qﬁ, and upon dropping the
superscripts on the flux, we arrive at the invariant three point central difference equation for an

interface as given by

_Do i1
Sinh(orAx")
. —DIL'——(1+ 2Sinh(or %)) + D" {14 28inh?(ort X" )) 0i
Sinh(orAx) 2 ") 7 Sinh(o*tAx*) 2
» (5.54)
+ —Do® Di+1
Sinh(a*Ax*)
Sinh?(or 4%-) Sinh2(o:* AX* )
+2— 2 Q42 2 _Qr-QX +QX*=0.
o Sinh(oAX-) o*Sinh(o*Ax+)

For the multi-group case, equation (5.54) can be written as

_ Doy
Sinh(aGAXx)

- + ~+

; __D_sS_s___(H 2Sinh%(0 A%7)) + De0s (14 2Sinh?(ag; AX* )) Og.i
Sinh(oGAX") 2 7 Sinh(agAx*) 2
. (5.55)
+ “"—‘EEL‘“ ¢g.i+l

Sinh(cAx*)

Sinh?(o5 A% ) Sinh%(oy %% )

+2 2 Q. +2 2 Q- QXp+QX;=0.

aSinh(0GAX) © aiSinh(ofAx*)
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It should be pointed out that equation (5.55) is the generic form of the invariant difference equation
at an interface, and that the source terms Qg ;, ‘;‘i, QXj, and QX3 depend only on the particular
solution chosen and, hence, on the form of the source curve fit used. To fill out the set of example

source distributions at an interface, we will list some other types of curve fits that are possible.

If the source is varying slowly, one can assume that the source distribution is constant in the

neighborhood of x = x;, therefore S(x) = S;. We find that
Q =Sjand Qf = S}, (5.56a)
and that
QX;=0and QX =0. (5.56b)
The invariant interface difference equation is then
—— Do ¢, ,
Sinh(oAx)
-{——Dﬂ;ﬂ(n 2Sinh?(or A%y} + —Dfat  {y4 2Sinh2(a+é—xi)) o;
Sinh(owAx-) 2 Sinh(or*Ax+) 2
. (5.57)
y—D0 g,
Sinh(atAx*)

Sinh?(or %‘- ) Sinh?(oc* A_ch_ )

+2 S;+2

il N St =0
aSinh(o-Ax-) o*Sinh(o*Ax+)

It is interesting to noie that equation (5.57) is identical to equation 6 in reference 15, as derived by

Wachpress. Later, we will show that this equation is exact under certain situations.

Another example of a curve fit consists of fitting the source with a fourth order polynomial
across the interface as given by
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S(x) = a(x-x))* + b(x-x;)3 + c(x-x;)? + d(x-x;) + S; , (5.58a)
where

(AX*)2(2AX*+AX")S;.2 - 4(Ax+)2H(AX++2AX7)S;.|
+ (2(AxH)? + 7(Ax*)2Ax" + TAX*H(AX)? + (Ax")3)S;

- 4(AX")2(2AX T +AX")Si41 + (AX)3(AX*+2AX7)Si42
4(AXTAX)HAXF + AX)(2AX* + SAX*AX™ + 2AX°)

(5.58b)

- M

(AXH)2((AX")2-Ax+Ax--6(Ax*)?)S; 2
+ 4(Ax)2(3(AxH)2H+4AX T AX--4(AX")?)S;
+ 3(2(Ax")*+5Ax+(Ax")3-5A%(Ax+)3-2(Ax)*)S;
+ 4(Ax")2(4(AX")2+4AX+AX-3(AxH)D)S 41

~2 4AxFAX - 3s;
pol_ tAOACAOYHACAX-(AX)Sivg | (5.58¢)

4(AX*AX)H(AX + AX)(2AX* + SAX+AX" + 2Ax°)

(Ax*)3(4(Ax")3-4Ax+AX"-3(AX*))S; .,
+ 8(AX*)3(-(Ax*)2+AX*AX+6(AX)?)S.1
+(4(AX)HAX -AX)-45(AX)2(AXHHAX+AX)+4(AXH)H(Ax*+-AX")S;

+ 8(AX)3(6(AX*)2+AX+AX -(AX")?)Si41

+ (Ax")3(4(AX)2-4Ax+AX"-3(AX*)?)Si 42
4(AX+AX )2 (AX* + AX)(2AX + SAXHAX" + 2AXY)

=, (5.58d)

and

(AX+)3(AX"+2Ax*)S;.2 - 8(AX*)3(AX++2AX7)S; 1
+ 3(2(AX" )4 +5AxH(AX) 3 +5 A% (Ax+)3+2(AxH)*)S;

+ 8(AX)3(2Ax++AX")Si4| - (AX ) (AXx++2AX7)Sis2
2AXHAX(AX* + AX)(2AX* + SAX*AX™ + 2AX7)

d= (5586)

53



Performing a calculation similar to that already performed for the quadratic curve fit, we find

that
Q= Si+2(c+ 12a)( L. (A ) 2a(ax)! (5.59)
(@%)?/\(a*)?  4Sinh%(0*Ax3/2)] 4Sinh2(0SAx5/2)
and
Qx§=(e+ 6b )( L. AXS ) b(Axs)? ’ (5.60)
(@9)?/\(a%)?  osSinh(osAxs)| osSinh(aAxs)

where the superscript s is respectively either - or + for the left or right-hand sides. There are
several options as to what to use for the sources in equations (5.58a) through (5.58e). The most
obvious is to use the sources as calculated on the left and right-hand sides of the interface and
assign the appropriate source at the interface as in the earlier examples. The second option is to
extend the material properties of one region into the other region for the sole purpose of calculating

the source distribution. In Section 5.5.3, results will be presented for both these options.

5.4 Local Truncation Error, Consistency, and the Relationship between the Lie
Group Invariant Finite Difference Equations and Standard Difference Equations
Before we present specific numerical results, it is useful to discuss the local truncation error of
the invariant finite difference equations. Additionally, we will demonstrate that the invariant
difference equations are consistent with the original differential equations and that it is possible to

recover standard difference equations from the invariant difference equations.

We begin by discussing the invariant finite difference equations in which the source
distribution was simply approximated by a constant, S(x) = S;, in the neighborhood of x = x;. The

equation for points interior a to given region was determined in Section 5.2 as
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zR(¢i-l - 20; + ¢i+|)
4Sinh?(0lAx/2)

-XROi +S5i=0. (5.61)

We can recover the standard three-point difference approximation of equation (5.2a) by

expanding the hyperbolic-sine in a series expansion as

4 6
43inh%(0dX) = (xAx)? + (“‘l“;) + (03‘2’(‘)) R (5.62)

Upon truncating the series in terms Ax# and greater yields

2R(¢i-| - 20; + ¢i+1)
(0Ax)?

-Zpoi+Si=0, (5.63)

or using 02 = ZR/D we arrive at the standard three-point central difference equation,

D(¢i-1 - 20; + 0i11)
Ax?

-ZRO; + S;=0. (5.64)

The local truncation error for equation (5.61) may be determined by expanding the equation in a

series about the point X = x;, as Ax becomes small, to obtain

te=D - Zroi + S + A% D ¢ - 30
(5.65)
(vn)_ (iv) _&R - (iv)]
+axq 5L (Dol - rol™) + SZB- (20 - Do) | +

Next, we eliminate the original differential equation and its higher order differentials to yield

_Ax2[ g 4[ 1 { v )3 }
te= 88 5 ]+ axd Sl {5V )+ 2B 57) |+ 0ax9) (5.66)
or

Te = Al?szi[ -S; |+ 0(ax%) . (5.67)




It is readily seen that the local truncation error vanishes as Ax goes to zero, thus the invariant finite

difference equation, (5.61) is consistent with the original differential equation, (5.2a).

It is interesting to note that in formulating the invariant difference equation, we assumed that
the source distribution was constant in the neighborhood of x = x;, and if indeed the source is a
constant across all mesh in this region, the local truncation error is zero. It will be shown in
Section 5.5 that the invariant finite difference equation, (5.61), is exact for problems in which the
source distribution is constant. Consider a diffusing media, in which there are no sources present,
i.e., S(x) =0, an interesting consequence of the fact that the local truncation error vanishes for a
constant source is that the invariant finite difference equation

Zeloi1 - 261 + 0is1)
4Sinh*(aAx/2)

-Zr6; =0 (5.68)

is an exact discrete representation of the differential equation

d2¢(x)

D .
dx2

Tro(x) = 0. (5.69)

This implies that the more information Qj contains about the source distribution at x = x;, the better
the invariant difference equation will simulate the original differential equation. This also suggests
that the quality of the information represented in Qj, i.e., the type of curve fit used to model the
source distribution, will play a larger role in determining the accuracy of the invariant difference
equation than the local truncation error will play. This final conclusion will be demonstrated in

Section 5.5.
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We now consider the invariant finite difference approximation at an interface in which the

constant source approximation was used as given by
4~.D_Q1,___ i1
Sinh(oAx-)
{W—Dﬂr— 1+ 2Sinh%(or A%°)) + D {14 28inh2(a éls_ )) 0
Sinh(ocAx-) 2 Sinh(o*Ax*)

+ D*o*
Sinh(atAx*)

(5.70)
¢i+l

Sinh%(or AX7 ) Sinh2(a* A% )
+2———— 2 Si42 2 st =0,
o Sinh(orAx-) o*Sinh(otAxt)

As with the previous equatinn, (5.61), we can recover the standard finite difference formulation by
expanding the hyperbolic-sines in series; truncating the series to the first term yields

_ S Ax- FAyg+
Doy -] - +_E_Rzé_x__ +_D_+_+§_R$_x_ o+ 25 oy
Ax- Ax- Ax+ Ax*

ST <0

(5.71)

which is the cell edged standard finite difference approximation of the diffusion equation.
The local truncation error for equation (5.70) is determined in a similar process to that of
equation (5.61); expanding the terms in (5.70) in a series about the point x = x; and eliminating all

differential forms of the diffusion equation, we obtain
= L{@x)? (877 - @xn? (sh)]+ ol ax)? axy]. (5.72)

It is readily seen that as the mesh spacing tends to zero the local truncation error goes to zero;
therefore, the invariant finite difference equation is consistent with the original differential

equation. We again note that if the source distribution is a constant, the local truncation error
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vanishes, and the invariant difference equation is exact. This claim of exactness will be supported

with a numerical calculation in the next section.

Since there are a large number of curve fits that can be used to model the source distribution,
we will not present the details for determining the local truncation error, but, instead, we will
present the local truncation error for some sample curve fits. The following cases will be the basis

for the numerical calculations to be presented in Section S.5.

Case 1, Second Order Invariant Finite Difference Scheme

The in-region source curve fit is
S(x) =S;. (5.73a)
The corresponding inhomogeneous source term for the invariant difference equation is
Qi=§S;, (5.73b)

and the local truncation error for the in-region invariant finite difference equation is given by

Te=- %3 S| + O(Ax4) . (5.73¢)
At the interface, the source curve fits is taken as
S(x3) = S;and S(x§) = S} . (5.73d)

The inhomogeneous source terms for the invariant finite difference equation are
Qi=S, Q =S, QX'=0,and QX*=0. (5.73e)

The local truncation error for the interface equation was determined to be
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=L@x)? (57 - @x? ()] + oliax?axn?].

