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VARIABLE *IETRIC CONJUGATE GRADIENT METHODS"

TERI BARTH _ AND THOMAS MANTEUFFEL :

1. Introduction.

1.1. Motivation. In this paper we present a framework that includes many well
known iterative methods for the solution of nonsymmetric linear systems of equations,

A_.=b.m

The purpose of this framework is that it provides a basis for analyzing and comparing
methods.

Section 2 begins with a brief review of the conjugate gradient method. Next,
we describe a broader class of methods, known as projection methods, to which the

conjugate gradient (CG) method and most conjugate gradient-like methods belong.
The concept of a method having either a fixed or a variable metric is introduced.
Methods that have a metric are referred to as either fixed or variable metric methods.

Some relationships between projection methods and fixed (variable) metric methods
are discussed. The main emphasis of the remainder of this paper is on variable metric
methods.

In Section 3 we show how the biconjugate gradient (BCG), and the quasi-minimal

residual (QMR) methods fit into this framework as variable metric methods. By mod-
ifying the underlying Lanczos biorthogonalization process used in the implementation
of BCG and QMR, we obtain other variable metric methods. These, we refer to as
generalizations of BCG and QMR.

A consequence of this variable metric property is that, like CG, these methods

all produce direction vectors, p_,'s, and residual vectors, r,_'s, that satisfy

P-rL-Ls/C,_(r.o, A), A-lr__,_ -Ls ]g,_(r.o,A),

where B is a Hermitian positive definite (HPD), inner product matrix, and

]C,_(r_0,A ) = sp(r.o, At.o, ..., A'_-I_)

is the Krylov subspace of dimension n generated by the initial residual, r.o, and the

matrix A. Since p_,_,r__,_E ]g,_+l(-r-o,A), they can be expressed as

;, = =

where ¢,_ and p,_ are referred to as the B-orthogonal polynomials and the residual
polynomials respectively, associated with the corresponding method. Section 4 re-
views the properties of these polynomials and describes how their roots can be used
to obtain approximations of the spectrum of A. We conclude with a brief summary.
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t.2. Notation. We willmake use of the following notation throughout this pa-
per.

R '_, c"'_ - Vector spaces of real and complex n- tuples.
R '_×m, C''×'_ - Vector spaces of real and complex n × m matrices.

"P_ - Space of polynomials of degree at most k.

"P_ - Space of po'Lynomials, p_(A) 6 P_ such that, p_(0) = 1.
/C, 12,... - Other calligraphic letters denote subspaces of R n or Cn.
A, B,... - Upper case Roman and Greek letters denote matrices.
z_,p,... - Underlined lower case Roman and Greek letters denote vectors.
_,/3,... - Lower case Roman and Greek letters denote scalars.
(', '), ][" I[ - Euclidean inner product on C'_ and induced norm.
(B.,.), I[" I[B -- B-inner product on Cn and induced B-norm.
A" - Euclidean adjoint of A, A" = .i T.
A t - B-adjoint of A.

sp{z_j} - The linear span of the vectors zj.
E(A) - Spectrum of A.
_(d) - Convexhullof r_(A).
)rB(A ) - B-Field of values of A.

2. A framework for conjugate gradle,,t-llkemethods.

2.1.The conjugate gradient method. Given a Hermitianpositivedefinite

(HPD) inner product matrix, B, and an initial guess, z_o, a conjugate gradient (CG)
method for the solution of the N x N linear system

(2.1) Az=b,

produces iterates that are uniquely defined by two conditions:

(2.2) z__ = _n-1 + z_,-1, z_,_ 1 6/C,_(r.o, A),e_._ ±8 z_, vz.E/C_(r.o,A),

where,

h_,_(r_o,A ) = spIr_.o, At.o, ..., A'_-tr_o} ,

is the Krylov subspace of dimension n generated by the initial residual, r_.o,and the
matrix A, e__n = _ - _r,, is the error at step n, and -LB represents orthogonality in the
B-inner product, that is, (Be_.,_,.-_.)= 0. (c.f. [AMSg0])

For an HPD matrix B, the orthogonality condition given in (2.2) is equivalent to
a minimization property, (see [JoMa90]). That is, choosing z n_ 1 E /C,_(r_.o,A ) such
that e_,_-ks z, Vz_E Kn(r_o, A) is equivalent to minimizing i!e_.,_i_sover/Cn(r_o, .4). This
is known as the optimality property of the conjugate gradient method.

We denote by CG(B, A), a conjugate gradient method which is defined with
respect to an inner product matrix, B, and the matrix A. CG(B, A) is implemented

via the construction of a B-orthogonal basis {pj }_:o1 for/C,_ (r_o, A). The p's are called
direction vectors. There are several algorithms for CG(B, A), for example; Orthodir,
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Orthomin, Orthores, and GMRES, The Orthodir algorithm is given by

_o = _-Az-o,

_o : _o,
o

&+_ : A_a-_]3=om',JPj'

where,

(BAp_,p_I

(Bp_,,,pj): o, ,_# j =_ ,_,,,j: (Bp_,pj) "

In general, full recursions for the direction vectors are necessary in order to im-

plement CG(B, A). The work and storage requirements needed to do this quickly
become prohibitive, making CG(B, A) impractical to run in the general case.

In 1984 it was proven that, except for a few anomalies, the class of matrices
for which a conjugate gradient method can be implemented via a single, short (s-
term) recursion for the direction vectors is limited t_ matrices that are B-normal(s-2)
[FaMa84]. Thus, a practical CG(B, A) algorithm is available for only a small class of
matrices.

Generalizations of the conjugate gradient method for B-normal matrices to non-
normal matrices are often referred to as conjugate gradient-like methods. The CG
method along with most CG-like methods belong to a more general class of methods
known as projection methods.

2.2. Projection methods. A projection method is an iterative method, where
given an initial guess, _o, it produces iterates that are defined by two conditions:

m__ = re_n_i+z_n_i, z__iE F_,

(2.3) e_n 2. y__, Vye.Ya,
or

e_a 2. _'a

where, y,_ (P_) are referred to as left (right) subspaces, and _Lrepresents orthogonality
in the standard Euclidean sense. We say that the projection method breaks down at
step n if the iterate, z_,_,does not exist or is not unique.

