; > - e ©

oV, N
0 %‘j%i%} \\\&L//‘b Association for | MI" /// / /\\ ’\QD‘%@
\\ \\\\// 301/587-8202 \6\ / Qo @ ///?0\\?
V
Centimeter
1 2 3 4 5 6 7 8 Q 10 11 12 13 14 15 mm
S TEOe SCPOeT YL YT PR YL
(ARREREAANRRARRRARN
1 2 3 4 5
In h i [il2.8 :
ches 10 =i
L e g
“ 1] "”‘" 22
= " e
22 [t e
D 2\
% /\\/4’\\ \
¥ § ///ccx\\/ //\\4\ //\\\
AR / o

No %% // ) L) :
C\%’;s’ 0\\\ /// MANUFACTURED TO AIIM STANDARRDS //{1\\ 4422\32&;\

/ // BY APPLIED IMAGE, INC. %;\é\\\ %\'z






Cons- A40314a- - |
LA-UR- 94-71602

Los Alamos National Laboratory is operated by the University of California for the United States Department of Energy under contract W-7405-ENG-36.

TME  VARIABLE METRIC CONJUGATE GRADIENT METHODS

AUTHOR(S):  Terj Barth, CNLS
Thoras Manteuffel, CNLS

SUBMITTEDTO  [nternational Symposium PCG'94 on "Matrix Analysis and Parallel
Computing," Keio University, Yokohama, Japan, March 14-16, 1994

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process discicsed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

By acceptance of this article, the publisher recognized that the U 8 Government retains a nonexclusive, royalty-free license to i
the published form of this contribution or to allow others to do so for U S Government purposes. » rovaly © to publish or reproduce

The Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U S Department of Energy.

,ZP

e o Tl OO AT

ﬂ:@§ Aﬂ@m@g Los Alamos National Laboratory

Los Alamos, New Mexico 87545

FORM NO. 836 R4
ST. NO. 2629 5/81



VARIABLE METRIC CONJUGATE GRADIENT METHODS"

TERI BARTH ' AND THOMAS MANTEUFFEL *®

1. Introduction.

1.1. Motivation. In this paper we present a framework that includes many well
known iterative methods for the solution of nonsymmetric linear systems of equations,

Az = b.

The purpose of this framework is that it provides a basis for analyzing and comparing
methods.

Section 2 begins with a brief review of the conjugate gradient method. Next,
we describe a broader class of methods, known as projection methods, to which the
conjugate gradient (CG) method and most conjugate gradient-like methods belong.
The concept of a method having either a fixed or a variable metric is introduced.
Methods that have a metric are referred to as either fixed or variable metric methods.
Some relationships between projection methods and fixed (variable) metric methods
are discussed. The main emphasis of the remainder of this paper is on variable metric
methods.

In Section 3 we show how the biconjugate gradient (BCG), and the quasi-minimal
residual (QMR) methods fit into this framework as variable metric methods. By mod-
ifying the underlying Lanczos biorthogonalization process used in the implementation
of BCG and QMR, we obtain other variable metric methods. These, we refer to as
generalizations of BCG and QMR.

A consequence of this variable metric property is that, like CG, these methods
all produce direction vectors, p.’s and residual vectors, r,’s, that satisfy

Pn -LB Kn(ﬂo, A)l A_ll'_n —LB K:'n.(r_o, A)l
where B is a Hermitian positive definite (HPD), inner product matrix, and
Kn(ro, 4) = sp{ro, Atg, .., A" 7'ro}

is the Krylov subspace of dimension n generated by the initial residual, r,, and the
matrix A. Since P T € Kn+1(rg, A), they can be expressed as

P, =#n(A)ro, 1, = pn(A)ro,

where ¢, and p, are referred to as the B-orthogonal polynomials and the residual
polynomials respectively, associated with the corresponding method. Section 4 re-
views the properties of these polynomials and describes how their roots can be used
to obtain approximations of the spectrum of A. We conclude with a brief summary.

* This work was sponsored by the Department of Energy under grant number DE.FGO03-
93ER25165 and by the National Science Foundation under grant number DMS-8704169.
! Department of Mathematics, University of Colorado at Denver, Los Alamos National Laboratory

! Department of Mathematics, University of Colorado at Boulder, Los Alamos National Labora-
tory



1.2. Notation. We will make use of the following notation throughout this pa-

per.

R™ (™
InXm mxm
R ,C

Vector spaces of real and complex n — tuples.
Vector spaces of real and complex n x m matrices.
Space of polynomials of degree at most k.

(24 Space of poiynomials, pe(A) € Pi such that, p,(0) = 1.
K, V,. Other calligraphic letters denote subspaces of R™ or C".
A, B,. Upper case Roman and Greek letters denote matrices.
z,D, .. Underlined lower case Roman and Greek letters denote vectors.
a,B,... Lower case Roman and Greek letters denote scalars.
() U] Euclidean inner product on C™ and induced norm.
(B}, || - llB B—inner product on C" and induced B—norm.

A’ Euclidean adjoint of 4, A* = AT.

Al B—adjoint of A.

sp{z,} The linear span of the vectors z, .

L(A4) Spectrum of A.

H(A) Convex hull of Z(A4).

Fa(A) B—Field of values of 4.

2. A framework for conjugate gradier t-like methods.

2.1. The conjugate gradient method. Given a Hermitian positive definite
(HPD) inner product matrix, B, and an initial guess, z,, a conjugate gradient (CG)
method for the solution of the N x N linear system

(2.1)

Az = b,

produces iterates that are uniquely defined by two conditions:

(22) Ln = I’-n—1+£n-—1’

e, 1B 2z,

2,1 € ,Cﬂ(lo» A),
Yz € Kn(rg, 4),

An(ro, 4) = sp{ry, Ay, ..., A '15},

is the Krylov subspace of dimension n generated by the initial residual, r,, and the
matrix A, e, = £ — Z,,, is the error at step n, and L g represents orthogonality in the
B-inner product, that is, (Be,, z) = 0. (c.t. [AMS90])

For an HPD matrix B, the orthogonality condition given in (2.2) is equivalent to
a minimization property, (see [JoMa90]). That is, choosing z,_, € Kn(ry, A) such
that e, Lp z, Vz € Kn(ry, 4) is equivalent to minimizing ile,|ip over K,(ry, 4). This
is known as the optimality property of the conjugate gradient method.