Case 2, Forth Order Invariant Finite Difference Scheme

The in-region source curve fit is taken as

S(x) = 222;:8‘+i(xx)2+§‘—*—5zx-‘—~(xx)+8.

The invariant inhomogeneous source is

Qi = Si +(Si.1 - 2S; + Siy) | —— - ——1
(0AX)?  4Sinh*(0iAx/2)

and the local truncation error for this in-region invariant difference equation is

- Ax4 ('V) 6

At the interface two quadratic curve fits are used as

3S; - 48}, + S

Si-2S;.1 +Si, 2, i-2
= X S;
S(xa) = 2(AX‘)2 (x-xp)“ + 2AX- (x-x) +

and

S+ 2Sl+1 j+2 )2 + 3S 4Sn+l + Sx+2 +

S(x}) = 2Ax)? (x-x;)“ + AT (x-xj) + S7 .
The corresponding inhomogeneous source terms are
Q=S + (S; - 25;. +s:_)[ | S— L }
TR T T (@ax)? 4Sinh?(orAx/2)

Qb =S} +(Sf- 28t +s.+‘)[ I 1 ]
T TR otAX®)? 4Sinh2(atAX*2)
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(5.74a)

(5.74b)

(5.74¢)

(5.74d)

(5.74e)

(5.741)

(5.74g)



3S:-4S;, +S;
X- = i i-1 i-2 [ 1 _ 1 ] , 5.74h
Q 200 oAx-  Sinh(orAx-) ( )
and
Qx+ = 381480 + Sl { 1.1 ] , (5.74i)
200t otAxt  Sinh(otAxt)

The local truncation error for this particular set of curve fits at the interface was determined to be
te= e[ (Ax)*(S) - (Axnd(sty ]+ oaxs). (5.74j)

Case 3, Sixth Order Invariant Finite Difference Scheme

In determining this sixth order difference scheme, we will use two in-region curve fits. The
first is used as one moves away from the interface and consists of a fourth order polynomial. The
second is a fifth order polynomial curve fit of the source distribution that is used as one approaches
the interface. At interior points away from the interface the polynomial fit of the source distribution

is

S(x) = a(x-x)* + b(x-x;)? + c(x-x;)? + d(x-x;) + S; , (5.75a)
where
a=Si2 = 45i:1 +65; - 4Sis1 + Sisy
24Ax4
b=oSi2a+28i) - 284y + Siyp
12Ax3
c=" S;2 + 1681 - 30S; + 16S;,, - Sj.2

24Ax? ’

and
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d=3Si-2-8S8;) +8Si41 - Siyp

12Ax
The invariant inhomogeneous source term is
2 4
Qi=Si+2(—1—2—a—+c){—1—- Ax LT (5.75b)
o o2 4Sinh%(0tAx/2) | 4Sinh¥(0tAx/2)

and the local truncation error is

Te=- 36164%5 st 4 O(Ax®) . (5.75¢)

The in-region curve fit of the source distribution to the left of the interface is

S(x) = a(x-x;)> + b(x-x;)* + c(x-x;)> + d(x-x;)? + e(x-x;) + S , (5.75d)

where
a=- Si.4 + 5S;.3 - 10S;.2 + 10S;.; - 55; + Si4;
120 AxS ’
b== Si.4 + 6S;.3 - 14S;.9 + 16S;.; - 95; + 2S;,
24Ax4 ’
c=C Si.4+ 7S;3-22S;, + 34S;.; - 255; + 7Si41
24Ax3 ’
d= Si4- 6Si-3 + 14S;.7 - 45;.1 - 15S; + 10S;,,
24Ax2 ’
and

e= 3S;.4 - 20S;.5 + 60S;.; - 120S;.; + 65S; + 12S;,,
60Ax .

The invariant source term was determined to be
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4
Qi=Si+2( 12b+d) 1 LA (5.75e)
a? 4Sinh%(aAx/2) | 4Sinh?(0Ax/2)
and the local truncation error for this invariant finite difference equation is
_ 221 Ax6 i 8
Te = 0480 S + O(Ax8) . (5.75%)

We can arrive at a similar set of equations for the in-region difference equation that is to the right of

the interface, where the source distribution is given by equation (5.75d) but the coefficients are

- Sl 1 +3S; - 1OS|+1 + 108:4»2 SS|+3 + S|+4
120 Ax5

b 281 1 - 9S| + 168J+‘ - l4S]+2 + 6S]+3 2Sl+4
24Ax4

- 7S| 1 + 258 34S|+1 + 2231+2 7Sl+3 + S|+4
24Ax3

d = lOSl.l - 1SS| 4Sl+l + 14S|+? 6Sl+3 + Sl+4
24Ax?

and

- 1281 I - 6531 + 12081.‘.] - 6OSH..2 + 208;.{.3 3S‘+4
60Ax

e=

The inhomogeneous source term for the invariant difference equation is given by (5.75¢), and the

local truncation error for this scheme is given by (5.75f).

At the interface, there are several possibilities as far as curve fits for the source distribution are

concerned. For this particular case will use a fifth order backward and forward polynomial as

given by

S(x) = a(x-xj)> + b(x-x;)* + c(x-x;)> + d(x-x;)? + e(x-x;) + S; . (5.75g)
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To the left of the interface, the coefficients are

a = S; - SS}-I + lOS;_z - IOS;_3 + 58}_4 - S-i-5 ,
120(Ax)

_3S;- 14S; + 268; ; - 24S; 3 + 11S; 4 - 2S5
24(Ax)* '

bo

= 17S; - 718-‘_1 + llSS-‘_z - 988;_3 + 4181_4 - 7S-i-5 ,
24(Ax")3

_458S; - 1548}, + 241S; , - 156S; 5 + 615 4 - 10S;

d-
24(Ax-)?

and

e = 1378; - 300S;_; + 300S; , - 200S; .5 + 75S; 4 - 125; 5 .
60Ax-

To the right of the interface, the coefficient are

=~ SL*' SSLI N 108}:2 + 1OS‘{+3 N 55:4-4 + S‘i'-+5

a+
120(Ax+*)’
bt = 3S} - 148}, , + 26S},, - 248}, 5 + 118}, - 287, 5 ,

24(Ax+)*

el 17ST + 718}, - 118S},, + 98S},; - 41S},4 + 7S, 5 ’
24(Ax+)3

it = 45S - 154S},, + 2418}, , - 1568}, + 618}, - 108, 5 ’
24(Ax+)?

and
et = - 137Sf + 3OOST+1 - 3008;_2 + ZOOST+3 - 755:._'_4 + 128.1:5 '

60Ax+*

The inhomogeneous source terms Q+, Q-, QX*, and QX- are
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Qt=SF+2[ 12T e+ [ L. (Ax*)’ } 2or(axy , (5.75h)
ol ah? (h)?  4Sinh¥(o*Ax*2)| 4Sinh¥(atAx+/2)
Q'=s-.+2(—12b' +e'){ R ] @Y (s 7si)
" (o2 ()2 4Sinh¥(orAx/2)] 4Sinh2(orAx-/2)
QX*=|et+ 6 2at +ct | Ax*
(a2 \ (a*)? (at)?  otSinh(o*Ax*)
(5.75))
a*(Ax*)S +( 20at +c+) (Ax+)3 !
) (a+)2
ot Sinh(ottAx+) '
and
Qx-=[e.+_§_(la;_+c-) D . S
)2\ ()2 (a)? oSinh(orAx-) 575K
(5.75k)
a(Ax)’ +(2=Q-—a‘ +c-) (Ax)3
) (a)?
o Sinh(orAx-)
Now, the local truncation error for this particular case is
199 (AX") , o vviy . 199 (Ax*)T .
re=—§ﬁ’§—)—(si )(v')+"—271(T(§'2‘)_(Si+ Y 4+ O(AxS) . (5.751)

Though the local truncation error for the interface is Ax7, the overall truncation error is AxS.

Case 4 A Second Sixth Order Invariant Finite Difference Scheme

This case is essentially the same as Case 3, but the curve fit at the interface is different. At
points interior to a region, we will use the invariant difference equations as given by equations
(5.75a) through (5.75f). However, at the interface we will use a fourth order polynomial fit across
the interface as given by equations (5.58a) through (5.58¢). The invariant inhomogeneous source

terms are given by equations (5.59) and (5.60). As stated earlier, there are two options as to what
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to use for the sources in the curve fit of the source distribution. In this case, we will use the actual

material properties at the grid locations to determine the sources. We therefore use the following

source definitions:
- - + +
Si-2 = Si.2, Sict = Si.p, Siv1 = Sy, and Siy2 = §j; .

For the S; terms we will use the corresponding sources, i.e. for Q* and QX* we will use S =

S, and for Q- and QX" we will use S; = S;.

The local truncation error for this type of interface equation is

_[@ax® | @Aax)saxt (Ar)“(Ax*)z] N
‘E"{504o *Teo0 * 450 1OV
_ [(Ax+>6 , (XA (Axt¥Axy?

5040 800 450

(5.76)

(ST + O(AXT) .

Case 5 The Final Sixth Order Invariant Finite Difference Scheme

This case is identical to Case 4a, with the exception that the material properties used to
determine the sources at the grid points are different. In this case, we will extend the material
properties from one region, across the interface, and into the other region. This results in the

following source definitions:

For Q- and QX- we will use
Si-2 =S, Si.1 = 8i.y, Si = §;, Siv1 =841, and Si42 = Sjy,

where at the points x;41 and x4, the material properties from the left side of the interface are used
with the fluxes on the right side of the interface to determine the sources. Similarly, for Q* and

QX+ we will use
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Si.2 =875 Si.1 = 8iy, 8§ = 8], Sj41 = 8{,,, and S;;2 = S{,,,

where at the points x;. and x;.2, the material properties from the right-hand side of the interface are
used with the fluxes on the left side of the interface to determine the sources. As with Case 4a, the

local truncation error for the interface equation is given by expression (5.76).

5.5 Numerical Results for Specific Examples of the Group Invariant Finite
Difference Equations

In this section, we will provide numerical results for the Lie group invariant difference
equations as derived thus far. We will begin by discussing the special case of a multiple material
region, one-energy group problem with a constant source. We will then discuss the source
iteration technique for the solution of multiple region, multi-group eigenvalue problems.
Numerical results for the different approximations of the source distributions as presented in

«

Section 5.4 will be given.

5.5.1 Solutions of the Multiple Material Region, One Energy Group Diffusion
Problem with a Constant Source

In this section, we will consider a diffusion problem in which only one energy group is used,
and the multiple material regions have piecewise constant material properties. Consider a two-
region problem, as shown in Figure 5.3, where region I is a core type region and region Il is a

reflector type region.

The diffusion equations for this problem are

Dy

2
d ¢’(2") - ZRi0i(x) +S=0 (5.77a)

dx

and
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Region I

S(x)=S

Figure 5.3 Schematic of the Two Region Problem

Dy

dx2

2y (x)

Region I1

S(x)=0

- LR ¢u(x) =0,

(5.77b)

where the subscripts I and II refer to regions I and II, respectively, and the boundary conditions

doi(0) _

0,

——

don(xa)
dx ’

01(xa) = Pu(xa) ,

are
Dy
d¢](xa)_
R
and

on(xp) =0.