For the remainder of this section we will assume that

dim(3,',,) = dim(Va ) = n, Vn,

and denote by

Y'_= Y-o Y-1 "' Y-n-1 , V,_= [ v_0 v 1 ... v,__ i ,

as the matrices whose columns span )',_ (F,,). From this it follows that (2.3) can be
rewritten as

_n = _-,_-I + V,_, 3' E Cn,

e,_ = e-n- l - t'__'
3



!
J

Multiplying the error equation through on the left bv Y." and using the orthogonality
condition given in (2.3) yields

0_: Y_'e_: _"_'e,,_1- _.;,"_%-<.

If }_"i.k is nonsingular, then

"v : (Y,_V,, )- IY,_ e__,,_I ,

and explicit forms for the iterates and the error are given by

(2.4) *_-, : *--,-1+ v,,(YgV,,)-lv,¢_,,-1,_,, = [I- v,,(vgv,,)-iY:]__,,__.

The name projection method comes from recognizing [I- V,.,(Y,_V,_)-IY,_] as a pro-
jection operator. From the above discussion, we see that the projection method breaks
down if and only if I'_"V,_ is singular.

For every n, a map from the right subspace to the left subspace can be constructed
to yield

(2.5) yn = V:,(V,,).

To see how this is done, choose any bases for y, and V_, and let Y,_ and _/_ be the
corresponding matrices whose columns are the basis vectors. It follows that

B_ = Y,,(v;v,,)-_v_

satisfies (2.5).

If there exists a fixed square matrix B, such that

(2.6) Yn = B'Vn, Vn,

we call the projection method stationary. Although B is fixed for every iteration, it

may still depend on the initial guess, _-o. Using (2.6), we can rewrite the orthogonality
condition

e_,,J_y,_ _ _, ±Bv'.,

where we mean a one-sided orthogonality with respect to the bilinear form matrix,
B; that is, (BeT,,z) = 0, Vz 6 _/'n. If B is also HPD, the bilinear form is an inner
product, and

e_n'-LBVn ¢_ minimizing t[e_nlls over Vn,

and the projection method has an error minimization property or a metric. When B

is independent of the initial guess, we call the metric fixed; otherwise, B is dependent
on _-o and the metric is called variable. Thus, these methods are referred to as either
fixed or variable metric methods. A projection method whose right subspace, _'n, is
the Krylov subspace, /t,_(r.o, A), is called a polynomial or Krylov projection method.
We refer to fixed (variable) metric methods that are also polynomial methods as fixed
(variable) metric conjugate gradient methods.
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Definition 2.l: Fixed (variable) metric conjugate gradient methods are iterative
methods whose iterates are uniquely defined by the following conditions:

(2.7) z_,, = z__,,_1 -'- z,,_l z__,,_1_ K',_(r_o,A),e,, _LB z, Vz_Ek:,,(r__o,A),

for B(z_o) an HPD matrix. If B is independent of z0 , we have a fixed metric conjugate
gradient method, or just a conjugate gradient method. Otherwise, we have a variable
metric conjugate gradient method.

For more information about projection metbods and their properties, see ([Sa81],[Sa82],[JoMa90]).
In Section 3 we will show how the biconjugate gradient (BCG) and the quasi-minimal
residual (QMR) methods fit into this framework as variable metric CG methods. De-
fore demonstrating these specific cases, we first discuss some general relationships
between variable metric methods and projection methods.

LEMMA 2.1. Every fized (variable) metric conjugate gradiea_ me$hod is a pro-
jection method.

Proof. The iterates from a fixed (variable) metric conjugate gradient method are
defined by the following:

z_,_ = z_,__1 + z____l, ___ E _:,_(r__o,A)
e_n 2-s z_, Vz_E /d,.,(r 0, A),

where B(z_0) is an HPD matrix. Let

v_ = +c_(_o,A), Y. = BJC_(_o,A),
then it follows that

z-n = _-_-I+ z-r_-l, z_n_1 E 1,'n,
2_ y, Vy E Y,_,

which is the definition for the iterates generated by a projection method.

Given a nested sequence of subspaces

F_C1,'2C."C1,'N, dim(Y,)=i, Vi,

/re say that {_}g=_l is an ascending basis for {1,',}_=1 if

1,'1: sp{_}
1,'2= sp{_,v__}

V,v = sp{_,_1,...,___}.

LEMMA 2.2. If t¢-1{_},:o i_,anascendi,,gbasisfor {v,},":, and _ N-_{v__,}i=o is any
other ascending basis for {1.;,}N=l then

5
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where,

' t

, i J :
9"N= _-o_-t"'"_-N-I , v_= V_ovI ...vN_I ,

I i t ! C I

and TN is a nonsingular, upper triangular matriz.

Proo] _.Since {_}/N=oland " N-I N{1;i}i=l, at step{vi},= o are ascending bases for each k,
we must have that sp{v__o,..., __ 1} = sp{_, ..., __ 1} = 'v'k. This is true if and only if

_-I where ak t:_ I # 0, since if__t,_ I 0,we can write each __x = _j=o ch,_-tv--j, - - _ =

we would have that sp{_, '",_-t} = sp{_, .",-_-2}" Now, _-1 = Y_=_ _j,_-tv_j,
where a_-l,k-1 :/=0, Vk <__N implies that

{ _j,_-t j<_k-IfrN =VNTN, where (TN)j,_-t = 0 j >k-1 '

Since a_-l.k-t # O, TN is a nonsingular upper triangular matrix.

For the next lemma, let
]

{v,},"= {y,},"=

be nested sequences of subspaces with ascending bases

N.-1
{v_i},=o for {_,'i}N=l,

}i=l,}i=o for {Yi N{Y-i_-I

such that

dim(P'i) = dim(Y+) = i, Vi <_ N.

Denote by Vi and Yi, the matrices whose j'th columns are v_jand y_j respectively, and
assume that (Yi" Vi) is nonsingular Vi < N.

Define a statior, ary map B" from

to be a map such that

B'(Vi) =Y,, Vi< g.