We denote by CG(B, 4), a conjugate gradient method which is defined with
respect to an inner product matrix, B, and the matrix A. CG(B, 4) is implemented
via the construction of a B-orthogonal basis {E; };‘:“01 for Kn(rg, 4). The p,’s are called

direction vectors. There are several algorithms for CG(B, 4), for example; Orthodir,
2



Orthomin, Orthores, and GMRES. The Orthodir algorithm is given by

rg = b- Az,
by, = To
Zpty = Z,t anp_,
Bn+l = ABn - ZJ:O Un')ej !

where,

(Bp,.p,)=0, n#j P42, B)
2.)=0, n#j = op; = —m———.
by " (Bp,:p,)

In general, full recursions for the direction vectors are necessary in order to im-
plement CG(B, A). The work and storage requirements needed to do this quickly
become prohibitive, making CG(B, 4) impractical to run in the general case.

In 1984 it was proven that, except for a few anomalies, the class of matrices
for which a conjugate gradient method can be implemented via a single, short (s-
term) recursion for the direction vectors is limited t¢ matrices that are B-normal(s-2)
[FaMaB84]. Thus, a practical CG(B, A) algorithm is available for only a small class of
matrices.

Generalizations of the conjugate gradient method for B-normal matrices to non-
normal matrices are often referred to as conjugate gradient-like methods. The CG
method along with most CG-like methods belong to a more general class of methods
known as projection methods.

2.2, Projection methods. A projection method is an iterative method, where
given an initial guess, 4, it produces iterates that are defined by two conditions:

En = an—1+£n—17 -z-n—l Evrn
v \
(2.3) en LU Y€ n,
or
e, 1 n

where, Vn (V) are referred to as left (right) subspaces, and .L represents orthogonality
in the standard Euclidean sense. We say that the projection method breaks down at
step n if the iterate, z,,, does not exist or is not unique.

For the remainder of this section we will assume that

dim()Yy,) = dim(V,) = n, Vn,
and denote by

b I b
Y'l.: go E]_ e g _—
Lo

as the matrices whose columns span ) (V.). From this it follows that (2.3) can be
rewritten as
En = En—l + V'lz; Z e Cﬂ'
€n = €1~ Vav
3



Multiplying the error equation through on the left by ¥,* and using the orthogonality
condition given in (2.3) yields

0="YJe, =Yie,, - ¥y Vay.

n n =n

If Y7V, is nonsingular, then

v = (Y V) Yre

s n-—1

and explicit forms for the iterates and the error are given by

(2 4) z, = Qn-1+Vn(Y1:Vn)_1Y1:Qn—1a
! €n [I“Vn(yn,‘vn)_lyn']gn-—l‘

[

I

The name projection method comes from recognizing [I — V,(Y,; V,,)"'Y,!] as a pro-
jection operator. From the above discussion, we see that the projection method breaks
down if and only if Y,; V; is singular.

For every n, a map from the right subspace to the left subspace can be constructed
to yield

(2.5) Yn = B (Va).

To see how this is done, choose any bases for V, and V,, and let Y, and V,, be the
corresponding matrices whose columns are the basis vectors. It follows that

B = Yo (ViVa) Vs

satisfies (2.5).

If there exists a fixed square matrix B, such that
(2.6) Y, = BV, Vn,

we call the projection method stationary. Although B is fixed for every iteration, it

may still depend on the initial guess, z,. Using (2.6), we can rewrite the orthogonality
condition

€n -Lyn <~ €n —LB Vny

where we mean a one-sided orthogonality with respect to the bilinear form matrix,

B; that is, (Be,,,2) =0, Vz € V,. If B is also HPD, the bilinear form is an inner
product, and

e, Lp Vo & minimizing |le,l|p over Vp,

and the projection method has an error minimization property or a metric. When B
is independent of the initial guess, we call the metric fixed; otherwise, B is dependent
on z, and the metric is called variable. Thus, these methods are referred to as either
fixed or variable metric methods. A projection method whose right subspace, V,, is
the Krylov subspace, Kn(rg, 4), is called a polynomial or Krylov projection method.
We refer to fixed (variable) metric methods that are also polynomial methods as fixed
(variable) metric conjugate gradient methods.

4



Definition 2.1: Fixed (variable) metric conjugate gradient methods are iterative
methods whose iterates are uniquely defined by the following conditions:

-

’ Zn = Qn-—l ~Zno Z S
(2‘7) €n J_B 2, vée Kn(EOcA)l

for B(zy) an HPD matrix. If B is independent of z,, we have a fixed metric conjugate
gradient method, or just a conjugate gradient method. Otherwise, we have a variable
metric conjugate gradient method.

For more information about projection methods and their properties, see ([Sa81],[Sa82],{JoMa90}).
In Section 3 we will show how the biconjugate gradient (BCG) and the quasi-minimal
residual (QMR) methods fit into this framework as variable metric CG methods. Be-
fore demonstrating these specific cases, we first discuss some general relationships
between variable metric methods and projection methods.

LEMMA 2.1. Every fized (variable) metric conjugate gradient method is a pro-
jection method.

Proof. The iterates from a fixed (variable) metric conjugate gradient method are
defined by the following:

T, = ZTp1tzZhon €
€. -LB 2, z€ Kﬂ(tOl A)l

where B(z,) is an HPD matrix. Let
Vo = K:n(ﬂo; A): Yn = B}Cn(!'.o; A)n

then it follows that

Zn T ZartzZ,on Z,_1 € Vn,
e, L Y VgEym

which is the definition for the iterates generated by a projection method. O

Given a nested sequence of subspaces

vl CVQC'-'CVN, dim(v,):i, V1,

we say that {v, f;},l is an ascending basis for {V;}V if
Vi = sp{u}
Vao = sp{, v}
Vv = sp{vo, vy, Un_ }-

LEMMA 2.2. If {v,}/5" is an ascending basis for {V,}| and {3,}V5! is any
other ascending basis for {V,}| then

Vv = WWTy,
5



Wherex

and Ty 18 a nonsingular, upper triangular matriz.