The analytic solutions of equations (5.77) are
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(5.77d)

(5.77e)

(5.771)



S Cosh[oi(xp-Xxa)] Cosh[oyx]
oi(x) = E I- oD
Cosh[oyxa]Cosh[o(xp-Xa)] + o [Dl Sinh{ox,]Sinh{oyi(Xp-Xa))
1Dn
(5.78a)
0<Sx<X,
and
S Sinh[oyxa] Sinh[oyi(xp-X)]
oux) = —= Dy
ELEL Cosh[oxa]Cosh[oy(Xp-Xa)] + Sinh[oyxa]Sinh[Oty(Xp-Xa)]
bn
(5.78b)
XaSXSXp.
The invariant difference equations for this case are: in region I
. - . + .
Zra (011 - 205+ 0 ~TR10i+S=0 for0< X <X, (5.79a)
4Sinh?(0yAxi/2)
at the interface
— Dy di-1
Sinh(a;Axl)
: {-—-—-—-—D' o (1+ 2Sinh?(oy 221 )}# Dy ouy (1+ 2Sinh?(oy AL )) o
Sinh(oyAxy) 2 Sinh(anAXu) 2 (5.79b)
+ __Qll__o_‘ll__ ¢i+1
Sinh(opAxyy)
Sinh?(oy AX1)
+2——~—-——2——S=0atxi=xa.
oySinh(oyAx|)
and in region II
Zu[0r1 - 201+ ] SR 0 =0 for Xa < Xi S Xp . (5.79¢)

4Sinh2(ouAxg/2)
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Since this is a relatively simple example, it is fairly easy to show that the invariant difference
equations, (5.79a) through (5.79c¢), are exact for this problem. Substituting the analytic solutions
of the diffusion equation, expressions (5.78a) and (5.78b), into the difference equations, we find
that all terms cancel; and therefore the difference equations are exact. Alternatively, one can solve
the difference equations with a computer and compare this solution with the analytic solution

evaluated at the grid points to reach the same conclusion.

5.5.2 The Source Iteration Solution Algorithm

We now begin to consider the more general case in which the sources are dependent upon the
neutron flux. This type of problem arises in the determination of the dominant eigenvalue, or the
multiplication, of a reactor system. In the ensuing discussion we will assume that there is no self-

scattering. We can rewrite the invariant finite difference equations as

ZRg(dgi-1 - 205 + g iv1) S Ag ©
2278 ' P TRebgi+ 2 Quosei+-2) Qfgi=0, (5.80)
4Sinh?(0,AxX/2) 8T8 gz;l ETEL g% 5

g'#g
where Qsc,g',i and Qf,g'i are the invariant source terms due to scattering and fission respectively,

and are determined using the expression for Qj. As a specific example, we can consider the

constant source approximation, Q; = S, to yield

ZRg(Pg,i-1 - 20g,i + dgis1)

G G
- IR g0g,i +2 T gogheit %z Zihgi=0.(581)

4Sinh?(0l,Ax/2) g'=1 g'=1
g'#g
Equation (5.80) can be rewritten in matrix form as
Ag¢g - 2 Qs,g‘—)gq)g' = 'f'z QF,g'¢g' ,12g<G. (5.82)
g'=1 g'=1

g'#g
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The matrices Ag are diagonally dominant tridiagional, and the diagonal elements are

agii=Zr 1 + l (5.83)
2Sinh?(0tgAx/2)

while the lower and upper diagonal elements are

'ZR.g
4Sinh?(0gAx/2)

Agii-1 = Qg+l = (5.84)

The matrices Qs g'—»g and QF g are banded, non-negative matrices, whose number of bands

depends upon the order of the curve fit used to approximate the source distribution.

As the matrices Ag, Qs g'g, and QF g have the same properties as their corresponding
counterparts in references 7, 16, and 17, namely, that the matrices Ag are irreducible Stieltjes
matrices, and that the matrices Qs,g'—g and QF,g' are non-negative matrices, the same arguments
that apply to the stability and convergence of the solution process for the standard difference
equations also apply to the solution process for the invariant finite difference equations. The fact
that the matrix properties of the invariant finite difference equations are the same as those of the
standard difference equations is not surprising, since the standard difference equations can be

recovered from the invariant difference equations.

The method chosen for the solution of the neutron flux and the eigenvalue was the power
method, see reference 7. The power method was chosen for its simplicity and the fact that it
provides the basis for other solution methods. The power method does have the drawback that it is

not as efficient as other methods; however, since our primary concern is demonstrating that the
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invariant finite difference equations are more accurate for a given mesh spacing than the standard

difference equations, the choice of solution method is irrelevant.

The power method can be broken down into two portions; the first is the outer iteration in
which the fission source and the eigenvalue are determined, and the second is the inner iteration in
which the neutron flux is determined from the source. The inner iterations get their name from the
fact that for problems in which there is up scattering, iterations must be carried out over the groups
in order to determine accurately the scattering sources. The solution process begins by making an
estimate of the neutron ﬂux,q)(go}. and the eigenvalue, 7\(0), where the superscripts indicate the

iteration number. The fission source is then determined from the estimate of the flux by

=(0) ~©
70 = Qpgy .15g<G. (5.85)

Now that the fission source and the eigenvalue have been estimated, we determine the neutron
flux via the inner iterations. The inner iterations begin with the determination of the flux in energy
group one; we then work through the energy groups to group G, updating the scattering source

along the way. The new neutron flux is determined from

~ (k)

0 =Ay S, (5.86)
where
g ~®
< e
SS( = 2 Qs,g'——)gq’g +Yg(k b, (5.87)
g'=1

This process is carried out for groups 1 < g < G. Using these new group fluxes, a new fission

source is determined as
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e

(x) (k)
)'g =QF,3¢3 , 1 SgSG (5.88)

and the new eigenvalue is determined from

A 2 kD) g=! ’ (5.89)

where W, is a weighting factor, and <\7v'g.§'g(k'”

>is the scalar produce of the two vectors. Lastly, we
test for the convergence of the eigenvalue and the neutron flux. This is by no means the only
convergence test possible; one could equally test the convergence of the eigenvalue and the fission
source. This process is repeated until convergence is achieved. Figure 5.4 shows a schematic of
this solution process. This solution algorithm was used in several computer codes that were

written to solve the invariant finite difference equations, results of which will be presented in the

next section.
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Figure 5.4 Schematic of the Solution Process of the Invariant Finite Difference Equations
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5.5.3 Numerical Results for a Sample Problem

In this section, we will present numerical results for a sample problem consisting of a two-

region slab reactor model using two energy groups. Figure 5.4 shows a schematic of the sample

problem.

Core
Regicn

x=0

x=50

Reflector
Region

100

Figure 5.5 Schematic of the Slab Reactor Sample Problem

The cross sections used in these calculations where taken from the IAEA thermal reactor

benchmark problem, reference 16, and are listed in Table 5.2.

Several calculations were performed on this sample problem using the invariant difference

equations as given by the five cases in Section 5.4. Two additional calculations were performed

on this sample case The first calculation used the cell edged standard difference equations as given

by equations 5.64 and 5.71 in Section 5.4. The second calculation was performed using the

computer code DIF3D, reference 16, which employs cell centered standard difference equations.
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The various methods used to calculate the solution of this sample problem produced very similar
flux profiles for a given mesh spacing. The group one and group two flux profiles, as shown in
Figures 5.6 and 5.7, respectively, were determined using a mesh spacing of 1.0 cm. For all the

computational methods used, the flux profiles for this mesh spacing were indistinguishable.

Table 5.2 Two Energy Group Cross Sections

Core Region Core Region Reflector Region | Reflector Region
Group 1 Group 2 Group 1 Group 2
Diffusion 1.5 0.4 1.999996 0.3
Coefficient, Dg (cm)
Removal Cross 0.03 0.08 0.04 0.01
Section, ZR,g (em™1)
Fission Cross 0.0 0.135 0.0 0.0
Section, VZfg (cm
Probability of a
Fission Neutron 1.0 0.0 1.0 0.0
Bomn into Group g,
Xg
Scaering Cross | 151 0.0 152 0.02 -1 0.0 1-2 0.04
Section, Zsgg cm™) | 241 0.0 252 0.0 251 00 252 0.0

Since the local truncation error is a function of the mesh spacing, one expects that as the mesh
spacing goes to zero, the accuracy of the of the numerical solution should increase. It is therefore
useful to examine the accuracy of the eigenvalue as a function of the mesh spacing. Also of
interest is the absolute value of the relative error in the eigenvalue as a function the mesh spacing as

calculated by

e ='u°ﬂ2%d_ . (5.90)

}\'converged .
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The converged eigenvalue is defined to be the eigenvalue to which all the computational methods

converged as the mesh spacing went to zero.

We will begin comparing the various computational methods by examining the eigenvalues as a
function of the mesh spacing for the five example Cases of the invariant difference schemes
outlined in Section 5.4. Figure 5.8 shows the eigenvalue, as calculated by the five invariant
difference schemes, as a function of the mesh spacing. The local truncation errors for the five
Cases are: second order for Case 1, fourth order for Case 2, and sixth order for Cases 3, 4, and 5.
Since the invariant Case 3 approaches the converged eigenvalue from below, it is easier to compare
the five methods by examining the absolute value of the error, as shown in Figure 5.9. There are
several interesting things to note about how the eigenvalues behave as a function of the mesh
spacing. If we compare the sixth order difference schemes, as given by Cases 3 and 4, to say the
fourth order scheme, Case 2, we find that they are not as accurate as the fourth order scheme. On
the other hand though, we find that the sixth order scheme used in Case 5 is more accurate than the
fourth order scheme. Since the only differences between the sixth order schemes is in the source
approximations at the interface, we conclude that the type of curve fit approximation used is more
important than the local truncation error in determining the accuracy of the invariant difference
scheme. Secondly we can also conclude that as the order of the curve fit of the source distribution
increases, the accuracy of the difference scheme increases, provided that the curve fit is a good

representation of the source distribution.
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Group One Flux, #/cm”2/sec.