LEMMA 2.3. All possible stationary maps from {P]}g=t --, {y,}N=t , for i <_N,
are of the form

(2.8) B" = YNTjvV_ t,
6
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, N
Proof:. There exists a stationary map from {V,}_:, _ {.)',},=t, Vi < N, given

by

B" = YNV_1

Let/}" be any other stationary map and let _)i /}*vi. Then " N-1_ = {Y_}i=o is an ascending

basis for {Yi}_=t. Thus, /}* may be written

(2.9) B"= 1

By Lemma 2.2, we know there exists a nonsingular, upper triangular matrix, TN, such
that

(2.10) f'N = YNTN.

Substituting (2.10) into (2.9) yields

B* = YN TN t_r 1

Thus, any stationary map can be written in the form given by (8). Finally, note that
any map of the form given by (2.8) is a stationary map. []

We remark here that the assumption that

(2.11) Y_'Vi is nonsingular Vi,

is an assumption about the spaces, {];/}iN=land {yi}N=I , since if (2.11) is true for one
pair of bases, it is true for every pair of bases. We will refer to (2.11) as: Vi')'_ is
nonsingular for every i.

THEOREM 2.4. Any projection method based on nested subspaces {V_}_N=tand
g _e

{Yi}i=l, where dim(Vi) = dim(2i) = i, Vi <_ N, and where Yi 2i is nonsingular
:[or every i <_ N, has a metric, which is unique up _o an arbitrary positive, diagonal
matriz.

Proof. Let N- 1 N- 1_ }i=0 ascending bases for the nested sequences of{v,},= o and {Yi be
subspaces, {vi}N=I and {Yi}N=l respectively. Denote by Vi and Yi, the matrices whose

j'th columns are vj and yj respectively. It follows from Lemma 2.3 that all possible
stationary maps are of the form

(2.12) B" = V; " (V_vYN )TN V,; _

By hypothesis, Vt'Y i is nonsingular for every i < N and it follows that all the principal
majors of V_YN are nonsingular. Thus, an LU- decomposition of V_,I_ can be
performed without pivoting, yielding

_,'_l_ = LNUN.

Let TN = U_lflNL_, where _2v = diag(...w,...) and w, > 0 is arbitrary. Making
these substitutions for TN and (V_YN) into (2.12) yields an HPD B given by

(2.1a) B = V;'LNnNL'NV;
7
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where we see that B is unique up to a positive diagonal matrix, _Y. Thus, we have a
stationary, HPD B, such that BI,_ = t'] for every i ( N. By definition, the projection
method is either a fixed or a variable metric method. Notice that any B of the form
given by (2.13), in a fixed or variable metric method, will produce the same sequence
of iterates.

Define

(2.14) PN = VNL_v°,

where VN and LN are the matrices given in Theorem 2.4. Since L_" is a nonsingular,
_ }i=0 )upper triangular matrix, it follows from Lemma 2.2 that the columns of PN, {Pi N-1

form an ascending basis for {12/}_=1. It is easy to see from (2.13) and (2.14) that

{pi}iN=o1 are mutually B-orthogonal. Corollary 2.5 shows an equivalent way to write
all possible metrics for these methods. This form may be more useful since the
information needed to write the metric in this form is often readily available.

COROLLARY 2.5. Suppose we have any fized or variable metric meihod. Let
PN be any matriz whose columns, _ N-I{P_./}i=0, form a B-orthogonal, ascending basis for
{_'_}_=t' Then, the metric, B, given by (_.13) in Theorem _.I, can be written in the
form

(2.15) S = /5,_'_NP_',

where _N is an arbitrary positive, diagonal matriz.

Proof. From the above discussion we see that substitution of (2.14) into (2.13)
yields

(2.16) S = Pfr'_NP_ 1,

}i=0 , form an ascending, B-orthogonal basis for (Y,)_=1.where the columns of PN , (P-i N- 1
This B-orthogonal basis is unique up to scale. That is,

N-I N-]

{p,},:o=

is another B-orthogonal, ascending basis for {Yi}/'v=l if ai # 0 for every i <_ N - 1.
Thus, we can write

(2.17) PN = PNA_¢, where AN = diag(...ai...) and a, ¢: 0.

Using (2.16) and (2.17), it follows that B can also be written as:

B = Pfr°nNP_r'= Pfr°A_c°(2NA_rlP;I= Pft°hNPfr 1,

where

is also an arbitrary positive, diagonal matrix. Therefore, it follows from Theorem 2.4
that all possible metrics are given by:

B : P;'6NP;
8
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where the columns of /5u form any B-orthogonal, ascending basis for (_.',},'v_l, and
f:2,,¢is an arbitrary positive, diagonal matrix. =

Recall the definition for the iterates generated by a fixed (variable) metric method:

(2.18) z_,_ = _,_- 1 + z__,,_ 1, z,, _ 1 E V,_,
e__n -LB z__, Vz__E 1,;,_.

It follows that

(2.19) en =e_n_ I -z___ I.

Let z_j E Y,,-1. Since _2,__IC V,_, it follows from (2.19) and the orthogonality condi-
tion given in (2.18) that

0 = (Be_.,_,z__j>= (Be_.,__l,z__,)- <Bzn_l,zj) = 0-(Bz_n_l, z3).

Therefore, we must have (Bz_,__l, z_j) = 0, j < n- 1. Since a B-orthogonal, ascending
basis is unique up to scale, it follows that

z__,__1 = f3,__lP,__ 1' for some scalar/3,__ 1.

If/3n-I ¢ 0, Vn, then N-I{Z_n}n=o form a B-orthogonal, ascending basis for {V',_},_tc=x,
and it follows from Corollary 2.5 that all possible metrics, B, can be written in the
form:

B = ZN'_NZN I,

N-l
where Z/v denotes the matrix whose columns are {z__n}n=o , and where f_/v = diag(. • "wn ...)
and w,_ > 0 is arbitrary.