Proof: Since {u,}Y 5" and {5, })5" are ascending bases for {V;}!V,, at each step &,
we must have that sp{vg, ..., _1} = sp{fg, ..., Pe=1} = V. This is true if and only if

. R k-1 i . .
we can write each 7, _, = Zj:o Qj k1Y, where ag_1 k-1 # 0, since if ag_1 -1 =0,

R R X k-1
we would have that sp{dy, ..., 2, _1} = sp{vo, ..., ue_o}. Now, 9, _; = 3/ Z5 oy k19,

where ap_1,k-1 # 0, Yk < N implies that

7 _ ) k-1 J<k-1
Vi = VNTn, where (TN)],Ic—l = { 0 PSk-1

Since ag-1,k-1 # 0, Tn is a nonsingular upper triangular matrix. G

For the next lemma, let
(VKL (VL
be nested sequences of subspaces with ascending bases
{whiyh  for  {Wi}Y,,
{E,— xN:?)l for KL,
such that
dim(V;) = dim();) =3, Vi< N.

Denote by V; and Y;, the matrices whose j'th columns are v; and Y, respectively, and
assume that (¥;*V;) is nonsingular Vi < N.

Define a stationary map B* from
{Vt’}f“{:x - {yi}ﬁ—.u
to be a map such that

B*(Vi) =)y, Vi<N.

LEMMA 2.3. All possible stationary maps from {V;}*, — {J}¥,, fori < N,
are of the form

(2.8) B" = YnTNVy !,
6




where Ty 15 a nonsingular, upper triangular matriz.
' : ; . N AN ~ iy

Froof. There exists a stationary map from {V,};2;, — {J:}%,, Vi < ¥, given

by
B =YyVy'l.

Let B* be any other stationary map and let y, = B*u;. Then {8 N5!is an ascending
basis for {)i}/,. Thus, B* may be written
(2.9) B =YyVyl.

By Lemma 2.2, we know there exists a nonsingular, upper triangular matrix, Ty, such
that

(2.10) ?N =YNTn.
Substituting (2.10) into (2.9) yields
B* = YnTyVgth

Thus, any stationary map can be written in the form given by (8). Finally, note that
any map of the form given by (2.8) is a stationary map. O
We remark here that the assumption that

(2.11) Y;’V; is nonsingular Vi,

is an assumption about the spaces, {V;}/¥, and {J:}/,, since if (2.11) is true for one
pair of bases, it is true for every pair of bases. We will refer to (2.11) as: 1)\ is
nonsingular for every 1.

THEOREM 2.4. Any projection method based on nested subspaces {Vi}., and
{Vi}X,, where dim(V;) = dim(};) = i, Vi < N, and where V}); is nonsingular
for every i < N, has a metric, which is unique up to an arbitrary positive, diagonal
matriz.

Proof Let {y;}¥3! and {g‘.}f’:;l be ascending bases for the nested sequences of

subspaces, {Vi}/L, and {)i}/L, respectively. Denote by V; and Y;, the matrices whose
7'th columns are y; and Y, respectively. It follows from Lemma 2.3 that all possible
stationary maps are of the form

(2.12) B* = V};'(VA‘,YN)TNVIJI.

By hypothesis, V;Y; is nonsingular for every « < N and it follows that all the principal
majors of VyYy are nonsingular. Thus, an LU- decomposition of VyYn can be
performed without pivoting, yielding

V;,YN = LNUN-

Let Ty = U[,lﬂNL;V, where Qy = diag(---w; ') and w; > 0 is arbitrary. Making
these substitutions for Ty and (V4 Yy) into (2.12) yields an HPD B given by

(2.13) B=Vg LnQnLyVy',
7



where we see that B is unique up to a positive diagonal matrix, Q. Thus, we have a
stationary, HPD B, such that BV, = Y, for every : < N. By definition, the projection
method is either a fixed or a variable metric method. Notice that any B of the form
given by (2.13), in a fixed or variable metric method, will produce the same sequence
of iterates. C

Define
(2.14) Py = VnLy',

where Vi and Ly are the matrices given in Theorem 2.4. Since Ly" isa nonsmgular,
upper triangular matrix, it follows from Lemma 2.2 that the columns of Py, {p JHe

form an ascending basis for {V;}/L,. It is easy to see from (2.13) and (2. 14) that
{p }‘__0 are mutually B-orthogonal. Corollary 2.5 shows an equivalent way to write
all possible metrics for these methods. This form may be more useful since the
information needed to write the metric in this form is often readily available.

. COROLLARY 2.5. Suppose we have any fized or variable metric method. Let
Py be any matriz whose columns, {p, Y5, form a B-orthogonal, ascending basis for

{Vi}X,. Then, the metric, B, given by (2.13) in Theorem 2.1, can be written in the
form

(2.15) B = Py QN PRl
where QUn is an arbitrary positive, diagonal matriz,
Proof. From the above discussion we see that substitution of (2.14) into (2.13)
yields
(2.16) B = Py Qn PRl

where the columns of Py, {p, }N Y, form an ascending, B-orthogonal basis for {Vil¥,.
This B-orthogonal basis is unique up to scale. That is,

{B15 = {ap Y5

is another B-orthogonal, ascendmg basis for {V; ]»N1 if a; #£ 0 for every i < N - 1,
Thus, we can write

(2.17) Py = PNAy, where Ay = diag(---a;--+) and o; # 0.
Using (2.16) and (2.17), it follows that B can also be written as:
B = POy Pyt = PR A QN AR PR = Py Qn Py,
where
Qn = ApQnay

18 also an arbitrary positive, diagonal matrix. Therefore, it follows from Theorem 2.4
that all possible metrics are given by:

B = ﬁ&‘f)Nﬁﬁl,
8



where the columns of Py form any B-orthogonal, ascending basis for {v. 1Y, and
Q2 is an arbitrary positive, diagonal matrix. =

Recall the definition for the iterates generated by a fixed (variable) metric method:

Z, T Zn_1+Z,_1 Zn_1 € Vn,
(2.18) Yz € V.