Group Two Flux, #/cm”2/sec.
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Figure 5.6 Group One Flux Profile for the Sample Problem
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Figure 5.7 Group Two Flux Profile for the Sample Problem
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Figure 5.8 Eigenvalue as a Function of the Mesh Spacing for the Five Invariant Difference
Schemes
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Figure 5.9 Absolute Value of the Relative Error in the Eigenvalue as a Function of the Mesh
Spacing for the Five Invariant Difference Schemes
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We now compare the eigenvalues as computed by the invariant difference schemes as given by
Cases 1, 2, and §, to the eigenvalue as computed by the two standard difference schemes, the cell
centered and cell edged difference equations; the cell centered difference scheme being calculated
by the computer code DIF3D. Figure 5.10 shows the eigenvalues as a function mesh spacing for
these cases. Since the eigenvalues as calculated by DIF3D approaches the converged eigenvalue
from below, it is again useful to compare the methods by examining the absolute value of the error,
as shown in Figure 5.11. Examining Figure 5.11, we find, as expected, that the cell edged
difference scheme is not as accurate as the cell centered difference scheme employed in DIF3D.
Secondly if we compare the difference schemes witn a second order local truncation error, i.e., the
cell edged scheme, DIF3D, and the invariant Case 1, we find that the performance of the invariant
difference scheme leaves something to be desired. However, one must consider that the curve fit
used in formulating the difference scheme of Case 1 consisted of setting the sources adjacent to
x=x; equal to the source at x=x;, which in reality is not the case, since the source has some spatial
dependence. In particular, this assumption breaks down at an interface since there can be a radical
chance in the material properties, and hence the source, as one crosses the interface. The fact that
this assumption breaks down particularly at interfaces can be demonstrate by replacing the interface
equations in Case 1 with the quadratic curve fit interface equations of Case 2. This yields an
invariant difference scheme, labeled Case 1-a, whose overall local truncation error is second order.
Figure 5.12 is a plot of the error in the eigenvalue for Cases 1 and 1-a. As one can see, by simply
changing the difference equations at the interface, the accuracy increases significantly. This shows
that the assumptions made about the source distribution for Case 1 did indeed break down at the

interface.
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Lastly, we compare the results of the invariant difference schemes Cases 2, and 5 to the results
obtained from the computer code DIF3D, as shown in Figure 5.13. As one can see, DIF3D
produces a more accurate values of the eigenvalue for the large mesh spacing of between four and
five cm. However, as the mesh spacing is reduced to less than four cm, the invariant difference
schemes produced more accurate values of the eigenvalue. The results for the mesh spacings
greater than four cm are somewhat suspect, since these mesh spacings are approximately twice the
diffusion length, 2.236 cm; and secondly none of the computer codes could resolve the neutron
fluxes with any reasonable degree of accuracy. Ignoring the eigenvalue data for which the neutron
flux could not be determined accurately, we find that the invariant difference schemes could
determine the eigenvalue more accurately for a given mesh spacing than the standard finite
difference formulations as employed by DIF3D. This result can be restated; for a desired level of
accuracy in the eigenvalue one can use fewer mesh points with the invariant difference schemes

than are required with the standard difference approximations.

In the next chapter, we will explore the construction of invariant difference schemes for two-
dimensional diffusion theory in Cartesian coordinates. Many of the results presented in this

chapter will be found to have a similar counterpart for the two-dimensional case.
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6 GROUP INVARIANT FINITE DIFFERENCE EQUATIONS FOR THE TWO-

DIMENSIONAL DIFFUSION EQUATION IN CARTESIAN COORDINATES

In this chapter, we will discuss the construction of the group invariant finite difference

equations for the neutron diffusion equation with material properties assumed to be piecewise

constant as given by

Dg¢g,xx(x’)’) + ng)g,yy(x»}’) - ZR.gq’g(x’)’) + S,(x,y) =0,

where the source is
& e o
Sg(x,)’) =2, Zs g-ghg(X,y) + _lg_ VIfodg(X,y)

g':l g':l
8'#8

for 1 < g <G. Equation (6.1) can be written in operator form as

Lo0g(xy) = Sg(x.y) ,

where the differential operator, f,g, is given by

(6.1)

(6.2)

(6.3)

(6.4)

The boundary and interface conditions are similar to those used in the one-dimensional case:

the neutron flux is zero at all outside surfaces, or if symmetry permits, the net neutron current

along a line of symmetry is zero. The interface conditions are again that the net neutron current and

the neutron flux are equal at the interface as given by

Dy x(Xpy) = -Dbg.x(x5.y)

Op(Xiy) = Op(xt,y)

and
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-Dp.y(X,¥5) = -Dhg.y(x,¥%)

We will begin by constructing the invariant finite difference equation interior to a given region.
We will then go on to construct the difference equations for the three types of interfaces to link
together multiple regions. Modifications to the solution algorithm presented in Section 5.5.2 for
the solution of the two-dimensional problem will then be discussed. Finally, results will be

presented for the two-dimensional equivalent of the sample problem presented in Chapter 5.

6.1 The Two-Dimensional Grid upon which the Solution is Determined

The grid space upon which the solution of the invariant difference equations are to be solved is

an orthogonal cell edged mesh. Figure 6.1 shows a schematic representation of the cell edged

grid.

dg(X,yp) = Og(X.Y2) -

Tt

i,j+!1

i+1,j+1

i+1,j

,\ Interfaces

+

i-1,j-1

i+1,j-1

Figure 6.1 The Cell Edged Mesh
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This contrasts to the cell centered mesh shown in Figure 6.2, that is employed in the conventional
finite difference approximations of the diffusion equation. As with the one-dimensional case, the

reasons for choosing the cell edged mesh stems from the method by which the interface equations

are formulated.

[ [ ]

i,j+1 i+1,j+1

2 . @ \\

1,) i+1,) Interfaces

v

/

Figure 6.2 The Cell Centered Mesh

6.2 Derivation of the Two-Dimensional Group Invariant Finite Difference
Equations for the Multigroup Neutron Diffusion Equation

We will begin this section by deriving the invariant finite difference equations for the two-
dimensional diffusion equation for a given region away from the interfaces. This result will then
be used with a discrete form of the interface conditions, much like in the one-dimensional case, to

determine the invariant finite difference equations for three different type of interfaces.
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6.2.1 The In-Region Invariant Finite Difference Equations in Two-Dimensions
In Section 3.3, we found that the diffusion equation, as given by equation (6.1), admitted a

group of point transformations whose group generator was

d

Ug = ng(x.y) , 6.7)
aq’g(x’)’)
where the coordinate functions, Ng(x,y), satisfied
Dgngxx(X,y) + Dgngyy(X,y) - Zr gNg(X,y) =0 . (6.8)

Setting aé = ZR,g/Dyg, the solution of equation (6.8) can be determined using separation of

variables as
Ng(x,y) = Xg(x)Yg(y) , (6.9)

where the equations for Xg(x) and Yg(y) are respectively

Xg.xx(x) - Bg Xg(x) = 0 (6.10)

and

Yeuy(y) - (03 - By) Yy(y) = 0. (6.11)

Since there is no group of point transformations that preserve both the invariance of the diffusion
equation and its boundary conditions, we have only partial invariance; therefore, there is not a
complete set of boundary conditions that can be used to determine the coordinate function. Thus,
the eigenvalues, Bg, of the coordinate function are continuous and have the range of
-0 < Bé < +oo. This range of eigenvalues can be broken up into three classes: class 1,
00 Bé <0, class 2,0 < Bé < a2, and class 3, aé < B§ < +oo. The general solutions of equations

(6.10) and (6.11) for these three classes are:
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class 1

Xg(x)=Ag COS(ng) + By Sin(ng)

(6.12)
Yg(y) = Azg Cosh(V of + lﬁﬂ y) + Byg Sinh(V 0 J@FY) :
class 2
Yg(y) = Agg Cosh(V 032 - B2y) + Byg Sinh(V a2 - By) ,
and class 3
Xg(x) = Aj ; Cosh(Bgx) + By o Sinh(Bgx)
8 g 8 g g (6.14)

Y,(y) = Agg Cos(V [0 - BYy) + Bag Sin(V o2 - BYy) .

Now the question arises as to which of the solutions, equations (6.12), (6.13) or (6.14), is the
best solution for our particular problem. To answer this question, we consider a one-region

symmetric reactor as shown in Figure 6.3.

y=a

0 =a

Figure 6.3 Schematic Representation of a One-Region Symmetric Reactor System
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One would expect that for such a reactor system that the coordinate function, Ng(x,y), would be
symmetric, since the neutron flux is symmetric. Therefore, classes 1 and 3 can be eliminated since

these solutions are not symmetric. The expression for the coordinate function that will be used is

Ng(%y) = [A1 g Cosh(Bgx) + B ¢ Sinh(Bgx)]

[Az'g Cosh(V a2 - B ) + Bag Sinh(V 0 - Bg y)] -

(6.15)

Now that we have an expression for the coordinate function, we are ready to determine the
invariant difference equation, in a manner similar to that used in Chapter 5. The invariant

difference equation is

Qg dg,ij +Qgij=0, (6.16)

~

where Qg is the invariant difference operator. A candidate invariant difference operator is

00 = i+l,0] [A 0,j-1 0.0

Q= AJE 0 2B 00 L B[RO B0 B O] 5 B0 (6.17)

where the E are the shift operators.

Equation 6.3 can be rewritten in terms of the homogeneous solution, ¢H,g(x,y), and the

particular solution, ¢p g(X,y), as

Leougxy) =0 (6.18)

and

Lgopg(xy) + Sg(xy) = 0. (6.19)

~

In a manner similar to that employed in Chapter 5, the invariant difference operator, €2, is

determined such that
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~

Qg OH g(xiryj) =0 (6.20)
is invariant under the action of the group generator extended to grid points. The invariant source
term, Qg,j j, is then determined using a particular solution of equation 6.3 as

Qg.ij = - Qg Op g(Xiry)) - (6.21)

Using the arguments put forth in Section 4.3, the second extension of the group generator

extended to grid points was determined to be

~(2D) _ 0 d 0
Ug " =Mg,i-1 + Ngij-1 +MNgij
90g,i-1, 00g,ij-1 0dg,i i
+ Ng,i+l,j + Ng,ij+1 +--
¢g,i+l,j ¢g,i,j+l
3 (6.22)
F Ngxxi-1,j —+tNgxx,ij T ¥ Mgxxivlj ——— +-
g.xx,i-1,j 8/XX,i,j g,XX,i+1,j
0 )
+ Ng,yy.ij-1° + Ng.yy.iij + Ngyyijtl ——+--
gyl £YY.i. 00g.yy.ij+l

The coefficients, Ag and Bg, of the invariant difference operator are determined by equating
equations (6.18) and (6.20), and then operating upon the result with the second extension of the

group generator extended to grid points to yield

DgNgxxij + DgNgyy.ij = AgdNgi-1,j - 2Ng.ij + Ng.i+1,]

(6.23)
+ By Ng,ij-1 - 2Ngiij + Ng.ij+1] -
Splitting equation (6.23) into its x and y components, we can solve for the coefficients as
Ag= DgNg.xi (6.24)

-
Ng,i-1j - 2Mgij + Ng.i+l

and
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B, = Dgng.yy.i,j ) (6.25)
S Mgt - 2Mgiij + Ngiijel

If uniform mesh spacing is assumed in both the x and y directions, then equations (6.24) and

(6.25) can be simplified with the use of some hyperbolic-trigonometric identities to yield

2
Ag= Dgfg (6.26)
4Sinh?(BgAx/2)
and
Dy(02 - B3)
B g8 '8 (6.27)

g~ ’
4Sinh2(V o2 - B3 Ay/2)

2 . - .
where 0 < Bg < o, The coefficients Ag and By have a striking resemblance to the coefficient of
the derivative in the one-dimension case, a result which is not surprising, since second order

o . . - 2
derivatives are being approximated. If we make the substitution By = o p2 and make use of

02 = I o/Dy, the invariant difference operator becomes

~ S0 o200 | 2 i+l0
o = zR,gpg[E‘* 2B 00, g
’ 48inh?(0,gpgAX/2)
| ‘ (6.28)
Sre(1-pPE Y BB S
-+ . - ER,SE y
4Sinh*(agV'T - pRAY/2)
where 0 < pg < 1. The invariant difference equation is therefore,
ZR,gP} [¢g.i-l,j - 20,1, + ¢g.i+1,j] N ER,g(l-pﬁ)[%,i,j-l - 20, + ¢g.i,j+l]
4Sinh2((xgpgAx/2) 4Sinh2((xgm/ 1- p%Ay/2)
(6.29)

- ZRghgij+ Qgij=0 for1 Sg<G,



where 0 < pg < 1 and Qg i is the invariant source term, that has yet to be determined. As we shall

see later, there are only certain acceptable values of pg that will be allowed.