Convergence bounds:

Forany fixedorvariablemetricCG me:::od,we canestablishconvergencebounds.
Sinceforany ofthesemethods,the errorisminimizedat eachstepwithrespectto
theB norm, we can write

It_IIB = min Itr',_(A)eollB
Ile_otlB p._'_ I!_iiB

We can bound _ by noting thatI1_11

[ie,_lls = min []p,_(A)e__oltB- min IIB1/Zp,_(A)eoll
p,,EP_ pnEP_

(2.z0)

< IlBX/Zllpm!nzllp,_(A)e_.oll,

and

(2.21) t[e__,_lt-tlB-_/2B1/2e,_[I< lIB-I211 [IB1/Ze,,,][--"liB-l/211Ile_,_llB.
9
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Multiplying (2.20) on the left bv I_B-1/2 and using (2.21) yields:

(2.22) i_;e,_:_i< 'B-1/_!I iB 1/2 min ilp_(A)e__o}_.
- p_EP_

Since B is HPD, I!B-*/211!IBI/211= C(B_/2)- c'(B)_/2(the squareroot of the

condition number of B). By dividing (2.22) through by lie_oilwe obtain a bound for
the relative error:

(2.23) Ile__ll< 0(B)112 min ]lP_(A)goll11_11- p_'= I1_11

For a variable metric CG method, B is dependent upon the initial guess and the
particular algorithm. For this bound to be meaningful, we need to bound C(B). An
ideal result would be to find some class of matrices and some algorithm for which

C(B(,o) )< K, V_o.

As far as we know, such results are essentially nonexistent. We also recall from

Theorem 2.4 that B is not unique. Any positive, diagonal matrix, fin in (2.13), will
produce the same sequence of iterates. However, it may be possible to choose _N so
that B has a smaller condition number, yielding a tighter bound on the relative error.

3, Examples of variable metric methods. In this section we will show that
BCG and QMR are variable metric conjugate gradient methods. First we need to say
a few words about Lanczos biorthogonalization which is used in the implementation
of both BCG and QMR.

3,1. Lanczos biorthogonallzation. Lanczos biorthogonalization is a process
that constructs a pair of ascending bases

{_-,b=0 for {A:,(_,A)};'=I,

{_--j},=0 for {s:,(_,a')},L_,
such that

(3.1) w_APvj = {

6, i= J,
0 iej,

where p is any nonnegative integer. The v__'s(w__'s)are called right (left) Lanczos
vectors. When p = 0, the Lanczos vectors are biorthogonal, and when p = 1, they
are biconjugate. Lanczos vectors are often normalized to have unit length. Denote,
v_,_(w_,_), as the normalized Lanczos vectors, and let

This process is implemented via a 2-sided Gram-Schmidt process
I'1,--1

77_V-n= Av-rt- 1 -- _-_=0 _n- I,jV__j,

_--i

G,w_.,_ = A'w__,__t - _:=o _-l,:w_:,
lO
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where,

(AP+_v___,w__j> <A"w____,.4Pv_j>
O'n- i,) "- , O'rt-l,j --

(Apv_:,w_:> (w_:,AP,v_j)

These recurrences naturally truncate to three terms, that is, z,_-t.j, c?__t,j = 0, for
j < n - 2. This yields

r/,_v_.,_= Av_.,__t - tr,__t.,__tv__,__1 - o',__t,,__2v_,__2,

_,_wwa = A°w__a_t - __l,r__tw_.,__t - _M_t,r__2w__,__2.

This process is subject to breakdowns. For example, if the denominator of tr,__i,,_- t is
zero for nonzero Lanczos vectors, v_,__l, w,__i, breakdown results. Fortunately, most
breakdowns can be avoided by using look-ahead variants of this algorithm, which we
briefly discuss below.

Let V,_ (W,,) denote the matrices whose columns are the normalized right (left)
Lanczos vectors resulting from n steps of the Lanczos iteration. The recurre_ices for
the Lanczos ,'ectors can be rewritten in matrix notation as follows:

(3.2) AV,_ = V'n+tH_+t._ , A'W,_ = Wr_+t/_,_+i,_.

For the right Lanczos vectors, this is written explicitly as:

o'o,o o'_,o 0 . •. 0

',T/t ¢YL,t ¢Y:,t

A .% ... v,___ = E0 ... v_,,__ v,_
! I ] I I " ". _3 ". _-_,_-_

", '.. O'n--t ,n--l.

0 ...... 0 _,_

where H,_+t,,_ is a tridiagonal, upper Hessenberg matrix. Similarly, the orthogonality
condition can be written as

[ 60
61

(3.3) W_,A;'V,_ = D,,, = . ,

_-- t

a diagonal matrix.
To avoid most breakdowns that can occur in the standard Lanczos iteration, meth-

ods such as BCG and QMR are often implemented with look-ahead variants of this
process, such as the look-ahead Lanczos (LAL) algorithm of [FrGuNa91]. Breakdowns
are avoided by relaxing the orthogonality condition, (3.1). By grouping the right and
left Lanczos vectors into blocks, where the first vector in each block is called a regular
vector, and all other vectors in the block are called inner vectors, the Lanczos vectors

generated by the LAL algorithm satisfy a block orthogonality condition

(3.4) i_¢./.Ap_ = { [bi]_,,d, if i= j i,j = 1... _,[0]d,,a, if i ¢: j ' '%

11



where _ is the matrix whose columns are the right Lanczos vectors from the j'th
block, and 14r_is the matrix of left Lanczos vectors from the i'th block. The number

of columns in _ and 1?¢',are denoted by dj and d,, and _ refers to the current block.

This block orthogonality condition can also be accomplished with short recur-

rences for the right and left Lanczos vectors. Instead of these recurrences involving
only two previous Lanczos vectors, the LAL version involves the two previous blocks
of these vectors. The matrix equations for these recurrences can still be written in the

formgivenby (3.2),exceptthatthematrices/'/,_+I,,_,/I,_+I,_,areblocktridiagonal,
upper Hessenberg.Similarly,the matrixequationforthe orthogonalitycondition,

(3.4),yieldsa blockdiagonalmatrix,D,_.The readerisreferredto [FrGuNa911.for
details.