It follows that
(2.19) €, = -

Let z; € Vn_1. Since Vp_1 C Vn, it follows from (2.19) and the orthogonality condi-
tion given in (2.18) that
0= (Ben,2,) = (Bey_1,2,) — (Bz,_,2,) = 0 - (Bz,

n~11 E; )
Therefore, we must have (Bz,_;,2;) =0, j <n- L. Since a B-orthogonal, ascending
basis is unique up to scale, it follows that

2,1 =0Bn-1p for some scalar G, 1.

Ln-1’

If Bu_1 # 0, Vn, then {z,}-) form a B-orthogonal, ascending basis for {Va YN0,
and it follows from Corollary 2.5 that all possible metrics, B, can be written in the
form:

B=2Z3'QnZR',

where Zy denotes the matrix whose columns are {gn},’;’___'ol, and where Qn = diag(---wn -+ -

and wn, > 0 is arbitrary.

Convergence bounds:

For any fixed or variable metric CG me: ::0d, we can establish convergence bounds.
Since for any of these methods, the error is minimized at each step with respect to
the B norm, we can write

\ A
lealls _ 1y [n(A)eolle
P€P5  lleolis

We can bound %ﬁ by noting that

llealln min |lpn(4)eolls = meigGIIB”zpn(A)e;oil

pﬂepu
(2.20)

IN

|B*/2]| min |lpn(A4)eoll,
PnEPY
and

(221)  leall = {[B7V2BY 2, || < ||B™Y2|| [|B" 2¢,|| = || B~ |lenll5-
9



Multiplying (2.20) on the left by “B~1/2' and using (2.21) yields:

(2.22) Jeai < 1BTYE BY? min jpa(Ae!.

pn€P]
Since B is HPD, ||[B~Y/2|| ||BY?|| = C(B?) = ((B)"? (the square root of the
condition number of B). By dividing (2.22) through by i|ey|] we obtain a bound for
the relative error:

oy

nll SC(B)X/L’ min ](PH(A)QOH
Il Pn€P2 el

(2.23) |I

For a variable metric CG method, B is dependent upon the initial guess and the
particular algorithm. For this bound to be meaningful, we need to bound C(B). An
ideal result would be to find some class of matrices and some algorithm for which

C(B(zo)) < K, Vao.

g

As far as we know, such results are essentially nonexistent. We also recall from
Theorem 2.4 that B is not unique. Any positive, diagonal matrix, Qn in (2.13), will
produce the same sequence of iterates. However, it may be possible to choose Qy so
that B has a smaller condition number, yielding a tighter bound on the relative error.

3. Examples of variable metric methods. In this section we will show that
BCG and QMR are variable metric conjugate gradient methods. First we need to say
a few words about Lanczos biorthogonalization which is used in the implementation
of both BCG and QMR.

3.1. Lanczos biorthogonalization. Lanczos biorthogonalization is a process
that constructs a pair of ascending bases

{y,}720  for  {K;(vo A}y,

{w;}}20  for  {Kj(wo, 4")}}-1,

such that
& 1=
* 4Py, = 4 O s

where p is any nonnegative integer. The u's (w’s) are called right (left) Lanczos
vectors. When p = 0, the Lanczos vectors are biorthogonal, and when p = 1, they
are biconjugate. Lanczos vectors are often normalized to have unit length. Denote,
v, (w,), as the normalized Lanczos vectors, and let

. e
I = Mnly,, M = [1Tall,

w, = £rw,, €n = i@l

This process is implemented via a 2-sided Gram-Schmidt process

n-1
Yy = ‘4271—1 - Z]:O Un—l.;l)_j,
5 = A" n—-1-
nW, = Wnoy — 7=0 In-1,,4;,




where,

<AP+1gn—LJH‘;> (A‘l”_n-l:“lpy.j)

On-1,; = On_1,; =

" 7 <Apy]!yj) ' " g (QJ!APDQJ)

These recurrences naturally truncate to three terms, that is, on_1;, 6n-1,; = 0, for
j < n—2. This yields

MY, = AV, _{ — On-i,n-1Yn_1 — On-1,n-2Yn_3

bnw, = A'W,_; —On_in-1Wn_1 — Fn-1n-2W,_3.

This process is subject to breakdowns. For example, if the denominatorof op_jn-1 is
zero for nonzero Lanczos vectors, v, _;, W, _,, breakdown results. Fortunately, most
breakdowns can be avoided by using look-ahead variants of this algorithm, which we
briefly discuss below.

Let V,, (W,) denote the matrices whose columns are the normalized right (left)
Lanczos vectors resulting from n steps of the Lanczos iteration. The recurreiices for
the Lanczos vectors can be rewritten in matrix notation as follows:

(3.2) AVo = Vo Huirn, AW = WanHuggn
For the right Lanczos vectors, this is written explicitly as:
[ 0o 01,0 0 cee 0 ]
m o1 021 x :
A[l"o Hnl_l}z[; EnI_L !I"} 0 n2 02,2 0 ,
| | | | | : n»o On-l,n-2

On—-1l,n-1

0 R | Nn

where Hp 4, 5 is a tridiagonal, upper Hessenberg matrix. Similarly, the orthogonality
condition can be written as

[ 6o
61
(3.3) WiAPV, = D, =

6n—1

a diagonal matrix.

To avoid most breakdowns that can occur in the standard Lanczos iteration, meth-
ods such as BCG and QMR are often implemented with look-ahead variants of this
process, such as the look-ahead Lanczos (LAL) algorithm of [FtGuNa91]. Breakdowns
are avoided by relaxing the orthogonality condition, (3.1). By grouping the right and
left Lanczos vectors into blocks, where the first vector in each block is called a regular
vector, and all other vectors in the block are called inner vectors, the Lanczos vectors
generated by the LAL algorithm satisfy a block orthogonality condition

ifi:j

e ap D (Dily, 4 »
. W:APV, = nés =1,..
(3 4) ) A J { {O}d"dJ lf i # ] 2 1, :e’

11



where V, is the matrix whose columns are the right Lanczos vectors from the j'th
block, and W; :18 the matrix of left Lanczos vectors from the i'th block. The number
of columns in V; and W; are denoted by d, and d;, and £ refers to the current block.