To determine the invariant source term, we will need a particular solution of equation (6.1). As
with the one-dimensional problem, we will have to make some approximation of the source
distribution in order to determine a particular solution. In deriving expressions for the invariant
source terms, we will examine only two forms of source distributions: the first case will consist of
assuming a constant source distribution, and the second will consist of using a two-dimensional

quadratic curve fit.

For the first source distribution, we will assume that the source is a constant in the
neighborhood of the point x;,yj, i.¢., the source as all points adjacent to the point x;,y; are equal to

the source at the point xj,yj; therefore, the source distribution is
Sg(X.y) = Sgijj - (6.30)

Using this source distribution, we find that the particular solution of equation (6.1) is

Op g(x,y) = —1— Sgij - 6.31)
ER’g

Operating upon this particular solution with the invariant difference operator, (6.28), the invariant

source term was determined to be
Qg.ij = Sgij (6.32)

therefore, the in-region invariant finite difference approximation of the two-dimensional neutron

diffusion equation for the first case is
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ER-EPE [¢8-i-1-j - 20g,ij + Ogiv1 J] IR g(1- Pé)[% ij-1 - 20g.ij + g, |j+1]
4Sinh2(0tgpgAx/2) 4Smh2(ag«/ l- p%Ay/Z)

- ZR g0g.ij + Sgij=0 for 1 <g<G.

(6.33)

We now consider the second case, in which a two-dimensional quadratic fit is used as an

approximation of the source distribution as given by

Sgi-1j = 2gij + Sgiist,j 2, Sgir1j - Sgi-1j ,
2AX2 (x - xi)" + 2Ax (x-xp)

S.:i:i1-2S.::+S,;: -S
g.i,j-1 0] g+l 2, Sgij+l - Sgiij1
+ (y -y~ +

2Ay? R 2Ay

g(xa )
(6.34)

(Y- ¥+ Sgjij -

Using the source distribution (6.34) and the differential equation (6.1), the particular solution was

found to be

_ 1 [Sgi-1j - 2Sg,ij + Sgii+1,j 2, Sgi+1,j - Sgii-1,j ¥
0P g(XY) = Rg{ " (x - x)? + =B B (% - x)

I [Ssij-t - 2Sg,ij + Sgijel 2, Sgijs1 = Sgijel }
+ (y-yp?+ (y-y)| (635
ZRg 24y? Y 248y Yo
4L |Seicti- g * Sgietj | Sgijrt - 2eii ¥ Sgiget g |
ZR.g 202Ax2 202Ay? a

Operating upon this particular solution with the invariant difference operator (6.28), we find that

the invariant source term, Qg i j, is

P}
Qg.ii=(Sgi-1,j - 2Sgii + Sgitl,j —
g.i,j ( g.i-1,j 8:.1,) g’+“)|'(agAx)2 4Sinh2(agpgij2)}

(6.36)

1-p}
+(Sgij1 - 2Sgij + Sgije1)| — . + Seis
g g1 T Vgl (0,gAy)? 4Smh2(0tg~JI - p§Ay/2) B

The invariant finite difference approximation of the diffusion equation, for the two-dimensional

quadratic curve fi* of the source, is
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Zr.gPE [¢g.i-1,j - 20g, + ¢g.i+1,j] . ER.g(l-pé){%.i.j-l - 20gij + ¢g,i.j+1J

4Sinh2(0lpeAx/2) 4Sinh%(0gV 1 - pAy/2)
- Zrghgij+(Sgi-1 - 2Sg.ij + Sgis1,j)| —— - P
(0gAX)?  4Sinh?(otgpeAx/2)

(6.37)

1-p3
+(Sgij1 - 2Sgij + Sgije1)| —— - :
8] BlJ T BT (0gAy)?  4Sinh?(og/1 - pAy/2)

+ 854 =0 for1 < g<G.
Now that we have the in-region finite difference equations for the two cases, we will go on to

derive the interface equations required to link together several regions.

6.2.2 The Invariant Finite Difference Equations for Interfaces

Interface equations are required in order to handle problems in which there are changes in the
material properties or changes in the mesh spacing, both of which will be dealt with in the same
manner. There are essentially three types of interfaces for which we need to derive the invariant
finite difference equations. The three types of interfaces are: 1) a cross type, which consists of the
intersection of four material regions, 2) a vertical type in which two material regions meet such that
the interface is parallel to the y-axis, and 3) the horizontal interface, that consists of two material
regions which meet such that the interface is parallel to the x-axis. All other types of interfaces can

be modeled with some variation of these three types.

We begin the derivation of the interface conditions with the cross type, since the other two
types of interfaces are simply special cases of this interface. Since the invariant difference
equations have the same form for all energy groups, we will omit the energy group subscript, g, in
the ensuing discussion. Figure 6.4 shows a schematic representation of the cross type interface.

The derivation of the interface equations will follow in a manner similar to that employed in
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Chapter 5. We now need to determine the discrete form of the interface conditions, (6.5) and
(6,6). The discrete forms of the interface conditions will then be used to couple together the four

invariant difference equations, which have the form of equation (6.29).

Region b Region a
L
1,j+1
*- —- ——
i-1,j 1,j i+1,j
Regionc Region d

Ti,j-l

Figure 6.4 A Schematic of the Cross Type of Interface

The invariant discrete forms of the interface conditions are determined using the same
procedure as used in Section 5.3. As a specific example, we will examine the construction of the

discrete form of the net current across a vertical interface as given by

D x(Xpy) = -Dig (X3.Y) - (6.38)

The solution, ¢(x,y), can be written in terms of the homogeneous and particular solutions as

O(x,y) = du(x,y) + ¢p(x,y) , (6.39)

and the neutron current, -D¢(x,y), can be rewritten as

a¢(x1y) _8¢H(X,Y) + a¢P(X,y) .

ox  0ox ox (6.40)
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We now approximate the neutron current as

D@%ﬁ v = Ti(0ia1 - 0i1) + QX, (6.41)

where T; is determined, such that

IOH(X,Y) |y=
D ¢%(: Y - = Ti(®n.i+1,j - OH,i-1,5) (6.42)

is invariant under the action of the group extended to grid points, and QX is determined using

a , =y
QX = I}—ib—%(;:—yl v - Til®p.is1j - Opiie1) - (6.43)

Operating on equation (6.42) with the second extension of the group generator extended to grid
points, as given by (6.22), and determining Tj, assuming uniform mesh spacing, we find that the

invariant difference approximation of the neutron current is

99(x,y) y=y; _ Dpou®is1,j - $i-1,))
D=5 e = 2Sinh(poAx) +QX, (6.44)

where QX will be determined later. In a manner identical to that outlined above, we find that the

neutron current in the y-direction is

= Do 1 - p2(@i41 - Bije1) +QY, (6.45)

IH(x,y)
D27
dy 2Sinh(0AyV 1-p2)

where QY will again be determined later.

Now that we have the discrete form of the neutron current, we can write the current boundary

conditions. The net current boundary conditions are: from region b to region a
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Dapalta(@ai+1j - Pai-14) QX, = Dppb0o(Pb,i+1,j - Pb,i-1,) +QXy
a~- ]

. 6.46
2Sinh(patlaAXa) 2Sinh(pp0bAxp) (649
from region c to region d
Dcpc0ic(@c,i+1j - Pei-1,) +QX, = Dapa®a(@aii+1 - 9di-1,) + QX4 (6.47)
c= ’ :

2Sinh(pcotcAxc) 2Sinh(py0taAxq)

from region c to region b

DeV 1-pR0te(@ciijit - Peii-1) | QY. = DpV 1-pEtb(db,ije1 - Pb,ij-1)
.=

+QYy , (6.48)
2Sinh(V 1 - p2ocAx,) 2Sinh(v' 1 - pEobAxp)

and from region d to region a

Dav 1-p3 0ic(a,ij+1 - Dajij-1) _ DV 1-pF 0ta(@d,ij1 - Odji-1)
+QY,= +QYq, (6.49)
2Sinh(V1 - p2 0,aAX,) 2Sinh(v'1 - p0aAxg)
where the subscripts a, b, ¢, and d refer to the four regions respectively. We also have four
invariant finite difference equations for the four regions as given by
IR, p? [¢r,i-l,j - 20 + ¢r.i+1,j] N ZR,r(l-P?)[‘br,i,j-l - 20 + ¢r,i.j+1]_
4Sinh?(0p,AX/2) 4Sinh%(oV 1 - pAYH/2)

- TRy + Qrij=0

(6.50)

where the subscripts r indicate which region, either a, b, ¢, or d. Additionally, we have the flux

interface condition

Ga,ij = Ob,ij = Pe.ij = Odiij - (6.51)

The object now is to eliminate the eight fluxes, da,i-1,j» da,ij-1» Ob,i+1,j Pbij-1» Oc,i+l,js
c,ij+1> ¢d,i-1,j> and Od i j+1, using the four invariant difference equations, (6.50), and the four

invariant net current interface equations; then apply the flux interface conditions (6.51). The
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algebra involved in this process is very involved, and, therefore, will not be presented. Knowing
that we have an orthogonal grid, we can make use of the fact that Axc = Axp, Axa = Axy4, Ayp =

Ay,, and Ay, = Ayy. The invariant finite difference equation for the cross type of interface is

[ pdDqou PaDalta h, | [ PuDp0iy peDe0i h' ,
Sinh(paogAxy) ~ Sinh(pa0taAxg) | " | Sinh(pytpAxe) — Sinh(peotcAxe)|

| paDa%s [, Sinh%(p0aAxe/2)} . poDe0 [, Sinh*(poonAxe/2) ]

Sinh(p,0aAXa) p2 Sinh(pptpAxc)\ p
+ dij

o pDoe [, Sinhz(pcachclz)) PDs |, , SinhA(paosAxy/2)

| Sinh(pcocAx,) p2 Sinh(paoaAxg)| p? |

(6.52)
} gcDcole qdDg04g } iin1 _[ quDb0y qaDa0ty } O 41
Sinh(qcoAy,)  Sinh(qeogAyc)] ' [Sinh(qp0ibAya)  Sinh(qa0t,Aya)| T

[ qDaoa [, Sinh%QuaAys2)|,  gDeos [, Sinhz(qbabAyam)ﬂ

Sinh(qa0tAYa) @ Sinh(qpoAYa)\ Q
+ ¢i,j
qDeoe [ Sinhz(qcacAycm) @Dy [, . Sinh%(quogAyc/2)

+ — 1 + = 1+

|~ Sinh(qcacAyc)| q? Sinh(qgoAyc)\ & |

= Q R
where g, =+/1 - p? and Q is given by
Tanh(p,0t,AXx4/2) Tanh(ppy0ipAxc/2)
- ‘s + P
Q Qa,l.j OtaPa Qb,l.j OloPb
.. Tanh(pc0.cAx/2) _. Tanh(pqogAxg/2)
+ Qc,ij OlcPe + Qi 0P (6.53)

QXa + QX4 - QXp - QX + QYp + QYa - QY - QYy.
One interesting result of this operation, is that there is a condition on Axr, Ayy, and p, that must
be satisfied in order to determine an invariant difference equation for the cross-type of interface.
This condition is
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Pr Ta-ﬂh[" 1 -pg Gy Alez] =1
Ni-p¢  TanhporAxi/2) ’

(6.54)

which must be satisfied for each of the four regions. Thus if Ax;, and Ay, are specified, equation
(6.52) must be used to determine an acceptable value of p;. If Ax; = Ay, an obvious acceptable
value of pr is 1/¥2. However, in general Ax, is not equal to Ayr; it would therefore be of use to
know if there are other acceptable values of Ax and Ay that permit O < pr < 1. Since equation
(6.54) is a transcendental equation, py can not be directly solved for; therefore, one can use a
method such as Newton's method to determine p;. If we define f = Ay,/Ax,;, we can rewrite

equation (6.54) as

P Tanhlv/1-pf forAx/2] _ L

Vo Tanponax2] (6:59)

Using Newton's method, equation (6.55) was used to determine acceptable values of p, for a
range of values of both f and o,,Ax,, the results of which are shown in figure 6.5. As can be seen
from Figure 6.5, there are two extremes: if 0 Ax, is greater than 0.5, then there are a wide variety
of values that oAy, can acquire and there will still be a valid py; however, as o;Ax; becomes small,

then o,Ay, must take on the value of 0yAx; for p; to be valid.