When BCG and QMR areimplementedviaa look-aheadversionofthe Lanczos

iteration,thematerialintheprevioussectionon projectionmethodscan be extended

in orderto be applicable.In particular,considernestedsequencesofsubspaces,

{_'_}_=I,where each l)kmay differfrom the previoussubspace,_'_-i,by possibly
more thanthespanofa singlevector.Inthenextsection,we willseethatboth BCG

and QMR areprojectionmethods,where therightsubspaces,{_'k]'_=1arespanned
by the rightLanczosvectors.When the LAL versionisusedintheimplementation,

_'_differsfrom _'_-Iby thespanofthek'thblockofrightLanczosvectors.

Let {I;_}_=Iand {Yk}_=1 be nestedsequencesofrightand leftsubspacessuch

thatdim(P'k)= dim(>'k)= d(_),Vk <__. DenoteVz and Yl asthe matriceswhose
columnsspan _'tand Yr.Considerthepartitioning

Vl = [l)l, 1_'2,..., _1, Yl = [I:'1,1;'2,..., _'l],

where, for k = 1, ..., g, Iirkis the matrix whose r_ columns are the right Lanczos vectors

from the k'th block, {£1,k, v-2,k,..., v-_w,k}. A stationary map from {V_}_=1 -" {Y_ }_=1
is given by

B* = Yl (Yl" _ ) - IV[ .

Thiscan be viewedas a blockwisemapping,sinceforeveryblock,k,

=

ItfollowsthatLemmas 2.1through2.3,and Theorem 2.4can be extendedtoinclude

blockwisemaps, and thuslook-aheadversionsofBCG and QMR.

Forsimplicityofthispresentation,we havechosentopresenttheBCG and QMR

methodswithoutalook-aheadimplementationoftheLanczosprocess.We willassume

there is no breakdown in the Lanczos iteration and that d(v__o,A) = d(w_.o,A °) = N,
where d = d(z_, A) is the dimension of the maximal Krylov subspace generated by
the vector, z, and the matrix, A. Except for rare cases of incurable breakdown, see
[FrGuNagl], breakdowns can be avoided with look-ahead variants of this algorithm,
and the results that follow can be extended to cover these cases. We can also ex-

tend these results to include cases where d < N by restricting all operators to the
appropriate subspaces.
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3.2. The biconjugate gradient (BCG) method. The BCG method produces
iterates that are defined by two conditions:

z__,_ = z___l + z__l, z,__l E £,_(r__0,A),

(3.5) r_n 2_ K:n(__.o,A'),
or

2_ A"r..(_o, a').

By letting

v,_= _:_(_o,A),
Yr, = A'tC,(w_o,A*),

it is clear that BCG is a projection method.

BCG is implemented via Lanczos biorthogonalisation, with p = 1, which produces
a pair of ascending bases

<__)N___I for (/C,(V__o,A)N i-l,

{w_iN-Ik:o for {_:,(_, A')}f:l,
such that

S 6, i = j
w__A._= _ 0 i#j

For every i, denote by 14 and Wi, the matrices whose columns are these ascending
basis vectors for/Q(V_o,A), and/Q(W_o,A" ) respectively. By choosing _ = V__o/[[r.o[[,
and -_o arbitrary (usually w_o is chosen to be V_o), we see that

N-1
{v_i},=o is an ascendingbasisfor {Ki(r_o,A)}/=I,

{A.'wi}_=_ x is an ascending basis for {A'_.i(w_.o,A')}_= 1.

Itfollowsthatthe columnsof14 spanV_ and thecolumnsofA'Wi spanYi. Since

we are assuming there is no breakdown, and d(v_o,A) = d(w_o,A') = N, it follows
that dim(Y_) = dim(yi) = i, Vi <_ N, and W_A14 is nonsingular Vi _< N. From
Theorem 2.4, we know the method has a metric; thus, there exists an HPD B such

that B(Vi) = Yi, Vi. One possible choice of an HPD B is given by:

(3.6) o . B = A*WND_'D_IW_A.

This can be seen by using (3.3), with p = 1, and noting that for every i,

1

By_i = A'WNDN'(DNIW_Av_,)= A*WNDNIfi = _A*w_i,

1 A. wi}iN__l is another ascend-where e_,is the i'th canonical basis vector, and where {
ing basis for {y,}_= 1.

Substituting DN = W;_AVN into (3.6) shows that B may also be written as

(3._) B= v_'v_ _
13



Since the first column of ['N is v_o/iiEoBI,it is clear that B is dependent upon v_0,and
thus upon _-o. A.lso, note that for every n, _,:,_= /C,_(r_0,A). We see that BCG fits
into the framework outlined earlier as a variable metric conjugate gradient method.
For B given by (3.7), it is clear that the right Lanczos vectors form a B-orthogonal
basis for {%"_}_=1"Therefore, B is of the form given by Corollary 2.5. Furthermore, it
follows from Corollary 2.5 that all possible metrics, B, can be written in the form:

(3.8) S = V_'flNV_ t,

for an arbitrary positive, diagonal matrix, fl_t. Thus, any B of the form given by
(3.8) will produce the same sequence of iterates. We may recast the definition for the
BCG iterates as:

(3.9) _-" = z--a-1+ z-a-1' Z-a-1 6/Cn(_r_o,A),e_. ±B z-, vz-E/C._(r_o,A),

where,

(3.10) B = A'Wtc D_v'flN D_vtW;c A = V]'flNV_ t,

for any positive, diagonal matrix, _t¢, and where Vt¢ and WN are the matrices of
biconjugate Lanczos vectors.

3.3. The quasl-minlmal residual (QMR) method. The iterates generated
by the QMR method are given by

\ (3.11) z, = _-o+ z-n-t, z_.__1E K:,_(r_o,A),

where, z_n_t is chosen to satisfy a quasi-minimal residual property [FrNa91] which
will be described below. QMR is implemented via Lanczos biorthogonalization, with
p = 0, to construct a pair of ascending bases

N-1
{v_,}i=o for {/C_(_,A)}_=I,

{W_,}N___I for {)Q(_W.o,A")}N:i,

such that

, _ 6, i=j

The first right Lanczos vector, _, is chosen to be _/ll-toll, so that /C,_(_o,A) =
K_,_(r0,A). The starting left Lanczos vector is arbitrary, but often chosen to be v_o.
Denote V_ as the matrix whose n columns are the first n right Lanczos vectors. Since
these vectors form a basis for/C,_(rr_o,A), we can rewrite the QMR iterates in the form

z_n = z_o+ V.7, 7 E C".