This block orthogonality condition can also be accomplished with short recur-
rences for the right and left Lanczos vectors. Instead of these recurrences involving
only two previous Lanczos vectors, the LAL version involves the two previous blocks
of these vectors. The matrix equations for these recurrences can still be written in the
form given by (3.2), except that the matrices Hnyy n, I~i,,+1,m are block tridiagonal,
upper Hessenberg. Similarly, the matrix equation for the orthogonality condition,
(3.4), yields a block diagonal matrix, D,. The reader is referred to [FrGuNa91} for
details.

When BCG and QMR are implemented via a look-ahead version of the Lanczos
iteration, the material in the previous section on projection methods can be extended
in order to be applicable. In particular, consider nested sequences of subspaces,
{Ve},_,, where each V; may differ from the previous subspace, Vi.;, by possibly
more than the span of a single vector. In the next section, we will see that both BCG
and QMR are projection methods, where the right subspaces, {Vi}._, are spanned
by the right Lanczos vectors. When the LAL version is used in the implementation,
Vi differs from Vi _; by the span of the k'th block of right Lanczos vectors.

Let {Vi}:_, and {)%}i_, be nested sequences of right and left subspaces such
that dim(Vi) = dim()x) = d(x), Yk < £. Denote V; and Y; as the matrices whose
columns span V; and },. Consider the partitioning

~

Vl = [‘}h {/21 veey ‘/l]: Yl = {?1) ?21 ceey i’l}v

where, fork =1, ..., ¢, V. is the matrix whose ni columns are the right Lanczos vectors
from the k’th block, {; 4,93 4 -1 ¥, x}- A stationary mapfrom {Vi},_, — {Ve}i_,
is given by

B* =YY/ V)"'Y.

This can be viewed as a blockwise mapping, since for every block, k,

It follows that Lemmas 2.1 through 2.3, and Theorem 2.4 can be extended to include
blockwise maps, and thus look-ahead versions of BCG and QMR.

For simplicity of this presentation, we have chosen to present the BCG and QMR
methods without a look-ahead implementation of the Lanczos process. We will assume
there is no breakdown in the Lanczos iteration and that d(vp, 4) = d(wgy, 4°) = N,
where d = d(z, A) is the dimension of the maximal Krylov subspace generated by
the vector, z, and the matrix, A. Except for rare cases of incurable breakdown, see
[FrGuNa91l], breakdowns can be avoided with look-ahead variants of this algorithm,
and the results that follow can be extended to cover these cases. We can also ex-
tend these results to include cases where d < N by restricting all operators to the
appropriate subspaces.

12




3.2. The biconjugate gradient (BCG) method. The BCG method produces
iterates that are defined by two conditions:

L, = Zp_1tZn-n Zn-1 € K"'(EO’A)’
(3.5) tn L Kn(wo, 4%),
or
e, L A'Kn(wg, 4%).
By letting
Vo = ’Cn(lmA)’
Yn = A'Kn(wo 4%),

it is clear that BCG is a projection method.
BCG is implemented via Lanczos biorthogonalization, with p = 1, which produces
a pair of ascending bases

{uhS' for  {Ki(zo, AN}

=1
{w; fvzf)l for {ICi(yO,A‘)}fV:I,
such that
. | & 1=7
A '{ 0 i#]

For every i, denote by V; and W;, the matrices whose columns are these ascending
basis vectors for K(vg, A), and K;(wqy, A") respectively. By choosing v, = r4/||rolls
and w, arbitrary (usually w, is chosen to be v,), we see that

{y, V3t is an ascending basis for  {Ki(ry, 4)}Y¥,,

A'w,}No! s an ascending basis for  {A"K;(wg, A°)}Y,.
1J1=0 Wy i=1

It follows that the columns of V; span V; and the columns of A*W; span );. Since
we are assuming there is no breakdown, and d(vy, A) = d(wy, 4*) = N, it follows
that dim(V;) = dim();) = ¢, Vi < N, and WAV, is nonsingular Vi < N. From
Theorem 2.4, we know the method has a metric; thus, there exists an HPD B such
that B(V;) = )i, Vi. One possible choice of an HPD B is given by:

(3.6) . . . B=A"WNDy Dy'Wy A.

This can be.seen by using (3.3), with p = 1, and noting that for every ¢,

By; = A‘WNDI—V‘(DEI Wy Ay;) = A'WND;JIQ =<A'w

1

L

where ¢, is the i’'th canonical basis vector, and where {# A'w,}/.3! is another ascend-
ing basis for {); fv=1.
Substituting Dy = Wy AV into (3.6) shows that B may also be written as

(3.7) B=Vi Vgl
13



Since the first column of Vi is ry/iirgil, it is clear that B is dependent upon r,, and
thus upon z,. Also, note that for every n, V, = K,(ry, 4). We see that BCG fits
into the framework outlined earlier as a variable metric conjugate gradient method.
For B given by (3.7), it is clear that the right Lanczos vectors form a B-orthogonal
basis for {V,}L,. Therefore, B is of the form given by Corollary 2.5. Furthermore, it
follows from Corollary 2.5 that all possible metrics, B, can be written in the form:

(3.8) B =VitQyVyl,

for an arbitrary positive, diagonal matrix, Qn. Thus, any B of the form given by
(3.8) will produce the same sequence of iterates. We may recast the definition for the
BCQG iterates as:

(3.9) Zn = ZnogtiZeon Zn_1 € Ka(ro, 4),
; en ls 2z Vz € Ka(ro, 4),

where,

(3.10) B = A'WNDy QND'WHA = Vi QnVit,

for any positive, diagonal matrix, Qn, and where Vy and Wy are the matrices of
biconjugate Lanczos vectors.