We now turn our attention to determining the particular solutions and the corresponding
invariant source terms for both the constant and quadratic source approximations. For the constant
source approximation, we again assume that the source is constant in the neighborhood of xi,yj;

therefore, the constant source approximation is

Sr(x»}’) = Sr,i,j [} (6.56)
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for a given region, where r equals a, b, ¢, or d. The particular solution of equation (6.1) for each

region is readily found to be
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we find that the invariant source terms, Q,; j, are
Qr.i.j = Sr,i.j . (6.59)

All that remains to be determined is the invariant source terms for the neutron currents, QX and
QY. Using the particular solution, (6.57), QX; and QY are determined, using (6.43) and its y-
direction counterpart, to both be zero for all four regions. The.efore, the invariant source term, Q,

as given in equation (5.53) has the explicit form

Tanh Tanh /2
Q= Sai (;(;aaaAXd/Z) + Sp;; 1an (Pp0opAxc/2)
aPa OpPob (6.60)
 Tanh(peocAxe/2) o Tanh(paouAxy/2) '
+ SC,I,J + Sd""‘ .
OcPe OdPd

We now turn our attention to the case where we use a quadratic curve fit to approximate the

source distribution. The curve fit has in general the form
SH(X,¥) = Ac(x - ;)2 + B(y - yj)? + Ce(x - x)) + Ed(y - ¥j) + Sejij » (6.61)

for each region. The coefficients of (6.61) are given by: region a

Saij - 2Saislj + Sais2) Saij - 2Saijel + Saij
Aa= a,i,j a,i+l,j a,i+2,j B. = a,i,j a,i,j+1 a,i,j+2

a
2Ax3 2Ay}
> (6.61a)
C.= 35, + 4Sa,is1j - Sajis2,j E =" 384, + 4Saij+1 - Sajij+2
a 2A%4 2 24y, ’
region b
Sbij - 2Sb,i-1 + Sbi-2, Sbiij - 2Sb,ij+1 + Sbiij
Ab =_b,l.j b,i 1,21 b,i-2,j Bb = b.i,j b,1.1+2l b,i,j+2
(6.61b)

2 g oo 3Sp,ij + 4Sb.ij+1 - Spij+2
2Ax, b 2Ays ’
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region ¢

_Scij - 28cii-1 + Sci-2 _Scij - 28cij-1 + Sciij-2

Ac

By

28%¢ 2Ay?
(6.61c)
C. = 3Sc,ij - 4Sc,i-1,5 + Scii-2 E = 3Scij - 4Scijo1 + Scij2
¢ 2A%, b Ty ,
and finally region d
ci= 28401 Sain: Saii-2S4:: Sy
Ag= Sd,i dii 1; +9d,i-2,j By = dij = 28d,ij-1 + Sq,ij-2
2Ax3 2Ay?
(6.61d)
Cy= - 3Sd‘i'j + 4SCd'i'l'j - Sd.i-z,j E,= 3Sd.i.j - 4Sd,i,j-.l + Sd,i,j-2
d 28xg ’ 24y, '
The invariant source terms, Qr,i j» Were then determined to be
2
Qrij=Srij + 2AxrA,{ 1 - — Pf :l
(0 AX)?  4Sinh?(poyAx/2)
2 (6.62)
+ 2AyrB{ 1 - qr 1 ’
(0Ayp)?  4Sinh?(q0,AY/2)

where qc=+'1 - p?. The invariant source terms due to the net current, QX; and QY,, were

determined tc "«

C [ PrOwAX, ]
X,=—L|]-—"—"— 6.63
QX o2l Sinh(porAx, (6.63)
and
A
Y =E{1 -_LW._‘T__L_] . (6.64)
Q= 2|~ Sinh(q.00hy;

The invariant source term for the cross type of interface using quadratic curve fits of the source is

given by equations (6.53), (6.62), (6.63), and (6.64) using the coefficients (6.61a-d).
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We now examine the other two types of interfaces, the vertical and the horizontal types. Both
types of interfaces can be derived by setting the appropriate data in equation (6.52) and (6.53)
equal to each other. To illustrate this process, we consider the horizontal interface as shown in

figure 6.6.

Region a

1,j+1
- - -—
i-1,] i i+1,]
Region ¢
[ J
i,j-1

Figure 6.6 A Schematic of the Horizontal Type of Interface

The invariant finite difference equation for the horizontal interface is determined by setting all
material properties in regions a and b equal to each other, and the material properties in regions ¢

and d equal to each other. This yields the invariant difference equation as

_( PaDalta + PcDc0t _ __( PaDaCta + PcDcO 1
Sinh(pa0,Ax)  Sinh(pcocAx)) 1~ \Sinh(p,0,Ax) ~ Sinh(pcocAx) /"1

+[ 2p.D,t, (l +Slnh(paozﬂAx/2) . 2p:Dco (1 +Smh(pcach/2))] 0

Sinh(p,a0t,Ax) P2 Sinh(pc0Ax) p?
(6.65)
29D, (1 4 Sinh(qa0sAys/2)) | 2qcDc0c (1 N Sinh(qcacAch))]d)i_
Sinh(qa0aAya) . Sinh(qc0cAyc) q2 !
_____2an_aG.a i ; 1'&:92—‘9“x=Q
Sinh(q,0,Ay,) i+ Sinh(qc0cAyc) W ’

where the invariant source Q is given by
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Q= 2Tanh(p,0,Ax/2) Quiy + 2Tanh(p.0l.Ax/2) Quij+2QYa-2QYc,  (6.66)
PaCa PcOlc

or making use of equation (6.54)

2Tanh(qu0tAys/2 2Tanh(qc0cAy./2
Q= 21anhG:%lys) o ., 2TanN(G0AY2) o 4 2qY, - 2QY.. (6.67)
qaaa qCaC

Using the constant source approximation, S¢(x,y) = Sy,j j, we find that the particular solution of

equation (6.1) is ¢p(X,y) = S,i j/ZR,r» and that the invariant source term, Q, is given by

Q= 2Tanh(qa0,,Aya/2) Saij + 2Tanh(q.0.cAyc/2) Sc.ij . (6.68)
qalla qcOic

Using a quadratic curve fit of the source distribution, as given by equation (6.61), where the

coefficients are
A = Sai-1,j - 2Sa,ij + Sai+1,j B. = Saij- 28a,ij+1 + Saij+2
a =~ a~ ~
2Ax2 2Ay%
(6.69a)
C. = Saitlj - Sailj g _ 7 38aij +4Saije1 - Sa,ij+2
a 2Ax a ZAYa
and
A = Sai-1,j = 2Sa,ij + Sai+1,j B. = Saij - 28a,ij+1 + Sajij+2
- 2 a= 2
(6.69b)

c = Saitly ~Sci-ty g _ 3Saij + 4Saije1 - Saije2
a 2Ax a 2Ayy ‘

we find that the invariant source term, Q, is
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Q=S84+ Scij+ 2Ax2A{ 1 pi }
(0aAX)?  4Sinh?(p,0,Ax/2)

+2Ay§B{ | % }+2AXZA{ I pe }
(0taAya)?  4Sinh*(qa0aAya/2) (0cAX)?  4Sinh?(p 0cAx/2)

(6.70)

2

+2Ay§B{ - 98 }
(0aAya)?  4Sinh?(qa0tAYa/2)

+ 2133{1 ____‘ilﬂgﬂyi__} . 2&{1 _ 9cOcAYc } .
o2l Sinh(qaAya)] @2 Sinh(qcoAyc)

In a very similar manner the invariant difference equations for the vertical interface, shown in

figure 6.7, may be derived. Since the processes of deriving such equations has already been
illustrated, we will only present the results of the derivation. The invariant difference equation for

a vertical interface was determined to be

-___2_Pa_DLa_a_._¢. ___2ppDpoiy
Sinh(pa0tadXa) '+ Sinh(pyOtAxs)

di-1,j

l: 2paDaaa (1 + Sinhz(Paaanalz)) + Zprbab (1 + Sinhz(pbabAXb/2) ﬂ i j

Sinh(pa0taAXa) p? Sinh(py0iAxp) p%
(6.71)
+ 2qaDa0; 14+ Sinh?(qa0taAy/2) + 2qpDp0p 1+ Sinh?(qp0tpAy/2) o1
| Sinh(qa06,AY) ) Sinh(qy0tbAy) qt H
) 2qaD;0, + 2@pDp0ip )¢ , _( 2qaDs0ta + 24pDp0tp )¢ 1=Q
Sinh(q00Ay) | Sinh(goopAy)] T *! (Sinh(g,0.4y)  Sinh(gsowAy)/ T

where the invariant source term, Q, was found as

2Tanh Ax/2 2Tanh: 2
Q= 2Tanh(pateAX/2) . 2Tanh(puOAN/2) ¢ -y 90X, - 2QXp.  (6.72)
Palla Pb0
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Region b ‘i,j+l
° ¢ °
i-1,j 1, i+l
‘i,j-l Region a

Figure 6.7 Schematic of the Vertical Interface

For the constant source approximation of the source distribution, S(x,y) = Sy,ij» the invariant

source term was found to be

Q= 2Tanh(p,0,Ax/2) Saij + 2Tanh(ppo,Ax/2) S

b,,j -
PaCla PbOlb )

(6.73)

Finally, for the quadratic curve fit of the source distribution, equation (6.61), where the

coefficients are

A = Saij - 2Sai+1,j + Sais2)] B. = Saij-1 - 2Saij + Saij+1
a = a~-
2Ax2 2Ay?

C, = 38aij + 4Saiv1j - Saivaj g _ Saijet - Saij1
a 2AXq a 2Ay

and

_Sb,ij - 2Sp,i-1,j + Sb,i-2,j _Spij1 - 28p,ij + Sp,ij+1

Ap

By

2Ax3 2Ay?