The residuals have the form

(3.12) rr, = b- A__n = b- A(_ o + V,7) = r.o - AV,.,__.

Let rio = l[.r_oi[,and note that r.o = rloy_o,or equivalently,

( 0o)(3.13) r_.o = VN .

0
N

14
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From (3.2) it follows that

?

• - o-2,, 0_--,,

where0, isavectoroflengthn, sothattogether, ( 7 )_ _ has length N. Substituting

(3.13) and (3.14)into (3.12) yields

(3.15) rn = VN . - HN . .

0 _ 0 _ _
Minimizing llr, ll at each step is expensive, so instead, QMR chooses _ to satisfy

( 0o)(o)min . - HN .

- 0 0

This is referred to as the quasi-minimal residual property [FrNa91]. This is imple-
mented via a least squares problem, i.e., at each step we solve

n+l

orequivalently,usingQR decompositionofHrL+1,r_,solve

n+l

For details, see [FrNa91].

It follows from (3.a)that DN = W_rV_, so multiplying both sides of (3.15) by
D_IW_r yields

(DN1W_cA)e__,_= . - H_ . ,

o o
and we see that QMR is choosing V_,_to minimize

IID_vlW_cAe__,_!I.
15



By definition, this is the same as

(D Nl liI"ArAe__, DNt W_rAe,_)i I2 = (Be_ , e__)112= iie_,,',lB,

where,

B = (OTvlW_cA)'(O_vlW_vA) = A'WNDN°D_vlW_vA.

Again, using (3.3), we see that D_vlW;cA = V_IA, and it follows that B can be
written equivalently in the form

B= A'V;'V;XA.

Since the first column of VN is the normalized initial residual, B depends upon r__o.
Also, we have that {Yi}_=t = {_i(r.o,A)}V=l, so that QMR can be viewed as a variable
metric conjugate gradient method. We redefine the iterates generated by the QMR
iteration by:

(3.16) z,_ = z_,__t + z_,__l, z_,__1E _,_(r.o, A),
e_a -J--s z, Vz_E _,_(r_0, A),

where,

B = A°WND_°D_clW_A,
(3.17) or

B = A'Vg'VglA,

and VN and WN denote the matrices of biorthogonal Lanczos vectors.

At step N, the recurrences for the right Lanczos vectors are written in matrix
notation as

AVN = VNHN.

Multiplying through from the left, and again from the right by Vg 1 yields

(3.18) VglA = HNVI_ i = QNRNVI_ 1,

where the second equality follows from a QR factorization of HN. Substituting (3.18)
into (3.17) shows that B may also be written in the form:

(3.19) B = Vg'R'NRNVg 1.

DenoteP,,,= V,v.a,', withcolumns 1. Werecallfrom[FrNa91]thatthe
p_j's are the step directions for the QMR iteration. Since the columns of VN form
an ascending basis for {1,'i}_¢=1and R_¢ is a nonsingular, upper triangular matrix,

it follows that the columns of PN also form an ascending basis for {Yi}_=l. Using

(3.19), it is easy to see that {pj }j_o 1 are a S-orthogonal basis. Therefore, Corollary
2.5 shows that all possible metrics, B, can be written in the form:

(3.20) B = V_'R_flNRIvV_I = P;'F_NP_ I,

for an arbitrary positive, diagonal matrix, _N. This means that any B of the form
given by (3.20) will produce the same sequence of iterates.

16
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3.4. Generalizations of BCG and QNIR. Recall that Lanczosbiorthogonal-
ization can be implemented with three term recursions for any nonregative integer,
p, yielding a pair of ascending bases

for

{_(p)}_o' for {t_,(W_.o,A')}_I,

such that

{ 5,(p) i = j_;(P)APv-i¢P) -- 0 i _- j

Denote the N x N matrices with columns v_(p), and w_qp), as V(p) and W(p) respectively.
Also, recall from Lanczos the matrix notation for the recursions and orthogonality
condition:

(3.21) dV(p) = V(p)H(p), A'W(p) = W(p)[-I(p),

(3.22) W_p)APV(p) = D(p) = diag(...6ffp)...).

Define BCG(p), for p > 1, as the family of methods whose iterates are defined by:

_r_ "- _n-I + Z-.n-l, Z_..n_1 e '_n(r..O,A),

e_ 2. (A')PJC,_(wo, A" ).

Notice that BCC-(1) is the same as standard BCG, and that BCG(0) is not defined
since it's implementation at each step, n, involves the unknown quantity, e__,_.These
methods are all implemented via the Lanczos process with the corresponding power,
p. Analogous derivations to that for BCG(1) shows that they all may be recast
as variable metric conjugate gradient methods; that is, the iterates can be defined
equivalently by:

(3.23) z-a = _-,_-1 + z,_-1, z____1e K:,_(r_.o,A),
e.,, ..Ls z__, Vz_.e £,,(:o, A),

where,

and again, _N is an arbitrary positive diagonal matrix.

Likewise, we can generalize the QMR method by implementing it via the Lanczos
iteration with different powers, p. This yields a family of methods we denote by
QMR(p).

Define QMR(p), for p > 0, as the family of methods whose iterates satisfy:

(3.25) z__,_ = z_,.__l* z_,__1, z__IE /C,_(ro, A),
e. ±s z__, vz__E PC,,(_o,A),

17



where,

B_MR(p) = (A')P+'W(p)D_ D(p')W('p)Apt'- = A't(v)"-'k}_)IA
(3.2B)

=
Note that QMR(0) is standard QMR. Again, any B of the form

(3.27) BQMR(p) = Y(;)'R[p)f2NR(,)V(;_,

where f_N is an arbitrary positive, diagonal matrix, will yield the same iterates.

From above, we can obtain a relationship between the metrics for BCG(p) and
QMR(p). If we let _N = I in both cases, we obtain

BQMR(p) ----A" BBCG0,)A.

Since BCG(0) is not defined, we can't directly relate QMR(0) (standard QMR) to a
BCG method in terms of th.._ir metrics.