3.3. The quasi-minimal residual (QMR) method. The iterates generated
by the QMR method are given by

(3.11) T, =ZTo+2Zp_q, 2,1 € Ka(ro, 4),

where, z._, is chosen to satisfy a quasi-minimal residual property [FrNa91] which
will be described below. QMR is implemented via Lanczos biorthogonalization, with
p = 0, to construct a pair of ascending bases

{whHG  for  {Ki(w, AN,

{w; ?’:6‘ for  {Ki(wy, 4*) Ly,

such that
. — 6i t= J
w;v, = { 0 : ¢]
The first right Lanczos vector, v,, is chosen to be r,/||ry||, so that K,(uv, 4) =
Kn(rg, A). The starting left Lanczos vector is arbitrary, but often chosen to be v,.

Denote V,, as the matrix whose n columns are the first n right Lanczos vectors. Since
these vectors form a basis for K,(r,, 4), we can rewrite the QMR iterates in the form

z, =25+ Va7, yEC".
The residuals have the form
(3.12) r,=b—- Az, =b- A(zo+ Vay) =15 - AV,
Let no = {7y, and note that ry, = noy,, or equivalently,
Mo

0
(3.13) ro = Vi

N
14



From (3.2) it follows that

(3.14) AV, = AVy (

(=2
o)

), s (3),
N N

where 7 is a vector of length n, so that together, ( % ) has length N. Substituting
(3.13) and (3.14) into (3.12) yields -

ol

(3.15) T, =VN : - Hy

(==}
o

N N

Minimizing ||z, || at each step is expensive, so instead, QMR chooses v _ to satisfy

o Y
0 0

min . — Hy
q€Cc™ : :
I\ o 0

This is referred to as the quasi-minimal residual property [FrNa91]. This is imple-
mented via a least squares problem, i.e., at each step we solve

n+l

or equivalently, using QR decomposition of Hp41,n, solve

Mo
Rnn 10
of |17

Qn+1,n+1 [

n+l

For details, see [FrNa91].

It follows from (3.3) that Dy = Wy Vy, so multiplying both sides of (3.15) by
DII,,‘W,:, yields

7o Y

o B o | 0
(D' Wy Ae, = Hy | . )

0 0

and we see that QMR is choosing 7, to minimize

DY Wi Ae, .
15



By definition, this is the same as

(D' Wi Aen, Dy Wi den)'? = (Ben,e0)!/? = leails,
where,

B = (Dy'WyA) (DR'WyA) = AWy Dy Dy Wi A.

Again, using (3.3), we see that D;,lw,}A = V§'A4, and it follows that B can be
written equivalently in the form

B= A"V VylA

Since the first column of Vjy is the normalized initial residual, B depends upon r,.
Also, we have that {V;}N | = {Ki(ry, 4)},, so that QMR can be viewed as a variable
metric conjugate gradient method. We redefine the iterates generated by the QMR
iteration by:

(3.16) Zn = ZnoytZaon Zp-1 € Kn(rg, 4),
| en Lo 2 Vz € Kn(rg, A),
where,

B = A'WyDy Dy'Wy A,
(3.17) or

B = A'Vg'Vy'a,

and Vy and Wy denote the matrices of biorthogonal Lanczos vectors.

At step N, the recurrences for the right Lanczos vectors are written in matrix
notation as

AVy = VyHy.
Multiplying through from the left, and again from the right by V ! yields
(3.18) VylA=HNVg! = QnRNVYY,

where the second equality follows from a QR factorization of Hy. Substituting (3.18)
into (3.17) shows that B may also be written in the form:

(3.19) B = Vi RyRNVSE

Denote Py = VyRy', with columns {Ej ;’;01. We recall from [FrNa91] that the
P 's are the step directions for the QMR iteration. Since the columns of Vi form
an ascending basis for {V;}/*, and Ry is a nonsingular, upper triangular matrix,
it follows that the columns of Py also form an ascending basis for {V;}}¥,. Using
(3.19), it is easy to see that {EJ }]N;Ol are a B-orthogonal basis. Therefore, Corollary

2.5 shows that all possible metrics, B, can be written in the form:
(3.20) B = Vi "RyONRNVy! = Py Qn PR},

for an arbitrary positive, diagonal matrix, Qx. This means that any B of the form
given by (3.20) will produce the same sequence of iterates.

16




3.4. Generalizations of BCG and QMR. Recall that Lanczos biorthogonal-
ization can be implemented with three term recursions for any nonregative integer,
yielding a pair of ascending bases

{upHst for  {Ki(zo, AL,

{wip ' for  {Ki(we, A}y,

such that

» - 6|) lZJ
%o#wwr-{o@ oy

Denote the N x N matrices with columns v, i(p)’ and w;(,y, as V{p ) and W(,) respectively.
Also, recall from Lanczos the matrix notation for the recursions and orthogonality
condition:

(3.21) AV = Vi Hp)y, AWy = Wi Hp,)

(3.22) W(;)A”V(p) D(py = diag(- - byp) ).

Define BCG(p), for p > 1, as the family of methods whose iterates are defined by:

zZ, = Zpo1+2Z, 4 2,1 € Ka(ry, 4),
en L (A7) Kn(wo, A7)

Notice that BCG(1) is the same as standard BCG, and that BCG(0) is not defined
since it's implementation at each step, n, involves the unknown quantity, e,,. These
methods are all implemented via the Lanczos process with the corresponding power,
p. Analogous derivations to that for BCG(1) shows that they all may be recast
as variable metric conjugate gradient methods; that is, the iterates can be defined
equivalently by:

(3.23) Zn = Zp1tzaln Zn_1 € Kn(ro, 4),
' €n -LB 2, V_E ’Cn(loaA);
where,
(3.24) Bgcq(p) = (A" (p)D(p QND( IW( )AP — V“QNV(p) ,

and again, Qu is an arbitrary positive diagonal matrix.

Likewise, we can generalize the QMR method by implementing it via the Lanczos
iteration with different powers, p. This yields a family of methods we denote by
QMR(p).

Define QMR(p), for p > 0, as the family of methods whose iterates satisfy:

z, = 2
(3.25) . L,

-n

r1—1+ln—11 Zn- 16,(’ (7'0! ):
2, Vz € Kp(rg, A),

17



where,

APt = grv oty Tlg

(A-)P“W(,,)D D; LW o Vin)

(p)°

i

BaMr(p)

(3.26)
_ ~ e -1
= Voo BB Vipy -

Note that QMR(0) is standard QMR. Again, any B of the form
(3.27) Bawa) = Vi By W Rip) Vi)

where Q0 is an arbitrary positive, diagonal matrix, will yield the same iterates.