_ 3Sb,ij - 4Spi-1,j + Sb,i-2;j _ Spij+t - Sbij
Co = 2A%; Ep = 2Ay

the invariant source term, Q, was determined as
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2
Q=S4+ Sp,j+ 2Ax§A{ 1 - Pi }
(0, AXy)?  4Sinh2(p,0,,A%4/2)

+2Ax%A.{ L. Db }
(0pAXp)*  4Sinh“(ppOtpAxp/2)
(6.75)

2
+2Ay2B{ L. 4 }+2A ZB{ L. g8 }
(0taAy)?  4Sinh2(qa0tAy/?) (0,Ay)?  4Sinh?(qa0t,Ay/2)

+2C PaltalX, ]_zcb | PoowAxy |
“l; Sinh(p,0taAXa) a% Sinh{pp0lpAxp)

This is by no means the only way to derive the horizontal and vertical type interface equations.
One could equally start with two in-region invariant difference equations and the discrete forms of
the interface equations, then proceed to eliminate the two unknown fluxes from the equations, in a

manner akin to that employed in Chapter 5, to obtain the same results as presented here.

These results for three types of interfaces, cross, vertical and horizontal, are valid for each
energy group, 1 < g < G. In Section 6.5, numerical results will be presented that utilize these
invariant difference equations. Two cases will be presented; Case 1 will consist of the invariant
difference equations in which the constant source approximation was used. Case 2 consists of the
invariant difference equations in which a two-dimensional quadratic curve fit was used to model
the source distribution. Before we go onto the discussion of the solution process and the
presentation of the numerical results, we will discuss the local truncation error of the invariant
finite difference equations; additionally we will demonstrate that the standard cell edged finite

difference equations can be recovered from the invariant finite difference equations.
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6.3 The Local Truncation Error and Consisten:y of the Invariant Finite Difference
Equations

Here we will discuss the local truncation error of the Lie group invariant finite difference
equations. We will also show that the invariant finite difference approximations of the two
dimensional neutron diffusion equation are consistent with the original differential equations.
Along the way we will show that a standard finite difference approximation of the neutron
diffusion equation, namely the cell edged finite difference equations, can be recovered from the

invariant finite difference equations.

We begin by considering the in-region invariant finite difference equation as given by

zR,gPi [¢g,i-l,j - 205 + Ggiiv1 J] Zgg(l- pﬁ)[% ij-1 - 20gi + Og, 1_)+1]
4Sinh2(0tgpgAx/2) 4Smh2((1g4/ p%Ay/2)

- Zpghgij + Sgij=0.

(6.76)

We will first demonstrate that the standard finite difference approximation of the neutron
diffusion equation can be recovered from the invariant finite difference equations. Expanding the

hyperbolic-sines in a series expansion as

4Sinh3(8/2) = & +% 556-0-+ (6.77)

and truncating the series in terms 84 and greater, equation (6.76) becomes

ZR,gP% [‘bg,i-l.j - 2¢g,i,j + ¢g,i+1 _]} ZR g(l Pg)[q’g ij-1-" 2¢g ij tog l,j+l]
4(0igpgAx/2)? 4(ogV 1 - p3AY/2)>

- ZR.g¢g,i,j + Sg.i,j =0.

(6.78)

Upon canceling like terms and using o2 = Zg, g/Dyg, we obtain
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Dg[‘bg.hl,j - 20g,j t+ ¢g,i+1,j} . Dgdg,ij-1 - 20g,ij + ¢g.i,j+l]
Ax? Ay?

(6.79)
- ZrgPgij + Sg.ij =0,

which is the standard finite difference approximation of the neutron diffusion equation. The local
truncation error for equation (6.76) is determined by expanding terms in (6.76) about the point
Xj,yj as both Ax and Ay become small. This yields upon the elimination of the original differential

equation (6.1)

te:h\xz{,)ga“%(x,y)_ o3z 82¢(x,y)L_x

2] 7% oxe R ax2
(6.80)

4 2
+A}/Z(Dga Pg(x.y) JT-—pisz,ga g;xz.y)}x

3 Ay3
12[ X?+O(Ax Ay?) .

Y=Y

As can be seen from equation (6.80), the local truncation error is second order in both Ax and Ay.
One can also see that as both Ax and Ay go to zero, the local truncation error goes to zero; hence

the invariant finite difference equation is consistent with the original differential equation.

We now turn our attention to the interface equations. We consider the cross type of interface
first as given by equation (6.52). The invariant source term for the constant source distribution

approximation is

Q = Sai Tanh(p,0eAXy/2) | ¢~ Tanh(pyopAxc/2)

! OlaPa o ObPb 6.81)
~ Tanh(peotcAxe/2) . o Tanh(paogAxy/2) '
S
+ SC.\.] + 9d,i,j ’
OlcPc 04Pd

which may be rewritten as

108




Q=S (Tanh(paaandD) , Tanh(g,04y+/2)

20L3Pa 2029,
+ S '(Tanh(pbabec/2) + Tanh(qbabAyb/2))
*h T 200p0 2000b 68
.S, (Tanh(pcach o/2) , Tanh(qetcAyc/2) ) '
¢ 20LcPc 200cqc
‘s, _(Tanh(pdadAxdlz) L] anh(qdadAycm)
T 20gpg 20404 '

Expanding the-hyperbolic-sines and tangents in a series and keeping only the first terms in the

series, we obtain the standard difference formulation as

D D D
(T e s a2 + 2 o

-Dg,a ER.g,aA)’b Dg b zR.g.bAYb Dg.c zR.g,cAYC ng 2:RgdAyc] )
ayw T T4 Taw T 4 Tan T a4 Ty 4 |Puid

Dg’c D Dga D b)
(Ayc+Ayc)¢g”" (AYb Ay ?51*!

=§§f'i~'j(Axd+Ayb)+—S—§f*i‘—j(Axc+Ayb)

Sg.cij Sg.di
+ =82 (Axe + Aye) +=B25 (Axg + Aye) .

The local truncation error for the cross type interface was determined by expanding the invariant

difference equation in a series about the point x;,y; as Ax and Ay become small to yield

109




92¢,(x, 02g(x,
Te = (ZDg‘ani—%ﬁ +2Dg ¢ag(x y - (Zr.g.atZr gp)Pg(X,y) + Sa+ Sy ) } XAYb
y=y
92 9% g(x,
(2Dg LX) | o, TID) (5 g+ Er g )0(9) + Sc + Sy ) ye
ayz X = X
Y=Y
(6.83)
0204(x,y) 9%9g(x.y)
+ (ZDg.a_“ag‘)’(T“ + 2Dg,d~—-§;—2——— - (ZrgatIrgdPe(xy) + Sa+ Sq | _ Axg
Y=Yy
9204(x.y) 0%g(x.y)
+ (2Dg,b—§’;2“"‘ + 2Dg,c—‘ég“;2"“ - (Zg,g,b+zR,g.c)¢g(x’y) +Sc + Sb X = xiAxc
y =y
+ O(Ax2,Ay?) .

From equation (6.83), we see that as the mesh spacing goes to zero, the local truncation error also
goes to zero. Therefore, the invariant finite difference equation for the cross-type of interface is

consistent with the original differential equations.

In a similar manner, the local truncation error for the invariant finite difference equation and the
standard finite difference approximation for the horizontal type of interface were respectively

determined as

=X

0%4(x,
l—(ZDg ¢8(X Y) . zR,g,a¢8(x‘y) + Sa )x _ A)'a
Y=Y

9%9g(x.y)
Moo, ZEED s aam v | o
Yy=Yij

(6.84)

2 X = X

9%g(x, 9%g(x,
+‘1‘(2Dg’a*"’%gi§—w + 2D8!CJ§S—X§‘L)‘ - (ER'8.3+ZR’S,C)¢8(X,y) + Sa + SC ) AX
Yy=Yj

+ O(Ax2,Ay2)
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and

D D 2Dga  IRgaAx 2Dg. TR, cAX
A‘; Ax)(¢gllj+¢gl+l)+( A)g(a+ g2a + Aic"' gc bg.ij
2Dg.a IR g adya 2Dy ER .2 CAyC) g c
+ *, 1) + . . '. .
+( AYa 7 A)’c Og.ij - Ay. ¢g.:.} 1 (6.85)

2D
Ay 2 ¢g|)+l A)’asa,g,i,j + AYCSc.g,i.j .

The local truncation error for the invariant finite difference equation and the cell edged standard

finite difference equation for the vertical interface were determined to be, respectively,

02 , L ,
Te= %\(ZDg a~—¢§—)(l-x—y)- +2Dg 0“g(x.y) (ZR,g,atZR g b)Dg(X.Y) + Sz + Sp ) Ay

2 =xi
9 523
) 0%g(x.y)
+ ‘ZX{ZDS@‘—E;;"—‘ = ZR W8 a¢g(x,y) + Sa x = XiAXa (6.86)
y=Yi

] 020g(x,y)
+ %{ZDs,b—M - ZR,g.bQ’g(X’Y) + Sp )x - X'IAXb + O(Ax2,Ay?)

ox2
y=yi
and
2Dy 2D, 2Dga  TrgadXa  2Dgp IR gpAx
g ¢g111 a¢g‘+”+(Axg;a+ R.g; a+Axgl;b Rgb b)(pg”

2D )y A 2D z A
( Dis , Zuge y ., Due , oo Y)q,g” (6.87)

D D

(Z—g;— gb)(%.;1+¢g,,+1)-—Axa5sau+AxbsgbU

From equations (6.84) and (6.85), we see that both the horizontal and vertical interface invariant
difference equations are consistent with the original differential equations since as Ax and Ay go to

zero, the local truncation error goes to zero. Now that the invariant finite difference equations have
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been shown to be consistent with the original differential equation, we are ready to discuss the

solution of these difference equations.

6.4 The Source Iteration Solution Method

The method used to solve the multigroup Lie group invariant finite difference equations is the
power method as outlined in Section 5.5.2. The solution method employed is identical to that used
in the one-dimensional problems with the exception that the Alternating Direction Implicit (ADI),

see references 35, 10, and 18, method was used in the inner iterations to solve for the neutron flux.

Since the direct inversion of the leakage plus removal matrix is impractical, an iterative method
is utilized to determine the neutron flux. The ADI method was chosen for this purpose. As a
specific example to show how the ADI method is used, we consider the in-region invariant finite

difference equation (6.29). Equation (6.29) can be rewritten as

Ag[q)g,i-l,j - 20, + ¢g.i+1.j] + Bg[q)g.i.j-l - 20g; + ¢g.i.j+l]

- ZRglgij + Qgij =0,

(6.88)

where
- ZRgP§ and By = Zrg(1-pp) _
® " 4Sinh?(0,,p,Ax/2) 4Sinh2(0V1 - p3AY/2)
gr'g g

(6.89)

We begin the solution of the neutron flux, by carrying out a sweep in the x-direction using

equation (6.86), rewritten as

n+¥; n+Y, n+;

- Aghgic1j+ (2Ag + QLZR'g + RpPgij - Agdgiist,j = Qgiij
] ) ) (6.90)
+[- Befigijo1 + (2B, +1 TR - RYG. - Bebpijen) -
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where the superscript n refers to the inner iteration number and R is a real number. We then carry

out a sweep in the y-direction using

n+l

1 1
- Byfpij1 +(2Bg + Tirg + RJ0gii - Bbpajet = Qg
(6.91)

n+'/2 n+‘/2 n+l/z

+ [- Agdpg,i_l_j + (ZAg + %‘ZR,g - R)¢g,i.j - Ag¢g,i+l.j .

This iterative process is carried out until some convergence criterion on the neutron flux is met.
The parameter R is chosen, such that this iterative process converges after N iterations. For further

information on the use of AD], the interested reader is referred to references 5, 10, and 18.