In Figure 3.1 we compare the convergence plots of QMR(0), QMR(1), and BCG(1)
run on a real nonnormal annulus matrix. The convergence is measured in the relative
residual norm, where QMR(0) is denoted by the solid line, QMR(1) the dashed line,
and BCG(1) the dotted line. This behavior is typical of the examples we have run.
BCG(1) demonstrates rather erratic convergence in the residual norm as compared

to QMR(0) and QMR(1). All the examples we hive run comparing QMR(0) and

QMR(1) show very similar convergence plots measured in the resi,4ual norm. <_
- _,_, -,_11= _,____e _ft_t_ tB*eLa2R_o_process and will be used

"" in the theorems below. Recall from Section's 3._ and 3,3, that the first column of V(v)
is _r.o/[Ir.6Jl,so that.to = IltojjV0,)el, where e1 = [1, 0,...,0] T. Multiplying from the left
by V,", 1 yields

tP)

(3.28) _;)'to = ll_Ik_.

From(3.21)wehavethat(AV0,1)-'= (VlplHip))-'or

(329) ";15;¢

By multiplying (3.21) from the left and again from the right by l_p¢ we obtain

(3.30) A: v(;:,
and it follows that

(3.31) V(_p,_(A) = vn(g(p))V(;_.

For any variable metric CG method, it follows from definition that

(3.32) ',i,e_,_il,s- min IIp,_(d)e__otlB,

18
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Vtc_. 3.1. Convergence plot, [or QMR(O) (solid line), QMR(1) (da,hed line), and BCG(1)
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where the HPD matrix, B(z_o), corresponds to the particular method. Recall that the
matrix B is not unique. Any positive, diagonal matrix, F_N, in (3.27) for QMR(p),
and (3.24) for BCG(p) will yield the same sequence of iterates. In the following
convergence theorems for BCG(p) and QMR(p) we have set _N = IN, the identity
matrix. The reader should note that other choices for _N will alter the bounds given
in these theorems, and that it may be possible to choose _N to yield smaller bounds
for the relative residuals produced by these methods.

To be consistent with the presentation of BCG and QMR given earlier, we will
assume these methods are implemented via the Lanczos process, without look-ahead
strategies, and that there is no breakdown in this process. We also assume that
d(v_o, A) = d(__o, A*) = N, and the Lanczos vectors are scaled to have unit length. A
development with LAL is a straightforward generalization.

The next result is a generalization of the the bounds given in [FrNa91] for QMR(0).

THEOREM 3.1. Let H(v ) be the N x N matriz generated by N steps of the
Lanczos iteration. For B given by

A"(z.z3)
the residual vectors generated by the QMR(p) methods satisfy:

IIr_,,]l< v_+t mi.p,:itp,,(g(p))_xll,It.ll - p
]Twhere e__1 = [1, O, ..., OjN. This bound can be computed from the first n columns of

H(p) .
19



Proof. For B given by (3.33), we can rewrite (3.32) as

II_;)IA__.II-min ItV_Ap,(m)eoll- min Ill,i_p.(A)r_olt.

Using (3.28),(3.30), and (3.31), this becomes

(3.34) ll_".ll = min liP-(H(,))_-xll.

Since r. E/C.+x(r_o, A), we can write r.r.n= (g(p))n+x[, where __E 6m+x and (V_p)).+,
denotesthefirstn + IcolumnsofV(t).From thiswe seethat

- N

and it follows that

Ilr_.ll- II_p)_r__ll _ ll(w(p))_+l{ll
m

lit_oil lit_oil Llr_oll
(3.35)

< Ii(W<p)).+xll!1__1i [l_ffr-.,_tl
- 11_olt --l[(_p)).+ttl iir.oll

Since the columns of V_p) are unit vectors, it follows that !l(V(p)),,+ttl < _ + 1 and,
together with (3.34), we see a bound for the relative residuals is given by:

IIr_.l____/I< _ + 1 min ilp.(H(p))__xll.

Since pn(H(p))e_.1 is just the first column ofpn(H(p)), and H(p) is tridiagonal, it follows

that this bound may be computed from the first n columns of H(p). []

THEOREM 3.2. Let H(p) be the N x N matriz generated by N steps of the
Lanczos iteration. Denote by (H(p)) n+l, the first n + 1 rows of H(p). For B given by

(3.36) BBCG(p) = (p)7(;_

the residual vectors generated by the BCG(p) methods satisfy:

n+l
I1_11< _+ 1C((hrip)) ) mxn llp.(ttip))__xlI,lit_oil- p-_=

where ¢--1= [1, 0, ...,0]_r. This bound cart be computed from the first n + 1 rows of
H(p).

Pro@ For B givenby (3.36),(3.32)becomes

which can be rewritten as

(3.37) i[_;¢A-lr,_[I : min.",'_i_)p,_(A)A-lr_oi].p_E n

20



With (3.28)- (3.31), (3.37) becomes

H-lV,-lr.il
(3.38) II (p)(p) : minlIH(31p(.(,)):lii.llr.oil p-_"

For simplification, we will use the notation:

(M),_+I to denote the first n + 1 columns of the matrix, M, and

• (M) n+l to denote the first n + I rows.

Next, we write the residual vectors as

(3.39) r_.,_= Vo,)H(,)H(-p_ V(;_r_,.,.

Since r_.,_E /6,_+1(_,A) and the columns (V(p)),,+l span E,_+l(r_o, A), it follows that
r_.,,= (V(v)),_+,{, where { S C"+1. From this we see that

: : : [L,L,..,(v(,)),+l{ . o,...,
- N

Using (3.40), we note that (3.39) may be rewritten as

0 r_.,_,

or

(3.41) r_.rL= (V(p)),_+I(H(M)"+I(H(_).+I(_;)I)"+Ir_..

Since the columns of V(p) are unit vectors, it follows that [[(V(p)),+ll[ < v/-ff+ 1.
Taking norms in (3.41), dividing through by lit.oil, and using (3.38) yields

T-f-1I?'-Ir I

II_II< _+ l ll(H(p))_+_llil-(p),(p)__,l
(3.42) II_ll - lit.oil

- _ + I II(H0,))"+lllp_i_,_llH(;Ip,,(H0,))_xll.