From above, we can obtain a relationship between the metrics for BCG(p) and
QMR(p). If we let Qx = I in both cases, we obtain

Bqumn(p) = A" Beca(n)4-

Since BCG(0) is not defined, we can't directly relate QMR(0) (standard QMR) to a
BCG method in terms of their metrics.

In Figure 3.1 we compare the convergence plots of QMR(0), QMR(1), and BCG(1)
run on a real nonnormal annulus matrix. The convergence is measured in the relative
residual norm, where QMR(0) is denoted by the solid line, QMR(1) the dashed line,
and BCG(1) the dotted line. This behavior is typical of the examples we have run.
BCG(1) demonstrates rather erratic convergence in the residual norm as compared
to QMR(0) and QMR(1). All the examples we have run comparing QMR(0) and
QMR(1) show very 31m11ar convergence lots measured i in the residual norm. @),

f~ "W&Mua , Mtﬂb Tatesos procdgss and will be used
in the theorems below. Recall from’ Sectxon s 3.2 and 3.3, that the first column of V{;
is _o/H_oH so that 1y = ||ro||V(p)€;, whete ¢, = [1,0,...,0]%. Multiplying from the 1eft
by V(" yields ' :
(3.28) Vipy To = lirofles.

From (3.21) we have that (AV(p))™! = (V) H(p)) "t or
1, 1y,=
(3.29) Viy 471 = Hi Vi
By multiplying (3.21) from the left and again from the right by V, ( ) we obtain
(3.30) Vor A =HgV),

and it follows that

(3.31) Vi pn(A4) = po(Hip) V-

For any variable metric CG method, it follows from definition that

(3.32) lenlls = ng;; lipn(A)eoll )

18
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FiG. 3.1. Convergence plots for QMR(0) (solid line), QMR(1) (dashed line), and BCG(1)
(dotted line)

where the HPD matrix, B(z,), corresponds to the particular method. Recall that the
matrix B is not unique. Any positive, diagonal matrix, Qu, in (3.27) for QMR(p),
and (3.24) for BCG(p) will yield the same sequence of iterates. In the following
convergence theorems for BCG(p) and QMR(p) we have set Oy = Iy, the identity
matrix. The reader should note that other choices for Qx will alter the bounds given
in these theorems, and that it may be possible to choose 2y to yield smaller bounds
for the relative residuals produced by these methods.

To be consistent with the presentation of BCG and QMR given earlier, we will
assume these methods are implemented via the Lanczos process, without look-ahead
strategies, and that there is no breakdown in this process. We also assume that
d(vy, A) = d(wy, A*) = N, and the Lanczos vectors are scaled to have unit length. A
development with LAL is a straightforward generalization.

The next result is a generalization of the the bounds given in [FrNa91] for QMR(0).

THEOREM 3.1. Let H(,) be the N x N matriz generated by N steps of the
Lanczos iteration. For B given by

(3.33) Bamn(s) = 4"V Vi) 4,

the residual vectors generated by the QMR(p) methods satisfy:
I
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Proof. For B given by (3.33), we can rewrite (3.32) as

V5 Aeall = i 1V dpn( Aol = mip, V(53 pn ()l
Using (3.28),(3.30), and (3.31), this becomes

Vg all
ol

Since r,, € Kn41(rg, A), we can write r, = (V{p))n+1§, where { € C**! and (V;))ns1
denotes the first n + 1 columns of V(). From this we see that

(3.34) = min,lipn (Hp)eul

Vi;)l‘"' = ( % )N = [60;61)"“{?\,0, ,O]E,

and it follows that

Il _ WYzl (sl
fIroll Iroll {roll
(3.35)
”(V(P))n-H“ [!é“ _ v p)_nH
S T = el =

Since the columns of V[, are unit vectors, it follows that ||[(V(5))n+1ll < vV + 1 and,
together with (3.34), we see a bound for the relative resxduals is given by:

l'll*oilll <Vn+ lpﬂig:‘lpn(}{(p))glu,

I‘!

Since pn(H(p))€, is just the first column of pn(H(p)), and H(,) is tridiagonal, it follows
that this bound may be computed from the first n columns of H(,). O

THEOREM 3.2. Let H(;) be the N x N matriz generated by N steps of the
Lanczos iteration. Denote by (H,))"*!, the first n + 1 rows of H,). For B given by

(3.36) Baca(e) = Vi) Vo)

the residual vectors generated by the BCG(p) methods satisfy:

llzall o
l

| =
where ¢, = [1,0,.. 0]% This bound can be computed from the first n + 1 rows of
Hp).

2

S Vr+1C((Hp)™™) miz [lpa(Hipy)ealls

é’_

Proof. For B given by (3.36), (3.32) becomes
Vi enll = ,min Vg Pa(A)eoll
which can be rewritten as

(3.37) Vipy A™'zall = min w(,,,pn(A)A-‘nm:.
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With (3.28)- {3.31), (3.37) becomes

[ 7
(3.38) A = min IHG e (Hep el

For simplification, we will use the notation:
(M)n+1 to denote the first n + 1 columns of the matrix, M, and

(M)"*!  to denote the first n + 1 rows.
Next, we write the residual vectors as
(3.39) tn = Vi Hp) Hip Vs Ine

Since r, € Kn41(ro, A) and the columns (V;))n+1 span Knii(ro, 4), it follows that
T = (Vip))n+1€, where £ € C*+1. From this we see that

V‘l n+l
(340) ‘/(;)lr-n = [ ( (p)f)) ] (V(P))n+1§_: ( g‘ )N = [éo!éll '~-y§n)0| 10]'11\/"

Using (3.40), we note that (3.39) may be rewritten as

H n+1 B V—l n+1
Tn = [(Vp)nsr s 0] [ ( (p[))) } [(H(p;)m-l : 0] [ ( (’)0) ] Tns
or
(3.41) P = (Vip) It (Hp)) " (HG e (Vi) 2