6.5 Numerical Results for the Two-Dimensional Neutron Diffusion Equation

We will now present numerical results for the invariant finite difference schemes as outlined
above. Additionally, we will present results for the standard cell edged finite difference equations
as given by equations (6.79), (6.82), (6.85), and (6.87). We will also present numerical results as
obtained for the sample problem by the computer code DIF3D, reference 16, which employs a cell

centered finite difference approximation of the multigroup neutron diffusion equation.

There are two invariant finite difference schemes for which results will be presented. Case 1
consists of the invariant finite difference equations, as given by equations (6.33), (6.52), (6.60),
(6.65), (6.68), (6.71), and (6.73), in which the source distribution was approximated by a
constant source. Case 2 consists of the invariant finite difference scheme, as given by equations
(6.37), (6.52), (6.62), (6.63), (6.64), (6.65), (6.70), (6.71), and (6.75), where quadratic curve

fits were used to approximate the source distribution.
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The two-dimensional sample problem consisted of a two-region reactor that was symmetric
about the x and y axis as shown in Figure 6.8. The core region was 50 cm by 50 cm and the
reflector region was 100 cm by 100 cm Two energy groups were used in modeling the sample
problem,; the material properties were those used in the one-dimensional sample problem and are

given in Table 5.2.

100 cm
Reflector Region
50 cm
Core
Region
0,0 50 cm 100 cm

Figure 6.8 Schematic of the Symmetric, Two-Region, Two-Dimensional Sample Problem

Figures 6.9 and 6.10 respectively show the group one and two neutron fluxes that were

calculated on a 1.0 cm by 1.0 cm mesh.

To compare the four methods used to calculate the sample problem, we will examine the
accuracy of the eigenvalue as a function of mesh spacing. In these calculations, uniform mesh
spacing, Ax = Ay, was used. Figure 6.11 shows the eigenvalues as a function of the mesh

spacing. Since the eigenvalue, as calculated by the computer code DIF3D, approaches the
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converged eigenvalue from below it will be more useful to compare the error in the eigenvalue.

We again define the error in the eigenvalue as

e= A- Xconvergerd (6.92)

7\'converged

where Aconvergerd iS the eigenvalue to which all four computational methods converged, as the

mesh spacing went to zero.

Y Postion, cm

0.0 20.0 40.0 60.0 80.0 100.0
X Postion, cm

Figure 6.9 Contour Plot of the Group One Neutron Flux for the Two-Dimensional Sample
Problem
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25.0—
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0.0 25.0 50.0 75.0 100.0
X Postion, cm

Figure 6.10 Contour Plot of the Group Two Neutron Flux for the Two-Dimensional Sample
Problem

Figure 6.12 shows the error in the eigenvalue as a function of the mesh spacing. As is
somewhat expected, the Case 1 invariant difference scheme is not as accurate as the three other
difference schemes. This is due to the fact that the source distribution was modeled by assuming
that sources at points adjacent to the point x;,y; were equal to the source at X;,yi. As with the one-

dimensional problem, this assumption is not very accurate, particularly at interfaces.

We now turn our attention to Figure 6.13, which shows the error in the eigenvalue as a

function of the mesh spacing for the three remaining finite difference schemes. As is expected, the
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cell edged finite difference scheme is not as accurate as the cell centered finite difference scheme.
The cell edged finite difference scheme was included merely for interest, since this scheme can be
recovered from the invariant finite difference equations. As we can see from Figure 6.13, the
computer code DIF3D calculates the eigenvalue better at larger mesh spacings, greater that 2.5 cm,
than does the Case 2 invariant difference scheme. However, neither DIF3D or the Case 2 invariant
difference scheme could accurately calculate the flux for these large mesh spacings, so the
calculations are somewhat suspect. The failure of both DIF3D and the Case 2 invariant difference
scheme to calculate accurately the neutron flux can be traced to the fact that the largest diffusion
length for the sample problem is 2.236 cm, which is smaller than the mesh spacing of 2.5 cm.
Once the mesh spacing is on the order of, or smaller than, the diffusion length, the Case 2 invariant

difference scheme calculates the eigenvalue with greater accuracy than does the computer code

DIF3D.

Thus, for a desired level in accuracy in the eigenvalue, one can use fewer mesh points when
calculating with the Case 2 invariant difference scheme, than with the cell centered standard finite

difference scheme.
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1.0620
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® Cell Edged Stan
1.0588 1 . Inv. Diff. Case 1
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Figure 6.11 The Eigenvalue as a Function of the Mesh Spacing as Calculated by DIF3D, the
Standard Cell Edged Scheme, and the Invariant Finite Difference Cases 1 and 2
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DIF3D, the Standard Cell Edged Scheme, and the Invariant Finite Difference Cases 1 and 2
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7 CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH

In the course of this research, we have explored the construction of Lie group invariant finite
difference equations for the multigroup neutron diffusion equation. Additionally, numerical results
were presented which demonstrated that the invariant finite difference equations could determine
the eigenvalue with greater accuracy than standard finite difference equations for a given mesh

spacing.

We began this study by examining the invariance properties of the one- and two-dimensional
diffusion equation in Cartesian coordinates. Here, we found that for a general source distribution
both the one and two-dimensional diffusion equations admitted evolutionary vector fields, whose
coordinate functions satisfied the homogeneous diffusion equation. Next, we proceeded to use
Axford's definition of an invariant finite difference scheme to develop the extensions of the group
generators to grid point values. Using the extensions of the group generators extended to grid
point values, the invariant difference operators were constructed. The construction process
involved operating with the candidate difference operator upon the homogeneous solution,
evaluated at a grid point; this result was then made invariant with respect to the action of the group
extended to grid points. The invariant source term was determined by operating upon a particular
solution of the neutron diffusion equation evaluated at a grid point. The particular solution was
obtained by assuming some source distribution, and solving the neutron diffusion equation for the

particular solution based upon the assumed source distribution.

In Chapters 5 and 6 respectively, numerical results were presented for the one- and two-

dimensional problems. Consider the one-dimensional problems that could be broken down into
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two classes. The first class of problems consisted of multiple regions in which the source in each
region was a constant. It was found for this particular situation that the invariant finite difference
equations produced the exact solution of the original differential equations. This fact could be
verified by either direct numerical solution of the difference equations or by substituting the
analytic solution into the invariant difference equations. It is also of interest to note that the local
truncation error for the constant source problem was determined to be zero; this result is not
surprising, since the invariant finite difference equations produced the exact result for the solution

of the differential equation.

Next we considered the one-dimensional class of problems in which the source was dependent
upon the neutron flux. For this class, it was found that the higher the order of the curve fit used to
approximate the source distribution, the better the invariant finite difference approximation
performed; however, it should be noted that in general this was not the case. An example of where
the higher order curve fits of the source distribution did not perform better can be found in the
invariant different schemes with a sixth order local truncation error. Two of the sixth order
invariant finite difference schemes did not perform as well as the invariant difference scheme with a
fourth order local truncation error; thus, we can conclude that the local truncation error does not
play as large a role in determining the accuracy of an invariant difference scheme as does the type
of curve fit used to approximate the source distribution. The importance of the way in which the
source distribution modeling determines the accuracy of the invariant finite difference scheme was
demonstrated in particular for the invariant finite difference scheme where the source distribution
was assumed to be a constant in the neighborhood of given point; for this difference scheme, the

local truncation error was determined to be second order. However, this difference scheme could
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not calculate the eigenvalue as well as the standard cell centered finite difference scheme, which

also has a second order local truncation error.

In Chapter 6, results were presented for a two-dimensional sample problem. These results
were similar in nature to those of the one-dimensional problem presented in Chapter 5. As with the
one-dimensional problems, we found that the higher the order of the curve fit of the source
distribution, the better the invariant finite difference scheme was able to determine the eigenvalue.
The invariant finite difference scheme, in which the source distribution was approximated as a
constant in the neighborhood of a given point, could not calculate the eigenvalue as well as the cell
centered standard difference scheme, even though both schemes had a local truncation error that
was second order in Ax and Ay. However, when a second order curve fit of the source
distriﬁution was used to approximate the source, the invariant finite difference scheme more
accurately calculated the eigenvalue than the cell centered standard difference scheme for a given
mesh spacing. Therefore, by building the invariance properties of the original differential equation
into the finite difference scheme and using an appropriate approximation of the source distribution,
the invariant finite difference schemes calculated the eigenvalue with greater accuracy than the cell

centered standard difference scheme.

During this research, we have demonstrated that the accuracy of a difference scheme can be
improved by incorporating the invariance properties of the original differential equation into the
finite difference equations. Since the purpose of this research was to demonstrate an improvement
in accuracy, the scope of our investigation was somewhat limited; thus leaving many areas

unexplored.
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One particular area which needs exploration is that of problem geometry. In this study, we
limited ourselves to one- and two-dimensional Cartesian geometry; this leaves cylindrical, spherical
and three-dimensional geometries to be explored. The one-dimensional spherical geometry should
be a fairly straight forward problem, since there is a well known transformation, ¢(r) = r'¥/(r),
which converts the spherical problem into a slab type problem. Therefore, many of the one-
dimensional results that have been presented should apply to the spherical problem, though the
effects of this transformation upon the choice of curve fits should be explored. For the one-
dimensional cylindrical problem, the solution of the homogeneous diffusion equation will be
expressed in terms of Bessel's functions; therefore, the form taken by the invariant difference

equations is complicated.

For the two-dimensional problems, the question as to what form the invariant difference
equations will take is again of concern, since the solutions of the homogeneous diffusion equations
would involve complicated expressions involving Bessel's and trigonometric functions as well as
Legendre polynomials. Another question that needs to be explored is what are the conditions
which need to be satisfied for the interface equations to be derived. We recall that, in the two-
dimensional Cartesian problem, the eigenvalue for the solution of the homogeneous diffusion

equation was found to have a range of acceptable values.

Another area which requires further investigation is that of the curve fits used to model the
source distribution. For the one-dimensional problems, we found, for a given mesh spacing, that
as the order of the curve fit increased the eigenvalue could be determined with greater accuracy; it
would therefore be of interest to determine if this trend were to continue for the two-dimensional

problems. In this study, we limited ourselves to some rather simple polynomial curve fits of the
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source distribution. However, other types of curve fits are certainly possible; in fact, there may be
an optimal type of curve fit of the source distribution. One can imagine several types of curve fits

which could utilize hyperbolic, trigonometric or some other type of function as their bases.

Finally, there is one other area for further research. This study dealt mainly with showing that
the accuracy of the finite difference equations could be improved by incorporating the invariance
properties of the original differential equations into the difference equations; hence, no attempt was
made at either optimizing or accelerating the numerical solution process. As a result, there were no
performance measurements, such as the amount of computer time required to run a problem.
Acceleration techniques such as source extrapolation or coarse mesh rebalancing could be
explored. In addition, since all of the coefficients in the invariant difference equations can be
calculated before the source iteration calculation begins, one could also examine the effects of

vectorization upon the time required to calculate the problem.

In conclusion, we have demonstrated for the neutron diffusion equation that the accuracy of the
finite difference approximation can be improved by incorporating the invariance properties into the
finite difference equations. Though there is much work remaining to be done on this subject,
many of the results presented have direct application to the nuclear power industry, since current
nuclear power reactors can be modeled using a two-dimensional Cartesian coordinate system.
While the neutron diffusion equation is a specific example of an elliptic differential equation, many

of these results should carry over to other elliptic differential equations.
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