Since H(p) is tridiagonal and pn(H0,))(_l is the first column of p,_(H(p)), it follows
that p_,(H(p))£l can have nonzero entries only in the first n + 1 rows. Therefore,

H(plp_.(HCp))(_.1 "" (H(_I)n+lpn(H(;,))_',, and (3.42) becomes

It_11< .¢_+ 1ii(H0,)),,+,liII(H_I),,+,IIpmi_.llp,,(H0,))_ltl.Itr.oll-

Noticethat(_r0,))"+_istheleftinverseof(H(;l),_+x.Thus,II(H(,))'_+Xtltl(H(;l),_+x[I-
C((H(p))'_+I), and it follows that a bound for the relative residuals produced by the
BCG(p) methods is given by

It,',,1__t< v_. iC((H(p))'_'_),.__'_!It.oil- min I!p,_(H(M)el[I.

From the tridiagonal structure of H(p), it follows that both C((H(_,)) '_*_) and p,_(H(_))_I
can be computed from the first n + 1 rows of H(p).
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4. Estimating the spectrum of A. Forany fixedorvariablemetricconjugate

gradientmethod,theerrorateachstepisminimizedwithrespecttoan innerproduct

norm, II"II"-(B',.>i/2.Consequently,many oftheresultsgivenin[MaOt92]forthe

CG iteration,applytoLhesemethods.Inparticular,thesemethodsproducedirection

vectors,p_n's,and residualvectors,r_,_'s,thatsatisfy

Since r_.., and -PrL6/CrL+1(r_.o,A), we can write

= _.(A)_, ;. = _(A)_,

forsome polynomials¢,_(A),pn(A)ofdegreelessthanorequalton. The polynomials
_bn(A)and pn(A)arecalledtheB-orthogonalpolynomialsand theresidualpolynomials

respectively.

The followingtheoremsfrom [MaOt92]show how tofindtherootsofthesepoly-
nomials.

THEOREM 4.1. Suppose that t2_,= ¢'(A)ro _: 0 with ¢,(A) = I'I_'__I(A- Aj) m,
b,

and di =- _-_ =t rnj = 5. Suppose

p,±B _:,(r_,A).

Let $_ and Ti be any two N x i matrices whose columns span IQ(r_o, A). Then the
roots of

¢_(_)= o

are the eigenvalues of the generalized eigenvalue problem

Ti*BASiw_. = a Z" BSiw..

If m: > 1, then (T_°BSi)-I(Ti'BASi) has a Jordan block of size mj associated with
the eigenvalue A_.

THEOREM 4 2 Suppo,ethat_ = p,(A)r_,o _ 0 with p_(A)= N_'__I(I-x___,_,• " lj/

and d, =__'___rn_<_5. Suppoae

A-IP__, ±s IC_(r.o,A).

o Let Si and T_ be any two (N x i) matrices whose columns span IQ(r.o, A). If I is a
root of

p,(_)=o

then _ is an eigenvalue of the generalized eigenvalue problem

1 .
T_'BA-I$iw__ = _T, BSiw_..

If m s > 1, then (T i"BSi)- t (T t. BA- t Si) has a Jordan block of size rnj associated with
1

eigenvalue -Z'j"If d, < i, then (Ti'BS_) I(T_'BA-t Si) has a nondiagonal Jordan block
of size i - d_ associated with a zero eigenvalue.
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Details on the computation of these roots for the CG and the QMR iterations
are given in [MaOt92] and [BaMa94], respectively. Next, we briefly review the results
from [MaOt92] that show how these roots can be used to approximate the spectrum
of A. First, we recall some definitions:

The B-field of values of A is defined as

• (B A_, _ for some ___: 0 E C'v }.(4.1) _s(A) = =

The reciprocal B-field of values of A is the set

1

(4.2) T_'CA-') = {_: i e J=aCA-1)}.

This technique for approximating the spectrum is based on two results:

(4.3) If _ is a root of an orthogonal polynomial, then ,_ E FB(A).
1

(4.4) If _ is a root of a residual polynomial, then _ E :FB(A-1).

It follows from (4.2) and (4.4), that the roots of the residual polynomials are in

F_I(A-I). Notice that if_k E E(A) C_t'B(A), then _ e F,,(A-') C_9CB(A-Z). From

(4.2) we have that _ E .F'_I(A-1). Therefore, we have both that E(A) C_.F'B(A) and
E(A) C_F_I(A-1), thus

}](A) C (_ =_.F'B(A) A.T'_I(A-1).

It follows that the roots of the B-orthogona[ polynomials and the roots of the

residual polynomials can be used to construct regions that are in .F'B(A) and )c_ 1(A-1),
respectively. The intersection of these two regions can be used as an approximation
of the spectrum. For details, the reader is referred to [MaOt92].

5. Conclusion. In this paper we have presented a framework for conjugate
gradient-like methods. This structure provides tools for analyzing and comparing
methods• Within this framework we defined a class of methods called variable met-

ric conjugate gradient methods. Like the conjugate gradient method, these methods
produce a sequence of iterates that satisfy a minimization property; that is, at each
step the B norm of the error is minimized. For the CG method the matrix B is fixed

for every initial guess. For a variable metric conjugate gradient method, B depends
on the initial gue.,is.

We have shown that the BCG and QMR methods can be classified as variable

metric conjugate gradient methods. Generalizations of the BCG and QMR methods
were defined by generalizing the underlying Lanczos process used in their implemen-
tation.

One consequence of this variable metric property is that these methods have
associated B-orthogonal polynomials and residual polynomials. The roots of these
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polynomials can be used to approximate the spectrum of A. This variable metric

property also provides an alternative approach to studying these methods. We can

directly analyze and compare them by examining the metrics for which they are

optimal.

Although convergence bounds for these methods are given by

II_e.l_____l< ¢(B)x/2 rain Ilvn(A)e_o[I
I1_oll- p_e_,:lie_oil '

the matrix B is dependent upon the initial guess, as well as the algorithm. For this

bound to be useful, we need to bound C(B) 1/_. A future direction of research might

be the determination of classes of matrices for which uniform bounds on C(B(z_o) ) can
be established.
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