Since the columns of V{,) are unit vectors, it follows that [|(Vip))n+1]] < v+ 1.
Taking norms in (3.41), dividing through by ||ry||, and using (3.38) yields
~1y-1
llzall ”H(P)V(p) Il
lIroll Izl

L‘l

|

< Vvt L(Hg)

5

(3.42)
= Vn+1||[(Hp)" p?éijr:l-“H(;;p"(H(”)gl“'

Since H(p) is tridiagonal and pn(H(p))e, is the first column of pn(H(y)), it follows
that pn(H(p))e; can have nonzero entries only in the first n + 1 rows. Therefore,

H(';;pn(H(,))gl = (H(;;),,Hpn(H(,))gl, and (3.42) becomes

llzall
lloll

Notice that (Hp))"*+! is the left inverse of(H(“p;),H.l. Thus, ||(H(py)" ! H(H(_p;)null =

C((H(p))™*!), and it follows that a bound for the relative residuals produced by the
BCG(p) methods is given by

I, , . .
V¢ VRTT C((Hipy)™™) min lipw(Hop)ey I

llroll PaEPS

5

Svn+1l ”(H(P))"H“ “(H(;;)ﬂHH p:‘éig;HPn(H(p))El“-

b‘!

13

From the tridiagonal structure of H(y), it follows that both C((H())"*!) and pa(H(;))e,
can be computed from the first n + 1 rows of H,y. O
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4. Estimating the spectrum of A. For any fixed or variable metric conjugate
gradient method, the error at each step is minimized with respect to an inner product
norm, || - || = (B,-)}/2. Consequently, many of the results given in [MaOt92] for the
CG iteration, apply to these methods. In particular, these methods produce direction
vectors, Eﬂ’s, and residual vectors, r,'s, that satisfy

p, La Kn(to,4),  A™'r, Lp Kalry, A).
Since r,,, and p, € Kn+1(rg, A), we can write
P, =én(A)ror  rn =pn(A)ry,

for some polynomials ¢,()), pn(A) of degree less than or equal to n. The polynomials
#n(A) and pn(A) are called the B-orthogonal polynomials and the residual polynomials
respectively.

The following theorems from [MaOt92] show how to find the roots of these poly-
nomials.

THEOREM 4.1. Suppose that p, = ¢i(A)ry # 0 with ¢;(A) = [[L,(A = A;)™
and di = Z;‘:l m; = i. Suppose
p, L8 Ki(ro, 4).

Let S; and T; be any two N x i matrices whose columns apan K,(r,, A). Then the
roots of

¢,‘(z\) =0
are the eigenvalues of the generalized eigenvalue problem
T BASiw = AT, BS;w.

If m; > 1, then (T? BS;)™}(T;? BAS;) has a Jordan block of size m; associated with
the eigenvalue A,.

THEOREM 4.2. Suppose that r; = pi(A)ry # 0 with p;()) = H;‘:l(l - f:)"‘:
and d; = E;‘:: mj < i. Suppose
A7l Lg Ki(rg, A).

Let S; and T; be any two (N x i) matrices whose columns span Ki(ro, A). If A is a
root of

pi(A) =0
then % is an eigenvalue of the generalized eigenvalue problem
T'BA™'S;w = %7‘,‘3&_@.

If my > 1, then (T BS;)~ (T BA~'S;) has a Jordan block of size m; associated with
eigenvalue f)— Ifd, < i, then (T BS,)"}(T; BA™'S;) has a nondiagonal Jordan block
of size i - d; associated with a zero eigenvalue.
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Details on the computation of these roots for the CG and the QMR iterations
are given in [MaOt92] and [BaMa94], respectively. Next, we briefly review the results
from [MaOt92] that show how these roots can be used to approximate the spectrum
of A. First, we recall some definitions:

The B-field of values of A is defined as

(4.1) f;(A):{A:A:-(—(BBi%for somez # 0€ CV}.

The reciprocal B-field of values of A is the set

(4.2) F5lAaY) = {r: ; € Fa(4-1)).

This technique for approximating the spectrum is based on two results:

(4.3) If A isaroot of an orthogonal polynomial, then A € Fg(A).

(4.4) If X isa root of a residual polynomial, then % € Fp(4™1).

It follows from (4.2) and (4.4), that the roots of the residual polynomials are in
Fz'(A~1Y). Notice that if up € £(A) C Fg(A), then ﬁ € L(A™Y) C Fg(Aa™t). From
(4.2) we have that uy € F5'(A~1). Therefore, we have both that £(4) C Fp(A4) and
T(A4) C Fgl(A™Y), thus

T(A4) CG = F(A)NnFH(4™).

It follows that the roots of the B-orthogonal polynomials and the roots of the
residual polynomialscan be used to construct regions that are in Fp(A4) and F5'(47!),
respectively. The intersection of these two regions can be used as an approximation
of the spectrum. For details, the reader is referred to {MaOt92].

5. Conclusion. In this paper we have presented a framework for conjugate
gradient-like methods. This structure provides tools for analyzing and comparing
methods. Within this framework we defined a class of methods called variable met-
ric conjugate gradient methods. Like the conjugate gradient method, these methods
produce a sequence of iterates that satisfy a minimization property; that is, at each
step the B norm of the error is minimized. For the CG method the matrix B is fixed
for every initial guess. For a variable metric conjugate gradient method, B depends
on the initial guess.

We have shown that the BCG and QMR methods can be classified as variable
metric conjugate gradient methods. Generalizations of the BCG and QMR methods
were defined by generalizing the underlying Lanczos process used in their implemen-
tation.

One consequence of this variable metric property is that these methods have
associated B-orthogonal polynomials and residual polynomials. The roots of these
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polynomials can be used to approximate the spectrum of A. This variable metric
property also provides an alternative approach to studying these methods. We can
directly analyze and compare them by examining the metrics for which they are
optimal.

Although convergence bounds for these methods are given by

leall < ¢(By!/2 mip [Pn{A)eoll
lleoll Pm€Ps  leoll

the matrix B is dependent upon the initial guess, as well as the algorithm. For this
bound to be useful, we need to bound C(B)'/?. A future direction of research might

be the determination of classes of matrices for which uniform bounds on C(B(z,)) can
be established.
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